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Physical and numerical limitations of stationary Vlasov-Poisson solvers based on backward 
Liouville methods are investigated with five solvers that combine different meshes, 
numerical integrators, and electric field interpolation schemes. Since some of the limitations 
arise when moving from an integrable to a non-integrable configuration, an elliptical 
Langmuir probe immersed in a Maxwellian plasma was considered and the eccentricity 
(ep) of its cross-section used as integrability-breaking parameter. In the cylindrical case, 
ep = 0, the energy and angular momentum are both conserved. The trajectories of the 
charged particles are regular and the boundaries that separate trapped from non-trapped 
particles in phase space are smooth curves. However, their computation has to be done 
carefully because, albeit small, the intrinsic numerical errors of some solvers break these 
conservation laws. It is shown that an optimum exists for the number of loops around 
the probe that the solvers need to classify a particle trajectory as trapped. For ep �= 0, the 
angular momentum is not conserved and particle dynamics in phase space is a mix of 
regular and chaotic orbits. The distribution function is filamented and the boundaries that 
separate trapped from non-trapped particles in phase space have a fractal geometry. The 
results were used to make a list of recommendations for the practical implementation of 
stationary Vlasov-Poisson solvers in a wide range of physical scenarios.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Grid-based Eulerian Vlasov and gyrokinetic solvers have been used to study many relevant scenarios in plasma physics, 
like laser-plasma interaction [1,2], plasma instabilities [3,4], plasma sheaths [5], magnetic nozzles [6], Landau damping [7], 
and tokamak plasmas [8] (find reviews in Refs. [9,10]). As opposed to particle methods, Eulerian solvers avoid the (macro-) 
particle noise by discretizing the distribution function in phase space. However, and besides the high computational cost, 
Eulerian solvers exhibit some undesired phenomena that can be classified into two categories. On one hand, one finds purely 
numerical issues like the violation of conservation laws, the generation of negative values of the distribution function, and 
recurrence effects. Numerical algorithms have been developed in the last few decades to avoid them [11–15]. On the other 
hand, there are real physical effects that jeopardize the numerical stability and/or the quality of the numerical solution. The 
most common phenomenon in this category is the filamentation of the distribution function, which is a physical mechanism 
that is consequence of the free-streaming character of the equation that governs its evolution. It creates structures at a small 
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scale in phase space, strong gradients, and finally un-physical numerical instabilities. Artificial dissipation, smoothing, and 
filtration are common techniques to avoid this problem [7,11,16].

Langmuir and emissive probes, which are the oldest diagnostic devices for low-temperature plasmas, have also been 
investigated with Eulerian codes. The sheath formation around planar and cylindrical probe was studied in the framework 
of the non-stationary Vlasov-Poisson system with Eulerian solvers [17–20]. These solvers play an important role in the un-
derstanding of basic phenomena, like the particle trapping during the transient phase [19,20], but their use for constructing 
databases with current-voltage characteristics (I-V curves) in a broad range of physical parameters is beyond actual com-
putational capabilities. For this reason, present models for the I-V curves in collisionless plasmas come from analytical and 
numerical analysis of the stationary Vlasov-Poisson system. Probe community usually refers to it as Orbital Motion Theory 
(OMT) [21–25]. OMT finds the value of the distribution function at every point in real and velocity space by taking advan-
tage of the existence of conserved quantities. An analysis of the particle orbits, which coincide with the characteristics of 
the Vlasov equation, allows to write the density of the species as a function of the electrostatic potential. Its substitution in 
Poisson equation yields to an integro-differential equation. Its solutions have been found by using perturbation techniques 
when a small physical parameter exists, and with iterative numerical algorithms otherwise. For instance, in the case of 
cylindrical Langmuir and emissive probes immersed in collisionless plasmas, the energy, the angular momentum, and the 
distribution function along the characteristics of Vlasov equations are all conserved and I-V curves have been found for a 
broad range of conditions [24,26,27].

The analysis of physical scenarios without enough conserved quantities, i.e. non-integrable configurations, is more deli-
cate. The trajectories have to be found by numerical integration and chaotic and regular orbits may coexist. Some examples 
are tape-like probes at rest and cylindrical probes immersed in flowing plasmas, which do not conserve the angular mo-
mentum along the trajectories of the particles. Some authors implemented backward and forward Liouville methods [26,28], 
that take advantage of the collisionless character of the plasma and the conservation of the distribution function along the 
characteristic equations. In the backward Liouville method, and for a given electrostatic potential, the value of the distri-
bution function at each point of the space-velocity mesh is found by integrating numerically the characteristic equations 
backward in time until the orbit hits a boundary where the value of the distribution function is known (e.g., the probe or 
the outer boundary of the computational domain). The Poisson equation is then used to find a new electrostatic potential 
and an iterative process is implemented until a self-consistent solution is found. This approach provides a detailed and 
rigorous description and, unlike particle-in-cell codes, it is free of statistical error [29].

This work discusses the limits of stationary Vlasov-Poisson (VP) solvers based on backward Liouville methods. It uncovers 
some numerical and physical phenomena that may explain the lack of convergence found in a previous work [26] and should 
be considered during the practical implementation of these solvers. In particular, it analyzes the transition from regular to 
chaotic dynamics of the trapped particle population when the integrability of the orbits is broken due to a lack of conserved 
quantities. Although the results are general and can be applied to a broad range of physical scenarios, we illustrate them by 
considering a Langmuir probe with elliptical cross-section. Such scenario is very convenient to test VP solvers because the 
eccentricity of the probe acts as integrability-breaking parameter and, for zero eccentricity, there are solutions that can be 
used to benchmark the solvers [24]. Furthermore, it is a relevant problem in several areas, including probe theory, spacecraft 
charging, and dusty plasmas. Next section presents the hypotheses of the model and the numerical algorithms used to solve 
the Vlasov-Poisson system. Sections 3 and 4 show the numerical and physical limits of stationary Vlasov solvers. These 
results are used to prepare a list of recommendations for the practical implementation of stationary Vlasov-Poisson solvers. 
A discussion of the results and the conclusions are presented in Sec. 5.

2. Stationary Vlasov-Poisson solvers

2.1. Description of the algorithms

A wide variety of interesting scenarios involves an object with contour � immersed in a collisionless, unmagnetized, and 
Maxwellian plasma. Let us assume that N0 is the unperturbed plasma density and T0α are the temperatures of the electrons 
(α = e) and the ions (α = i). In stationary conditions, their distribution functions fα(r, v) and the electrostatic potential φ
are governed by the stationary Vlasov-Poisson system

v · ∇r fα + eα

δα
E · ∇v fα = 0, (1a)

�φ = ne − eini, (1b)

where the densities of the species and the electric field are found from

nα(r) =
∫

fα(r, v)dv. (2)

E = −∇φ (3)

In Eqs. (1a)-(3), the distribution functions ( fα ), the electrostatic potential (φ), the densities (nα ), the position vector 
(r), the velocity vector (v), and the electric field (E) are normalized over mαN0/kB Tα0, kB Te0/e, N0, the electron Debye 
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length λDe ≡ √
ε0kB Te0/e2N0, the thermal velocities vthα ≡ √

kB Tα0/mα , and 
√
kB Te0N0/ε0, respectively. Here mα are the 

masses of the plasma species, kB the Boltzmann constant, ε0 the vacuum permittivity and e the elementary charge. We also 
introduced the dimensionless parameters:

eα ≡ qα/e, δα ≡ Tα0/Te0, (4)

where qα are the charges of the particles. The boundary conditions of Eqs. (1a), (1b) at � and r → ∞, which depend on the 
particular physical configuration, are explained in Sec. 2.2.

Stationary solvers based on backward Liouville methods find numerical solutions of Eqs. (1a)-(1b) as follows. A compu-
tational domain, bounded by the contour of the object � and the external boundary 	max , is discretized by using N nodes. 
As explained in Appendix A.1, this work considers three meshes in a 2-dimensional configuration: (i) unstructured mesh of 
N nodes with Cartesian coordinates (xi, yi), (ii) structured cylindrical mesh with N = Nr × Nθ nodes of coordinates (ri, θi), 
where r and θ are the radial distance and the azimuthal angle, and (iii) structured elliptic mesh with N = Nξ × Nη nodes of 
elliptic coordinates (ξi, ηi). The unknowns of the algorithm are the values of the charge density at the nodes. They are gath-
ered into vector ρ ≡ eini − ne ∈ RN , which involves the corresponding density vectors. The structure of the plasma sheath 
is found by looking for the value of ρ that satisfies the following set of nonlinear algebraic equations (see for instance 
Ref. [26] and therein)

F (ρ) ≡ ρ −V[P(ρ)] = 0, (5)

where V and P are operators (solvers) of the Vlasov and Poisson equations, respectively. Given an initial guess ρ0, a 
Newton-Raphson method [30] can find the solution of Eq. (5) by implementing the map

ρn+1 = ρn − J−1|ρn
F (ρn), n = 0,1, . . . (6)

with J |ρn
the Jacobian matrix of F evaluated at ρn . In our implementation, this matrix is computed with a central finite 

difference scheme and the iteration is stopped when the Euclidean norm of the error function F is below a tolerance εtol , 
‖F‖2 < εtol .

The Poisson solver P is a discrete version of Eq. (1b). It receives vector ρ and finds a vector with the values of the 
electrostatic potential at the nodes as

φ =P(ρ) = Āρ + φBC , (7)

where matrix Ā ∈ RN×N and vector φBC ∈ RN depend on the mesh and the boundary conditions, i.e. the value of φ at �
and at the unperturbed plasma boundary 	max . Two Poisson solvers are considered in this work: (i) a finite element-based 
solver for the unstructured mesh, and (ii) a finite difference-based solver for the two structured meshes. More details and 
references on the computation of Ā and φBC for these two solvers are given in Appendix A.2.

The Vlasov solver receives the electrostatic potential and computes the distribution functions that are consistent with Eq. 
(1a). Our solver is based on a backward Liouville algorithm that takes advantage of the collisionless character of the plasma. 
Equation (1a) can also be written as dfα(r, θ, vr, vθ )/dτ = 0 and fα is conserved along the characteristics

dr

dτ
=v (8)

dv

dτ
= − eα

δα
∇φ (9)

where τ parametrizes the integral curves. These equations coincide with the equations of motion of the charged particles 
and τ can be interpreted as a dimensionless time. The value of fα at xs0 ≡ (r0, v0) is found by integrating Eqs. (8)-(9)
numerically backward in time with initial conditions xs0 up to a time τ f , when the trajectory hits a boundary of the 
computational domain at xsf ≡ (r f , v f ). Three numerical integrators are discussed in this work: (i) a Runge-Kutta scheme, 
(ii) a Leapfrog (symplectic) scheme, and (iii) an energy-conserving Crank-Nicolson scheme [31]. Different methods are used 
to reconstruct the electric field from the electrostatic potential at the nodes of the mesh (find details of the algorithms 
in Appendix A.3). Since fα is conserved, one has fα(xs0) = fα(xsf ), with fα(xsf ) given by the boundary conditions. If the 
trajectory xs(τ ) does not hit any boundary after performing Ntr loops around the probe, then the particle is considered 
as trapped and we set fα(xs0) = 0. Fig. 1 shows examples of these trajectories around an elliptic probe. They all have 
(x0, y0) = (3.5, 0) and, depending on the initial value of the velocity vector, the trajectory hits the outer boundary (A), the 
probe (B), or is trapped (C). Once the distribution functions are known, the densities at the nodes are obtained from Eq. (2)
and the charge density vector from ρ = eini − ne .

The numerical integration of the trajectories, i.e. the Vlasov solver, is the most demanding part of the algorithm from a 
computation standpoint. It can be avoided if the characteristic equations admit two constants of motion, thus making the 
system integrable. Interestingly, Eqs. (8)-(9) are a Hamiltonian system with Hamiltonian
3
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Fig. 1. Example of trajectories that hit the outer boundary (A), the probe (B), and are trapped (C).

Table 1
Characteristics of the five algorithms. FEM and FDM denote finite element and finite difference methods. More 
details are given in Appendix A.

Name Mesh Poisson solver Integrator E reconstruction

FEM-RK Unstructured FEM [26] Runge-Kutta [30] Polynomial fitting +
Natural neighbor interpolation [32]

FDM-RK Structured FDM Runge-Kutta [30] FDM +
Bilinear interpolation [30]

FEM-LF Unstructured FEM [26] Leapfrog [30] Polynomial fitting +
Natural neighbor interpolation [32]

FDM-LF Structured FDM Leapfrog [30] FDM +
Bilinear interpolation [30]

FDM-CN Structured FDM Crank-Nicolson [31] B-spline [31]

Hα(r, v) = 1

2
v2 + eα

δα
φ(r). (10)

Since the Hamiltonian is τ -independent, Hα is a constant of motion of Eqs. (8)-(9) (note that Hα also coincides with 
the energy). Except for very special cases, a second constant of motion does not exist. Equations (8)-(9) are, in general, a 
non-integrable system and a mix of regular and chaotic orbits exists in phase space.

Table 1 summarizes the characteristics of the different Vlasov-Poisson solvers prepared in this work. They are named 
as FEM-RK, FDM-RK, FEM-LF, FDM-LF, and FDM-CN and combine different meshes, Poisson solvers, numerical integrators, 
and methods to reconstruct the electric field from the values of the electrostatic potential at the nodes of the mesh. As 
explained in the next section, a 2-dimensional Langmuir probe will be used as study case.

2.2. Langmuir probe with elliptic cross-section

We consider a 2-dimensional probe with an elliptic cross-section. It is centered at the origin of the frame of reference 
and its contour in cylindrical (r, θ) and elliptic (ξ, η) coordinates read

� =
{

(r, θ) | r2
(
cos2 θ + sin2 θ

1− e2p

)
= r2p

1− e2p

}
=

⎧⎪⎨
⎪⎩(ξ,η) | ξ = ξp ≡ sinh−1

⎛
⎜⎝

√
1− e2p

ep

⎞
⎟⎠

⎫⎪⎬
⎪⎭ . (11)

The ellipse is characterized by its semi-minor axis rp and its eccentricity ep . Due to the symmetry of the ellipse, the fol-
lowing relations hold: φ(x, y) = φ(−x, y), φ(x, y) = φ(x, −y), nα(x, y) = nα(−x, y) and nα(x, y) = nα(x, −y). Therefore, we 
need to compute φ and fα onto the first quadrant only. Unstructured and elliptic structured meshes for two elliptic probes 
with ep = 0.95 and rp = 1 are shown in the left and middle panels of Fig. 2. The right panel corresponds to a cylindrical 
probe with rp = 1 and a structured cylindrical mesh. For the unstructured mesh and the structured mesh with cylindrical 
coordinates, the computational domain is bounded by � and 	max = {(r, θ) | r = rmax}, whereas for the structural mesh 
with elliptic coordinates we use � and 	max = {(ξ,η) | ξ = ξmax}. Here rmax and ξmax are two numerical parameters that 
should be selected large enough to recover plasma quasi-neutrality.
4
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Fig. 2. Examples of computational domains and meshes for elliptical and cylindrical probes.

Regarding the Vlasov solver, the conservation of Hα and the particular shape of � suggest to make a change of variables. 
For each node ri , instead of the Cartesian (vx, v y) or polar (vr, vθ ) velocity components, we consider fα(ri, Hα, ζ ), with 
Hα given in Eq. (10) and angle ζ ∈ [0 2π ] defined as

ζ ≡ tan−1
(

v · t
v · n

)
, (12)

where t is the unit vector tangent to the ellipse passing through node r i and confocal with � and n the normal unit vector 
in the outward direction. For each node r i , the Vlasov solver defines a mesh in the Hα −ζ plane with NH ×Nζ nodes. Along 
the ζ -axis, the algorithm takes Nζ non-uniformly distributed nodes ζ j within the interval [0, 2π ], with a higher resolution 
in the proximity of the limits of the interval. Regarding the Hα-axis, in principle one should consider the semi-infinite 
domain [0, ∞). However, according to Eq. (10), the Hamiltonian has to be larger than or equal to Hα

min ≡max{0, eαφ(r)/δα}. 
Moreover, the numerical algorithm truncates the semi-infinite domain and takes Hα

min ≤ Hα ≤ Hα
max , with Hα

max a large 
enough numerical parameter. The Hα-mesh, with nodes Hα,k and k = 1 . . .NH , is not uniform and a higher density of 
nodes is taken close to Hα

min . The value of fα at every node of the four-dimensional mesh (r i, Hα, ζ ) is found with the 
backward Liouville algorithm explained in Sec. 2.1. The boundary conditions of the Vlasov solver are

fα(�,Hα,−π

2
< ζ <

π

2
) = 0, (13a)

fα(	max,Hα, ζ ) = exp(−Hα)

π
, (13b)

which corresponds to a non-emitting probe (Eq. (13a)) immersed in a Maxwellian plasma (Eq. (13b)). The densities at the 
nodes of the mesh are found from Eq. (2) that now reads

nα(r) ≈ 1

2

Hα
max∫

Hα
min

2π∫
0

fα(r,Hα, ζ )dHαdζ, (14)

being the factor 1/2 the jacobian of the transformation v → (Hα, ζ ). These integrals were computed with a trapezoidal 
method

nα(ri) ≈ 1

2

Nζ∑
j=2

Iα(ri, ζ j) + Iα(ri, ζ j−1)

2
(ζ j − ζ j−1), (15a)

Iα(ri, ζ j) ≈
NH∑
k=2

fα(ri,Hα,k, ζ j) + fα(ri,Hα,k−1, ζ j)

2
(Hα,k −Hα,k−1). (15b)

Several tests were carried out to verify the correct implementation of the algorithms. First, the Poisson solver and the 
electric field reconstruction algorithms were checked with some analytical solutions and test functions. Second, the three 
Vlasov-Poisson solvers of Table 1 were verified by setting ep = 0 (round probe) and comparing the results with the solutions 
of Ref. [27] without electron emission. For ep = 0, angle θ is a cyclic variable of the Hamiltonian in Eq. (10), i.e. ∂H/∂θ = 0, 
and the angular momentum pθ = rvθ is conserved. Since for that case H and pθ are conserved, the Vlasov-Poisson system 
can be written as a single integro-differential equation [27] and it is an excellent benchmark case to test our solvers. Finally, 
for ep > 0, we compared the three solvers among them and checked that they provide similar solutions (up to the errors 
and differences discussed in Sec. 3).

Hereafter, we set the physical parameters

φp = −4, ei = 1, ee = −1, δi = 1, rp = 1 (16)

and consider different values of eccentricities ep . For all the configurations presented in this work, we used the following 
set of numerical parameters
5
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Fig. 3. Poincaré section (vr = 0 plane) of 5 trapped ions moving around a cylindrical probe and with initial conditions (x0, y0, Hi) = (3.05, 0, 0.505)
and different velocity angles ζ0, identified by different colors and markers. Left and right panels were obtained with RK and CN Vlasov solvers. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Nζ = 360, NH = 300, He
max =He

min + 6.0, H i
max = 6.0. (17)

When we studied cylindrical probes, we set rmax = 7.5 and used N = 1893 and Nr ×Nθ = 45 ×45 for the unstructured mesh 
and the structured (cylindrical) mesh, respectively. For elliptic probes, we set rmax = 16 and N = 1898 for the unstructured 
mesh and ξmax ≈ 7.26ξp and Nξ × Nη = 45 × 45 for the structured (elliptic) mesh.

3. Numerical limitations

This section and the next one discuss some limitations and interesting phenomena arising in stationary VP solvers 
based on backward Liouville methods. For convenience, we classify them into numerical and physical. We investigate both 
integrable and non-integrable scenarios by considering cylindrical (ep = 0) and elliptical (ep �= 0) probes, respectively.

3.1. The breaking of conservation laws

Equations (8)-(9) conserve the Hamiltonian Hα and, for ep = 0, the angular momentum pθ = rvθ . However, their nu-
merical integration does not preserve, in general, these two invariants due to inherent numerical errors of the algorithm. 
They include discretization, interpolation, and integration errors. The inaccuracies, which are small for a good setup of the 
numerical parameters, are not important for most of the orbits that hit the outer boundary of the computational domain or 
the probe. For these two types of trajectories, the corresponding integrations are typically short in time and the numerical 
errors just change slightly the impacting point and the Hamiltonian Hα with respect to an error-free integration. Such a 
feature has a small effect on the final solution because the value of the distribution function is set to zero if the trajectory 
hits the probe independently of the impacting point and the Hamiltonian and, in case the trajectory hits the outer boundary, 
its value is slightly different according to Eq. (13b). However, for trapped particles, integrations last longer and orbits that 
should be trapped could hit the boundaries of the computational domain due to the accumulation of numerical error. The 
assigned value of the distribution function could incorrectly jump from zero to a finite value.

The performances of the numerical integrators were studied by using the potential profile obtained with the Vlasov-
Poisson solver of Ref. [27] for a probe with ep = 0 and the physical and numerical parameters of Eqs. (16)-(17). Left Panel 
in Fig. 3 shows the intersections with the vr = 0 plane (Poincaré section) of five trajectories of trapped ions computed with 
the RK integrator and the unstructured mesh. They have the initial condition (x0, y0, Hi) = (3.05, 0, 0.505) and different 
values of ζ0. Although the potential profile satisfied ∂φ/∂θ = 0, the small error in its reconstruction gives an electric field 
that does not respect strictly the axial-symmetry of the physical configuration. Consequently, pθ = rvθ is not constant and 
exhibits variations of around 1%. The right panel, which shows the same result but computed with the CN algorithm and 
the cylindrical structured mesh, reveals that such algorithm is a better choice for this particular scenario and conserves the 
angular momentum of the trajectories around cylindrical probes.

Regarding the conservation of the Hamiltonian, it is even more delicate for the accurate computation of the trapped 
ions. This topic was investigated by finding the full solution of the Vlasov-Poisson system with the solvers, the parameters 
in Eqs. (16)-(17), Ntr = 2, and an elliptic probe with ep = 0.95. Once the potential was found for each of the five solvers, 
we investigated the evolution of the error of the hamiltonian along the orbits of some trapped ions. In Fig. 4, the FEM-RK 
solver (red solid line, left panel) presents an error of almost 10%, and a secular variation. The result for the FDM-RK solver 
(black dash-dotted line, left panel), which exhibits an error below 3% and no secular variation, reveals that the use of a 
structured mesh and the bilinear interpolation for the reconstruction of the electric field outperforms the combination of 
an unstructured mesh with a natural neighbor interpolation. Similar results are found when the RK integrator is substituted 
by a (symplectic) second-order LeapFrog (LF) scheme (see right panel of Fig. 4). No significant improvement in the energy 
conservation was observed by decreasing the time step (not shown). Therefore, the algorithm that computes the electric 
6
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Fig. 4. Evolution of �H = [H(τ ) −H(0)] × 100/H(0) for a trapped ion moving around an elliptical probe (ep = 0.95). (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

field along the particle orbits from the value of the electrostatic potential at the nodes of the mesh is the main source of 
error. The FDM-CN solver (blue dashed line in the left panel), which is an implicit method, conserves the Hamiltonian up 
to the tolerance set to the Newton method implemented at every time step (equal to 10−8 in our calculations).

3.2. Trapping criterion

Stationary solvers neglect the contribution of the trapped population to fα . For a given initial condition, xs0, one sets 
fα(xs0) = 0 if the trajectory performs Ntr loops around the probe without hitting any boundary of the computational 
domain. The solutions of the Vlasov-Poisson solvers are insensitive to numerical parameters (e.g., Nζ , NH , Hmax) if they are 
chosen beyond certain thresholds. However, as shown below, the role of Ntr is slightly different and its selection involves 
subtler considerations related to the algorithms. This topic was investigated by first finding the electrostatic potential for a 
cylindrical probe (ep = 0) with the algorithm of Ref. [27], and then analyzing in detail the influence of Ntr on the structure of 
the ion distribution function calculated with our numerical integrators. The three top panels in Fig. 5 show the distribution 
function of the ions at point (x, y) = (3.05, 0) for Ntr = 1, 2, and 10 computed with the RK solver and the unstructured 
mesh. For convenience, we used a high resolution grid of NH = 100 × Nζ = 250 points in the region of the Hi − ζ plane 
where trapped orbits exist. Black regions are initial conditions in velocity space that yield trajectories hitting the outer 
boundary of the computational box before performing Ntr loops. For these values, the algorithm sets the value of the 
distribution function equal to the Maxwellian. For initial conditions in the orange region the trajectories perform Ntr loops 
around the probe and the algorithm sets the value of the distribution function equal to zero. The red solid line is the 
boundary provided by the orbit analysis of Ref. [27], which takes advantage of the conservation of Hi and pθ to find the 
exact result. If Ntr is too low, for instance Ntr = 1 in the left panel, the algorithm incorrectly classifies some orbits as trapped 
and the ion density is underestimated. If Ntr is very large (see Ntr = 10 in the top right panel) the computational cost is 
higher and some trajectories that should be trapped are incorrectly classified as non-trapped. Numerical errors, breaking 
the conservation of Hi and pθ during the long integrations, make trapped orbits incorrectly hit the outer boundary of the 
computational domain. The ion density would be overestimated. Therefore, the study shows that choosing low values of Ntr , 
but above a reasonable threshold, has two advantages: higher accuracy and lower computational cost. Similar results are 
found for the CN solver (bottom panels), except that in this case the trapped particles close to the boundary are classified 
correctly even for large Ntr values. This is a positive consequence of the energy conserving character of the algorithm. 
Nevertheless, since the computational cost of the three solvers depends on the choice of Ntr , it is recommendable to 
perform a sensitivity analysis of this parameter for each physical configuration.

4. Physical limitations

4.1. Trapped particles

An important limitation of stationary Vlasov (collisionless) solvers is their inability to compute the population of trapped 
particles. The most common strategy adopted in previous works, and also here, was neglecting it. However, this can lead to 
incorrect solutions. Since particles can be trapped due to collisions and/or during transient phases, studies in the framework 
7
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Fig. 5. Distribution function at (x, y) = (3.05, 0) in the Hi − ζ plane for different values of Ntr obtained with the RK (top) and CN (bottom) solvers. Orange 
and black regions correspond to initial conditions yielding trajectories that are trapped and hit the unperturbed plasma boundary of the computational 
domain, respectively. The red line is the boundary obtained with the solver of Ref. [27]. Research data and post-processing scripts are available at the 
[dataset] [33]. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

of the stationary Boltzmann equation system and/or the non-stationary Vlasov equation are needed. We identify and discuss 
below three scenarios.

First, there are configurations where, even neglecting the population of trapped particles, self-consistent solutions of the 
Vlasov-Poisson system can be found. The incorporation of trapped particles just impacts the profile of the electrostatic po-
tential. An example that belongs to this category is a cylindrical Langmuir probe immersed at rest in a Maxwellian plasma, 
as corroborated by the comparison of steady-state solutions of the Vlasov-Poisson system without trapped particles [24]
against solutions with trapped particles coming from stationary Boltzmann-Poisson [34] and non-stationary Vlasov-Poisson 
[19] systems. Second, there are physical scenarios where ignoring the population of trapped particles creates convergence 
issues in stationary Vlasov solvers. For instance, a plasma expansion in a slender magnetic nozzle exhibits this problem and, 
only after adding a heuristic population of trapped electrons, numerical solutions were found [35]. A later study with a 
non-stationary Vlasov solver showed that there are indeed trapped electrons [6], but they represent a much smaller fraction 
to the one considered in the stationary analysis. In the third scenario the population of trapped particles is a fundamental 
component of the solution. A positively polarized Langmuir probe immersed in a flowing plasma and mesothermal condi-
tions, i.e. plasma velocity large (small) compared with ion (electron) thermal velocity, is a well-known archetype. Without 
trapping, the density of the electrons (attracted species) should be lower than N0 [36] but the density of the hypersonic 
(repelled) ions should exceed N0 in the front side, thus breaking the quasi-neutrality in a broad region. It was proposed 
[37], and later verified with non-stationary Vlasov simulations [20], that a population of trapped particles is indeed essential 
to recover the quasi-neutrality at the front.

4.2. Filamentation of the distribution function

For physical configurations without axial-symmetry, the angular momentum is not conserved. Equations (8)-(9) become 
a non-integrable system, and non-regular (chaotic) dynamics can appear. To illustrate the impact of this feature, we com-
puted a solution of the Vlasov-Poisson system for an elliptic probe with ep = 0.95, Ntr = 2, and the physical and numerical 
parameters of Sec. 2.2. We used the FDM-CN solver that, as shown in Sec. 3, is the best solver for this particular config-
uration. The electrostatic potential was used afterwards to study in detail the dynamics of the trapped ions. Fig. 6 shows 
the intersection with the plane vr = 0 of the trajectories of trapped plasma ions with Hi ≈ 0.062. Each color identifies an 
orbit of different initial condition. This Poincaré section has a couple of two-lobe structures around θ = 0 and θ = π but, 
for clarity, only the two lobes around θ = 0 are shown in Fig. 6. Unlike Fig. 3, which corresponds to a cylindrical probe, pθ

is not a constant of motion and a mix of regular and chaotic orbits appears. As highlighted in the inset of Fig. 6, there are 
Poincaré-Birkhoff chains and chaotic layers.

The appearance of chaotic orbits in phase space has a consequence in the structure of the distribution function. The 
boundary that separates trapped and non-trapped particles in the Hi − ζ plane cannot be a smooth curve like the red 
line in Fig. 5 for cylindrical probes. For elliptical probes, such a boundary may have a fractal structure and the distribution 
function should be filamented in the velocity space. This feature was studied by considering in detail the ion distribution 
function at (x, y) = (3.54, 0) and Hi ≈ 0.062. Its structure was computed with a high resolution for a small ζ -range and 
the CN integrator. As shown in Fig. 7, we marked the corresponding ζ -values used in the initial conditions with red, blue, 
8
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Fig. 6. Poincaré section (pr = 0 plane) of trajectories of trapped ions. All trajectories have Hi ≈ 0.062, but different sets of (r0, θ0, ζ0), each one identified 
by a different color. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 7. Structure of the ion distribution function at (x, y) = (3.54, 0) with Hi ≈ 0.062. Research data and post-processing scripts can be found at 
[dataset] [33]. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

or green colors if the trajectories were trapped, hit the probe or reached the plasma boundary, respectively. The result for 
the range 1.57 ≤ ζ ≤ 1.77, and two details of smaller ζ -ranges are shown. The boundary in the ζ -axis that separates orbits 
that are trapped from the ones that hit the probe is not regular but exhibits a complex geometry. When looking at smaller 
scales (using a resolution 10 times bigger) in the ζ -variable, a mix of the two types of orbits is observed. However, the 
distribution function around this boundary is smooth in our model because in both cases its value is set to zero. This is 
not the case for the boundary that separates probe-hitting orbits from the ones reaching infinity that also has a complex 
structure, as shown in Fig. 7 (right insets). In this case, the value of the ion distribution function is zero if the corresponding 
orbit reaches the probe and equal to the Maxwellian if it reaches infinity. Therefore, the distribution function is filamented 
and irregular.

5. Conclusions

This work discussed some limitations that are inherent to stationary Vlasov solvers based on backward Liouville meth-
ods. According to the numerical results provided by a novel Vlasov code applied to the analysis of 2-dimensional Langmuir 
probes with elliptical cross-sections, the following set of recommendations was found. Detailed studies of the particle dy-
namics around a cylindrical probe revealed that numerical errors break the conservation of physical invariants (energy and 
9
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angular momentum) unless specifically designed algorithms are used. Trapped particles are the most affected population. 
The main responsible for these errors is not the numerical integrator, but the algorithm that reconstructs the electric field 
along the particle orbits from the value of the electrostatic potential at the nodes of the mesh. For this reason, a structured 
mesh provides a better performance than an unstructured one in our study. Very detailed and accurate analysis requires the 
use of energy-conserving algorithms, like the Crank-Nicolson scheme.

The analysis of the orbits of the trapped particles in the self-consistent sheath of an elliptic probe revealed the presence 
of chaos. This feature, which is not related to the numerical algorithm, creates complex structures in the distribution func-
tion and the boundaries in velocity space that separates regions of different kinds of orbits are not smooth. The distribution 
function is filamented (fractal structure). For this reason, the integrable or non-integrable character of a physical configura-
tion should be also considered before developing a stationary Vlasov-Poisson solver based on a backward Liouville method. 
For integrable problems, like for instance a cylindrical probe, arc-length algorithms that just computes such boundaries in-
stead of the distribution function at every point of a mesh in velocity space can save important computational resources. 
For non-integrable problems this approach is obviously discouraged and it is necessary to evaluate the distribution function 
at every point of the mesh in velocity space. The mesh acts as a filter that removes the fine structure of the distribution 
function. The filamentation can also explain the lack of convergence of stationary VP solvers observed in past works.

Previous conclusions are linked to the criterion to classify a particle orbit as trapped. In this work, an orbit was con-
sidered as trapped if the number of loops performed around the probe before hitting the boundaries of the computational 
domain was larger than a numerical parameter named Ntr . The optimal choice of Ntr depends on both the physical con-
figuration of the problem and the choice of the numerical integrator, and it requires a brief parametric study to tune its 
value. For integrable configurations, like a round probe, the boundary that separates trapped from non-trapped particle in 
phase space is smooth. If the chosen integrator conserves the energy, then Ntr should be selected by increasing Ntr in the 
parametric analysis until the local value of the density does not change. If the chosen integrator does not conserve the en-
ergy, then the situation is different. For a too small Ntr , particle trajectories that should connect with the outer boundary or 
the probe are classified incorrectly as trapped. On the contrary, if Ntr is too large, numerical errors accumulated during the 
long integrations make trapped orbits incorrectly hit a boundary of the computational domain. The choice of Ntr should be 
made according to such a trade-off analysis and keeping in mind that a high value of Ntr increases the computational cost. 
For non-integrable configurations, the distribution function is filamented and the previously mentioned boundary in phase 
space is a fractal. Such a feature is physical (totally unrelated to the numerical algorithm). In this case, it is recommended 
to follow a similar procedure to the one described for the numerical integrator that does not conserve the energy applied 
to integrable configurations. Again, a very large value of Ntr will overestimate the plasma density. This is true even if an 
energy-conserving numerical integrator is used because a chaotic mixing of trapped and non-trapped orbits exists in phase 
space. For all the cases, a test case for benchmarking, like a cylindrical probe in our case, is helpful to make decisions.

Despite the discussed limitations, stationary Vlasov-Poisson solvers based on a backward Liouville method remain a 
valuable tools for the investigation of Langmuir and emissive probes operating in a wide range of conditions because they 
provide a kinetic description without any statistical error. In most cases, the studies are mainly focused on the collected 
and emitted current and the structure of the electrostatic potential. For this reason, the FEM-RK solver combined with an 
unstructured mesh can be an appropriate choice to study probes with complex geometries (beyond cylinders and ellipses), 
because it finds the macroscopic quantities of interest with a reasonable accuracy and can handle any geometry of the 
probe. However, as shown in this work, the FDM-CN solver with structured mesh should be used to carry out detailed and 
fine analysis of kinetic features.
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Appendix A. Numerical algorithms

A.1. Meshes and coordinates

The FEM-RK solver uses Cartesian coordinates (x, y), and an unstructured mesh with N nodes. The computational domain 
is bounded by the probe (�) and a circumference of radio rmax (	max). As shown in Fig. 2 (left panel), a higher density of 
nodes is placed close to the probe.

The FDM-RK and FDM-CN solvers work with two types of coordinates. For cylindrical probes, they use the cylindrical 
coordinates (χ1, χ2) = (r, θ) defined by

x(r, θ) = r cos θ y(r, θ) = r sin θ (A.1)

and the computational box is r ∈ [rp, rmax] × θ ∈ [0, π/2]. For elliptic probes, the solvers use the elliptic coordinates 
(χ1, χ2) = (ξ, η)

x(ξ,η) = cp cosh ξ · cosη y(ξ,η) = cp sinh ξ · sinη (A.2)

with cp ≡ eprp/
√
1− e2p . The lines ξ = constant and η = constant represent confocal ellipses and hyperbolae, respectively. 

The computational domain is ξ ∈ [ξp, ξmax] × η ∈ [0, π/2]. For both geometries, we introduce an uniform mesh with Nχ1 ×
Nχ2 nodes of coordinates χ1

i = χ1
p + (i − 1)�χ1 and χ2

j = ( j − 1)�χ2 with i = 1, . . . , Nχ1 and j = 1, . . .Nχ2 , �χ1 ≡
(χ1

max −χ1
p )/(Nχ1 −1), and �χ2 ≡ π/2(Nχ2 −1). For later use, we also define now the contravariant base vectors ak = ∇χk

and the covariant base vectors ak = ∂r/∂χk with k = 1, 2.

A.2. Poisson solvers

Ref. [26] explains in very detail the procedure to compute matrix Ā and vector φBC in Eq. (7) for the finite element-
based Poisson solver used for the unstructured mesh. Regarding the structured meshes, Poisson equation in cylindrical and 
elliptic coordinates reads

∂2φ

∂r2
+ 1

r

∂φ

∂r
+ 1

r2
∂2φ

∂θ2
= − ρ (A.3)

1

c2p
(
sinh2 ξ + sin2 η

) (
∂2φ

∂ξ2
+ ∂2φ

∂η2

)
= − ρ. (A.4)

In both cases we used the following centered finite difference scheme

∂φ

∂r

∣∣∣∣
i, j

≈ φi+1, j − φi−1, j

2�r
, (A.5)

∂2φ

∂r2

∣∣∣∣
i, j

≈ φi+1, j − 2φi, j + φi−1, j

�r2
, (A.6)

and similar formulae for ∂2φ/∂θ2, ∂2φ/∂ξ2, and ∂2φ/∂η2. In Eqs. (A.5)-(A.6) the sub-indexes i and j means that the variable 
is evaluated at the node (χ1

i , χ2
j ). When constructing matrix Ā from Eqs. (A.3)-(A.4) and (A.5)-(A.6) index i runs from 2 to 

Nχ1 . The value of the potential at i = 1 is known (φ1, j = φp) and this contribution appears in vector φBC . At i = Nχ1 one 
should use that, for rmax (or ξmax), the potential decays as [26]

φ ∼ A0
rmax

r
+

Nmodes∑
n==1

( rmax

r

)n+1
(An cos θ + Bn sin θ), (A.7)

with Nmodes a high enough integer and the explicit formulae of coefficients A0, An and Bn given in Ref. [26]. Regarding χ2, 
the following boundary conditions should be used φi,−1 = φi,2 and φi,N

χ2+1 = φi,N
χ2−1.

A.3. Numerical integrators

The work considered three numerical integrators. The first two are an explicit and time-variable Runge-Kutta (RK) al-
gorithm [30] and a second-order (symplectic) LeapFrog (LF) scheme [30]. These were applied to unstructured (structured) 
meshes in the FEM-RK and FEM-LF (FDM-RK and FDM-LF) solvers (see Fig. 4). For every time step, the reconstruction of the 
electric field E from the values of the electrostatic potential at the nodes depends on the type of mesh. For the unstructured 
mesh, we first calculate at every node the best (in the least-square sense [30]) second order polynomial fitting φ(x, y) in 
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the neighborhood of the node. According to Eq. (3), the electric field at the node is found by computing the gradient of 
the polynomial analytically. Once its values are known at all the nodes, the electric field is found at any point during the 
integration by using a natural neighbor interpolation algorithm [32]. For the structured mesh, the values of the electric 
field at the nodes are evaluated from Eq. (3) with a second-order centered finite difference scheme and the integrator uses 
bilinear interpolation [30] for evaluating the value of the field along the trajectory.

The third integrator is an implicit Crank-Nicolson scheme used in particle-in-cell codes [38,39,31]. It is a hybrid algorithm 
that propagates velocities in Cartesian space and position in logical curvilinear coordinates. Equations (8)-(9) read

χ̇k =v · ak k = 1,2 (A.8a)

v̇ =eα

δα
E. (A.8b)

If we use superscript ν and ν + 1 to denote the values of the variables at τ = τν and τ = τν + �τ , the discrete forms of 
Eqs. (A.8) using the implicit Crank-Nicolson scheme are

χk,ν+1 − χk,ν

�τ
=vν+1/2 · ak,ν+1/2 k = 1,2 (A.9a)

vν+1 − vν

�τ
=eα

δα
Eν+1/2
k ak,ν+1/2, (A.9b)

where vν+1/2 = (vν+1 + vν)/2, ak,ν+1/2 = (ak,ν+1 + ak,ν )/2, and we used Einstein summation convention. The covariant 
electric field components at the RHS of Eq. (A.9b) are Ek = E · ak and they are computed following Ref. [31], which is based 
on B-spline functions and guarantees the conservation of the energy. We do not repeat here the full procedure of Ref. [31], 
but highlight that the electrostatic potential does not depend on time in our problem and the boundary conditions of φ are 
not periodic. This latter case was considered in Ref. [40]. Stationarity simplifies the calculation of Eν+1/2

k , while boundary 
conditions were imposed by adding ghost cells to our computational domain (inside � and outside 	max). For each value of 
χ2, the value of φ(χ1

1 −�χ1, χ2) and φ(χ1
Nχ1

+�χ1, χ2) at these ghost cells are computed through quadratic extrapolation 

in χ1.

Appendix B. Supplementary material

Research data and post-processing files for Fig. 5 and Fig. 7 are available at [dataset] [33].
Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2021.110366.
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