
This is a postprint version of the following published document:

Al-Habob, A. A., Ibrahim, A., Dobre, O. A. & Armada,
A. G. (2020). Collision-Free Sequential Task Offloading
for Mobile Edge Computing. IEEE Communications
Letters, 24(1), pp. 71–75.

DOI: 10.1109/lcomm.2019.2948179

 © 2020, IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/429686546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/lcomm.2019.2948179

1

Collision-free Sequential Task Offloading for
Mobile Edge Computing

Author 1, Author 2, Author 3, and Author 4

Abstract—In this paper, a collision-free sequential task of-
floading scheme to multiple mobile-edge computing servers is
proposed. The problem is formulated as a multi-objective opti-
mization of latency and offloading failure probability. An exact
solution technique is developed to obtain a benchmark optimal
solution for the problem. A more computationally efficient
heuristic algorithm is additionally developed, whose sub-optimal
solution yields a performance close to optimal. Simulation results
illustrate that the proposed offloading scheme can effectively
reduce both latency and offloading failure probability.

Index Terms—Mobile edge computing, sequential task offload-
ing, ultra-reliable low-latency task offloading.

I. INTRODUCTION

In the last decade, an exponential growth of mobile appli-
cations has been witnessed, leading to the need of running
computational-intensive tasks on mobile devices. Although
recent mobile devices are equipped with more powerful pro-
cessors, even these may not be able to handle tasks requiring
intensive computations in a short time. Moreover, mobile
devices are constrained by capacity-limited battery, and task
computing consumes a large portion of the battery power.
This paradigm limits the devices’ ability to run applications
that require intensive processing.

Mobile-edge computing (MEC) is considered as a promis-
ing solution that provides cloud-like computing and avoids
offloading the tasks to distant centralized servers [1]–[3]. In
MEC, to take advantage of the servers diversity on the net-
work edges, the task can be offloaded to multiple MEC servers
cooperatively to further reduce the latency [4], [5]. From the
mobile device point of view, the important requirements of
task offloading are low energy consumption, low offloading
error, and low latency, which mandates ultra-reliable and low-
latency task offloading. Two main offloading schemes can be
considered, namely parallel offloading and sequential offload-
ing. For the former, the sub-tasks are offloaded simultaneously
to the servers over orthogonal communication channels [4].
For the latter, the sub-tasks are offloaded in a time sequential
manner to servers over a shared communication channel.
A sequential task offloading framework was proposed in
[6]. In this framework, a user equipment (UE) segments a
task into sub-tasks and offloads them to multiple servers
in sequence; the failure probabilities and latency caused by
uplink transmission are studied.

This paper tackles a more realistic scenario of sequential
task offloading, in which the feedback from the servers
to the UE is considered. Including the feedback into the
sequential task offloading framework imposes the possibility
of transmission collision between the feedback of a given
server and the uplink/downlink transmission to/of another

server. The problem is formulated as a weighted-sum multi-
objective optimization problem of latency and offloading fail-
ure probability. When compared with the product used in [6],
this formulation enables us to develop an exact technique that
guarantees an optimal solution and to control the importance
(weight) of one objective over the other. Moreover, even if an
exact scheme is hypothetically developed for the product cost
function, it would not guarantee the optimality if the weight
values are changed. This is mainly because the weights would
come as powers for the product terms rather than coefficients
as in the weighted sum. A more computationally-efficient
heuristic solution is developed for the formulated optimization
problem.

The rest of this paper is organized as follows. Section II
illustrates the system and communication models. Section III
formulates the optimization problem. An exact method for
obtaining a benchmark optimal solution is proposed in Section
IV. Section V develops a heuristic approach for obtaining
good quality sub-optimal solutions with low computational
effort. Section VI presents simulation results, and Section VII
concludes the paper.

II. SYSTEM AND COMMUNICATION MODELS

A. System Model

A delay-sensitive and computationally-intensive task (T) is
offloaded by an UE to a set S = {si}Ni=1 of N MEC servers.
Each server is equipped with a central processing unit (CPU)
that helps offload and compute the UE’s task. We use a tuple
T = {U,D,C} to represent the task T in which U is the size
of the input data (in bits), D is the output computed result (in
bits), and C is the required CPU cycles. The output computed
result is modeled as D = βU , where β (β > 0) is the output
to input ratio of the task [5]. The number of CPU cycles C is
modeled as C = αU , where α (α > 0) depends on the task’s
computational complexity [2]. A server si is represented by a
tuple si = {Rui, Rdi, fi}, where Rui is the uplink data rate,
Rdi is the downlink data rate, and fi is the computational
speed of the CPU in the i-th server.

To select the servers’ offloading sequence and obtain an
ordered set of servers S∗, we assign a weight wi to each
server and sort the servers in an ascending order of wi. We
study a weighting scheme which reflects the computational
capabilities and quality of transmission links:

wi =
U

Rui
+
αU

fi
+
βU

Rdi
. (1)

The task T can be divided into M (M ≤ N) non-
overlapping sub-tasks and distributed to servers. We define
the task allocation vector η = [η1, η2, . . . , ηN]

T, such that

IEEE Communications Letters

2

∑N
i=1 ηi = 1 and ηi ≥ 0 is the portion of the task that is

offloaded to the i-th server. Task partitioning causes overhead,
and consequently, we introduce δ (δ ≥ 1) to represent
the ratio of the transmitted data size to the original task
data size due to segmentation overhead. We use a tuple
τi = {ui (η) , ci (η) , di (η)} to represent the sub-task that
is offloaded to the i-th server in which ui (η) = ηiδU is the
size of the sub-task’s input data (in bits), ci (η) = ηiαU is
the required CPU cycles, and di (η) = ηiβU is the output
computed result (in bits).

B. Communication Model

The UE offloads the sub-tasks using the entire channel
bandwidth in a sequential technique. The end-to-end delay
consists of two delay components: (1) Task transmission
delay: the uplink and downlink transmission delay of the
i-th sub-task can be expressed as Dui (η) = ui(η)

Rui
and

Ddi (η) = di(η)
Rdi

, respectively. In sequential task offloading,
the uplink transmission of the i-th sub-task will not start
until the uplink transmission of all the previous (i− 1) sub-
tasks is finished. In other words, the waiting time of the i-
th sub-task is Wi (η) =

∑i−1
j=1Duj (η) and W1 (η) = 0.

(2) Computing delay: The CPU in the i-th server computes
the sub-task with a computational speed fi (in cycles per
second). Consequently, the computing delay in the i-th server
is Dci (η) = ci(η)

fi
. The delay for completing the i-th sub-task

can be expressed as

Di (η) =Wi (η) +Dui (η) +Dci (η) +Ddi (η) , (2)

and the total latency for completing the task is given by

L (η) = max
∀i∈S
{Di (η)}. (3)

The transmission failure probability of offloading the i-th
sub-task can be written as

Pi (η) = Pui (η) +
[
1− Pui (η)

]
P di (η) , (4)

where Pui (η) is the uplink transmission error defined as [6]:

Pui (η) = 1− (1− q)
ui(η)

%u
i , (5)

and P di (η) is the downlink transmission error, similarly
defined as:

P di (η) = 1− (1− q)
di(η)

%d
i , (6)

with %ui and %di as the uplink and downlink transport block
size, respectively, and q as the targeted block error rate.
Consequently, the task offloading failure probability can be
expressed as

P (η) = 1−
N∏
i=1

(
1− Pi (η)

)
= 1− (1− q)

U
∑N
i=1 ηi

(
δ
%u
i
+ β

%d
i

)
.

(7)

III. PROBLEM FORMULATION

Offloading the task to fewer participating servers with
better communication channels reduces the task offloading
failure probability. On the other hand, a small number of par-
ticipating servers increases the latency. Moreover, the servers
with good channel quality are not always the best in terms
of the computational speed. Our objective is to minimize
L (η) and P (η) simultaneously. Hence, the problem is a
multi-objective optimization problem. To tackle the trade-off
between L (η) and P (η), we consider the weighted sum
method [7]. Keeping in mind that L (η) and P (η) have
different orders of magnitude and ranges, they should be
transformed such that they have similar ranges [8]. We define
the latency-reliability cost function as

Ψ (η) = λ
L (η)

L
+ (1− λ)

P (η)

E
, (8)

where

L = max
∀i∈S
{ δU
Rui

+
αU

fi
+
βU

Rdi
}, (9)

and

E = max
∀i∈S
{1− (1− q)

δU
%u
i (1− q)

βU

%d
i } (10)

are the highest values of L (η) and P (η), respectively,1 and
0 ≤ λ ≤ 1 is the relative weight. If both latency and failure
probability are of equal importance, then λ = 0.5.

Let us assume that the first M servers in S∗ contribute
to the task offloading; a transmission collision occurs if at
least one of the following two events happens: (1) One of
the contributing servers finishes its sub-task computational
and sends back the results while the task uplink offloading
has not finished yet; (2) Two or more contributing servers
send back the results simultaneously. To avoid such events
and guarantee non-overlapping transmissions, we introduce
the following constraints

Du1 (η) +Dc1 (η) ≥
M∑
j=1

Duj (η)⇒ Dc1 (η) ≥
M∑
j=2

Duj (η)

(11)

and
Dui (η) +Dci (η) ≥ Dci−1 (η) +Ddi−1 (η) ,∀ 2 ≤ i ≤M.

(12)

Constraint (11) guarantees that the first contributing server
sends the feedback after all the other contributing servers
finish their uplink transmissions. Constraint (12) guarantees
that any subsequent contributing server sends its feedback
after the previous server finishes the downlink transmission.
A collision-free task allocation is shown in Fig. 1.

We introduce the server contribution decision variable
vector, γ = [γi]1×N , where the binary decision variable γi is
defined as

γi =

{
1, if si is contributing to the task offloading
0, otherwise.

(13)

1L and E represent the latency and error encountered in offloading the
entire task to the server that causes the highest latency and the server that
causes the highest offloading error, respectively.

IEEE Communications Letters

3

Figure 1: Sequential and collision-free task makespan of offloading
the task to M servers.

Consequently, the number of contributing servers M =
N∑
i=1

γi

and the optimization problem is formulated as

P1 min
η,γ

Ψ (η) , (14a)

s.t. Dc1 (η) ≥
N∑
j=2

Duj (η) , (14b)

Dui (η) +Dci (η) ≥ γi
(
Dui−1 (η) +Dci−1 (η)

)
,

(14c)
∀ 2 ≤ i ≤ N,
ηi ≤ γi ≤ ηiU, ∀i ∈ S∗, (14d)
γi ≥ γi+1, ∀1 ≤ i ≤ N − 1, (14e)
N∑
i=1

ηi = 1, (14f)

ηi ≥ 0, ∀i ∈ S∗, (14g)
γi ∈ {0, 1}, ∀i ∈ S∗. (14h)

Constraints (14b) and (14c) guarantee collision-free task
offloading. In (14c), if server si is contributing to task
offloading, i.e., γi = 1, the size of sub-task τi should be
chosen such that (12) is satisfied to guarantee non-overlapping
transmissions. Constraint (14d) ensures that if server si re-
ceives no sub-task, then it should not be selected as a con-
tributing server. It also guarantees that γi = 1 only if server
si is contributing to the task offloading. Constraint (14e)
guarantees the offloading sequence and server priority by
ensuring that the allowable γ vectors can never have γi = 0
and γi+1 = 1 for any two consecutive elements. Therefore, γ
guarantees that the first M servers in S∗ contribute in the
offloading. Consequently, we have only N feasible possi-
bilities of γ, i.e., γ1 = [1, 0, 0, ...0]

T , γ2 = [1, 1, 0, ...0]
T ,

γ3 = [1, 1, 1, 0, ...0]
T up to γN = [1, 1, 1, 1, ...1]

T . Con-
straints (14f) and (14g) guarantee the offloading of the whole
task. The optimization problem in (14) is a non-convex mixed
integer non-linear program which cannot be directly solved
by the convex optimization techniques. The next section
introduces an optimal solution to the problem P1.

IV. BENCHMARK OPTIMAL SOLUTION ALGORITHM

In this section, we propose an exact algorithm to find an
optimal solution for P1. For a given fixed γ = γ̂, it is

important to note that:

L (η) = DM̂ (η) , (15)

where M̂ =
∑N
j=1 γ̂j , and hence, for iterations 1 ≤ i ≤ N ,

we solve the following non-linear program (NLP):

P2 min
η

λ
DM̂ (η)

L
+ (1− λ)

P (η)

E
, (16a)

s.t. (14b), (14c), (14d), (14f) and (14g). (16b)

The constraint sets (14b), (14c), (14d), (14f) and (14g) in
P2 are linear and yield a polyhedron feasible region. It
is straightforward to show that P (η) in (16a) is concave,
since it can be re-written in the form 1− exp

[
aTη

]
, where

a = [ai]1×N with ai = ln (1− q)U
(
δ
%ui

+ β
%di

)
. Since

exp (.) is known to be a convex function, then a composition
with an affine mapping is also convex, i.e., exp

[
aTη

]
is

convex [9, Section 3.2.2] and following this directly, P (η)

is concave. The linear term λ
DM̂ (η)

L is both concave and
convex, while (1− λ) P (η)

E is concave; hence the sum of
the two terms is concave. Consequently, the optimal solution
lies in one of the extreme points (vertices) of the polyhedron
[10, Section 7.8], [11, Section 3.2]. Algorithm 1 is designed
to obtain the optimal solution of P1, in which the main
steps are described as follows. The decision vector γ is
set in each iteration i to γi =

∑i
j=1 ej , where ej is an

N -element vector whose j-th element is the only non-zero
element and equal to 1. In the i-th iteration, the feasible set
of solutions for η is a polyhedron Pi whose set of vertices Vi
are all enumerated using primal-dual polytope method [12].
For each vertex vki ∈ Vi, k = 1, 2, . . . , |Vi| (where | • |
is the cardinality of a set), the corresponding task allocation

vector is obtained as η =
[
vki

T
,01×(N−i)

]T
and the ob-

jective function is evaluated. The algorithm terminates after
examining the vertices of N polyhedrons and returns (η∗,γ∗)
optimal for P1. It is worth mentioning that identifying all
vertices of a polyhedron is NP hard [13]. The next section
introduces a more computationally-efficient heuristic solution
to the problem P1.

V. HEURISTIC SOLUTION

In this section, a sub-optimal solution is proposed to solve
P1. Our strategy is described as follows. For a given S∗ and
M contributing servers, the collision-free task allocation that
provides minimum latency can be achieved by replacing the
inequalities in (11) and (12) by equalities. After simple alge-
braic manipulations, we obtain the following set of equations

η1
α

f1
= η2

δ

Ru2
+

M∑
j=3

ηj
δ

Ruj
,

η2
α

f2
=

M∑
j=3

ηj
δ

Ruj
+ η1

β

Rd1
,

· · ·

ηM
α

fM
=
M−1∑
j=1

ηj
β

Rdj
.

(17)

IEEE Communications Letters

4

Algorithm1OptimumSolutionAlgorithm.

1:Input:U,N,S,δ,α,β,andλ;
2:CalculateLandEusing(9)and(10),respectively;
3:ObtainS∗bysortingsiinSinanascendingorderof
correspondingwi;

4:Ψ∗←+∞;γ0←[01×N]
T
;

5:fori=1toNdo
6: γi=γi−1+ei;
7: Vi← enumeratestheverticesofpolyhedronofcon-
straints(14b),(14c),(14d),(14f)and(14g);

8: fork=1to|Vi|do

9: η= vki,01×(N−i)
T

;

10: EvaluateΨ(η);
11: ifΨ∗>Ψ(η)
12: Ψ∗←Ψ(η);η∗←η;γ∗←γi;
13: endif
14: endfor
15: endfor
16:ReturnΨ∗,η∗,andγ∗.

Furtherstraightforwardmanipulationsof(17)yield

α

f1
+
β

Rd1
η1=

δ

Ru2
+
α

f2
η2,

α

f2
+
β

Rd2
η2=

δ

Ru3
+
α

f3
η3,

...,

α

fM−1
+

β

RdM−1
ηM−1=

δ

RuM
+
α

fM
ηM.

(18)

Basedon(18),(14f),and(14g),thesub-optimalcollision-free
taskallocationresultsas:

η∗i=

1+

M

i=2

i 1

j=1

α
fj
+ β
Rdj

i

j=2

δ
Ruj

+ α
fj

−1

, i=1

i 1

j=1

α
fj
+ β
Rdj

i

j=2

δ
Ruj

+ α
fj

η∗1, 2≤i≤M

0, M<i≤N.

(19)

Totacklethelatency-reliabilitytrade-off,thenumberof
contributingserversM variesfrom1toN.Usingthesorted
serversand(19),Algorithm2findsηthatminimizesthe
latency-reliabilitycostfunctionheuristically.
Calculatingηaccordingto(19)requiresO N2 product

operationsandevaluatingtheobjectivefunctionrequires
O(N)productoperationsin(7)andO(N)max(.)operations
in(3).Consequently,thecomputationalcomplexityoffinding
asolutionusingAlgorithm2isO N2 productandmax(.)
operations.Therefore,thisalgorithmissuitableforonline
implementation.

VI.SIMULATIONRESULTS

Inthissection,forthenumericalresults,weconsiderthe
LTEsystemconfigurationwith20MHzchannelbandwidth

Algorithm2HeuristicSolutionAlgorithm.

1:Input:U,N,S,δ,α,β,andλ;
2:CalculateLandEusing(9)and(10),respectively;
3:ObtainS∗bysortingsiinSinanascendingorderof
correspondingwi;

4:Ψ∗←+∞;
5:γ0←[01×N]

T
;

6:forM =2toNdo
7: γM =γM−1+eM;
8: Calculateηaccordingto(19);
9: EvaluateΨ(η);
10: ifΨ∗>Ψ(η)and(14d)satisfied
11: Ψ∗←Ψ(η);η∗←η;γ∗←γM ;
12: endif
13:endfor
14:ReturnΨ∗,η∗andγ∗.

and100resourceblocks.Weassumethatthesignal-to-noise
ratio(SNR)attheserversandtheUEisuniformlydistributed
intheinterval[0,30]dB.Themodulationandcodingscheme
(MCS)isadjusteddynamicallytoguaranteethatqdoesnot
exceed10−7andthetransportblocksizeineachlinkis
calculatedbasedontheSNR-MCSmapping[6],[14].The
computationalspeedoftheserversisuniformlydistributedin
theinterval1×107,10×107 cyclespersecond.Thetask
sizeUissetto1Mbits,δ=1,α=1900/8cyclesperbit,
andβ=0.2.Theseparametersandλ=0.5

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1.5

2

2.5

3

3.5

4

4.5
Latency-reliability cost function-Heuristic algorithm

Latency-reliability cost function-Optimum solution

Average number of contributing servers-Heuristic algorithm

Average number of contributing servers-Optimum solution

areconsidered
inthefollowingresults,unlessotherwisestated.

Figure2:TheeffectofthenumberofavailableserversN.

Figure2illustratestheperformanceoftheoptimalandsub-
optimalsolutionsversusthenumberofavailableserversN.It
isseenthatthelatency-reliabilitycostfunctiondecreasesas
Nincreasesandtheproposedsub-optimalsolutionachieves
near-optimalperformance.Itisclearthatthenumberofthe
contributingserversincreasesasthethenumberofavailable
serversincreases.
Theeffectofthelatency-reliabilityrelativeweightλon

thecostfunctionandthenumberofcontributingserversis
presentedinFig.3a.Itisnoticedthatasλincreases,the
numberofthecontributingserversincreasesandthecost
functionisconcaveinλ.Togetmoreinsightintothebehavior
ofthecostfunction,Fig.3bshowsthecorrespondinglatency

Page 4 of 5IEEE Communications Letters

5

and offloading failure probability. It is clear that for low
values of λ, the algorithm minimizes the offloading failure
probability and as λ approaches 1, it minimizes the latency.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1

2

3

4

5

6

7

8

9

10
Latency-reliability cost function
Av. number of contributing servers

(a) Latency-reliability cost function.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

0

0.5

1

1.5

2

2.5

3

3.5

4
10-4

Latency
Task offloading failure probability

(b) Latency and offloading failure probability.

Figure 3: The effect of the relative weight λ with N = 10 servers.

Weighted Sum vs. Latency-Reliability Product Cost Func-
tion: Here, the proposed heuristic solution is utilized to
compare the performance of the proposed framework for the
weighted sum latency-reliability cost function in (8) and the
latency-reliability product cost function which is defined in
[6] as Ψ (η) = L (η)P (η). It is important to mention that
for a weighted sum objective function, we can easily choose
to improve either the delay or the reliability by controlling
λ without any change in the structure of the problem or in
the solution algorithm. This is not the case for the product
objective function.

The latency and offloading failure probability of both
weighted sum with λ = 0.5 and latency-reliability product
cost functions are illustrated in Fig. 4. It is clear that for
λ = 0.5, the weighted sum achieves lower latency. On
the other hand, the latency-reliability product cost function
achieves lower offloading failure probability.

VII. CONCLUSION

This paper proposed a sequential task offloading scheme
that guarantees collision-free offloading to multiple MEC
servers. The problem was formulated as a weighted-sum

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

0

0.5

1

1.5

2

2.5

3

3.5

4
10-4

Latency-Weighted Sum
Latency-Product
Task offloading failure probability-Weighted Sum
Task offloading failure probability-Product

Figure 4: Latency and offloading failure probability of weighted sum
with λ = 0.5 and latency-reliability product cost functions.

multi-objective optimization problem of latency and offload-
ing failure probability, which enables to develop an ex-
act technique that guarantees the optimal solution. A more
computationally-efficient heuristic algorithm was developed
for online implementation. Simulation results illustrated that
the proposed offloading scheme can effectively reduce both
latency and offloading failure probability.

REFERENCES

[1] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–
465, Feb. 2018.

[2] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.

[3] A. U. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A survey of
mobile cloud computing application models,” IEEE Commun. Surveys
Tuts., vol. 16, no. 1, pp. 393–413, First quarter 2014.

[4] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, Aug. 2017.

[5] O. Muñoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Trans. Veh. Technol., vol. 64, no. 10, pp.
4738–4755, Oct. 2015.

[6] J. Liu and Q. Zhang, “Offloading schemes in mobile edge computing
for ultra-reliable low latency communications,” IEEE Access, vol. 6,
no. 99, pp. 12 825–12 837, Feb. 2018.

[7] R. Marler and J. Arora, “Survey of multi-objective optimization meth-
ods for engineering,” Structural and Multidisciplinary Optimization,
vol. 26, no. 6, pp. 369–395, Apr. 2004.

[8] R. T. Marler and J. S. Arora, “The weighted sum method for multi-
objective optimization: new insights,” Structural and Multidisciplinary
Optimization, vol. 41, no. 6, pp. 853–862, Jun. 2010.

[9] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[10] A. Beck, Introduction to Nonlinear Optimization: Theory, Algorithms,
and Applications with MATLAB. Siam, 2014, vol. 19.

[11] W. L. Winston, M. Venkataramanan, and J. B. Goldberg, Introduction to
Mathematical Programming. Thomson/Brooks/Cole Duxbury; Pacific
Grove, CA, 2003, vol. 1.

[12] D. Bremner, K. Fukuda, and A. Marzetta, “Primal—dual methods for
vertex and facet enumeration,” Discrete & Computational Geometry,
vol. 20, no. 3, pp. 333–357, Oct. 1998.

[13] M. E. Dyer, “The complexity of vertex enumeration methods,” Math-
ematics of Operations Research, vol. 8, no. 3, pp. 381–402, 1983.

[14] M. Mezzavilla, M. Miozzo, M. Rossi, N. Baldo, and M. Zorzi, “A
lightweight and accurate link abstraction model for the simulation of
LTE networks in NS-3,” in Proc. 15th ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
2012, pp. 55–60.

IEEE Communications Letters

