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Characterization of aerodynamic forces on wings
in plunge maneuvers
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Carlos III University of Madrid, 28911 Leganés, Spain

Wepresent experiments and simulations of plungingmaneuvers of large amplitude, for velocity

ratios � = 1 and 2, defined as the ratio between the peak plunge velocity and the freestream

velocity. We explore the effect of the airfoil shape by considering a NACA0012 wing and a

flat plate. The experiments are performed with wings of aspect ratio 4 and 4.86, while the

simulations are performed using a model of an infinite aspect-ratio wing. We report the time

evolution of the force coefficients and flow visualizations. A good qualitative agreement is

found between experiments and simulations, with small discrepancies in the maximum and

minimum lift coefficients observed during the maneuvers, and somewhat larger discrepancies

during the post-maneuver phase. It is found that the airfoil shape has a small effect on

the lift coefficient but a somewhat larger effect on the drag coefficient. We also perform a

force decomposition analysis to relate vortical structures to the force on the wings providing a

quantitative measurement of the effect of leading edge vortex and trailing edge vortex on the

peak aerodynamic forces.
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�! Lift coefficient

�max
!

Maximum of the lift coefficient

�min
!

Minimum of the lift coefficient

�# Normal force coefficient

� Drag force

®4G Unit vector along G direction

®4I Unit vector along I direction

� Velocity ratio � = +max/*∞

ℎ Maneuver height

! Lift force

®= Unit vector normal to the airfoil

'4 Reynolds number '4 = *∞2/a

( Wing surface

) Maneuver duration

®D Relative velocity of the fluid with respect to the wing

®DF Wing velocity with respect to a reference framewhich

is at rest

Dstd
H Standard deviation of the spanwise velocity with

respect to the spanwise average

*∞ Free stream velocity

+ Fluid domain

+max Maximum vertical velocity of maneuver

F Maneuver width

U Geometric angle of attack of the wing

X� Drag density

X! Lift density

a Kinematic viscosity of the fluid
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` Dynamic viscosity of the fluid

d Density of the fluid

®l Vorticity

lH Spanwise vorticity averaged along the spanwise di-

rection

qG Projection function along G direction

qI Projection function along I direction

I. Introduction

There is a growing interest in characterizing force production on wings in unsteady situations. As fixed and flapping

wing micro air vehicles are made smaller, modeling their aerodynamic response in a uniform free stream becomes

unrealistic. Ambient air is never steady, and as the vehicle becomes smaller the perturbations in the surrounding air

become comparable with the size and velocity of the vehicle, producing large fluctuations in the aerodynamic forces

[1] that challenge the stability and controllability of the vehicle [2]. Moreover, when the flow perturbations are of the

same order of magnitude as the flight speed, classical solutions based on small perturbations and linear theory [3] are

no longer applicable. The flow surrounding the wing is subject to non-linear phenomena involving flow separation

and the formation of leading edge vortices (LEVs) and trailing edge vortices (TEVs) that substantially influence the

aerodynamic forces on the wings. As a consequence, in order to predict the aerodynamic forces in such unsteady

situations it is necessary to resort to experiments and time-dependent numerical simulations.

The flow perturbations in unsteady environments are highly variable, so researchers often consider canonical configura-

tions to characterize the different contributions to the aerodynamic response of the wing. One recent example of the

use of canonical configurations is the work of Leung et al. [4] who modelled transverse gusts using different airfoil

motions: pitching, plunging and surging. Another example is the work of Mulleners et al. [5] as well as Granlund et

al. [6] who modelled a streamwise gust using surging motions of the wing. Granlund et al. [6] investigated the utility

of studying streamwise gusts using moving models by comparing experiments in a sinusoidally varying freestream

with experiments with a sinusoidally moving airfoil. They arrived at a good agreement in the measured circulatory

contribution of the force between the two experimental campaigns. In this study we focus on plunge maneuvers, but

the literature on canonical motions is broad, including also pitch maneuvers [7–9], surging maneuvers [10] and wing

rotation[11, 12]. There are limiting factors to simulating a transverse gust with a plunging motion. Potential flow

analysis shows an additional buoyancy force experienced by the test model when the freestream is accelerated compared
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to when the freestream is steady and the test model is accelerated [6]. In addition, using a plunging motion to capture

the unsteady flow of a transverse gust fails to capture the non-uniform chord-wise velocity distribution encountered in a

gust. Sedky et al. [13] showed that the effective angles of attack from the two scenarios are different, which may lead to

different circulatory force contributions. Nevertheless, understanding the physical sources of the difference between the

two scenarios is important, and may provide a way to correct for that difference when researchers interested in studying

gust encounters do not have adequate experimental facilities to introduce a gust by oscillating the flow. For instance,

understanding the source of discrepancy in the non-circulatory forces experienced by the wing between an oscillating

approach stream and a moving test model helps to correct the added-mass component of the force in a gust study if a

moving test model approach is taken. Granlund et al. [6] were able to reconcile the difference in the non-circulatory

force between experiments with an oscillating stream and an oscillating test model by subtracting out the extra buoyancy

force experienced during the sinusoidal oscillation of the freestream. The utility of plunging maneuvers is not limited

to modeling transverse gusts, but also they have been used for their relation to flapping flight. For example, Wang

[14] used a plunge maneuver to characterize the formation and detachment of the leading edge vortex; this led to the

determination of the optimal frequency for the flapping motion.

More closely related to the modelling of gusts, Perrotta and Jones [15] performed unsteady force measurements on a

plunging flat plate using a water-filled towing tank. The maneuvers were modeled after a sine-squared gust profile, to

match the approximation of gust encounters and to facilitate comparison to gust encounter force measurements from

previous experimental campaigns [16]. Forces were measured for a large variety of plunge maneuvers, varying the

width and height traveled by the wing during the maneuver as well the geometric angle of attack of the wing. Moriche

et al. [17] performed direct numerical simulations (DNS) using some of the kinematics of Perrotta and Jones[15], but

for a model of an infinite aspect-ratio NACA0012 wing. The lift coefficient predicted in the simulations was found

to be in qualitative agreement with the measurements, however, some quantitative discrepancies were observed. The

reason behind these discrepancies was unclear, however, there were some obvious differences between experimental and

computational setups, e.g. in the experiment a flat plate was studied while in the simulation a NACA0012 airfoil was

considered. In order to reduce these differences, new force measurements and additional direct numerical simulations

have been performed.

In this work, we report the comparison between the corresponding experiments and simulations, with the aim of

characterizing the aerodynamic forces on the wings during the plunge maneuvers. The analysis is based on force

measurements from the experimental campaign and on flow visualizations from the numerical simulations. We also

employ a technique [18, 19] to decompose the aerodynamic force into several contributions with the aim of relating

the flow structures to the force on the wing. The paper is organized as follows: in section II we introduce first the

flow configuration under study, then we discuss the experimental setup and finally the computational setup. Results
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are presented in section III. We present first the force coefficients for both experimental measurements and numerical

results. This is followed by flow visualizations using vorticity contours and a measure of the three-dimensionality of the

flow. Finally we report the analysis based on the force decomposition technique. Some conclusions are provided in

section IV.

II. Methods

A. Flow configuration

The maneuvers considered in this study were defined by Perrotta and Jones [15] and modeled after a sine-squared gust

profile. The motivation behind the selection of this profile was to match the canonical approximation of gust encounters

[20] and to be able to compare to their previous transverse gust measurements [16]. The plunge maneuver is performed

on a wing of chord 2 which is subject to a free stream of constant speed *∞ and at time C = 0 is subject to a vertical

motion with velocity

+ (C) = −+max sin2
( cC
)

)
for 0 ≤ C ≤ ), (1)

where +max is the peak plunge velocity and ) is the maneuver duration. Thus, the plunge maneuver consists of two

phases, the acceleration phase until the maximum plunge velocity is reached and a subsequent deceleration phase until

the vertical motion is stopped. The horizontal distance covered during the maneuver (or maneuver width) is given by

F = *∞) and the vertical distance (or maneuver height) is obtained by integration of (1), ℎ = +max)/2. The velocity

ratio is defined by � = +max/*∞, which is the ratio between the peak plunge velocity and the freestream velocity.

Perrotta and Jones [15] performed an extensive parametric study by varying velocity ratio, �, duration of the maneuver,

) , and angle of attack of the wing, U. In the present study, due to the high computational cost of the direct numerical

simulations, we focus on a small set of parameters driven by the previous study of Moriche et al. [17]. We fix the

duration of the maneuver ) = 22/*∞ so that the width is also fixed, F/2 = 2, and the height depends on the velocity

ratio, ℎ/2 = �. We consider two velocity ratios, � = 1 and � = 2. Concerning the angle of attack of the wing, the

results of Perrotta and Jones [15] show that for large �, as the ones considered here, and for small angle of attack, the

resulting lift coefficient is not significantly affected by the particular value of the angle of attack. In preliminary direct

numerical simulations it was observed that it was easier to trigger the three-dimensionality of the flow at U = 5◦ than at

U = 0◦. Note also that for a symmetric airfoil there is no lift in steady conditions at U = 0◦ so that U = 5◦ might be a

more relevant flight condition. As a consequence, we decided to perform the study fixing U = 5◦. Finally, in order to

evaluate the effect of the airfoil shape we consider two different shapes, a flat plate and a NACA0012 airfoil.
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Fig. 1 Free-surface water towing tank facility and wing test setup

B. Experimental setup

Experimental data collection was conducted in a free-surface water towing tank at the University of Maryland. Figure 1

shows the water tank, which is 7m in length, 1.5 m in width, and 1 m in depth, as well as the wing test setup including the

force balance and the pitching/plunging mechanism. The specifications of the facility can be found in Sedky et al. [13].

Plunging experiments were carried out at a Reynolds number '4 = 20, 000 to maintain an adequate signal-to-noise

ratio in the force measurements. Three finite aspect ratio wings were studied: a NACA0012 wing with an aspect ratio

�' = 4.86 and a chord length 2 = 11.5 cm, a NACA0012 wing with �' = 4 and a chord length 2 = 7.62 cm, and a flat

plate with �' = 4, a chord length of 2 = 7.62 cm and 0.33 cm thickness. Table 1 shows the cases carried out.

Table 1 Experimental matrix

Case Airfoil AR G *∞, m/s +max, m/s ) , s
1 NACA0012 4.86 1 0.17 0.17 1.35
2 NACA0012 4.86 2 0.17 0.34 1.35
3 NACA0012 4 1 0.26 0.26 0.59
4 NACA0012 4 2 0.26 0.52 0.59
5 Flat plate 4 1 0.26 0.26 0.59
6 Flat plate 4 2 0.26 0.52 0.59

The wing was towed with a trapezoidal speed profile with smoothed corners, accelerating over 4.5 chord lengths before

reaching a constant tow speed. This towing velocity profile provided 60 chord lengths of travel at a constant speed

before decelerating to rest. To ensure fully-developed flow, the wing traveled for 2.5 m or 21.7-32.8 chord lengths before

plunging. A six-degree-of-freedom force balance (ATI Mini-40) provided data on forces. The measurement uncertainty

of the force balance (95% confidence level) is 1.25% of full-scale load (40 N), which is equivalent to a 3.36% uncertainty

in the peak lift for a � = 2 and �' = 4.86 plunge maneuver. To decrease the measurement uncertainty, each case in this

study was repeated five times and ensemble averaged. A five run ensemble average is chosen based on the uncertainty
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Fig. 2 Sketch of the computational domain.

analysis performed by Biler et al. [21]. Force data was sampled at 500 Hz, and the mean and standard deviation of

each case across the five runs were found. To obtain the aerodynamic force contribution, the inertial force due to the

acceleration of the wing and its mount during the plunging maneuver was obtained analytically and subtracted from the

total measured force. The force coefficients presented in Sec. III were filtered using a zero-phase, digital Butterworth

filter with a cut-off frequency of 5 Hz. Since the resulting force measurement uncertainty is relatively small, it is not

shown in the force coefficients plots presented in this work.

C. Computational setup

The simulations have been performed with the in-house code TUCAN [22, 23], which solves the Navier-Stokes equations

of the incompressible flow using a fractional step method on a non-uniform, Cartesian, staggered grid. The spatial

discretization consists of second-order central differences for both convective and viscous terms. Time integration is

performed with a low-storage, 3-stage, semi-implicit Runge-Kutta scheme. The wing is modeled using the immersed

boundary method proposed by Uhlmann [24]. TUCAN has been extensively validated and employed for unsteady

aerodynamics applications for infinite [25–27] and finite [28–30] aspect-ratio wings.

The simulations were performed by considering an infinite aspect-ratio wing, modelled by using periodic boundary

conditions on a computational domain of finite span. The Reynolds number is fixed to '4 = 5000, limited by

computational resources. It was not possible to reach the values considered in the experiments. However, previous

studies have shown that differences in the Reynolds number have a limited effect on the force coefficients even if they

might have a considerable effect on the development and breakdown of vortical structures on the wing [31, 32].
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A sketch of the computational domain is shown in Fig. 2. The computational domain size is 122 × 0.252 × 9.52 in

streamwise, G, spanwise, H, and vertical, I, directions respectively. The inflow plane is located at G/2 = −3.5. The

top plane is located at I/2 = 3. At C = 0, the leading edge of the wing is located at G/2 = 0, I/2 = 0, and at the

end of the maneuver it is located at I/2 = −�. The grid is uniform in the vicinity of the airfoil (−0.5 < G/2 < 2.5,

−2.5 < I/2 < 0.5). The grid resolution in this region was defined after performing a grid refinement study in 2D

simulations as reported by Moriche et al.[17], resulting in a grid spacing in all three directions of ΔG = 2/320. Far from

the airfoil along the G and I directions the grid is stretched using a 1% stretching, except upstream where a 3% stretching

is used. This results in a total number of grid points of 1335 × 80 × 1459 along the G, H, and I directions, respectively.

As already mentioned, along the spanwise direction periodic boundary conditions are employed. At the inflow plane

Dirichlet boundary conditions are imposed; at the outflow plane a convective boundary condition is imposed. At the top

and bottom boundaries, free-slip boundary conditions are used. The initial condition for the maneuvers is determined by

integrating the equations without moving the wing during a time interval in which the wake develops. A visualization of

the flow field at the initial condition is shown in the Results section (see the top rows of Figures 5 and 6) . While for the

NACA0012 wing the three-dimensionality of the flow is localized in a narrow region in the wake of the wing, for the flat

plate three-dimensional structures can be seen already initially on top of the wing.

III. Results

A. Force coefficients

We start analyzing the time evolution of the lift coefficient, �! , defined as

�! (C) =
! (C)

1
2 d*

2
∞(

, (2)

where ! is the lift, d is the density and ( is the wing surface. In this work, we define the lift force as the vertical

component (I) of the aerodynamic force to avoid having a lift with a time-dependent direction with large variations.

This simplifies the analysis since, during the maneuver of case � = 2, the direction of the incoming flow velocity as

seen in a coordinate system fixed to the wing has a variation of up to 60◦. The curves of �! for both experiments and

simulations are shown in Figures 3a-b. Moriche et al. [17] divide the time evolution into three intervals. The first

interval is the acceleration phase, 0 ≤ C*∞/2 ≤ 1, where the �! grows rapidly until a peak is reached at an instant

before the end of the interval. The force peaks earlier because the lift response is influenced by both plunge velocity and

plunge acceleration, as discussed by Perrotta and Jones [15], and at the end of this interval the plunge acceleration

is zero. During the acceleration phase, a strong LEV is developed and subsequently detaches from the wing. The

second interval is the deceleration phase, 1 ≤ C*∞/2 ≤ 2, until the end of the maneuver. In this phase, the lift decreases
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Fig. 3 Time history of lift (0, 1) and drag (2, 3) coefficients. 0), 2) NACA0012 wing. 1), 3) Flat plate. Both
wings, �' = 4.

roughly until the middle of the interval where a local minimum is reached and then, while still decelerating at a reduced

pace, the lift grows again. This trend coincides with the wing acceleration: at the mid of the interval the acceleration is

minimum and then it grows until reaching a zero value at the end of the maneuver. Note also that during the final part of

the interval the LEV that was left behind gets closer to the wing as the wing stops its motion, and therefore may have an

influence on �! . The third interval is the post-maneuver phase, where the lift coefficient slowly relaxes towards the

corresponding static value.

Figures 3a and b show the time evolution of �! including both experimental data for the wings with �' = 4 and DNS

data. Overall, the curves obtained for the NACA0012 (figure 3a) present qualitative agreement, however there are some

discrepancies that need to be highlighted. For both values of �, the growth of �! during most of the acceleration phase

is in good agreement between experimental and DNS data. The difference is that in the experiment �max
!

is reached

earlier, and as a consequence is lower than the �max
!

in the DNS. In the deceleration phase, the decrease in �! occurs

roughly at the same rate in experiment and DNS, i.e. the curves are quasi-parallel. Also the difference between �max
!

and �min
!

is rather similar. However, since the �max
!

is lower in the experiment, then the �min
!

also reaches smaller values

in the experiment compared to the DNS. The �! recovery towards the end of the maneuver is qualitatively similar,

however it seems more pronounced in the DNS, particularly for the case � = 2. The final phase of relaxation towards
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the static values seems to be somewhat different in experiment and DNS. In the experiment, the �! still grows a bit once

the maneuver is finished (at C*∞/2 = 2) reaching a local maximum at C*∞/2 ≈ 2.2. In the DNS, the growth of �!

seems to stop at the end of the maneuver. This is followed by a short plateau and then the decay towards the static value

sets in. Note that since the value of �! at the end of the maneuver is significantly higher in the DNS, the decay towards

the static value needs to be more pronounced as well. This process does not seem to be monotonous, instead a few

small oscillations are present. In the DNS the static value was not reached because the computation was stopped to save

computational resources. In general, the same observations made for the NACA0012 can be made for the flat plate

(figure 3b). A small difference in the DNS for the flat plate is that at the end of the maneuver, the �! does not seem to

present a short plateau.

Figures 3c and d show the evolution of the drag coefficient, �� , defined as

�� (C) =
� (C)

1
2 d*

2
∞(

, (3)

where � is the drag force, defined here as the horizontal component (G) of the aerodynamic force. Figure 3c shows

the results for the NACA0012, where it can be seen that there is a good agreement between experiments and DNS

for the case with � = 1 (note the differences in scale between lift and drag representations). For the higher velocity

ratio � = 2, there is a visible discrepancy in the acceleration phase (C/) < 1), where the �� predicted by the DNS is

somewhat lower than in the experiments. During the deceleration phase (1 < C/) < 2) the evolution of �� presents

good agreement between experiments and DNS, however there is a small time shift between the two curves (analogous

to the time shift observed in this phase for the �! in figure 3a). The recovery towards the static value is preceded by an

increase in �� in the DNS, whereas in the experiment the static value is (almost) monotonically approached from the

minimum of �� reached in the deceleration phase. For the flat plate, while the trends are similar, more differences

between experiments and simulations can be observed (figure 3d). First, the peak values of �� for the flat plate are

smaller by a factor of approximately 2 in the experiment compared to the DNS. Second, we observe that the time shift in

the deceleration phase between experiments and DNS is a bit more pronounced in this case. Note that this time shift

between experiment and DNS in the deceleration phase is observed for every combination of � and wing configuration

presented in figure 3, except for the NACA0012 with � = 1.

There could be several reasons for the discrepancies discussed above. For example, in the experiments finite-wing

effects might play a role via the interaction of wing-tip vortices with the LEV, leading to a different overall flow structure

around the wing. This could include effects like those observed in finite-span dynamic stall, as discussed recently by

Visbal and Garmann [33], as well as 3D effects in the wake [34]. The difference in the wing configuration could be

responsible for the lower peaks of �! observed in the experiments compared to the DNS (figures 3a and b). If this is the
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case, it is not possible to reproduce such interactions in the DNS with an infinite aspect-ratio wing. Furthermore, the

following aspects should be considered. First, the limited size of the computational domain along the wing span. This

effect might have an influence on the development of flow structures in spanwise direction. It would be worthwhile

to perform simulations with wider computational domains to test this hypothesis. Second, there exists the possibility

that the discrepancies mentioned above could be a Reynolds number effect, since the experiments were performed at

'4 = 20000 and the DNS at '4 = 5000. This difference in Reynolds number might affect the development of the

boundary layers over the NACA0012 and the flat plate (and correspondingly, the development and detachment of the

LEV [31, 32]). Also, a Reynolds number effect might be important in the stability and breakdown of the vortical

structures generated during the maneuver, which will be analyzed in the following sections.

Another difference between experiments and simulations is the thickness of the flat plate. In the experiment, due to

structural/manufacturing constraints, a thickness of 4.3% of the chord was employed. In the simulation the thickness of

the flat plate can be estimated from the mesh width as 0.3% of the chord. This difference might have an impact in the

discrepancies observed in the �� of the flat plate between experiments and DNS (figure 3d). One possibility is that, in

the experiments, the thicker section at the leading edge can withstand during some time the suction peak, similarly as in

the case of the rounded leading edge of the NACA0012 wing. This is clearly less possible with the thinner section of the

flat plate in the DNS. As a consequence, the drag obtained in the DNS is directly proportional to the lift, whereas in the

experiment there might be some tilting of the total aerodynamic force towards the upstream direction, resulting in a

small drag reduction.

The effect of airfoil shape and aspect ratio is explored using the experimental and numerical data in Fig. 4, that shows the

time evolution of �! and �� obtained from every wing configuration for � = 2. The figure also includes an additional

experiment in which the aspect ratio of the NACA0012 wing is �' = 4.86. The time history of �! (figure 4a) suggests

that the effect of airfoil shape is negligible in both experiments and DNS. However, small differences are observed

near �max
!

and �min
!

, with both higher �max
!

and lower �min
!

in the case of the DNS of the flat plate. Concerning the

aspect ratio, the effect seems also to be negligible in the limited range covered in the study, �' = 4 and 4.86. The time

evolution of �� (Fig. 4b) tells a different story, with peak values during the maneuver four times larger for the flat plate

than for the NACA0012 wing in the case of the DNS. We commented previously how the non-negligible thickness of

the flat plate of the experimental configuration might result in a tilting of the force that is not present when an almost

zero thickness flat plate is used, as in the DNS. Therefore, we focus the following discussion on the results obtained in

the DNS. The shape of the curve in the case of the flat plate resembles the shape of the corresponding �! curve. In fact,

analyzing the peak values, they are consistent with an aerodynamic force which is perpendicular to the plate. If the latter
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is defined by a normal force coefficient �# , with a maximum value �max
#

= 20 then

�max
! = �max

# cosU ≈ �max
# = 20, (4)

�max
� = �max

# sinU ≈ �max
# U = 1.745, (5)

values which are consistent with the peak values obtained for the flat plate �max
!

= 19.66 and �max
�

= 1.872. The values

for the NACA0012 wing are not consistent with this scenario, with �max
�

= 0.656, and a �� time evolution which does

not resemble that of the corresponding �! .

B. Flow visualization

We turn now our attention to the flow surrounding the airfoil during the maneuver using using flow visualizations of the

DNS data. Figure 5 shows contours of spanwise vorticity averaged along the spanwise direction, lH . The flow structure

for both flat plate and NACA0012 wing is qualitatively similar. First, during the initial acceleration phase LEV and

TEV develop. At the end of this phase, C*∞/2 = 1, the LEV and TEV are both already detached. The TEV will be

subsequently convected downstream so that it does not have a significant influence on the lift coefficient. The contour of

the LEV is more clearly defined in the case of the NACA0012, while for the flat plate the LEV seems more distorted.

Below the LEV there is a dipole at the leading edge, from which the LEV in its rotation lifts vorticity up. During the

deceleration phase the LEV grows in size and keeps lifting vorticity from the leading edge. At the end of the maneuver,

C*∞/2 = 2, the LEV is again in the vicinity of the wing, but closer to the TE. At this instant, the vorticity that has been

lifted from the leading edge keeps the form of a dipole for the NACA0012 wing while for the flat plate the shape of this

vorticity is blurred. Once the maneuver is over, C*∞/2 = 2.5, the LEV is leaving the trailing edge, lifting vorticity from

the rear part of the wing, forming a rather vertical shear layer of negative vorticity. In addition, a new LEV seems to be

12



forming for both cases; note that this new LEV will need to be released from the wing in order to reach at the end the

same flow structure corresponding to the static case (C*∞/2 = 0). This explains the long relaxation interval required to

reach that condition.

Figure 6 gives information on the three-dimensionality of the flow, by displaying shaded contours of the standard

deviation of the spanwise velocity component, Dstd
H , with respect to the spanwise-averaged mean. This is shown on

top of two contour lines of lH , that serve as reference for the position of the main vortical structures. Initially, for

the NACA0012 wing the three-dimensionality of the flow is localized in the wake of the wing while for the flat plate

three-dimensional structures are already present on top of the wing. As a consequence, the flow is highly 3D during

the whole maneuver for the flat plate. For the NACA0012 instead, during the acceleration phase, 3D effects are only

visible at the trailing edge. The TEV is surrounded by 3D structures. The LEV remains essentially 2D during the whole

maneuver. At some instant, 3D effects travel quickly upstream via the boundary layer on top of the wing, an effect

which is barely visible in Fig. 6, but that is clearly visible in corresponding animations. As a consequence, the LEV

remains 2D but the vorticity that the LEV lifts from the airfoil is clearly three-dimensional. This effect is incipient at

C*∞/2 = 1.5 and clearly visible at C*∞/2 = 2 and 2.5.

C. Force decomposition

The history of the force coefficients presented in the previous section shows that there are some differences between the

experimental and numerical data, as well as between the flat plate and the NACA0012. In particular, it is unclear why

the simulations yield higher �! than experiments at the end of the maneuver (C*∞/2 ≈ 2). We also want to analyse why

during the acceleration phase the drag coefficient of the flat plate is significantly higher than the drag coefficient of the

NACA0012 wing. A quantitative analysis of force production is presented in this section.

In order to address these issues, we employ the force decomposition algorithm proposed by Chang [18, 19] and employed

recently in various studies [26, 35]. An assessment of the advantages of this methodology compared to other methods

(vortical impulse, wake integrals) has been also reported recently [36]. The main idea behind Chang’s algorithm is

that, if the hydrodynamic forces on a closed object immersed in an incompressible irrotational flow are zero (i.e.,

D’Alamberts paradox), then fluid elements with non-zero vorticity can be interpreted as sources of hydrodynamic force.

Then, starting from the Navier-Stokes equations and making use of some projection functions (qG and qI), Chang
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proceeds to decompose the aerodynamic forces as follows,

� = −d
∫
(

qG

*∞

m ( ®D + ®DF )
m C

· ®= d( + d
2

∫
(

| ®D |2®= · ®4G d( − d
∫
+

( ®D × ®l) · ∇qG
*∞

d+ + `
∫
(

( ®l × ®=) ·
(
∇qG
*∞
+ ®4G

)
d(,

(6)

! = −d
∫
(

qI

*∞

m ( ®D + ®DF )
m C

· ®= d( + d
2

∫
(

| ®D |2®= · ®4I d( − d
∫
+

( ®D × ®l) · ∇qI
*∞

d+ + `
∫
(

( ®l × ®=) ·
(
∇qI
*∞
+ ®4I

)
d(,

(7)

where ®D is the relative velocity of the fluid with respect to the wing, ®DF is the wing velocity with respect to a reference

frame which is at rest, ®l is the vorticity, ` is the dynamic viscosity, ( represents the surface of the airfoil, + represents

the fluid domain, ®= is the unit vector normal to the surface of the airfoil pointing towards the fluid, and ®4G and ®4I are the

unit vectors in the G and I directions, respectively. The projection functions qG and qI are solutions to the Laplace

equation, with suitable boundary conditions on the surface of the airfoil (more details in [18]).

In these expressions the first two terms of the right hand side can be grouped into the contribution to the force due

to the motion of the body, the third term is the contribution of the vorticity within the flow and the fourth term is the

contribution of the surface vorticity. The latter is usually small if the Reynolds number is not too low. As discussed in

the literature [35, 36], in the absence of rotation of the wing, the contribution due to the motion of the body is exactly

the same as the contribution from added mass from unsteady potential theory. One additional advantage of Chang’s

decomposition is that the integrand of the volume integral (third term of the right hand side) can be understood as a

force density. Using Chang’s words [18], the force density “provides us a tool for examining how much an individual

fluid element of non-zero vorticity contributes to the pressure force”.

We have applied the force decomposition algorithm to the DNS results for the case � = 2; the results for the case � = 1

are qualitatively similar and are omitted for brevity. We have integrated numerically all integrals in eq. (6-7) except

those corresponding to the surface vorticity contributions, which have been obtained from the difference between the

total force and the other two contributions. The projection functions have been obtained analytically for the case of

the flat plate [35] and numerically for the case of the NACA0012 wing [26, 36]. In the following, we split the force

coefficients in the three contributions using a superscript 0 for the added mass term, E for the vorticity within the flow

and B for the surface vorticity.

�! = �
0
! + �E! + �

B
! , (8)

�� = �
0
� + �E� + �

B
� . (9)

16



0 0.5 1 1.5 2 2.5 3

0

10

20
acc. dec. relax.

tU∞/c

CL

a)
0 0.5 1 1.5 2 2.5 3

0

1

2
acc. dec. relax.

tU∞/c

CD

b)

0 0.5 1 1.5 2 2.5 3

0

10

20
acc. dec. relax.

tU∞/c

CL

c)
0 0.5 1 1.5 2 2.5 3

0

1

2
acc. dec. relax.

tU∞/c

CD

d)

NACA 0012

Flat Plate

Total Vorticity w. flow Added mass Surf. vort
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We also discuss below the force density of drag, X� , and the force density of lift, X! , which are the integrands of the

volume integrals in eq. (6-7), correspondingly.

Figure 7 shows the decomposition of the force coefficients as a function of time for both wings, and Figure 8 shows the

lift and drag densities at several time instants. Figure 7a and c show that, for both NACA0012 and flat plate, the time

history of the three contributions to �! are qualitatively similar. In both cases, the contribution from the vorticity within

the flow is responsible for most of the positive peaks of �! at C*∞/2 ≈ 1 and 2, while added mass effects seem to be

responsible for the initial growth of �! and the minimum at around C*∞/2 ≈ 1.5. For both cases, the contribution from

the surface vorticity (viscous effects) is small.

Consistently with the discussion in section III.A, the contributions to �� show significant dependence on airfoil shape,

as observed by comparing figures 7b and d. For the NACA0012, the contribution from vorticity within the flow is

initially negative. When the distributions of X! and X� at C*∞/2 = 0.5 are analyzed (see figure 8f and h), we can see
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that the vortical structures at the leading edge of the NACA0012 contribute positively to �! and negatively to �� ,

reflecting that the suction peak at the leading edge is producing lift and thrust. The situation for the flat plate is different:

the suction peak forms on a flat surface facing up and downstream, resulting in lift and drag. Indeed, the contributions

from the vorticity within the flow to �! and �� are proportional to each other (compare 7c and d), and so are the force

densities X! and X� at every point in the computational domain (compare the first and third columns of figure 8).

Overall, figure 8 shows that the most prominent vortical structures of the flow (namely, the LEV and the TEV) contribute

both positively and negatively to �E
!
and �E

�
, with their net contribution depending on the asymmetry between the

positive and negative contributions. Note that this is an expected behaviour for X! and X� , due to their dependency

on the Lamb vector, ®D × ®l, as discussed by Chang [18] and Moriche et al. [26]. In order to quantify contributions to

the vorticity within the flow component of the force, figure 9 shows the contribution to �E
!
and �E

�
from four different

vortical structures: the leading edge vortex (LEV), the secondary vorticity (SV) generated below the LEV during the

acceleration phase, the trailing edge vortex (TEV), and the secondary leading edge vortex (SLEV) developing upstream

of the SV near the end of the maneuver. Note that LEV and SLEV have positive (clockwise) vorticity, while SV and

TEV have negative (counterclockwise) vorticity. Using flow visualizations, we have identified these structures and

defined non-overlapping regions of integration around them. Some of these structures are shown and labeled together

with the corresponding integration regions in figure 9.

Overall, figure 9 shows that the major contributors to �E
!
and �E

�
during the maneuver are, in order of importance, first

the LEV and then the TEV. Contributions from SLEV and SV are smaller, with the former becoming more important

during the relaxation phase.

Figure 9c and d show that the results for the lift of the flat plate and the NACA0012 airfoil are qualitatively similar. The

TEV contributes mainly during the acceleration phase, reaching a peak at the end of this phase. At C*∞/2 = 1, the

contribution of the TEV to �E
!
for the NACA0012 wing (flat plate) is 31% (34%) of the total. Beyond that time, the

TEV is convected downstream and its contribution to the lift is negligible for C*∞/2 & 1.5.

The LEV contribution to lift behaves initially in a similar way as the TEV, growing during the acceleration phase,

reaching its peak at C*∞/2 ≈ 1 and then starting to decline. At C*∞/2 = 1, the contribution of the LEV to �E
!
for

the NACA0012 wing (flat plate) is 58% (51%) of the total. However, as the maneuver progresses and the wing

stops its motion the contribution of LEV to �E
!
grows again. In this time interval (1.5 . C*∞/2 . 2.25) the LEV is

clearly the major contributor to the lift. Thus, the results shown in figure 9 support the conjecture offered in the first

paragraph of section III.A; namely that towards the end of the deceleration phase the LEV shed during the acceleration

phase approaches the upper surface of the wing, producing a suction peak that yields a positive contribution to �E
!
.

Interestingly, this could explain why the second maximum in �! for � = 2 is not observed in the experiments: the LEV
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and TEV shed by finite aspect ratio wings dissipate much faster than those produced by airfoils or infinite aspect ratio

wings due to the wake compression [34] and the vortex break-down caused by the non-linear interactions between LEV,

TEV, and the wing tip vortices [37]. Also note that the Reynolds number is higher for the finite aspect ratio wings, which

could also contribute to more unstable vortices and a quicker vortex break-down. Hence, one possible explanation is that

the LEV in the experimental setup does not maintain its coherence for times long enough to approach the wing during

the deceleration phase, resulting in higher values of �! for DNS than for experiments at C*∞/2 ≈ 2. An alternative

explanation with similar consequences for the lift coefficient is that, even if the LEV in the experimental setup mantains

its coherence, the 3D interaction with TEV and tip vortices might result in a different trajectory of the LEV.

Figure 9c and d show that the contribution of SV to the lift is always relatively small, with contributions at the peak of

about 10% for both wings. The SLEV is the major contributor to �E
!
during the relaxation phase (i.e., C*∞/2 & 2.5), as

the LEV is advected downstream. Note also that during this later phase the effect of the LEV on the lift is negative.

Figures 9e and f show that the contributions to �E
�
from LEV, TEV, SLEV and SV are somewhat different for the

NACA0012 and the flat plate. For the flat plate, the contributions from each structure to �E
�
are analogous to their

contributions to �E
!
(compare figures 9d and f). This is in agreement with the conjecture offered in section III.A about

the flat plate producing forces normal to the plate only. For the NACA0012, the LEV produces thrust (i.e., negative �E
�
)

when it is attached and sufficiently close to the leading edge of the airfoil, consistent with the discussion of figure 8 in

section III.B. The contribution of the LEV to �E
�
changes sign at about C*∞/2 = 0.75 (i.e, just before �! peaks), and

the detached LEV remains as one of the major contributors to �E
�
throughout the rest of the maneuver. Analogous to

the LEV, the SLEV produces thrust during the recovery phase, which explains the somewhat lower �� observed for the

NACA0012 than for the flat plate in figure 4b, both in experiments and simulations. The sign of the contribution of the

SV to �E
�
seem to behave similarly to the signs of LEV (for C*∞/2 . 1.25) and SLEV (for C*∞/2 ≈ 1.75), but shifted

in time. This is probably to be expected, since the SV in the NACA0012 is produced relatively close to the leading edge

(see figure 9a), contributing to the suction peak in a similar way as LEV and SLEV.

Finally, it is interesting to note that the �E
�
of the NACA0012 have non-negligible contributions from the boundary layer

at the lower surface of the airfoil, not accounted by LEV, TEV, SLEV and SV. This contribution can be observed in

figures 8 d,h and l, very close to the leading edge of the airfoil. Its contribution to �E
�
is negative (i.e., thrust), and seem

to be specially important during the acceleration phase and the beginning of the deceleration phase, C*∞/2 . 1.25,

where figure 9e shows an imbalance between contributions of vortical structures (bars) and the total �E
�
(black line).

Note that this imbalance is not observed for �E
!
in the NACA0012 and the flat plate, nor for �E

�
in the flat plate.
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IV. Conclusions

We have presented experiments and direct numerical simulations of plunging maneuvers with velocity ratios � = 1 and

2, and with two different wings, a flat plate and a NACA0012 wing. The experiments were conducted at '4 = 20000

with wings of two aspect-ratios that were towed in a water-filled towing-tank. The simulations were performed at

'4 = 5000 using a model of an infinite aspect-ratio wing by solving the Navier–Stokes equations using an immersed

boundary method, prescribing the motion of the wing. We have analyzed the time evolution of the force coefficients

during and after the maneuvers, supplemented with flow visualizations to characterize the development of vortical

structures. We have also performed a force decomposition analysis to quantify the contributions of these vortical

structures to the aerodynamic forces generated during the maneuver.

The plunge maneuver can be divided into three phases: acceleration, deceleration, and a post-maneuver phase in which

the force coefficients evolve towards their steady state values. The comparison of the time history of �! in experiments

and simulations showed a good qualitative agreement during the acceleration and deceleration phases, with the DNS

predicting a somewhat larger �max
!

during the acceleration and a somewhat smaller �min
!

during the deceleration phase.

Moreover, the evolution of the lift coefficient during these two phases was qualitatively the same for NACA0012 airfoils

and for flat plates, both for the spanwise-periodic wings of the DNS and for the finite aspect ratio wings (with aspect

ratio �' = 4 and 4.86) used in the experiments. Interestingly, the drag coefficient of NACA0012 and flat plates differed

considerably during the acceleration phase. This difference was ascribed to the orientation of the surface below the

leading edge vortex (and the secondary vorticity developing beneath it). For the NACA0012, the curvature of the leading

edge resulted in the associated suction peak producing lift and thrust. For the flat plate, an analogous suction peak

resulted in lift and drag. This has been confirmed in the analysis of the contributions of different flow structures to the

drag coefficient.

The largest discrepancies between experiments and simulations occurred in the aerodynamic response during the

transition from the deceleration phase to the post-maneuver phase, where the DNS predicted significantly larger values

of �! than the experiments. Using the force decomposition algorithm proposed by Chang [18], we have observed that

the major contributor to the force during this transition is the leading edge vortex shed during the acceleration phase,

which approached the upper surface of the airfoil during its deceleration. Hence, we have conjectured that the observed

difference between experiments and simulations might be related to the interaction of the leading edge vortex with

the wing tip vortices. According to previous studies [34, 37], these interactions may cause a quicker dissipation of the

leading edge vortex, or a change in its trajectory. Note that while wing tip vortices were present in the finite aspect

ratio wings used in the experiments, they were not present in the spanwise-periodic wings used in the simulations. In

addition, it should not be overlooked that differences in the Reynolds number between experiments and DNS could be

responsible for some of the reported discrepancies. The literature shows [31, 32] that the Reynolds number has some
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effect on the development and detachment of the LEV, and also on its stability and breakdown once it has been shed into

the wake. These two effects might account for differences in the two maxima of the �! curves, as shown in section III.C

by the relatively large contribution of the LEV to �E
!
at these two instants.

Using the force decomposition analysis we have characterized the contributions to the lift and drag coefficient of the

vortical structures occurring in the flow. The main leading edge vortex was found to be the major contributor during the

whole maneuver while the trailing edge vortex was found to contribute mainly during the acceleration phase. In the

post-maneuver phase as the main leading edge vortex was convected downstream, a secondary leading edge vortex was

found to be the major contributor to the lift and drag during this final phase.
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