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Abstract: The Unmanned Aircraft System (UAS) ecosystem is exponentially growing in both recre-
ational and professional fields to provide novel services and applications to consumers from multiple
engineering fields. However, this technology has only scraped the surface of its potential, especially
in those cases that require fast reaction times. Accordingly, the UAS Traffic Management (UTM)
project aims at efficiently managing the air traffic for Unmanned Aerial Vehicle (UAV) operations,
including those cases where UAVs might be remotely managed from a completely different geo-
graphical location. With these considerations in mind, this article presents a cellular-assisted UAVs
testbed used to complete a mission managed beyond the radio line-of-sight (BRLoS), as well as
introducing a virtualization platform for deploying services using containerization technology. In
addition, the article conducts a communication performance evaluation in order to determine if the
testbed equipment meets the requirements to carry out this BRLoS management. Finally, indoor
flight operations are carried out to demonstrate the feasibility and proper operation of the testbed.

Keywords: UTM; cellular-connected; UAV; UAS; testbed; BRLoS; virtualization

1. Introduction

Unmanned Aerial Vehicle (UAV) operations have been exponentially growing over
the last few years, not only for non-professional users (e.g., recreational flights, aerial pho-
tography, racing competitions), but also for commercial/professional purposes, providing
a wide array of services in many types of environments, including both civil and military
fields or even urban populated areas (e.g., packet delivery, medical supplies transportation,
infrastructure surveillance, emergency response). Many attributes inherent to these aerial
vehicles, such as fast mobility, flexibility, and adaptability to different conditions, enable
promising wireless services and application deployments when combined with the appro-
priate communication facilities. UAVs have the possibility of, literally, becoming mobile
terminals when connected to a conventional cellular network, which together with their
capacity to carry a large variety of equipment as payloads (e.g., video cameras, sensors),
allow them to potentially support several tasks such as real-time video streaming [1] or
item delivery (Amazon Prime Air: https://www.amazon.com/b?node=8037720011 (ac-
cessed on 27 April 2020)), creating promising business opportunities for stakeholders and
cellular operators. These operations involve a certain degree of risk due to their complexity
and nature in civilian environments. Although they have proven to be of great value
to society in several circumstances, such as delivering time-critical medical supplies or
evaluating disaster areas, there is a significant challenge of managing all the applications
simultaneously and in the same airspace.

In this context, relevant institutions such as the Federal Aviation Administration
(FAA), Google, Amazon, or NASA are working together on the UAS Traffic Management
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(UTM) project [2,3]. Like the internationally well-established Air Traffic Management
(ATM) ecosystem, the UTM’s aim is to manage automated, safe, and efficient low altitude
airspace operations in UAS operations. Notwithstanding their similarities, which derive
from tackling a common issue between them (controlling airspace), UTM and ATM have
significant differences. The lower airspace (managed by UTM) is continuously subjected to
several changes, and the situation on the ground must be continuously monitored. Besides,
the trajectories calculation at lower airspace must take into account not only the collisions
with other vehicles, but the ones with buildings and potential obstacles as well.

UAVs are commonly controlled using Radio Line-of-Sight (RLoS) from a Ground
Control Station (GCS) (i.e., a direct link from the GCS to the UAVs). In particular, Small
UAVs (SUAV) must operate in a relatively close area (depending on the selected RLoS
technology) to the GCS to enable the connection. In contrast, the UTM project researches
(among other topics) enabling Beyond Radio visual Line-of-Sight (BRLoS) UAV operations
at low altitudes (below 120 m above ground level), facilitating and boosting near-future
UAV commercial applications. Figure 1 presents the RLoS and BRLoS Unmanned Aerial
Systems (UAS) considered above (UASs are normally understood to be both the UAV and
the GCS working together). As it can be appreciated in both systems, it is essential to
communicate the UAV controller with the UTM to enable emerging applications, since
different UASs may coexist in the same airspace.

Figure 1. Different types of UAS following UTM: Beyond Radio LoS (BRLoS), and Radio LoS (RLoS).

Many efforts over these research lines are also being invested in by the European Union
by the Single European Sky ATM Research (SESAR). The SESAR initiative is working on
the development of U-space [4,5], a set of new services to uphold safe, effective, and secure
access to European airspace for large numbers of UASs. In addition, many projects have
been funded by the European Union to develop safe and efficient UAS traffic management.
These projects include 5D-AEROSAFE (5D-AeroSafe: https://5d-aerosafe.eu/ (accessed on
27 April 2020)), DRONES4SAFETY (Drones4Safety: https://drones4safety.eu/ (accessed
on 27 April 2020)), RAPID (RAPID: https://rapid2020.eu/ (accessed on 27 April 2020)) or
Labyrinth (Labyrinth: http://labyrinth2020.eu/ (accessed on 27 April 2020)). This research
work has been done within the framework of this Labyrinth project.

In this context, the Labyrinth project aims at creating and validating new UAV applica-
tions to enhance the safety, security, and efficiency of civil system transportation and urban
areas. Labyrinth will create a centralized system able to communicate with all the UAVs
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located in a defined area, processing their source and destination waypoints to compute
their potential paths and avoid collisions (accomplishing this with the SESAR policy).
Moreover, Labyrinth will build fully-operational use cases in four relevant transportation
environments: (i) road (e.g., speed control, accident management, plate identification);
(ii) waterborne (e.g., seaport facilities supervision); (iii) air (e.g., bird scaring, airport fa-
cilities supervision), and (iv) emergency (e.g., provisioning of medical supplies, discover
escape routes). The Labyrinth consortium includes both research institutions and indus-
trial partners, involving relevant key-adopters such as the Spanish General Directorate of
Traffic (DGT), the Municipal Emergency Assistance and Rescue Service—Civil Protection
(SAMUR—Protección Civil) from Madrid, and the Port Authority of the Eastern Ligurian
Sea from Italy.

This article presents as the main result a functional testbed in the context of the
Labyrinth project, focusing on its communications aspects by including all the required in-
gredients to complete a UAV mission following the U-space requirements. For this purpose,
UAVs are connected to the cellular network to enable connectivity with the UAV controller
(the entity in charge of computing flight trajectories and sending instructions to the UAVs)
and other UAVs. Moreover, all the corresponding trajectories and instructions are sent
from the UAV controller to the UAVs using an automation platform. This system runs on
top of a lightweight virtualization platform to further test applications and functionalities
beyond the Command and Control (C2). Besides, all this technology has been validated
in an indoor flight set of experiments. This article also evaluates the 4G cellular network
performance using commercial deployments with different communication prototypes
and different network operators and the 5G Stand Alone (SA) cellular network in a labo-
ratory environment. The obtained results highlight that the cellular network properties
are adequate for managing the UAVs. Although the 5G commercial deployment is still
imminent and does not reach a large part of the population, it serves as a proof of concept
to highlight the potential of 5G networks.

The rest of the article is organized as follows: Section 2 reviews the related work and
background regarding UAV technologies and communications, as well as the advances of
the combination of UAV technology with virtualization. Section 3 provides details about
the testbed, describing in detail all of the technologies chosen for its design, highlighting its
main characteristics, functionalities, and the role each one of them in the system. Section 4
presents a set of experiments to validate the feasibility of the testbed, including a perfor-
mance evaluation achieved by the communications prototype, and an indoor flight mission
to demonstrate the testbed functionality. Finally, Section 5 presents the main conclusions
and future work for the article.

2. Related Work and Background
2.1. Communications

Conventional research related to UAVs has typically been focused on navigation,
optimal trajectories, and control challenges. Unfortunately, many articles underestimate
the difficulties of maintaining stable and reliable communications between the aircrafts and
the GCS, where connectivity might not be stable due to the unreliable nature of wireless
communications. However, there has been a sharp increase of interest in this particular
topic, as it can be seen in some examples that focus on UAS communications.

On the one hand, UAVs beyond their traditional usage as standalone mission plat-
forms are more and more being proposed as flying wireless base stations [6,7] in 5G
networks and beyond (also known as UAV-assisted cellular communications) to support
network connectivity in multi-UAV missions. UAVs include different application scenarios
such as coverage and capacity enhancement. UAVs can provide on-demand connectivity
in events with vast amounts of people, like sport events, or concerts [8]. The authors in [9]
explore the utilization of low-altitude UAVs that are provided with Base Stations (BS) to
complement the terrestrial network. Aerial BSs can also assist terrestrial networks such as
vehicular networks for information dissemination and connectivity improvement, thanks
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to their inherent mobility [10]. In [11], the authors present a UAV-assisted cellular network
with optimized spectrum sharing and cyclical multiple access, which significantly im-
proves spatial throughput over the conventional network, although the interference control
complexity was higher. Other representative application is to use UAVs as BSs for public
safety applications [12,13] such as natural disasters (e.g., earthquakes, typhoons, floods)
management, where the conventional cellular network might be unavailable, damaged,
or insufficient. Through different simulations, these articles show that the optimized de-
ployment of aerial BSs at different areas may improve throughput coverage and efficiency.
Another example is SARDO [14], a UAV-based cellular search and rescue solution (i.e., a
UAV equipped with a light-weight BS) to localize missing victims through mobile phones.

On the other hand, UAVs are also being proposed as aerial user equipment (known as
cellular-connected UAVs) [7,15]. Cellular-connected UAVs make use of existing cellular
infrastructures and should co-exist with existing ground-based user terminals (i.e., normal
users of the cellular network). This paradigm has obtained significant interest to establish
reliable communications among UAVs and different devices that may be used during a
complete mission (e.g., UAV-controller, UTM). Besides, considering the recent appearance
of 5G networks, short term bandwidth and latency improvements are expected to be
introduced once these networks have properly been deployed into the cellular landscape,
which may be beneficial for multi-UAV systems for efficient fleet control [16,17]. However,
the existing infrastructure is designed and optimized for terrestrial users needs, and there
are still several challenges to be considered before relying on cellular-connected UAVs
as a valid solution. For example, cellular-connected UAVs require high-speed uplink
connectivity, while most applications for ground users demand high-speed downlink
connectivity instead. Although the downlink is critical since the UAV trajectories are
transmitted in this direction, most UAV applications generate information from the UAV
upon the UAV-controller (e.g., video streaming, sensors), requiring higher data rates in
the uplink. Moreover, UAVs might deal with significant interference introduced by the
neighboring BSs because of the nonexistence of obstacles between the multiple BSs and the
UAVs [18].

Finally, a pretty well established UAV paradigm for multi-UAV missions are Flying
Ad hoc Networks (FANETs) [19,20]. These networks are scalable due to their facility
to integrate new UAVs to the system with small deployment and maintenance costs.
Another of their benefits is providing feasible communications between UAVs without any
additional infrastructure, similarly to the well-known Mobile Ad hoc Networks (MANETs)
or Vehicular Ad hoc Networks (VANETs). For this reason, FANETs have been the most
considered solution by the research community to enable UAV communications during the
last years. For example, Ref. [21] presents a FANET scenario where we evaluate a routing
scheme using an emulation platform to characterize the communication channel (WiFi) and
the network mobility models. Authors in [22] describe an innovative routing process based
on ad hoc networks with better efficiency than traditional FANET algorithms. Another
example is [23], where position-based routing algorithms are compared over a common
scenario through a comprehensive comparative analysis.

2.2. Virtualization and UAVs

As it has been pointed out previously, UAV provide superior mobility in comparison
with traditional vehicles, allowing them to implement a wide array of applications such as
automatic forest fire detention mechanisms [24], warehouse transportation, or precision
agriculture [25]. As a consequence, some parts of the research community have been
focusing on softwarizing different applications and functionalities provided by UAVs in
order to dynamically create and deploy networking services over aerial networks. Such
effort will allow UASs to remove the need for specialized equipment to execute multiple
services over the network, as well as reducing both development and maintenance costs.
In this regard, one outstanding example of such effort can be seen in the synergetic junction
of Small UAVs (SUAV) technology together with the Network Functions Virtualization
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(NFV) paradigm; this paradigm has risen as one of the key enablers of 5G communications,
with the main objective of softwarizing physical network functions for its deployment
in generic hardware equipment that matches their compute, storage, and networking
requirements instead of relying on specialized hardware, which can be both expensive and
difficult to maintain in most cases. In the context of aerial networks, the types of payloads
that UAVs would require to be on-board in order to provide a network service over an
aerial network could be reduced by relying on generic hardware instead (which is usually
easier to compact in comparison with specialized equipment), which combined with
their increased mobility, can lead to the development of novel applications that would be
difficult to provide with current solutions. Inside this equipment, the networking services
are provided using Virtualized Network Functions (VNFs), software implementations of
network functionalities (e.g., a router or a traffic generator). In order to build a complex
networking service over a network, it is necessary to interconnect several VNFs in order
to create a Network Service (NS), and these VNFs usually expand over several nodes
that have the necessary computational, networking, and storage resources for running
the service over an infrastructure (in this case, partially or fully composed by the aircraft
payloads), denominating it as the NFV Infrastructure (NFVI). Some prominent examples
of this combination can be found in works like [26], where authors propose a video-
surveillance system for big-poorly Internet covered areas using UAVs, whose mobility
allows their distribution along the desired geographical regions, using several VNFs to
transmit video through a network deployed inside the devices that provide the service
(i.e., the node that is part of the NFVI, which can be either the own aircraft or its payload).
Using this combination, authors in [27] propose a softwarization architecture for UAVs
and wireless sensors networks, illustrating this architecture with an agricultural example
(where several data types regarding temperature, humidity, etc. were obtained through
sensors). Other example can be found in works like [28], where the authors present an
airborne computing platform design to enhance UAV functionalities. Another example is
shown in [29], where we deploy an IP telephony service though a SUAV network using
NFV in order to execute the necessary networking elements to generate and distribute
data between users, which could be useful in emergency situations and search-and-rescue
operations for poorly covered areas.

Although the prospect of this combination is promising, some other works have
explored the possible limitations of such technologies over aerial networks, where the
connectivity is intermittently available due to both the nature of the communications
being performed (i.e., the unreliability of wireless communications) and UAVs battery
dependency, whose constant depletion (and subsequent exchange) can disrupt the links
established between them. In our previous work [30], we analyzed the different issues
that NFV Management and Orchestration (MANO) platforms might face in resource-
constrained aerial networks, showcasing that popular solutions like Openstack (Open
Source Cloud Computing Infrastructure: https://www.openstack.org/ (accessed on 27
April 2020)) might not be an optimal solution for these networks due to its high technical
requirements, transport-layer limitations and its centralized approach for the management
communications. Openstack is an Open Source cloud operating system in charge of man-
aging the computational, networking and storage resources from an NFV infrastructure for
the deployment of VNFs, i.e., it is a Virtualized Infrastructure Manager (VIM). In order to
perform this resource control, it uses a set of services for each one of its functionalities (i.e.,
one service is in charge of the networking resources, other for allocating computational
resources, etc.), controlling them from a central node, the controller. However, all these
services are generally resource demanding, which is not suitable for resource-constrained
environments or intermittently-available nodes, and due to its a cloud-oriented approach
it focuses on supporting Virtual Machines, and such environments with limited computa-
tional resources might not be able to efficiently use this type of virtualization for its higher
resource cost.

https://www.openstack.org/
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In consequence, there has been an effort on proposing more lightweight alternatives
that could both be applied in systems with lower resources or cloud environments to in-
crease their performance without compromising their functionalities: container technology.
This approach does not isolate the Operating System (OS) of the host through hypervisor
technology, but rather modifies the underlaying host OS in order to separate the instances
through kernel namespaces and control groups. In consequence, containers provide better
performance when compared with VMs, as they require a lower amount of resources to
perform the same functions [31,32]. In this context, we can find the open-source solution
Kubernetes [33], also known as K8s, as one of the most popular platforms in both industry
and academia. K8s is an open-source solution to deploy and manage applications based
on Docker (Docker: https://www.docker.com/ (accessed on 27 April 2020)) containers
allowing the managing of workloads and services, as well as their automatic configura-
tion and deployment. Thanks to its ever-growing support due to its large community
of users and developers, some researchers have already proposed solutions combining
K8s with UAV technologies, as can be seen in works like [34], where authors propose a
cloud-based platform for a control system architecture in order to allow controlling sev-
eral UAVs despite their physical location, Ref. [35] where authors propose a cloud-native
NFV-driven Intrusion Detection System using Kubernetes, and Ref. [36], where authors
present an architecture to support reconfigurable multimedia services for a practical emer-
gency environment use case of rescue operations using UAVs. Unfortunately, K8s is a
resource-demanding solution since it is still cloud-oriented (i.e., its application in large data
centers with full connectivity where connectivity drops are infrequent), which limits its
application in further resource-constrained environments such as IoT environments. Hence,
a lightweight version of Kubernetes called K3s (Lightweight Kubernetes: https://k3s.io/
(accessed on 27 April 2020)) is currently being developed as well, reducing the K8s footprint
and size for its suitability in resource-constrained environments, as authors in [37] propose
using this platform to incorporate IoT devices into a smart city.

Other approaches have been proposed to deal with MANO communications in
resource-constrained environments by improving their performance over “cloud-oriented”
solutions, particularly the Eclipse Fog05 Fog Infrastructure Manager (FIM) (Fog05:
https://fog05.io (accessed on 27 April 2020)). Fog05 is an open-source project with the
objective of deploying a decentralized infrastructure to provide and manage all the com-
pute, storage, communications, and I/O resources from a network. One of the main
advantages of this platform is its decentralized approach to resource orchestration, as it
eliminates the necessity of having a central controller unit to coordinate the management
between nodes, effectively distributing the orchestration across the network itself. More-
over, Fog05 has a very reduced footprint and wire overhead, allowing its use on severely
resource-constrained nodes (usually present in Internet-of-things (IoT) environments), as it
also relies on the Zenoh protocol (Zenoh: http://zenoh.io (accessed on 27 April 2020))
to unify data in motion, data in-use, data at rest, and computations in a network. This
protocol is considered the evolution of the well-known Data-Distribution Service (DDS)
protocol [38], which has seen limited implementation in UAV-oriented scenarios [39] due
to its reliance on multicast technologies, which present notorious performance problems
under those conditions [40]. However, Zenoh improves this behavior by blending the
publish/subscribe model with geo-distributed storage, allowing the nodes to retrieve this
information at any moment from other nodes spread throughout the network, and not only
when the information is being published. Nevertheless, this platform is currently under
development, so it has seen limited support at the time of writing this publication, with few
examples of its application such as the one seen in [41], where authors implemented a
system to provide a 360-video streaming service end-to-end across three computing tiers
(cloud, edge, and constrained fog).

https://www.docker.com/
https://k3s.io/
https://fog05.io
https://fog05.io
http://zenoh.io
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3. Testbed Components Description

Until now, UAVs that have been deployed forming an aerial network are typically
controlled using an RLoS link. Therefore, a GCS (in charge of UAV management) should
be geographically adjacent to the UAVs in order to properly establish this link for its
management. In consequence, as each GCS manages its own set of UAVs, the coexistence
of several UAS in the same airspace is not feasible (i.e., if a UAS is operating in relative
proximity to other UASs without considering the operations performed by the other UAS,
the risk of having an accident is logically high).

For the correct establishment of next-future UAV applications, UASs must be con-
nected to the UTM regardless of the technology chosen for this connection, which can
be separated into three different alternatives: direct connectivity (e.g., packet network),
3GPP cellular connectivity, or satellite communications. This UTM manages the airspace,
ensures safe operations, and computes the aircraft flying trajectories to avoid collision
and accidents. The interconnection of all the elements encompassing a UAS with the
UTM opens the BRLoS UAS management paradigm, producing a more automatic and
agile deployment in comparison with legacy UAS scenarios and possibly allowing for an
integrated airspace.

As can be appreciated in Figure 2, this article presents a testbed to experiment with new
UAV services and applications managed by both BRLoS and RLoS models. However, all the
experiments and efforts have been designed to properly establish the BRLoS management
(RLoS models have been studied in our previous work [10,42]). To this purpose, both the
GCS and UAVs are connected to a UAV-controller (in this case, also acting as UTM) using the
regular 4G/LTE cellular network. The following subsections describe the communication
architecture, the automated UAV control system, and the virtualization platform, including
the devices and technologies chosen for its design.

Figure 2. High overview of the proposed testbed.

3.1. Cellular-Assisted UAV Communications

To support research activities, this publication proposes a novel communication model
for this testbed that can be on-boarded as the payload of almost any UAV (we have used
small UAVs to verify this fact). This prototype incorporates a Raspberry Pi 4 (RPi) (Rasp-
berry Pi 4 Model B: https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
(accessed on 27 April 2020)) Single Board Computer (SBC). The RPi can be equipped
with one of these two alternatives to connect with the cellular network: (i) the Sixfab
3G/4G& LTE Base HAT (Raspberry Pi 4G/LTE Cellular Modem Kit: https://sixfab.com/
product/raspberry-pi-4g-lte-modem-kit/ (accessed on 27 April 2020)), or (ii) a 5G/4G/3G
HAT (SIM8200EA-M2 5G HAT: https://www.waveshare.com/sim8200ea-m2-5g-hat.htm
(accessed on 27 April 2020)). The RPi acts as the brain of the UAV, having the ability to host
different network designs and configurations to enable its communications, i.e., this device

https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://sixfab.com/product/raspberry-pi-4g-lte-modem-kit/
https://sixfab.com/product/raspberry-pi-4g-lte-modem-kit/
https://www.waveshare.com/sim8200ea-m2-5g-hat.htm
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allows the use of any protocol or communication solution to establish communications with
other devices or/and the Internet, for example implementing a Virtual Private Network
(VPN) tunnel. Moreover, the HATs provide the RPi with a simple interface bridge between
mini PCIe cellular modems. Three different modems have been selected for this system:
the Telit LE910C1 Mini PCIe LTE CAT1 Module (Telit LE910C1 Mini PCIe LTE CAT1 Mod-
ule: https://sixfab.com/product/telit-le910c1-mini-pcie-cat1-lte-module/ (accessed on
27 April 2020)), the Quectel EC25 Mini PCIe 4G/LTE Module (Quectel EC25 Mini PCIe
4G/LTE Module: https://sixfab.com/product/quectel-ec25-mini-pcie-4g-lte-module/
(accessed on 27 April 2020)) (both compatible with the Sixfab HAT), and the SIMCom
SIM8200-M2 (compatible with the Waveshare HAT), allowing its straightforward configura-
tion to start using cellular internet with the RPi. All equipment is powered with a portable
battery of 3.7V and 3800 mAh. This equipment can be appreciated in Figure 3a.

(a) UAV payload (b) UAV flying with on-boarded payload at 5TONIC

Figure 3. Details of UAV payload, and UAVs in flight.

Despite establishing connectivity with the commercial cellular network, communica-
tions cannot still be enabled between the UAV-controller and the device since the HATs
assign a private IP address to the RPi, independently of the IP address that the PCIe modem
uses to connect to the network (provided by the commercial operator). In consequence,
all the communications between the RPi and the exterior (i.e., Internet) are performed
using a Network Address Translator (NAT) (included in the HAT). By extension, the RPi
can communicate with the UAV-controller (as the UC3M network provides public IP ad-
dress), but not in the reverse direction, as private IP addresses are not directly reachable
from the Internet (i.e., the NAT is preventing the UAV-controller from reaching the RPi).
Unfortunately, the HATs do not allow port opening or port forwarding configuration.

In order to solve this issue, since the UAV-controller must be able to communicate with
the RPi, the testbed will utilize a VPN service where all the UAS equipment is connected in
order to enable a relay service. This VPN allows the communication between both elements
thanks to the encapsulation, and subsequent routing, of the information that has to be
sent. Furthermore, the VPN service provides additional advantages that are beneficial
for the testbed infrastructure. For instance, since any UAV is able to change the BS (as a
standard ground user equipment) due to the inherent UAV mobility, its IP address might
change when this movement is performed. However, by using the address space provided
by the VPN service, these handovers should be transparent for the UEs as long as the
UAV has connectivity to the Internet, because the VPN will deal with the routing since the
device will not modify its VPN IP address, even though its IP address (the one providing
Internet to the RPi) might change. Moreover, using a VPN provides an additional layer
of security, as all the communications between its elements will be encrypted to allow
its transmission through the VPN tunnel, preventing man-in-the-middle attacks or the

https://sixfab.com/product/telit-le910c1-mini-pcie-cat1-lte-module/
https://sixfab.com/product/quectel-ec25-mini-pcie-4g-lte-module/
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unauthorized attachment of malicious nodes to the network. Details on including data
encryption, such as VPN service, can be found in our previous work [43].

3.2. Automated UAV Control System

In order to support UAV experimentation activities in flight, this paper introduces
and implements a system to control UAV trajectories automatically. It is essential to have a
centralized system capable of simultaneously controlling several UAVs to facilitate flight
operations and reducing system complexity. In the proposed solution, all UAVs can be
operated from a GCS (RLoS) or from the UAV-controller (BRLoS). This procedure has
been completely automated by transferring the trajectories from the UAV-controller (which
is the entity in charge of the computation of such trajectories) into the RPi (in this case,
located as the UAV payload) to be executed later in the UAVs. The UAV-controller is in
charge of transferring the optimal trajectories to all UAVs in the scenario to avoid collisions
with possible obstacles and other UAVs coexisting in the same airspace. A UTM devel-
opment (meeting all the requirements mentioned above) will replace the UAV-controller
functionality. Further research in this direction can be found in the literature [44–46].

The automation of this service is based on the Ansible platform (Ansible platform:
https://www.ansible.com/ (accessed on 27 April 2020)). Ansible is a software tool that
automates software provisioning, configuration management, and application deployment.
Moreover, it does not require third-party applications to establish communication channels
between the central node (UAV-controller) and the hosts (UAVs), as it uses the well-known,
and extensively used, SSH protocol.

On the other hand, UAVs commonly have an Application Programming Interface
to control them. This procedure is performed from the RPi (UAV payload) which has
previously received the trajectories. One of the most popular examples is the MAVlink
library [47]. MAVLink is a lightweight protocol to communicate not only with UAVs,
but also with on-board UAV components. Another representative example is the Robot
Operating System (ROS) [48], which is a set of building robot applications that are also
employed to control UAVs. Using the specified protocols instead of proprietary proto-
cols proffers the system huge flexibility and versatility since they have a big developer
community, and in consequence, several commercial compatible UAVs become available.
In our case, an open-source Python library called pyParrot (pyParrot’s documentation:
https://pyparrot.readthedocs.io/en/latest/ (accessed on 27 April 2020)) (compatible with
a great variety of Parrot UAVs) is used to send the instructions from the RPi to the UAV.
The instructions are simple commands already implemented in the library (e.g., take-off,
landing, turn right, turn left, etc.) for these experiments. However, these instructions
may become more complex if the received trajectories from the UAV-controller requires
to. The instructions are sent to the UAV through its WiFi interface. These instructions can
be transmitted using various alternatives, such as the serial port, the USB port, or another
communication channel. However, the available UAV in the testbed (Parrot Bebop 2) can
only be commanded using WiFi.

3.3. Virtualization in UAVs: The Power of Containers in Aerial Networks

As explained in Section 3.1, UAVs will carry as their payload RPi devices in order
to execute their movement instructions (sent from a remote GCS/controller), provide
services to the users of the aerial network, such as those mentioned in Section 2 like rural
monitoring, or execute specific applications depending on the mission type that has to
be carried out. However, RPIs are generally considered resource-constrained devices in
the context of NFV environments, since the amount of computational resources that are
available to the device are considerably lower as compared to other equipment types
such as Mini-ITX or servers. In consequence, it is desirable to save as many resources as
possible when providing services and/or running applications in order to increase the
available space to run new functionalities and/or scaling up operations without having
to increase the number of devices in the network. Moreover, battery constrains are also

https://www.ansible.com/
https://www.ansible.com/
https://pyparrot.readthedocs.io/en/latest/
https://pyparrot.readthedocs.io/en/latest/
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a source of issues in aerial networks since RPis are forced to use a finite (and small)
battery that will drain over time until its depletion, so consuming less resources can
increase their operative life-time before requiring a substitution [49]. However, hypervisor-
based solutions like Virtual Machines (VM) (frequently used in NFV) are computationally
intensive, as they need to imitate a full physical infrastructure to provide a single OS with
its own kernel. Therefore, containerization can be regarded as a more adequate solution
in these situations, since they run over the host Operating System to build its necessary
components through kernel instructions, saving computational resources, as no hypervisor
is required for the operation. Hence, aerial networks can benefit from container technology
to save resources (and potentially battery life-time), making them good candidates for their
implementation for service provisioning. Nevertheless, in order to build an NFV-driven
(or close) solution, it is mandatory to have a control plane able to manage and orchestrate
all of the containers needed for the softwarization of an application or network service,
including their instantiation, life-cycle management, and logical connectivity. In this
context, the Kubernetes tool (i.e., K8s) can be considered as an adequate solution for
these tasks.

As it has been previously described in Section 2.2, Kubernetes is an open-source sys-
tem for the automatic deployment, management, and scaling of containerized applications.
This platform allows its users to easily deploy container images inside a cluster, which
can be composed of several hosts that provide the infrastructure and resources to run the
containerized applications. This container orchestrator provides several functionalities that
assist the deployment of applications inside an infrastructure, including the automatic roll-
outs and rollbacks, ensuring that newer versions do not leave the application unavailable;
self healing abilities, achieved by restoring or re-deploying containers that failed during
the execution of an application; IPv4/IPv6 dual stack, horizontal scaling, which can even
be automated based on CPU usage, among others. All these functionalities can be achieved
thanks to its reliance on container technologies: K8s uses different container runtimes
(particularly containerd (Containerd: https://containerd.io (accessed on 27 April 2020)),
CRI-O (CRI-O: https://cri-o.io (accessed on 27 April 2020)), and Docker) to instantiate
container-based applications, which are usually lighter than VMs since they are built on
top of the kernel of an OS (contrary to hypervisor-based solutions where the software fully
imitates the physical infrastructure where the VM is running).

In order to perform any kind of deployment inside a K8s infrastructure, it is mandatory
that two components are present, and properly linked, between the hosts and/or the
machines building the infrastructure, establishing a cluster. It is not mandatory for these
machines to be in the same physical location and/or to have direct connectivity between
them through a single LAN or subnet. However, it is necessary to have full networking
(i.e., layer 3) connectivity between all the components of the cluster, as it is specified by
K8s documentation. The essential components of every K8s cluster are the following ones:

• Controller-plane: this component is in charge of the management and orchestration
of the K8s cluster and the applications running inside. Its main tasks include the
instantiation of pods (minimal unit where containers have to be deployed) & services,
and react to cluster events such as scaling up/down a deployment, managing cluster
errors, pod re-deployments, etc. This control-plane unit, commonly referred to as the
“master” node, is usually deployed in one single host, although it can be deployed
across multiple machines if necessary.

• Worker node: these nodes are in charge of providing the resources to the cluster. Inside
these nodes, pods will be deployed to run the applications in the Kubernetes cluster,
maintaining their functionality and reporting their status to the master node. In every
cluster, there must be at least a single worker node, and they are not limited to a single
host, i.e., inside a host there could be multiple workers (for example, multiple VMs).

Kubernetes is available for a wide array of Operating Systems such as Ubuntu 16.04+,
CentOS 7+, or Fedora 25+, as well as different architectures like amd64 and arm64, this last
one being typically used in mobile terminals and small devices such as RPis. Therefore,

https://containerd.io
https://cri-o.io
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K8s is regarded as a flexible platform suitable for its use in multiple use cases that require
an heterogeneous environment with multiple types of devices, including small equipment
that can be on-boarded in most UAVs due to its small size and lightweight nature. This fact
combined with the lightweight nature of containers compared to traditional virtualization
solutions (i.e., VMs) assists in the development and deployment of network services
on top of UAVs, including one of their most popular applications in their current form:
video transmission.

All the aforementioned functionalities and advantages have been decisive for choosing
this tool as the container manager for the implementation of the current testbed depicted
in Figure 2. As a consequence, the RPis carried by the UAVs and the video-consumer will
become the computing nodes of the infrastructure (using K8s’s terminology, worker nodes).
A K8s controller (i.e., a master node) manages the instantiation, management, and termina-
tion of all the containers of an application deployed in the infrastructure. Communications
between these components are entirely performed through the VPN service, ensuring both
secure transmission (e.g., a man-on-the-middle attack) and preventing unauthorized users
from joining the infrastructure (e.g., a malicious UAV posing as a legitimate computing
node of the platform). In the particular case of the testbed, the UAVs will host a video
transmission application (Video TX Container in Figure 2).

Video transmission has been one of the main use cases of UAVs since their inception.
Thanks to their advanced mobility, these aircraft are able to on-board different types of
cameras to take pictures and/or video footage. Moreover, some models are shipped with
one, or several, integrated cameras by default as a consequence of its high demand in both
industrial and commercial environments for a wide variety of applications such as video
filming, wild life monitoring, surveillance, or search and rescue operations. In consequence,
this testbed will introduce UAVs able to generate and send video traffic to a particular
machine or client, either localized inside the testbed (video-consumer in Figure 2) or outside.
This application will be deployed as a single container running in the worker nodes located
at the RPi, where the video traffic will be generated. These nodes are represented as the
UAVs in Figure 2. Afterwards, this video will be sent to a specific location, either to nodes
located inside the cluster (e.g., the video-consumer) or located outside the cluster (e.g., a PC
at a remote location). If the UAV goes offline at any moment in time, either due to a battery
replacement cycle or connectivity issue, K8s will try to instantiate this application in a
new UAV or, if no others are available, wait until one of them is available to re-deploy the
container again, showing the potential of K8s to reduce service cut-offs in aerial networks.

4. Testbed Experimentation
4.1. Communication Performance Evaluation

In this section, the UAVs communication performance has been evaluated to guarantee
that it meets the requirements defined by the 3GPP in Release 15 (TR 36.777) [50]. These
requirements are based on three network parameters: (i) data rate, which should be set
between60 and 100 Kbps for command and control in both downlink and uplink; (ii)
reliability, which should be below 10−3 of packet error rate in both downlink and uplink;
and (iii) latency, which should be below 50 ms (100 ms of RTT) in the downlink. It should
be noted that these KPIs are related to management assignments (C2). Each particular
service will have its individual KPIs (for example, real-time video streaming KPIs are quite
different).

We have first tested the quality of the Internet connection with the well-known Ookla
speed test (Ookla speed test: https://www.speedtest.net/ (accessed on 27 April 2020)).
The speed test uses public servers to perform a quick and realistic diagnosis of Internet
connectivity. In this context, the network performance was also tested from the UAV upon
the UAV-controller since, in practical experimentation, the minimum values have to be met
against this entity. Other limiting factors may arise in the second experiment, such as using
a VPN service (since all the traffic should traverse the VPN server).

https://www.speedtest.net/
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Experiments have been replicated with the three available mini PCIe and a commodity
smartphone (Xiaomi Redmi Note 9S). The purpose of repeating the same experiments em-
ploying different devices is to determine if the potential limiting factors are procured from
either the cellular network characteristics, e.g., the status of the network, the antennas used,
the strength of the signal at certain points of time, or the devices themselves (i.e., checking
if the devices could be limiting the quality of the connection due to a hardware/software
limitation). Likewise, experiments have been conducted using two different Internet Ser-
vice Providers (ISP) to check if connectivity performance varies depending on the network
operator. The selected ISPs are Movistar and Yoigo (the first and the fourth operator in
Spain ranked by the number of users). Twenty repetitions of the experiment have been
conducted at different time intervals randomly distributed throughout the day to ensure
that the external effects are not reflected (or at least mitigating their effect as much as
possible) in the results. The main purpose of these measurements is not to characterize
the network, as this would require an extensive set of measurements with varied coverage
areas and having an insight of the network infrastructures involved to rule out any other
factors having an effect on the results achieved. The main purpose instead is to verify
whether the results fulfill the 3GPP KPIs.

As it can be appreciated in Figure 4a both downlink and uplink are considerably
limited for the Telit mini PCIe due to its technical characteristics, which define a nominal
rate of 10 Mb/s in downlink and 5 Mb/s in the uplink, regardless of the selected ISP.
On the other side, experiments with Qualtec mini PCIe should not be so limited since its
nominal rate is 150 Mb/s and 50 Mb/s in downlink and uplink, respectively. However,
after comparing with the smartphone and SIMCom PCIe results, both the downlink and
uplink appear to be limited despite its technical characteristics (i.e., it has been demon-
strated with the SIMCom results that the performance of the network is superior to that
obtained by Qualtec PCIe). Finally, the SIMCom PCIe results improve the results obtained
with the smartphone, which can be considered the benchmark. It should be noted that the
Waveshark HAT, in combination with the SIMCom modem, has a notably higher price than
the rest of the selected equipment, so we can infer that the performance is better because it
belongs to an upmarket product. On the other hand, RTT experiments (Figure 4b) reveal
that all devices and ISPs fulfill 3GPP KPI requirements. Please, take note that the error bars
correspond to the standard deviation.
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Figure 4. Performance analysis using Ookla speed test.

This experiment also reveals that the Movistar network has balanced downlink and
uplink data rates; meanwhile, Yoigo prioritizes downlink data rates. For selecting a final
prototype, it is important to consider that UAVs potential applications will overload mostly
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the uplink (i.e., the highest data rate will be generated on the UAV and sent in the uplink).
However, all the combinations (mini PCIe and ISPs) comply with the 3GPP KPIs.

In the second set of experiments, we have measured the performance from the RPi
upon the UAV-controller, enabling and disabling the VPN service to quantify the per-
formance penalty that the VPN may introduce. Throughput results are similar in the
second experiment to those obtained with the Ookla speed test as represented in Figure 5a.
As expected, there is a slight decrease in the performance since data packets are not only
traversing the VPN server but also have to include the VPN headers (decreasing the data
payload size). However, the values are still much higher than those required for C2. On the
other hand, the RTT results (Figure 5b) are considerably worse, although they are within
the requirements set by the 3GPP KPIs. This phenomenon occurs because of the VPN
encryption and decryption process. The VPN relay is not greatly affecting the performance
since the VPN server is located on the same network as the UAV-controller. More details
about the performance decrease of introducing a VPN service can be found in [43]. Relia-
bility tests were also performed by sending a 200 Kb/s stream as required in the KPIs (both
downlink and uplink), and no packets were lost during this process.
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Figure 5. Performance analysis upon the UAV-controller.

It can be concluded that all the devices fulfill the management requirements. Other
services can be provided using this communication solution, such as transmitting periodic
High-Definition (HD) images or real-time video streaming (HD 720p). Still, some challenges
may arise when using this technology for complex multimedia applications or multiple
services simultaneously.

4.2. 5G Standalone Benchmark

By December 2020, Ericsson has activated 5G SA technology at 5G Telefonica Open
Network Innovation Centre (5TONIC) [51]. 5TONIC is a leading research laboratory focus-
ing on 5G technologies based in Madrid, where members from both industry and academia
work together in specific research and innovation 5G experimentation projects. The de-
ployment of 5G SA in this laboratory is a crucial technological milestone for validating the
solutions developed by 5TONIC verticals partners allowing promising capabilities enabled
by 5G technology demonstrations. This deployment includes the integration of the Ericsson
Radio Access Network (RAN) [52] and the Core solutions for 5G NR standalone [53] in
the laboratory facilities. With this achievement, 5TONIC becomes one of the first open
research and innovation laboratories in the world to offer 5G SA capabilities to validate
vertical applications.

Due to the lack of commercial deployment of this technology, the 5TONIC 5G SA
network has been used to benchmark the network performance offered by a real 5G SA
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deployment. Although these measurements have been conducted in a laboratory environ-
ment with ideal conditions (compared to Section 4.1 measurements), they demonstrate the
upcoming 5G SA technology potential.

The NETGEAR CPE (Nighthawk M5 5G WiFi 6 Mobile Router: https://www.netgear.
com/home/mobile-wifi/hotspots/mr5200/ (accessed on 27 April 2020)) was used to
perform these experiments. This device connects through the Ethernet interface with the
RPi to provide connectivity. Thanks to its compact size (10.5 cm × 10.5 cm × 2.15 cm)
and low weight (240 g), this device can be on-boarded on almost any UAV, as shown in
Figure 3b. Moreover, it includes a rechargeable battery promising battery life-times for
one day at total operation. As in the previous section, the Ookla speed test has been
used to diagnose Internet quality. We obtained an average value of 387.98 (±90) Mb/s
in the downlink and an average value of 52.3925 (±5) Mb/s in the uplink. RTT results
are 11.94 (±3.5) ms. These results vastly improve the ones obtained by a commercial
4G network. Accordingly, this technology has to be contemplated for the near future
and can be considered as the enabling technology to deploy the full potential of UAV
networks. However, an exhaustive performance evaluation will have to be carried out with
commercial deployment.

4.3. Indoor Flight Validation

Indoor flight tests have been carried out to validate the payload as an operation
onboarded system (no outdoor flight has been done due to regulatory restrictions). These
results serve as a proof of concept demonstrating the functionality of the proposed testbed.
For this purpose, indoor tests have been carried in the 5TONIC laboratory. On the other
hand, the K8s controller, Video-consumer, and UAV-controller elements (see Figure 2) are
located at UC3M. In this way, an inter-site experiment is performed to demonstrate that
the BRLoS management operations run correctly. As it can be appreciated in Figure 3a,b,
the communication prototype (RPi + Qualtec PCIe) has been on-boarded as an UAV
payload, using a compact battery to power up the prototype. The overall dimensions of
this prototype are 6 × 11 × 4 centimeters, with a total weight of 200 g including the battery.
It is essential to consider lightweight and compact equipment since the power required
by the UAVs to carry all its load can significantly impact the life-time of the UAV main
engines battery.

It is essential to consider that Multi-UAV operations entail certain risks, not only in
colliding with aerial traffic (i.e., other UAVs, human-crewed aircraft in the proximity of
airports), and accidents including people and vehicles on the ground in populated areas.
Authors in [54] proposed a complete risk assessment model for UAV operation in urban
environments with three main risk categories (people, vehicles, and human-crewed aircraft).
The mission planner generally contemplates the operations and factors involving the most
significant risk. However, unbounded exploration can lead to undesirable scenarios.
To solve that issue, authors in [55] propose a framework that evaluates the risk of the
potential actions. In case of actions deemed too risky, they are replaced with another action
of lower risk.

C2 information has been transmitted from the UAV-controller to the RPi (UAV payload)
using the Ansible automation platform explained in Section 3.2. Once the payload has
received the trajectory, it replicates the instructions to the UAV using its WiFi interface (also
explained in Section 3.2). This traffic is represented in Figure 6a,b. Figure 6a shows a traffic
peak corresponding to the trajectory transfer. On the other hand, Figure 6b displays the
transmitted and received traffic between the RPi and the UAV. The two traffic peaks that
can be appreciated correspond to the take-off and landing procedures.

On the other hand, the testbed virtualization platform has been used to test multimedia
services viability. A docker container deployed on the RPi (Video TX container in Figure 2)
transmits a 2Mb/s UDP traffic flow to a docker container deployed on the video-consumer.
This stream emulates an HD video transmission (HD 720p [56]), a target rate that most HD
cameras are able to generate. All this traffic has been sent using the VPN tunnel described

https://www.netgear.com/home/mobile-wifi/hotspots/mr5200/
https://www.netgear.com/home/mobile-wifi/hotspots/mr5200/
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in previous sections, since it provides an extra security layer to the information being
transmitted (i.e., preventing third-party attacks that could compromise the video feed in
real scenarios). Figure 6c reveals that the video-consumer has correctly received the flow.

Finally, the traffic transmitted and received for the correct management of the virtual-
ization platform is shown in Figure 6d. This traffic should not be neglected as it shares the
same channel as other critical communications such as C2, and its presence can disrupt
other traffic if it requires a high amount of bandwidth for its proper functionality. However,
it is relatively small in comparison to the available bandwidth of the channel, with an
average of 2.71 Kb/s for transmitted management traffic and 6.52 Kb/s for received man-
agement traffic (representing less than 1% of the available throughput), so it is unlikely
that this traffic will interfere with C2 communications and other applications embedded in
the UAV payload.
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Figure 6. Measurements in indoor flight.

4.4. Indoor Flight with Connectivity Loss

Once the feasibility of the testbed was demonstrated in the previous Section 4.3,
the experiment is repeated with the introduction of a connectivity loss between the UAV
and the UAV-controller. UAVs must have some degree of autonomy when communications
are lost with the UTM in order to avoid accidents or collisions with other aircrafts, since
losing connectivity with this element could be disastrous for the UAV if no alternative
method to calculate its flying trajectory is available, and it is important to have in mind that
communications depend on an external network that can introduce errors and temporary
disconnections to the UTM. In order to reproduce this situation, the interface that provides
connectivity to the RPi is switched off. Figure 7c,d shows that the connectivity is lost
around second 110.

In the meantime, the RPi is continuously monitoring the connectivity with the UAV
controller. After detecting a connectivity loss, it waits for a predetermined time (set through
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a programmable parameter) to check if the communications have been recovered. As it
is not the case, the UAV performs an emergency landing routine, as shown in Figure 7b.
This instruction can be modified by any other procedure, such as a return to home (RTH)
instruction, or remain static (hovering) in a certain position waiting for new communica-
tions from the UTM. However, it is essential to point out that the UAV must have some
autonomy in this decision-making process, ensuring that all these instructions can be safely
performed and, in addition, using detect and avoid mechanisms to evade obstacles while
executing these instructions.
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Figure 7. Measurements in indoor flight with connectivity loss.

5. Conclusions and Future Work

This paper presents as the main contribution a practical cellular-assisted UAV to
enable BRLoS traffic management in the context of the Labyrinth project. This testbed will
be employed to conduct validation analyses within the project.

Different experimentation using this testbed has also been presented: on the one hand,
it has been demonstrated that the selected communication equipment and the testbed
design fulfill their purpose and meet the KPIs set by 3GPP for a proper BRLoS operation.
However, the results reveal that the 4G commercial network may have some limitations for
applications beyond C2, while the conclusions obtained from the 5G SA benchmark reveal
promising results in terms of bandwidth and latency. On the other hand, indoor flight
experiments have been carried out to guarantee the platform’s viability and functionality.

Besides, the testbed incorporates a virtualization platform to deploy a wide variety
of experiments over the network. This platform improves on traditional virtualization
platforms due to its use of containerization technologies, a more lightweight solution for
virtualized environments, making its implementation suitable in an environment with
resource-constrained devices and/or intermittent connectivity.
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This work serves as a starting point for several lines of work and research. First, it
would be essential to conduct performance measurements using 5G cellular networks once
the commercial deployments are extended. Although 5G characteristics are promising, it
will be necessary to exhaustively analyze its output performance to illustrate its potential
strengths and weaknesses. On the other hand, it would be interesting to include energy con-
sumption measurements about the communications prototypes. In resource-constrained
environments like UAVs, where a battery supplies power to the on-board equipment,
it is crucial to properly quantify power consumption in order to calculate its impact on
battery life-time (which is very low due to the high energy consumption demanded by
flight engines).
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