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K-Formal Concept Analysis as linear algebra over
idempotent semifields

Francisco J. Valverde-Albacete∗, Carmen Peláez-Moreno

Departamento de Teoŕıa de la Señal y de las Comunicaciones,
Universidad Carlos III de Madrid, 28911 Leganés, Spain

Abstract

We report on progress in characterizing K-valued FCA in algebraic terms, where
K is an idempotent semifield. In this data mining-inspired approach, incidences
are matrices and sets of objects and attributes are vectors. The algebraization
allows us to write matrix-calculus formulae describing the polars and the fix-
point equations for extents and intents. Adopting also the point of view of the
theory of linear operators between vector spaces we explore the similarities and
differences of the idempotent semimodules of extents and intents with the sub-
spaces related to a linear operator in standard algebra. This allows us to shed
some light into Formal Concept Analysis from the point of view of the theory
of linear operators over idempotent semimodules.

In the opposite direction, we state the importance of FCA-related concepts
for dual order homomorphisms of linear spaces over idempotent semifields, spe-
cially congruences, the lattices of extents, intents and formal concepts.

Key words: Generalised Formal Concept Analysis, concept lattice,
neighborhood lattice, idempotent semiring, dioid, confusion matrix

1. Introduction

This paper explores the connection between a generalization in Formal Con-
cept Analysis (FCA, [1]) and Linear Algebra over certain semirings, the idem-
potent semifields [2–4]. We will prove that when contexts have entries in an
idempotent semifield, like the max-plus or the tropical algebra, concept lattices
may be better understood in terms of functions between semivector spaces, that
is vector spaces (or semimodules) over such semirings, and this sheds light onto
Formal Concept Analysis as a whole.
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Reciprocally, we will show that complete lattices, in particular in the form
of concept lattices, abound in the study of some transformations of idempotent
semimodules, a result previously unknown. Perhaps, the idiosyncrasies of such
spaces can be better understood under this new perspective.

Recall the fundamental results of standard or binary FCA

Definition 1. (Formal Concept Analysis, [1]) A formal context (G,M, I) [1]
consists of a set of objects G, a set of attributes M and an incidence I ⊆ G×M ,
a binary relation describing which objects show which attributes. For all sets
of objects A ⊆ G, call polar of extents (with respect to (G,M, I)) the map

A↑I = {m ∈ M | ∀g ∈ A , gIm} . Similarly, for a set of attributes B ⊆ M

call polar of intents1the map B↓I = {g ∈ G | ∀m ∈ B , gIm} . Pairs (A,B)

such that A↑I = B and B↓I = A are the formal concepts of context (G,M, I) .
Call B(G,M, I) the set of all such concepts. If we define the order (A1, B1) ≤
(A2, B2) ⇔ A1 ⊆ A2 ⇔ B1 ⊇ B2 , then we can state the basic theorem of
concept lattices.

Theorem 1.1 (Basic Theorem of FCA, [1]). The set of concepts carries a com-
plete lattice algebra B(G,M, I) = 〈B(G,M, I),≤〉, with infimum and supremum
given by

∧
t∈T

(At, Bt) =

⋂
t∈T

At,

(⋂
t∈T

At

)↑
I

 ∨
t∈T

(At, Bt) =

(⋂
t∈T

Bt

)↓
I

,
⋂
t∈T

Bt

 (1)

Conversely, a complete lattice V is isomorphic to B(G,M, I) if and only if there
are mappings γ : G → V and µ : M → V such that γ(G) is join-dense in V ,
µ(M) is meet-dense in V , and gIm is equivalent to γ(g) ≤ µ(m) for all g ∈ G
and all m ∈M .

A generalization of Formal Concept Analysis was presented in [7] where inci-
dences have values in a complete idempotent semifield K , this being a complete
idempotent semiring with a multiplicative group structure whose unit is distinct
from top of the semiring. This extension was called K-Formal Concept Analysis
(K-FCA) and later generalized to the other four types of Galois connections or
adjunctions arising from a single K-valued incidence [6, 8].

Note that idempotent semifields are clearly distinct from inclines—e.g. “fuzzy
semirings”—where the top of the element and the unit are the same element.
Likewise, idempotent semifields have well attested and distinct uses in morpho-
logical processing [9], dynamic programming [10], Markov chain decoding [11],
Discrete Event Systems modeling and analysis [3], artificial neural networks [12]

1The origin of this notation is, we believe, [5], but in [1] the polars were called the “deriva-
tional operators”. However, a single relation I has several pairs of derivational operators
generating different kinds of Galois connections each [6, § 2.1.2]: in this paper the polars are
those derivational operators that generate a Galois connection instead of other pairs of order
morphisms.
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and memories [13]—to mention but a few—what makes the results developed in
this paper potentially useful to improve these or other engineering and mathe-
matical applications.

This usefulness is enhanced because the extensions and intension in semifield-
based FCA are related to the eigenvectors for certain matrices derived from the
incidence, the projector matrices [14]. The authors later went on to develop the
spectral theory [15, 16] but never reviewed their findings in two aspects:

a. What is the actual relation between eigenvectors of the spectral projectors
and extents or intents?

b. What are the advantages of working in complete idempotent semifields?

In this paper we answer both of these questions, to wit:

a. All procedures related to K-Formal Concept Analysis take the form of
matrix-vector equations in semimodules over semifields, including, the po-
lars, the closure operators and finite generation of sub-semimodules.

This is possible due to the idempotent algebra analogues of vector spaces,
the complete idempotent semimodules, sometimes called “idempotent semivec-
tor spaces”.

(a) The system of extents and intents induced by the polars have a double
semimodule structure.

(b) Concept lattices over idempotent semifields are idempotent semimo-
dules of a dual semifield.

(c) The eigenvectors of the projectors generate the concepts by closure
of their joins.

b. We are able to provide, for the previously mentioned application fields,
more tools for data processing that include lattices, formal concepts, etc.
Yet such tools take the form of linear algebra techniques over idempotent
semifields, instead of more complex order-theoretic procedures.

To address these issues, in Section 2 we first review the theory of idempotent
semifields and semimodules over them with special attention to Galois connec-
tions, nuclear to FCA, spectra and congruences. In Section 3 we revisit K-FCA
with the focus on the linear algebra properties of the main conceptual abstrac-
tions of FCA. In particular, we prove that ϕ-concept lattices are actually pairs
of idempotent semimodules, and that congruences play an important role in the
characterization of such semimodules. We finish with a Discussion of issues and
open avenues of research.

2. Methods and Materials

2.1. Idempotent semirings and semifields

A short systemization. A semiring is an algebra S = 〈S,⊕,⊗, ε, e〉 whose ad-
ditive structure, 〈S,⊕, ε〉, is a commutative monoid and whose multiplicative
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structure, 〈S\{ε},⊗, e〉, is a monoid with multiplication distributing over addi-
tion from right and left and with additive neutral element absorbing for ⊗, i.e.
∀a ∈ S, ε⊗ a = ε.

A commutative semiring is one whose multiplicative law is commutative.
Note that semirings can be primitive or constructed from other algebras: al-
though the base semiring is commutative, the construction may not as in the
example below.

Example 1 (Square matrices semirings). Given a semiring S, the semiring of
square matrices of order n over S is the structure Mn(S) = 〈Sn×n,+,×, 0, E〉
where + is the usual entry-wise addition, × is usual matrix multiplication, 0 is
the matrix whose entries are all the zero in S and E that matrix whose entries
are all zero except at the diagonal, where they are the unit in S. Note that the
operations for matrix addition and multiplication are those of the underlying
semiring S whence this construction is completely generic.

All basic semirings in this paper are commutative, except for the example above,
which an important example of non-commutative semiring. Many more exam-
ples can be found in [17].

For the systematization of semirings the important operation seems to be
addition [17, 18]. In particular, every semiring accepts a canonical preorder,
a ≤ b if and only if there exists c ∈ D with a ⊕ c = b. A dioid is a semiring D
where this relation is actually an order that is compatible with multiplication
and addition, e.g. if a ≤ b than for all c ∈ S still holds a ⊗ c ≤ b ⊗ c and
a ⊕ c ≤ b ⊕ c. Dioids are zerosumfree, that is they have no non-null additive
factors of zero. In this, dioids are as different as a semiring can be from a ring.

A semiring S is complete, if for any index set I including the empty set, and
any {ai}i∈I ⊆ S the (possibly infinite) summations

∑
i∈I ai are defined and the

distributivity conditions:
(∑

i∈I ai
)
⊗ c =

∑
i∈I (ai ⊗ c) and c ⊗

(∑
i∈I ai

)
=∑

i∈I (c⊗ ai), are satisfied. Note that for c = e the above demand that infi-
nite sums have a result. Commutative complete dioids are already complete
residuated lattices.

An idempotent semiring is a dioid whose addition is idempotent, examples
of which are the following.

Example 2 (Idempotent semirings).
1. The Boolean lattice B = 〈 {0, 1},∨,∧, 0, 1 〉
2. All fuzzy semirings, e.g. 〈 [0, 1],max,min, 0, 1 〉
3. The min-plus algebra Rmin,+ = 〈R ∪ {∞},min,+,∞, 0 〉
4. The max-plus algebra Rmax,+ = 〈R ∪ {−∞},max,+,−∞, 0 〉

Of the semirings above, only the boolean lattice and the fuzzy semirings are
complete dioids, since the rest lack the greatest element in the order, the top >.

A semiring is a semifield if there exists a multiplicative inverse for every
element a ∈ S, except the null, notated as a−1. Semifields are all entire, that is,
they have no non-null factors of the zero element. Note that there is an infinite
quantity of semifields [18, Ch. 8, § 4.4.3 and 4.4.4].
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A semifield that is also a dioid is called a positive semifield, and these have
all a natural order. If its addition is furthermore idempotent it is called and
idempotent semifield.

Example 3 (Positive and idempotent semifields).

1. The non-negative rationals Q≥0 and non-negative reals R≥0 are two posi-
tive semifields.

2. The min-plus and max-plus algebras of Example 2 are idempotent semi-
fields.

3. The min-times algebra Rmin,× = 〈R ∪ {∞},min,×,∞, 1 〉 and the max-
times algebra Rmax,× = 〈R,max,×, 0, 1〉 are also idempotent semifields.

Semifield completions. As noted above, positive semifields are incomplete in
their natural order, lacking an adequate inverse for the bottom in the order,
but there are procedures for completing such structures [6, Construction 1] and
we will not differentiate between complete or completed structures. This con-
struction actually obtains a pair of dually-ordered complete positive semifields
from a single (incomplete) positive semifield. Its results are collected below as
a theorem.

Theorem 2.1. For every (incomplete) positive semifield K = 〈K,⊕,⊗, ·−1,⊥, e〉

1. There is a pair of completed semifields over K = K ∪ {>}

K = 〈K,
�
⊕,

�
⊗, ·−1,⊥, e,>〉 K−1

= 〈K,
�
⊕,
�
⊗, ·−1,>, e,⊥〉 (2)

where > = ⊥−1 and ⊥ = >−1 by definition,

2. In addition to the individual laws as positive semifields, we have the mod-
ular laws:

(u
�
⊕ v)

�
⊗(u

�
⊕ v) = u

�
⊗ v (u

�
⊕ v)

�
⊗(u

�
⊕ v) = u

�
⊗ v (3)

the analogues of the De Morgan laws:

u
�
⊕ v = (u−1

�
⊕ v−1)−1 u

�
⊕ v = (u−1

�
⊕ v−1)−1

(4)

u
�
⊗ v = (u−1

�
⊗ v−1)−1 u

�
⊗ v = (u−1

�
⊗ v−1)−1

and the self-dual inequality in the natural order

u
�
⊗(v

�
⊗w) 4 (u

�
⊗ v)

�
⊗w . (5)
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3. Further, if K is a positive dioid, then the inversion operation is a dual
order isomorphism between the dual order structures K = 〈K,4〉 and
(K)−1 = 〈K,<≡4δ〉 with the natural order of the original semifield a
suborder of the first structure.

In fact, complete idempotent semifields K = 〈K,
�
⊕,
�
⊕,

�
⊗,
�
⊗, ·−1,⊥, e,>〉 ,

appear as enriched structures, the advantage of working with them being that

meets can be expressed by means of joins and inversion as a
�
⊕ b = (a−1

�
⊕ b−1)−1.

Note, also, that in complete semifields e 6P > which distinguishes them from
inclines, and also that the inverse for the null is prescribed as ⊥−1 = > . On a
practical note, residuation in complete commutative idempotent semifields can
be expressed in terms of inverses, and this extends to eigenspaces.

Example 4 (Complete idempotent semifields).

1. The “smallest” example of complete idempotent semifield is B ∼= 2 , but

it lacks a common neutral element for multiplications
�
⊗ and

�
⊗ .

2. The next smallest is 3 = 〈{⊥, e,>},
�
⊕,
�
⊕,

�
⊗,
�
⊗,⊥, e,>〉 . 2 is embedded in

3, and 3 is embedded in any bigger complete idempotent semifield.

3. The max-plus Rmax,+ and min-plus Rmin,+ semifields can be completed as:

The complete min-plus semifield Rmin,+ = 〈R∪{−∞,∞},min,
�
+,−·,∞, 0〉

and the complete max-plus semifield Rmax,+ = 〈R∪{−∞,∞},max,
�
+,−·,−∞, 0〉 .

In this notation from [19], we have ∀c,−∞
�
+ c = −∞ and ∞

�
+ c = ∞,

which solves several issues in dealing with the separately completed dioids.

These two completions are inverses as semimodules Rmin,+ = R
−1

max,+ (see
below), hence order-dual lattices.

Note that, although the completion procedure is applied here to idempotent
semifields to obtain the completed Rmax,+ and Rmin,+, its applicability is much
wider, e.g. as applied to the semifields of [18, Ch. 8, §4.4.3 and 4.4.4].

2.2. Idempotent semimodules

Let D = 〈D,+,×, εD, eD〉 be a commutative semiring. A D-semimodule
X = 〈X,⊕,�, εX〉 is a commutative monoid 〈X,⊕, εX〉 endowed with a scalar
action (λ, x) 7→ λ � x satisfying the following conditions for all λ, µ ∈ D,
x, x′ ∈ X:

(λ× µ)� x = λ� (µ� x) λ� (x⊕ x′) = λ� x⊕ λ� x′ (6)

(λ+ µ)� x = λ� x⊕ µ� x λ� εX = εX = εD ⊗ x
eD � x = x

If D is commutative, idempotent or complete, then X is also commutative,
idempotent or complete.
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Example 5 (Semimodules of matrices over semirings). Rectangular matrices
form a D-semimodule Dg×m for given g, m . In this paper, we only use finite-
dimensional semimodules where we can identify right D-semimodules with col-
umn vectors, e.g. X ≡ Dg×1 and left D-semimodules with row vectors.

To define concrete implementations of the matrix operations over any semi-
ring or semifield S only the concrete operations of the underlying semifield are
needed, since they define the addition of matrices and their product with a
scalar.

If X ⊆ Kn×1
is a right semimodule over a complete idempotent semifield K,

three notions of “duals” may be distinguished:

• The (pointwise) inverse [2], X−1 ⊆ (K−1
)n×1 is a right sub-semimodule

of the inverse semifield K−1
such that if x ∈ X, then (x−1)i = (xi)

−1.
This duality is the order duality in partial orders and inverts the natural

order: if x
�
�λ ≤ z then x−1

�
�λ−1 ≥ z−1 .

(x
�
�λ)−1 = x−1

�
�λ−1 (x1

�
⊕x2)−1 = x−1

1

�
⊕x−1

2

• The transpose, X t ⊆ K1×n
is a left sub-semimodule of the same semifield

such that if x is a right (column) vector, then xt is a left (row) vector.

(x
�
�λ)

t
= λ

�
�xt (x1

�
⊕x2)

t
= xt1 �

⊕xt2

These two dualities commute and allow us the definition of the (conju-

gate [2]2, X ∗ ⊆ (K−1
)1×n is a left sub-semimodule of the inverse semifield

K−1
such that if x ∈ X, then (x−1)i = (xi)

−1, and x is a row vector. This
duality at the same time inverts the natural order and the row-column
nature of the semimodule.

(x
�
�λ)∗ = λ−1

�
�x∗ (x1

�
⊕x2)∗ = x∗1

�
⊕x∗2

In fact, we can choose any two of the previous three dualities as indepen-
dent and have the other defined from it:

x−1 = (x∗)
t

= (xt)∗ xt = (x∗)−1 = (x−1)∗ x∗ = (x−1)
t

= (xt)−1

For the matrices in Example 5 we also define an entry-wise inverse (A−1)ij =
(Aij)

−1, the transpose (At)ij = Aji and a conjugate A∗ = (At)−1 =

(A−1)
t

• Using residuation [20], another dual can be defined [21]3: given a com-
plete idempotent semifield K and a right semimodule X over it define

2When applied on Rmax,+ or Rmin,+ we call it the Cuninghame-Green conjugate.
3The original name for this dual was “opposite” in [21], and so it was adopted in [6]. The

authors in [21] now prefer to call this concept the “dual” [22] due to the order dualization of
the construction, we surmise.
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the (residuation) dual of X as the left K-semimodule X d with addition
x1

�
⊕d x2 = x1 ∧ x2 related to the original addition

�
⊕ (which is the join

in the natural order) and action (λ, x) 7→ λ
�
�d x = x

�
/λ . Note that

(X d)d = X and that this dual commutes with inversion. One of the advan-
tages of operating on completed idempotent semifields is that residuation
can be expressed in terms of the original operations of the semimodule:

λ
�
�d x = x

�
⊗λ−1 x1

�
⊕d x2 = x1

�
⊕x2 (7)

For complete idempotent semifields, the following matrix algebra equations
are proven in [2, Ch.8]:

Proposition 2.2. Let K be an idempotent semifield, and A ∈ Km×n. Then:

1. A
�
⊗(A∗

�
⊗A) = A

�
⊗(A∗

�
⊗A) = (A

�
⊗A∗)

�
⊗A = (A

�
⊗A∗)

�
⊗A = A and

A∗
�
⊗(A

�
⊗A∗) = A∗

�
⊗(A

�
⊗A∗) = (A∗

�
⊗A)

�
⊗A∗ = (A∗

�
⊗A)

�
⊗A∗ = A∗ .

2. Alternating A−A∗ products of 4 matrices can be shortened as in:

A∗
�
⊗(A

�
⊗(A∗

�
⊗A)) = A∗

�
⊗A = (A∗

�
⊗A)

�
⊗(A∗

�
⊗A)

3. Alternating A−A∗ products of 3 matrices and another terminal, arbitrary
matrix can be shortened as in:

A∗
�
⊗(A

�
⊗(A∗

�
⊗M)) = A∗

�
⊗M = (A∗

�
⊗A)

�
⊗(A∗

�
⊗M)

4. The following inequalities apply:

A∗
�
⊗(A

�
⊗M) ≥M A∗

�
⊗(A

�
⊗M) ≤M

A
�
⊗(A∗

�
⊗M) ≥M A

�
⊗(A∗

�
⊗M) ≤M

Consider a set of vectors S ⊆ X , then the span of S (with respect to K an
idempotent semifield) 〈S〉K ⊆ X is the subsemimodule of X generated by linear
combinations of finitely many such vectors. Note that a semimodule V is finitely
generated if there exists a finite set of vectors S ⊆ X such that V = 〈S〉K . All
such finitely generated subsemimodules of a Kn are closed, both in the convex
sense, that is, they include all of their limit points [23], and in the topological
sense, in the Scott topology issued from the order properties of the idempotent
semifield K [24].

Sometimes we put together a matrix S whose columns are the vectors of S
and we write 〈S〉K = 〈S〉K = {S

�
⊗ z | z ∈ K|S|} = Im(S) the image of S ∈ Kn×p

when it is interpreted as a linear transformation S : Kp → Kn .
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2.3. Galois connections and adjunctions between idempotent semimodules

Most features of FCA are built on the notion of a Galois connection. The
concepts here extracted follow the presentation in [6] focusing on Galois connec-
tions over idempotent semimodules. See [1, Ch.0] and [24, Ch.5, 7] for different
presentations of the issue.

Let P = 〈P,≤P〉 and Q = 〈Q,≤Q〉 be partially ordered sets. We have:

• A map f : P → Q is residuated if inverse images of principal (order)
ideals of Q under f are again principal ideals. Its residual map or simply
residual, f# : Q→ P is f#(q) = max{ p ∈ P | f(p) ≤Q q }.

• A map g : Q → P is dually residuated if the inverse images of principal
dual (order) ideals under g are again dual ideals. Its dual residual map or
simply dual residual, g[ : P → Q is g[(p) = min{ q ∈ Q | p ≤P g(q) } .

This duality of concepts is fortunately simplified by the well-known fact that
residual maps are dually residuated, while dual residual maps are residuated,
hence we may maintain only the two notions of residuated maps and their
residuals [3, Remark 4.53 and Theorem 4.56]. In fact, the two notions are so
entwined that we give a name to them: an adjoint pair of maps (λ, ρ) is a pair
(λ : P → Q, ρ : Q → P ) between two ordered sets such that ∀p ∈ P, q ∈ Q,
p ≤P ρ(q) ⇐⇒ λ(p) ≤Q q , equivalently, p ≤P ρ(λ(p)) and λ(ρ(q)) ≤Q q .

If the order relation is actually partial the lower or left adjoint, λ is uniquely
determined by its right or upper adjoint, ρ, and conversely [25, §1.1]. The char-
acterization theorem for adjoint maps [25, p. 7] states that (λ, ρ) are adjoint if
and only if, λ is residuated with residual ρ, or equivalently, ρ is dually residuated
with λ its dual residual.

Now consider also their order duals Pd = 〈P,≥P〉 and Qd = 〈Q,≥Q〉.

Definition 2. (Galois connections and adjunctions)

1. (λ, ρ) is a (Galois) adjunction (on the left) of two adjoints, and we write
(λ, ρ) : P � Q iif: ∀p ∈ P, q ∈ Q λ(p) ≤Q q ⇔ p ≤P ρ(q) , that is,
the functions are covariant, and we say that λ is the lower or left adjoint
while ρ is the upper or right adjoint .

2. (ϕ,ψ) is a Galois connection (proper) of two dual adjoints (ϕ,ψ) : P↗↖Q
iff: ∀p ∈ P, q ∈ Q ϕ(p) ≥Q q ⇔ p ≤P ψ(q) , that is, both functions are
contravariant. For that reason they are sometimes named contravariant
or symmetric adjunctions on the right. Note that (ψ,ϕ) is also a Galois
connection.

As a sort of graphical summary, we introduce the diagrams at the top of
figure 1 as the pattern that carries the structures described in [25, §1.2]. We
illustrate how to read it with the diagram at the top left, which has:

• A closure system, ρ(Q) = P , the closure range of the right adjoint (see
below).

9



P Q

P Q

λ

γP

λ

ρ

κQ

ρ

λ

↪→P

ρ

↪→Q

(a) A Galois adjunction

P Q

P Q

ϕ

γP

ϕ φ

γQ
φ

ϕ

↪→P

φ

↪→Q

(b) A Galois connection

Left Adjunction: (λ, ρ) : P � Q Galois connection: (ϕ,ψ) : P↗↖Q
∀p ∈ P, q ∈ Q,λ(p) ≤Q q ⇔ p ≤P ρ(q) ∀p ∈ P, q ∈ Q,ϕ(p) ≥Q q ⇔ p ≤P ψ(q)

IP ≤ ρ ◦ λ and IQ ≥ λ ◦ ρ IP ≤ ψ ◦ ϕ and IQ ≤ ϕ ◦ ψ
λ = λ ◦ ρ ◦ λ and ρ = ρ ◦ λ ◦ ρ ϕ = ϕ ◦ ψ ◦ ϕ and ψ = ψ ◦ ϕ ◦ ψ

λ monotone, residuated ϕ antitone
ρ monotone, residual ψ antitone

λ join-preserving, ρ meet-preserving ϕ join-inverting, ψ join-inverting

(c) Properties of Galois connections and adjunction between posets P,Q.

Figure 1: Diagrams visually depicting the maps and structures involved in the adjunction on
the left (λ, ρ) : P �Q (left) and Galois connection (ϕ,ψ) : P ↗↖Q (right) with a summary
of their properties. Closure operators are denoted by γP , γQ , interior (kernel) operators by

κP , κQ , closure systems by P ,Q and interior (kernel) systems by P ,Q (adapted from [6]).

• An interior system, λ(P ) = Q, the kernel range of the left adjoint (see
below).

• A closure function (also, “closure operator”) γP = ρ ◦λ ≥P IP , from P to
the closure range P = ρ(Q), with adjoint inclusion map ↪→P , where IP
denotes the identity over P .

• A kernel function (also, “interior operator”, “kernel operator”) κP = λ ◦
ρ ≤Q IQ, from Q to the range of Q = λ(P ), with adjoint inclusion map
↪→Q , where IQ denotes the identity over Q.

• a perfect adjunction (λ̃, ρ̃) : P �Q, that is, an order isomorphism between

the closure and kernel ranges P and Q .

The different monotonicity conditions account for the different properties of
the Galois adjunctions of figure 1.(a):

• if (λ, ρ) form a left adjunction, then λ is residuated, preserves existing
least upper bounds (for lattices, joins) and ρ preserves existing greatest
lower bounds (for lattices, meets).
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• if (ϕ,ψ) form a Galois connection, then both ϕ and ψ invert existing least
upper bounds (for lattices, they transform joins into meets).

Table 1.(c) summarizes the main properties of both types of connections.

Example 6. With the polars defined in Definition 1, (·↑I , ·
↓
I) : X ≡ ↗↖Y is the

Galois connection in FCA, with X ≡ 2G and Y ≡ 2M .

Also, [6] provides details on how to extend basic FCA with the different types
of connections to provide different “flavors” of FCA—including some based in
adjunctions—as well as extending it to incidences with values in an idempotent
semifield.

Example 7. [6] When K is a completed idempotent semifield and X ≡ Kg

and Y ≡ Km are idempotent vector spaces or semimodules, we may define a
Galois connection for every R ∈ Kg×m by means of a scalar product 〈· | R | ·〉 :
X × Y → K and a scalar ϕ ∈ K whose polar functions

x↑R,ϕ = ∨{y ∈ Y | 〈x | R | y〉 ≤ ϕ} y↓R,ϕ = ∨{x ∈ X | 〈x | R | y〉 ≤ ϕ} (8)

form the Galois connection (·↑R,ϕ, ·
↓
R,ϕ) : X ↗↖Y .

2.4. Complete congruences of idempotent semimodules

In FCA, the quotient sets of the polars is important because it determines a
fundamental limitation of the formal context: where it is not capable of distin-
guishing between two sets of objects (or attributes). It is used, extensively for
reducing the context and the concept lattice [1, notes to Ch.1]. In our approach,
this treatment has to be extended to semimodules: the following is borrowed
and adapted from [23, 26, 27].

Given a right K-semimodule X a subset W ⊂ X 2 is called a pre-congruence
(of semimodules), if it is a subsemimodule 〈W,⊕,�〉 such that (x, x) ∈W ,∀x ∈
X, and if (x1, x2) ∈ W and (x2, x3) ∈ W , then (x1, x3) ∈ W . Furthermore, it
is a congruence (of semimodules) whenever (x1, x2) ∈W implies (x2, x1) ∈W .
Therefore, in the present case, congruences are equivalence relations closed with
repect to the semimodule operation and have, in turn, a semimodule structure
when thought of as a subsemimodule of X 2 [26, § 2].

A natural way to define a congruence is to consider a continuous, right linear
functional F : X → Y to a complete right K-semimodule Y, and define its image
Im(F ) and bikernel Ker(F ) as follows.

Im(F ) = {y ∈ Y | ∃x ∈ X, y = F (x)} = {F (x) | x ∈ X} = F (X)

Ker(F ) = {(x1, x2) ∈ X2 | F (x1) = F (x2)} .

Conversely, every complete congruence W arises in this way. The bikernel is
an analogue to the kernel of a linear function in the setting of idempotent
semimodules4.

4Note that in this paper we use kernel to refer to monotone, contractive idempotent endo-
morphisms of semimodules in Subsection 2.3.
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To investigate analogous relationships between images and bikernels in the
standard case we define:

Definition 3. Let K be an idempotent semifield and X ∼= Kn a semi-vector
space over K. Then,

• The orthogonal of a semimodule V ⊆ X is the congruence

V⊥ = {(x1, x2) ∈ X2 | ∀x ∈ V, x∗1x = x∗2x}

• The orthogonal of a congruence (as a semimodule) W ⊆ X 2 is the semi-
module

W> = {x ∈ X | ∀(x1, x2) ∈W,x∗1x = x∗2x}

We have the following propositions.

Proposition 2.3. [27, Ch. IV,1.2.2, generalized] For all (convex) closed semi-
modules V ⊆ Kn, (V⊥)> = V .

Proposition 2.4. [23, Th. 10, generalized] A semimodule W ⊆ X 2 is a (con-
vex) closed congruence if and only if W = (W>)⊥ .

The generalization is that they apply to semimodules over idempotent semi-
fields in general, not a particular one. Both hold, a fortiori, for finitely generated
semimodules, which are (convex) closed (see Section 2.2).

Specially, when a homomorphism F is represented by its matrix A:

Proposition 2.5. ([26, Lemma 7]) For any matrix A ∈ Km×n we have (Im(A))⊥ =
Ker(At) and (Ker(A))> = Im(At).

This is clearly the way to define congruences for Galois adjunctions because F
and F ] are a residuated pair, that is, a Galois adjunction.

When two linear functions F : Z → X and G : X → Y compose, the prop-
erty that Ker(G) intersects Im(F ) at a single point is often called a transver-
sality condition that provides the basis for a number of results in max-min-plus
Control and Decision Theory [22]. Previously it had been used as a reason to
call the relation between bikernels and images an orthogonality, whence the no-
tation on bikernels and their orthogonals in Definition 3 [28]. The work below
presents this orthogonality in the light of Galois connections and FCA.

But for Galois connections as first described in idempotent semimodules
by [21] a better way may be the following. Given a pre-dual pair X , Y and a dot
product 〈X | Y 〉, we define the following correspondences between semimodules
of X 2 and Y:

W ⊂ X 2 7→ W> = {y ∈ Y | 〈x1 | y〉 = 〈x2 | y〉,∀(x1, x2) ∈W} (9)

V ⊂ Y 7→ V⊥ = {(x1, x2) ∈ X2 | 〈x1 | y〉 = 〈x2 | y〉,∀y ∈ V }

Note that V is a complete subsemimodule of Y and V =
(
V⊥
)>

[23], and
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Proposition 2.6. Let (X ,Y) be a pre-dual pair satisfying the property that if
W ∈ X 2 is a complete congruence and (s, t) 6∈ W , then there exists a y ∈ Y
such that if (x1, x2) ∈ W then 〈x1 | y〉 = 〈x2 | y〉 and 〈s | y〉 6= 〈t | y〉 . Then a

subsemimodule W ⊂ X 2 is a complete congruence if and only if W =
(
W>

)⊥
.

Next we investigate the structure of the equivalence classes of congruences.
On a complete (as a semimodule) pre-congruence W ⊂ X 2 for x ∈ X define:

x̂ = ∨{x′ ∈ X | (x′, x) ∈W} (10)

Recall that x̂ is just the supremum in the equivalence class of x ∈ X and it is a
closure operator: x ≤ x̂ = ˆ̂x whence x1 ≤ x2 implies x̂1 ≤ x̂2 , and in particular
x̂1 = x̂2 if (x1, x2) ∈W . This will be expanded below.

2.5. Basic Spectral Theory over Dioids

Let Mn(S) be the semiring of square matrices over a semiring S with the
usual operations. Given A ∈Mn(S) the right (left) eigenproblem is the task of
finding the right eigenvectors v ∈ Sn×1 and right eigenvalues ρ ∈ S (respectively
left eigenvectors u ∈ S1×n and left eigenvalues λ ∈ S) satisfying:

u⊗A = λ⊗ u A⊗ v = v ⊗ ρ (11)

The left and right eigenspaces and spectra are the sets of these solutions:

Λ(A) = {λ ∈ S | Uλ(A) 6= {εn}} P(A) = {ρ ∈ S | Vρ(A) 6= {εn}}
Uλ(A) = {u ∈ S1×n | u⊗A = λ⊗ u} Vρ(A) = {v ∈ Sn×1 | A⊗ v = v ⊗ ρ}

U(A) =
⋃

λ∈Λ(A)

Uλ(A) V(A) =
⋃

ρ∈P(A)

Vρ(A) (12)

With so little structure it might seem hard to solve (11), but a very generic
solution based in the concept of transitive closure of a matrix A+ =

∑∞
i=1A

i

and transitive-reflexive closure A∗ =
∑∞
i=0A

i is given by the following theorem:

Theorem 2.7. [29, Theorem 1] Let A ∈ Sn×n. If A∗ exists, the following two
conditions are equivalent:

1. A+
.i ⊗ µ = A∗.i ⊗ µ for some i ∈ {1 . . . n}, and µ ∈ S.

2. A+
.i ⊗ µ (and A∗.i ⊗ µ) is an eigenvector of A for e, A+

.i ⊗ µ ∈ Ve(A).

A more algorithmically oriented approach to solving the all-eigenvectors
problem in idempotent semifields can be found in [15, 16]. Specifically, note
that the eigenspace for a particular eigenvalue Vρ(A) is generated by its funda-
mental eigenvectors FEV (A) so that Vρ(A) = 〈FEV (A)〉K .

3. Theory and Calculations

3.1. Dual scalar product and scaling

To be consistent with the way FCA handles the data in the incidence relation
the proper way to define the polars is through a scalar product in the dual
semimodules [6, Lemmas 2.8, 2.11 and 2.12, dualized].
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Lemma 3.1. When K is a completed idempotent semifield and X ≡ Kg and
Y ≡ Km are idempotent vectors spaces or semimodules, we may define a Galois
connection for every R ∈ Kg×m by means of 〈x | R | y〉 = yt

�
⊗dR

�
⊗d x .

x↑R,ϕ = ∨d{y ∈ Y | 〈x | R | y〉 ≤d ϕ} = Rt
�
⊗x−1

�
⊗ϕ−1 (13)

y↓R,ϕ = ∨d{x ∈ X | 〈x | R | y〉 ≤d ϕ} = R
�
⊗ y−1

�
⊗ϕ−1

Proof. The scalar product, written in standard operations is 〈x | R | y〉 =

x
�
\R

�
/ yt = x∗

�
⊗R

�
⊗ y−1. From (8), in the dual semimodules, we have to

solve x∗
�
⊗R

�
⊗ y−1 ≥ ϕ in both x and y. Solving for y−1 we have y−1 =

(x∗
�
⊗R)

�
\ϕ = R∗

�
⊗x

�
⊗ϕ, whence inverting x↑R,ϕ = Rt

�
⊗x−1

�
⊗ϕ−1 . Since

x∗
�
⊗R

�
⊗ y−1 ≥ ϕ ⇐⇒ y∗

�
⊗Rt

�
⊗x−1 ≥ ϕ by transposition, a (transpose) dual

expression arises for y↓R,ϕ, with x↔ y and R↔ Rt on all semimodules.

Our main intent, in this paper, is to see how this construction develops
in terms of linear algebra over idempotent semifields. For that purpose, we
leave the corner cases when ϕ ∈ {⊥,>} for Section 3.7. Then we can reduce
the studying of the connection with a generic ϕ to a simpler setting inspired

by [30]: when {ϕ, γ, µ} ∈ K \ {⊥,>} we consider ϕ = γ
�
⊗µ so:

x∗
�
⊗R

�
⊗ y−1 ≥ γ

�
⊗µ ⇐⇒ γ

�
\(x∗

�
⊗R

�
⊗ y−1)

�
/µ ≥ e

⇐⇒ (γ−1
�
⊗x∗

�
⊗R

�
⊗ y−1

�
⊗µ−1) ≥ e

⇐⇒ (x
�
⊗ γ)∗

�
⊗R

�
⊗(y

�
⊗µ)−1 ≥ e ,

Then the products x
�
⊗ γ = x̃γ and y

�
⊗µ = ỹµ have the interpretation of (finite)

scalings in the original spaces

x∗
�
⊗R

�
⊗ y−1 ≥ γ

�
⊗µ ⇐⇒ (x̃γ)∗

�
⊗R

�
⊗(ỹµ)−1 ≥ e

whence we need only consider the case where ϕ = e . The following development
presupposes this setting and we treat x ∈ X̃γ and y ∈ Ỹ µ simply as placeholders.

Note that elements in (X̃γ)
t

are treated as row (left) vectors, while those of Ỹ µ

are treated as column (right) vectors, with those roles swapped by transposition.
This is the origin of row-column duality often invoked in proofs.

From (13) with ϕ = e, we recall the following:

Lemma 3.2. (·↑R, ·
↓
R) : X̃ γ↗↖Ỹµ with

x↑R = Rt
�
⊗x−1 y↓R = R

�
⊗ y−1 (14)

is a Galois connection between the semimodules X̃ γ ∼= (̃Kg)
γ

and Ỹµ ∼= (̃Km)
µ

if and only if for x ∈ X, y ∈ Y , we have y ≤ x↑R ⇔ x ≤ y↓R .
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X̃ γ Ỹµ

Bγ
G(G,M,R)K Bµ

M (G,M,R)K

·↑R

πR(·)

· ↑
R ·↓R

πRt (·)·↓R

·↑R

↪→X̃γ

·↓R

↪→Ỹµ

Figure 2: (·↑R, ·
↓
R) : X̃γ↗↖Ỹµ , the Galois connection between scaled spaces. Refer to the text

for the notation.

Proof. We need only prove in one sense, since the other is similar. If y ≤
x↑R = Rt

�
⊗x−1, then by inversion, R∗

�
⊗x ≤ y−1 whence, by residuation x ≤

R∗
�
\ y−1 = R

�
⊗ y−1 = y↓R .

The diagram in Fig. 2 summarizes this Galois connection [6, 25]. Lemma 3.2
puts at our disposal a number of results that could be obtained as Corollaries
from it and the theory of Galois Connections [25]. However, the purpose of this
paper is to make explicit the advantages of idempotent semifields in developing a
generalization of FCA. In this particular instance, we highlight the connection
between their order and algebraic properties and for this reason we insist on
algebraic manipulation in some proofs, like that of the following Proposition. :

Proposition 3.3. Consider the Galois connection (·↑R, ·
↓
R) : X̃ γ↗↖Ỹµ . Then:

1. The polars are antitone, join-inverting functions:

(x1
�
⊕x2)

↑
R

= x1
↑
R

�
⊕x2

↑
R (y1

�
⊕ y2)

↓
R

= y1
↓
R

�
⊕ y2

↓
R . (15)

2. The compositions of the polars: πR(·) : X̃γ → X̃γ , πRt(·) : Ỹ µ → Ỹ µ are
closures, that is, extensive and idempotent operators,

πR(x) ≥ x πRt(y) ≥ y
πR(πR(x)) = πR(x) πRt(πRt(y)) = πRt(y)

with algebraically closed expressions

πR(x) = (x↑R)
↓
R = R

�
⊗(R∗

�
⊗x) πRt(y) = (y↓R)

↑
R = Rt

�
⊗(R−1

�
⊗ y) .

(16)

3. The polars are mutual pseudo-inverses:

(·)↑R ◦ (·)↓R ◦ (·)↑R = (·)↑R (·)↓R ◦ (·)↑R ◦ (·)↓R = (·)↓R
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Proof. We only prove for left vectors, since the proofs for right vectors are row-
column dual. Note that the techniques in this proof will be used in many places
below. First:

(x1
�
⊕x2)

↑
R

= Rt
�
⊗(x1

�
⊕x2)−1 = Rt

�
⊗x−1

1

�
⊕Rt

�
⊗x−1

2 = x1
↑
R

�
⊕x2

↑
R

From Proposition 2.2.4 we find that πR(x) = R
�
⊗(R∗

�
⊗x) ≥ x, that is πR(·) is

extensive. From Proposition 2.2.3 we know that R
�
⊗(R∗

�
⊗(R

�
⊗M)) = R

�
⊗M ,

whence

πR(πR(x)) = R
�
⊗(R∗

�
⊗(R

�
⊗(R∗

�
⊗x))) = R

�
⊗(R∗

�
⊗x) = πR(x) .

Finally,

((y↓R)
↑
R)
↓

R
= R

�
⊗(Rt

�
⊗(R

�
⊗ y−1)−1)−1 = R

�
⊗(R∗

�
⊗[R

�
⊗ y−1]) = R

�
⊗ y−1 = y↓R

where the reduction step also comes from Proposition 2.2.3.

Consider the effect of applying the polars to the whole of the ambient spaces
X̃γ and Ỹ µ. In this way we define two sets, the system of extents Bγ

G(G,M,R)
and the system of intents Bµ

M (G,M,R) of the Galois connection.

Bγ
G(G,M,R) = (Ỹ µ)

↓
R Bµ

M (G,M,R) = (X̃γ)
↑
R (17)

For this reason, we call ·↑R : X̃γ → Bµ
M (G,M,R) the polar of (or generating)

intents and ·↓R : Ỹ µ → Bγ
G(G,M,R) the polar of (or generating) extents. The

rationale for these names will be made evident below.
One of the advantages of working in idempotent semimodules is that we

can strengthen statement 1 in Proposition 3.3 to reveal that the polars are
idempotent semimodule morphisms:

Proposition 3.4. The polar of intents of the Galois connection transforms a

K-semimodule of object vectors into a Kd
-semimodule of intents, and dually for

the polar of the extents that transforms a K-semimodule of attribute vectors into

a Kd
-semimodule of extents.

Proof. For linearity, consider x1
↑
R = Rt

�
⊗x−1

1 and x2
↑
R = Rt

�
⊗x−1

2 .

(λ1
�
⊗x1

�
⊕λ2

�
⊗x2)

↑
R

= Rt
�
⊗(λ1

�
⊗x1

�
⊕λ2

�
⊗x2)−1 =

= Rt
�
⊗(λ−1

1

�
⊗x−1

1

�
⊕λ−1

2

�
⊗x−1

2 ) =

= (λ−1
1

�
⊗Rt

�
⊗x−1

1 )
�
⊕(λ−1

2

�
⊗Rt

�
⊗x−1

2 ) =

= (λ−1
1

�
⊗x1

↑
R)
�
⊕(λ−1

2

�
⊗x2

↑
R)
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and recalling the definition of the operations of the dual, we may write:

(λ1
�
⊗x1

�
⊕λ2

�
⊗x2)

↑
R

= λ1
�
⊗d x1

�
⊕d λ2

�
⊗d x2 .

For the polar of extents the proof is similar.

Note that this is the K-FCA analogue of the fact that the polars are join-
inverting. But the novelty is that the scalings for one semimodule and the other
are inverted, hence they are not exactly homomorphisms of semimodules. This
theme will recur in our results: how to enrich the Galois connection in the
setting of idempotent semimodules. The following corollary is immediate.

Corollary 3.5. The systems of extents and intents are Kd
-semimodules.

3.2. The Semimodules of Closed Elements and Formal Concepts

We next explain the images of the closure operators. For that purpose, call
the sets of fixpoints of the closure operators

fix(πR(·)) = {a ∈ X̃γ | πR(a) = a} fix(πRt(·)) = {b ∈ Ỹ µ | πRt(b) = b} .

These are also called closed elements of the Galois connection that generates
πR(·) and πRt(·) .

Again, the advantages of working in complete idempotent semifields make
themselves evident in the following proposition relating the fixpoints with struc-
tures in the ambient spaces.

Proposition 3.6. fix(πR(·)) and fix(πRt(·)) are complete Kd
-subsemimodules

of X̃γ and Ỹ µ respectively.

Proof. Consider a generic vector z ∈ Ỹ µ, then by Lemma 2.2.2 we have

fix(πR(R
�
⊗ z)) = R

�
⊗(R∗

�
⊗(R

�
⊗ z)) = R

�
⊗ z .

This means that any Kd
-combination of columns of R is a fixpoint of πR(·), that

is 〈R〉Kd ⊆ fix(πR(·)) . Now, consider a ∈ fix(πR(·)). Then R
�
⊗(R∗

�
⊗ a) = a

whence R
�
⊗ z = a, so fix(πR(·)) ⊆ 〈R〉Kd . Dually fix(πR(·)) = 〈Rt〉Kd .

The next corollary is not difficult to prove algebraically, but follows if follows
directly from Lemma 3.2. In fact, these are not new elements.

Corollary 3.7. The sets of extents and intents are the sets of fixpoints of the
closure operators of the Galois connection.

Bγ
G(G,M,R) = fix(πR(·)) Bµ

M (G,M,R) = fix(πRt(·)) .

Due to this and from now on, when we assert the use of the row-column
duality and the duality of the polars, as above, we will invoke the duality of the
Galois connection (between row and column semimodules) as ”GC-dually”.

The previous Lemma and Proposition 3.6 yield the following Corollary.
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Corollary 3.8. The system of extents and intents of the Galois connection

are Kd
-subsemimodules of X̃γ and Ỹ µ, generated by the columns of R and Rt,

respectively.

Bγ
G(G,M,R) = 〈R〉Kd Bµ

M (G,M,R) = 〈Rt〉Kd

Finally, remark how in the proof of Lemma 3.7 a is the extent due to the
intent b and vice-versa in the previous demonstration, also written b = a↑R ⇐⇒
a = b↓R . This is the lower part of the diagram in Figure 2, otherwise said:

Corollary 3.9. ·↓R and ·↑R are mutual inverses on Bγ
G(G,M,R) and Bµ

M (G,M,R).

Perhaps the most important affordance of FCA is the following concept
motivated by the previous remark5.

Definition 4. We call the pairs (a, b) such that a↑R = b and b↓R = a (γ, µ)-formal

concepts (of (G,M,R)) and call their set Bγ
�
⊗µ(G,M,R) .

For (a, b) ∈ Bγ
�
⊗µ(G,M,R) we say a is its extent and b its intent of (a, b)

and Bγ
G(G,M,R), respectively Bµ

M (G,M,R) are the systems of extents and
intents of the Galois connection.

3.3. The Lattices of Extents and Intents

In the previous Section we evidenced a bijection between the systems of
extents and intents, but in fact, the Galois Connection theorem implies that
the sets of extents and intents are dually isomorphic as orders. How is this
expressed in our framework?

Due to Lemma 3.2, we already know that they are complete lattices. But
these lattices of extents Bγ

G(G,M,R) and intents Bµ
M (G,M,R) are only com-

plete meet-subsemilattices of their ambient spaces X̃ γ and Ỹµ but not their
join-subsemilattices. Luckily, Proposition 3.11 will allows us to characterize
their carrying sets of extents and intents as K-semimodules, that is, as com-
plete join-semilattices, too. First consider the following structures on the set of
extents and intents:

BG = 〈Bγ
G(G,M,R), ˜

�
⊕, ˜

�
�, εG〉 BM = 〈Bµ

M (G,M,R), ˜
�
⊕, ˜

�
�, εM 〉

with the two additions:

a1 ˜
�
⊕a2 = πR(a1

�
⊕ a2) b1 ˜

�
⊕b2 = πRt(b1

�
⊕ b2) (18)

5This use of the word “concept” is at the meta-level. The following definition of “(formal)
concept” is at the object level. Confusing them leads to a belief that FCA is about representing
(cognitive) concepts. This is not so. Formal concepts may be used to model cognitive concepts,
but their application is much wider. Of course, the meta-concept of object-(formal) concept
can be considered a cognitive concept in present day (cognitive) Concept Theory. So when
using formal concepts for conceptual modeling, we suggest strictly using “concept” for the
meta level and “formal concept” for the object level. And this is our criterion in this paper
too!
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two right traslations:

(a, λ) 7→ λ˜
�
⊗a = πR(λ

�
⊗ a) (b, µ) 7→ µ˜

�
⊗b = πRt(µ

�
⊗ b) (19)

and bottom elements:

εG = R
�
⊗⊥M εM = Rt

�
⊗⊥G (20)

We next prove that:

Proposition 3.10. Let λ, µ ∈ K , a1 and a2 be extents of Bγ
G(G,M,R) and b1

and b2 be intents of Bµ
M (G,M,R) . Then

λ˜
�
⊗a1 ˜

�
⊕µ˜

�
⊗a2 = πR(λ

�
⊗ a1

�
⊕µ

�
⊗ a2) λ˜

�
⊗b1 ˜

�
⊕µ˜

�
⊗b2 = πRt(λ

�
⊗ b1

�
⊕µ

�
⊗ b2) (21)

Proof. Call a = λ˜
�
⊗a1 ˜

�
⊕µ˜

�
⊗a2, then:

a =

(
R
�
⊗(R∗

�
⊗(λ

�
⊗ a1))

)
˜
�
⊕
(
R
�
⊗(R∗

�
⊗(µ

�
⊗ a2))

)
= R

�
⊗(R∗

�
⊗[(R

�
⊗(R∗

�
⊗(λ

�
⊗ a1)))

�
⊕(R

�
⊗(R∗

�
⊗(µ

�
⊗ a2)))])

Distributing R∗ over
�
⊕ and applying the matrix equalities:

= R
�
⊗[R∗

�
⊗(R

�
⊗[R∗

�
⊗(λ

�
⊗ a1)])

�
⊕R∗

�
⊗(R

�
⊗[R∗

�
⊗(µ

�
⊗ a2)])]

= R
�
⊗[(R∗

�
⊗(λ

�
⊗ a1))

�
⊕(R∗

�
⊗(µ

�
⊗ a2))]

Using the distributivity and applying the definition of the closure we get:

= R
�
⊗(R∗

�
⊗(λ

�
⊗ a1

�
⊕µ

�
⊗ a2)) = πR(λ

�
⊗ a1

�
⊕µ

�
⊗ a2)

The proof for intents is GC-dual.

We are now ready to prove the following proposition:

Proposition 3.11. BG and BM are right complete idempotent K-semimodules.

Proof. Consider first extents, and the neutral element as defined. Addition is
clearly commutative and idempotent from the definition a˜

�
⊕a = πR(a

�
⊕ a) =

πR(a) = a . Associativity follows a pattern exploited in the rest of the proofs:

a1 ˜
�
⊕(a2 ˜

�
⊕a3) = R

�
⊗(R∗

�
⊗[a1

�
⊕(R

�
⊗[R∗

�
⊗(a2

�
⊕ a3)])])

= R
�
⊗(R∗

�
⊗ a1

�
⊕R∗

�
⊗[R

�
⊗(R∗

�
⊗[a2

�
⊕ a3])])

= R
�
⊗(R∗

�
⊗ a1

�
⊕R∗

�
⊗[a2

�
⊕ a3]) = R

�
⊗(R∗

�
⊗[a1

�
⊕ a2

�
⊕ a3])

= πR(a1
�
⊕ a2

�
⊕ a3)
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and the result follows by the associativity of
�
⊕, and the commutativity of ˜

�
⊕

and
�
⊕ . The additive identity , that is, the bottom element, is correctly-defined:

εG ˜
�
⊕a = R

�
⊗(R∗

�
⊗[εG

�
⊕ a]) = R

�
⊗(R∗

�
⊗[R

�
⊗⊥M

�
⊕ a])

= R
�
⊗([R∗

�
⊗(R

�
⊗⊥M )]

�
⊕[R∗

�
⊗ a]) = R

�
⊗(⊥M

�
⊕[R∗

�
⊗ a])

= R
�
⊗(R∗

�
⊗ a) = a

Where we have used that R∗
�
⊗(R

�
⊗x) ≤ x is a kernel operator, that is a con-

tractive, idempotent function, whence R∗
�
⊗(R

�
⊗⊥M ) = ⊥M .

Only the external laws are left to be proven: first ⊥K ˜
�
�a = πR(⊥K

�
⊗ a) =

πR(⊥G) = R
�
⊗(R∗

�
⊗⊥G) = R

�
⊗⊥M = εG—indeed this might be taken for its

definition. Next:

λ˜
�
�εG = R

�
⊗(R∗

�
⊗(λ

�
⊗R

�
⊗⊥M )) = R

�
⊗(λ

�
⊗(R∗

�
⊗(R

�
⊗⊥M ))) .

whence λ˜
�
�εG = R

�
⊗(λ

�
⊗⊥M ) = R

�
⊗⊥M = εG . From the definition of the

scalar action eK ˜
�
�a = πR(eK

�
�a) = πR(a) = a . From (21) the rest of the laws

follow by simple instantiation. The proof is GC-dual for intents.

Thus each Bγ
G(G,M,R) and Bµ

M (G,M,R) carries a double semimodule
structure:

1. A Kd-subsemimodule of their ambient spaces, as in Corollary 3.8, whereby
we call them the lattices of extents Bγ

G(G,M,R) and intents Bµ
M (G,M,R).

2. A K-semimodule as in Proposition 3.11 baptized as BG and BM . The
semimodule structure is idiosyncratic in that it is defined with the help of
the closure operators of each particular formal context.

Although the polars are bijective in the sets of extents and intents we do not
have yet a full characterization in terms of K-semimodules. But:

Proposition 3.12. The polars are dual isomorphisms from the K- to Kd-sem-
imodules.

(BG)
↑
R = Bµ

M (G,M,R) (BM )
↓
R = Bγ

G(G,M,R)

Proof. Recall that we know that the carrier sets of BG and BM , the systems of
extents and intents are in a bijection through the polars, which act as mutual
inverses. What we care now is for their semimodule structures.

Let λ, µ ∈ K , a1 and a2 be extents with b1 and b2 their intents. Then:

(λ˜
�
⊗a1 ˜

�
⊕µ˜

�
⊗a2)

↑
R

= (λ
�
⊗a1

�
⊕µ

�
⊗a2)

↑
R

↓

R

↑

R
= (λ

�
⊗a1

�
⊕µ

�
⊗a2)

↑
R

=

= λ−1
�
⊗b1

�
⊕µ−1

�
⊗b2 = λ

�
⊗d b1

�
⊕d µ

�
⊗d b2
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The action of the polar of extents is:

(λ
�
⊗d b1

�
⊕d µ

�
⊗d b2)

↓
R

= (λ−1
�
⊗b1

�
⊕µ−1

�
⊗b2)

↓

R = R
�
⊗(λ

�
⊗b−1

1 �
⊕µ

�
⊗b−1

2 )

= R
�
⊗(λ

�
⊗R∗

�
⊗ a1

�
⊕µ

�
⊗R∗

�
⊗ a2)

= R
�
⊗(R∗

�
⊗[λ

�
⊗a1

�
⊕µ

�
⊗ a2]) = λ˜

�
⊗a1 ˜

�
⊕µ˜

�
⊗a2

That is, the polars are dual order embeddings in each direction, and GC-dually
for intents. Taken together, these results mean that both their semimodule
structures are in dual isomorphisms.

Then we have proven the systems of extents and intents as sets carrying
double K- and Kd-semimodule structures.

Corollary 3.13. The system of extents and intents are dually isomorphic dou-
ble complete semimodules,

BG = (BM )
↓
R BM = (BG)

↑
R

and, a fortiori, dually isomorphic complete lattices following the algebra pattern
〈L,∧,∨,⊥,>〉.

Bγ
G(G,M,R) = 〈Bγ

G(G,M,R),
�
⊕, ˜

�
⊕, R

�
⊗⊥M ,>G〉

Bµ
M (G,M,R) = 〈Bµ

M (G,M,R),
�
⊕, ˜

�
⊕, Rt

�
⊗⊥G,>M 〉

3.4. The Semimodule of Formal Concepts

Proposition 3.6 says that the sets of extents and intents are already idem-
potent semimodules, that is the idempotent analogue of a vector space. Could
we endow the set of concepts with a similar structure? The following definition
and name make sense due to Corollary 3.5.

Definition 5 (The double semimodule of formal concepts). Define upper and
lower addition of formal concepts:

(a1, b1)
�
⊕(a2, b2) = (a1 ˜

�
⊕a2, b1

�
⊕d b2) (a1, b1)

�
⊕(a2, b2) = (a1

�
⊕d a2, b1 ˜

�
⊕b2)

(22)

which we call generalization and specialization. This translates into arbitrary

joins in complete idempotent semifields, where instead of ˜
�
⊕ we write

∑̃
•

and

instead of
�
⊕d we write

∑
•

d
=
∑•

.

Next, we consider endowing the set of concepts with a right scalar action
and its “dual”:

λ
�
�(a, b) = (λ˜

�
�a, λ

�
�d b) λ

�
�(a, b) = (λ

�
�d a, λ˜

�
�b) (23)
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When λ > e we call
�
� (formal-concept) scalar abstraction and

�
� (formal-

concept) scalar instantiation.
We call this structure the double semimodule of formal concepts

〈Bγ
�
⊗µ(G,M,R),

�
�,
�
�,

�
⊕,
�
⊕〉 .

These definitions provide the basis for the following extended theorem of
K-FCA:

Theorem 3.14. The double (γ, µ)-concept semimodule Bγ
�
⊗µ(G,M,R) is a

dually isomorphic pair of double complete idempotent semimodules in which
infimum and supremum combinations are given by:

∑
•

i∈I

λi
�
⊗(ai, bi) = (

∑̃
•

i∈I

λi ˜
�
⊗ai,

d∑
•

i∈I

λi
�
⊗d bi) =

(
πR(

∑
•

i∈I

λi
�
� ai),

∑•

i∈I
λ−1
i

�
� bi

)
(24)∑•

i∈I
λi
�
⊗(ai, bi) = (

d∑
•

i∈I

λi
�
⊗d ai,

∑̃
•

i∈I

λi ˜
�
⊗bi) =

(∑•

i∈I
λ−1
i

�
� ai, πRt(

∑
•

i∈I

λi
�
� bi)

)
(25)

Proof. This is a corollary of Proposition 3.12 and Corollary 3.13 written in the
language of the previous definitions.

Note that we do not use special notation for the meets
�
⊕ and joins

�
⊕ of

concepts, as we did for the component lattices, and that the closure operations
are hidden in the definitions of the new joins.

3.5. Join-dense and meet-dense vectors

Standard concept lattices have “natural” building algorithms in terms of the
object-intents and attribute-extents. We have just seen that K-concept lattices
are generated in terms of the dual semifield very straightforwardly, and in terms
of the original semifield in a more convoluted way. We next present a way to
reconcile both views.

First, we define concept-building operators from sets of objects and at-
tributes respectively:

γ : X̃γ → Bγ
�
⊗µ(G,M,R) µ : Ỹ µ → Bγ

�
⊗µ(G,M,R)

x 7→ γ(x) = (πR(x), x↑R) y 7→ µ(y) = (y↓R, πRt(y))

Next, let Ig and Im be the identity matrices of dimension g × g and m ×m in
K, whose columns are naturally conceived as the unitary vectors of objects and
attributes, respectively. By simple application of the polars to the identities we
have the following lemma.
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Lemma 3.15. For the Galois connection (·↑R, ·
↓
R) : X̃ γ↗↖Ỹµ , the object- and

attribute-concepts, taken as pairs of matrices of co-indexed vectors, are:

γR(Ig) = (R
�
⊗R∗, Rt) µR(Im) = (R,Rt

�
⊗R−1)

Note how the matrix notation allows us to carry out multiple computations
at the same time. We may now conclude the following:

Corollary 3.16. For the Galois connection (·↑R, ·
↓
R) : X̃ γ↗↖Ỹµ , its system of

extents is Kd
-generated by the attribute-extents. Dually, its system of intents is

Kd
-generated by the object-intents.

Proof. From Corollary 3.8 and Lemma 3.15.

This is a result that has a nice analogue with standard FCA where the
γR(Ig) are join-dense and the µR(Im) are meet-dense. Furthermore, since these
semimodules are complete and finitely-generated we can always find a subset

of these
�
⊕-dense sets that acts as a basis [4]. The schematic diagram of Fig. 3

makes these mechanisms evident.

X̃ γ

Bγ
G(G,M,R)

Ỹµ
Bµ
M (G,M,R)

>g

Rt
�
⊗⊥g

R
�
⊗⊥m

>m

⊥m

⊥g

R

Rt
�
⊗R−1

R
�
⊗R∗

Rt

Figure 3: Extended schematics of the Galois connection between X̃γ and Ỹ µ (outer clouds).
Extents BγG(G,M,R) (left inner cloud) and intents BµM (G,M,R) (right inner cloud) are

dually isomorphic Kd-semimodules generated by Rt and R respectively. Similarly, they are

dually isomorphic K-semimodules generated by closing R
�
⊗R∗ and Rt

�
⊗R−1 (see text).
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Can we expect to find a similar mechanism for
�
⊕-dense sets, that is object-

extents and attribute intents? The answer suggestively blends the spectral the-
ory of matrices and K-FCA. First, consider a property of the object-extents

PG = R
�
⊗R∗ and attribute intents PM = Rt

�
⊗R−1 .

Proposition 3.17. The object extents (respectively, attribute extents) are fun-
damental eigenvectors of PG (respectively, PM ) for the eigenvalue e.

Proof. Consider the power (R
�
⊗R∗)

�
⊗(R

�
⊗R∗) = R

�
⊗R∗, where the equal-

ity comes from the matrix product laws. It is easy to see by induction that

(R
�
⊗R∗)n = R

�
⊗R∗ . Furthermore, its diagonal only has the elements {e,>}

wherefore IG ≤ PG, so

PG �
~

=

∞∑
•

n=0

PnG = IG
�
⊕
∞∑
•

n=1

PnM = PM �
⊕

hence by Theorem 2.7 we know that the columns of PG are all eigenvectors of
PG for e. And dually for PM .

From this we obtain that:

Proposition 3.18. The closures of the eigenspaces of PG and PM generate the
system of extents and intents.

Bγ
G(G,M,R) = πR(Ve(R

�
⊗R∗)) Bµ

M (G,M,R) = πRt(Ve(R−1
�
⊗Rt))

Proof. We prove it for extents: recall that the eigenspace of e generated by the

columns of PG is Ve(R
�
⊗R∗) = 〈R

�
⊗R∗〉K . Furthermore, we know that the

eigenspaces are K-semimodules, that the polars transform K-semimodules into

Kd-semimodules, and (R
�
⊗R∗)

↑

R = Rt
�
⊗(R−1

�
⊗Rt) = Rt, hence

(Ve(R
�
⊗R∗))

↑

R = (〈R
�
⊗R∗〉K)

↑

R
= 〈(R

�
⊗R∗)

↑

R〉Kd = 〈Rt〉Kd = Bµ
M (G,M,R) .

We directly use the extent polar:

Bγ
G(G,M,R) = (Bµ

M (G,M,R))
↓
R = ((Ve(R

�
⊗R∗))

↑

R)

↓

R
= πR(Ve(R

�
⊗R∗)) .

And GC-dually for extents.

In passing, we have proven the following corollary.

Corollary 3.19. Both the set of extents and intents are generated from the
object extents, and dually from the attribute intents.

Bγ
G(G,M,R) = 〈R〉Kd = πR(〈R

�
⊗R∗〉K)

Bµ
M (G,M,R) = 〈Rt〉Kd = πRt(〈Rt

�
⊗R−1〉K)
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3.6. Orthogonal congruences of concept lattices

In the setting of K-FCA our first interest should be in the congruences
induced by the polars, but we might also wonder about those induced by the
closure operators.

Definition 6. Let (·↑R, ·
↓
R) : X ↗↖Y be a Galois connection. Then define the

congruences induced by the polar of intents Ker(·↑R) and extents Ker(·↓R),
respectively:

Ker(·↑R) = {(x1, x2) ∈ X2 | x1
↑
R = x2

↑
R = b ,∀b ∈ Bµ

M (G,M,R)}

Ker(·↓R) = {(y1, y2) ∈ Y 2 | y1
↓
R = y2

↓
R = a ,∀a ∈ Bγ

G(G,M,R)}

and the congruence on X induced by the closure of extents Ker(πRt) and,
dually, that induced by the closure of intents Ker(πR):

Ker(πR(·)) = {(x1, x2) ∈ X2 | πR(x1) = πR(x2) = a ,∀a ∈ Bγ
G(G,M,R)}

Ker(πRt(·)) = {(y1, y2) ∈ Y 2 | πRt(y1) = πRt(y2) = b ,∀b ∈ Bµ
M (G,M,R)}

But these lead to the same results, as the next result shows.

Lemma 3.20. Let (·↑R, ·
↓
R) : X ↗↖Y be a Galois connection. Then the congru-

ence induced by the polar of intents and the closure of extents are the same, and
GC-dually for those of the polar of extent and closure of intents.

Ker(·↑R) = Ker(πR(·)) Ker(·↓R) = Ker(πRt(·)) (26)

Proof. If (x1, x2) ∈ Ker(·↑R) then x1
↑
R = x2

↑
R = b whence (x1

↑
R)
↓
R = (x2

↑
R)
↓
R = a,

with a = b↓R and (x1, x2) ∈ Ker(πRt) .

On the other hand, if (x1, x2) ∈ Ker(πR(·)) then (x1
↑
R)
↓
R = (x2

↑
R)
↓
R = a

whence (x1
↑
R)
↓
R

↑

R
= (x2

↑
R)
↓
R

↑

R
= a↑R, and x1

↑
R = x2

↑
R = b, by the properties of

the Galois connection and the fact that a = b↓R ⇐⇒ a↑R = b. For intents the
proof if GC-dual.

Note that the image of the polars (and the closures) have special status in
our theory: they are the system of extents and intents (see § 3.2).

Im(·↑R) = Bµ
M (G,M,R) = Im(πRt(·)) Im(·↓R) = Bγ

G(G,M,R) = Im(πR(·))

Of course, these are swapped with respect to the closures, as pointed out above.
In keeping with standard practice in linear algebra, we will use the first pair of
these definitions.

The adequate definition of orthogonals in our Galois connection setting is
that of (9). We now turn to relating these two concepts:

Lemma 3.21. Let (·↑R, ·
↓
R) : X ↗↖Y be a Galois connection. Then:

Ker(·↑R)> = Bµ
M (G,M,R) Ker(·↓R)> = Bγ

G(G,M,R)
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Proof. First, if (x1, x2) ∈ Ker(·↑R), say x1
↑
R = x2

↑
R = b for a certain b ∈

Bµ
M (G,M,R), therefore Ker(·↑R)> ⊆ Bµ

M (G,M,R) .

Last, for b ∈ Bµ
M (G,M,R) then {x ∈ X | x↑R = b} is clearly a class of

Ker(·↑R), whence b ∈ Ker(·↑R)> by definition, therefore Ker(·↑R)> ⊇ Bµ
M (G,M,R) .

For the bikernel of extents the proof is GC-dual.

The natural definitions for the orthogonals of the systems of extents and
intents are the following, adapted from (3).

Bµ
M (G,M,R)

⊥
= {(x1, x2) ∈ X2 | x1

↑
R = x2

↑
R = b,∀b ∈ Bµ

M (G,M,R)}

Bγ
G(G,M,R)

⊥
= {(y1, y2) ∈ Y 2 | y1

↓
R = y2

↓
R = a,∀a ∈ Bγ

G(G,M,R)}

Corollary 3.22. Let (·↑R, ·
↓
R) : X ↗↖Y be a Galois connection. Then:

Bµ
M (G,M,R)

⊥
= Ker(·↑R) Bγ

G(G,M,R)
⊥

= Ker(·↓R)

Proof. By inspection of their definitions.

When the connection between X and Y is an adjunction, Cuninghame-Green
has proven that the Chebychev distance between x and its closure πR(x) is
minimal among all closures [2], and this is also the case for the kernel operator
in the adjunction. For these reasons, Gaubert et al. have decided to call this
projector the orthogonal projection with respect to the closure systems, and, as
proven above, this is also the orthogonal with respect to the polars.

We now undertake to understand the structure of the classes in the bikernels.

Proposition 3.23. Every class in the bikernel of intents Ker(·↑R) intersects
the system of extents at a single point, and GC-dually for the bikernel of extents
and the system of intents.

Proof. Let x↑R = b, whence (x↑R)
↓
R = b↓R = a, where a is the extent univocally

related to intent b by the concept lattice . Since a↑R = b, this means that

a ∈ [x]Ker(·↑R) and since a = b↓R then a ∈ Bγ
G(G,M,R) . However, if we suppose

that there is another a′ ∈ [x]Ker(·↑R) ∩Bγ
G(G,M,R), then we will have a′

↑
R = b

and therefore (a′
↑
R)
↓
R = b↓R = a, so a′ is not closed whence a′ 6∈ Bγ

G(G,M,R),

a contradiction. Whence a = b↓R is the only contact point of the class and the
system of extents.

For the bikernel of extents and the system of intents the proof if GC-dual.

In fact for each class C(b) mapping onto a b ∈ Bµ
M (G,M,R) as in Lemma 3.21,

a = b↓R as the closure of every element in the class has a special status:

Lemma 3.24. For every class C(b) ⊆ Ker(·↑R) mapping to b ∈ Bµ
M (G,M,R),

the extent of b, a = b↓R is the greatest element in the class,

πR(x) = x̂ = a,∀x ∈ C(b)
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and dually for the bikernel of extents and the classes mapping to a single extent
C(a) ⊆ Ker(·↓R) with b = a↑R

πRt(y) = ŷ = b,∀y ∈ C(a)

Proof. This follows because a ∈ C(b) as proven in the previous lemma, a ≥
x, ∀x ∈ C(b) given that a is the closure of any of the elements in C(b) and hence
a = ∨C(b) . The other assertion is GC-dual.

In fact, by means of the formal concept (a, b) such that a = b↓R ⇐⇒ b = a↑R
both classes C(b) ∈ Ker(·↑R) and C(a) ∈ Ker(·↓R) are biunivocally related. The
two previous results suggest, when possible, to name the classes of equivalence
after their top-element, equivalently, their intersection with the systems of ex-
tents and intents, e.g. C(b) = [a = b↓R]Ker(·↑R) . A final fact for the classes of

equivalence follows.

Lemma 3.25. Let (·↑R, ·
↓
R) : X ↗↖Y be a Galois connection. Then the equiva-

lence classes of Ker(·↑R) and Ker(·↓R) are join-subsemilattices of their ambient
spaces.

Proof. Let x2, x1 ∈ [a]Ker(·↑R) with a↑R = b ⇐⇒ b↓R = a. Recall that
�
⊕ is the

join in X and ·↑R transforms joins into meets, whence: (x1 ∨ x2)
↑
R = (x1

�
⊕x2)

↑
R

=

x1
↑
R

�
⊕x2

↑
R = b

�
⊕ b = b so that x1 ∨ x2 ∈ [a]Ker(·↑R) . And GC-dually.

3.7. The case of non-finite ϕ

We now retrace our original decision in Section 3.1 to carry out the scaling
when ϕ ∈ K \ {⊥,>} and consider the corner cases ϕ ∈ {⊥,>} .

First, notice that for ϕ = ⊥, ∀x ∈ X, ∀y ∈ Y , the polars of (8) appear as:

x↑R,⊥ = Rt
�
⊗x−1

�
⊗> = >m y↓R,⊥ = R

�
⊗ y−1

�
⊗> = >g

This situation is the simplest, since (>g)↑R,⊥ = >m ⇐⇒ (>m)
↓
R,⊥ = >g.

Corollary 3.26. For R ∈ Mg×m(K), and the context (G,M,R), the polars

(·↑R,⊥, ·
↓
R,⊥) : X ↗↖Y establish a Galois connection between

B⊥G(G,M,R)K = {>g} and B⊥M (G,M,R)K = {>m}

so that

B⊥(G,M,R)K = {(>g,>m)} ∼= 1 .

and the whole spaces are the equivalence classes of the elements in the lattices:

Ker(·↑R,⊥) = {X} Ker(·↓R,⊥) = {Y}
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The conclusion is that this choice of ϕ = ⊥ essentially conflates all the
information in the context and is the least informative possible.

On the other hand, for ϕ = > the polars of (8) appear as:

x↑R,> = Rt
�
⊗x−1

�
⊗⊥ y↓R,> = R

�
⊗ y−1

�
⊗⊥

Proposition 3.27. For R 6= >g×m ∈ Mg×m(K), and the context (G,M,R),

the polars (·↑R,>, ·
↓
R,>) : X ↗↖Y establish a Galois connection between B>G(G,M,R)K =

{>g, R
�
⊗>m} and B>M (G,M,R)K = {>m, Rt

�
⊗>g} so that

B>(G,M,R)K = {(Rt
�
⊗⊥m,>m), (>g, R

�
⊗⊥g)} (27)

and

B>(G,M,R)K
∼= 2 .

Proof. Notice that when ϕ = > then we have

x∗
�
⊗R

�
⊗ y−1 ≥ > ⇐⇒ x∗

�
⊗R

�
⊗ y−1 = >.

To use readily available results in [15, 16] we invert the equation to read:
xt

�
⊗R−1

�
⊗ y = ⊥ ⇐⇒ yt

�
⊗R∗

�
⊗x = ⊥ and write both equations together as

zt =
[
xt yt

]t
:

zt
�
⊗A

�
⊗ z = ⊥ A =

[
⊥g×g R−1

R∗ ⊥m×m

]
(28)

Since A = At and K is zerosumfree, the equation holds for generic z if and only
if A⊗ z = ⊥(g+m) . But in that case A

�
⊗ z = ⊥(g+m) ⇐⇒ A

�
⊗ z = z

�
⊗⊥, that

is if z is a right eigenvector of A for ⊥, z ∈ V⊥(A). Now, I(g+m) is the identity

matrix in K(g+m)×(g+m)
, but from [15, 16] we know that z ∈ V⊥(A) if and only

if it is a combination of the fundamental eigenvectors of A for ⊥, that is those
columns of I(g+m) indexed by the empty columns of A. Due to (28) we know
that this can only happen:

• as combinations of empty columns of R−1 . Then for y ∈ Y we have
R−1

�
⊗ y = ⊥g which entails that y belongs to the right nullspaceNr(R−1) .

Notice that the empty columns of R−1 are the saturated columns of R .

• row-column dually, as combinations of empty columns of R∗ . Then, for
x ∈ X, we have R∗

�
⊗x = ⊥m, that is, x belongs to the right nullspace

Nr(R∗) . Notice also that the empty columns of R∗ are the saturated rows
of R .

Consider x ∈ Nr(R∗), then x↑R,> = (R∗
�
⊗x)−1

�
⊗⊥ = >m

�
⊗⊥ = >m whence

(x↑R,>)
↓

R,>
= (>m)

↓
R,> = R

�
⊗⊥m

�
⊗⊥ = R

�
⊗⊥m
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and (R
�
⊗⊥m,>m) is its formal concept. GC-dually, if y ∈ Nr(R−1), then

y↓R,> = >g and (y↓R,>)
↑

R,>
= R

�
⊗⊥g leading to concept (>g, R

�
⊗⊥g) .

There are no other elements in the closures, since they would not fulfill the
equation, and they are paired as (27) describes and the polars prove. The order
between the concepts is induced from that of the ambient spaces.

We would also like to understand the structure of the congruences associated
to these polars. For that purpose, first recall that the right nullspace of R−1

is not reduced to the zero vector if and only if R−1 has null columns, that is
for ∀j ∈ {1 . . . g}, J ⊆ {1 . . .m}, R−1

iJ = ⊥ . In such case, the right nullspace is
generated by the unitary vectors ej corresponding to each of the empty columns,
and dually for the left null eigenspace and the null rows ∀j ∈ {1 . . .m}, I ⊆
{1 . . . g}, RIj = ⊥ .

Nr(R∗) = 〈ei | i ∈ I〉K ⊆ X Nr(R−1) = 〈ej | j ∈ J〉K ⊆ Y

Proposition 3.28. For R ∈Mg×m(K), and the context (G,M,R),

• The right nullspaces of R−1 and R∗ are the equivalence classes of the
bottom elements in the lattices:

[R
�
⊗⊥m]Ker(·↑R,>) = Nr(R∗) [Rt

�
⊗⊥g]Ker(·↓R,>) = Nr(R−1)

• The rest of the spaces are the equivalence classes of the top elements in
the lattices:

[>g]Ker(·↑R,>) = X \ Nr(R∗) [>m]Ker(·↓R,>) = Y \ Nr(R−1)

Proof. For the first statement, the last part of the proof of the previous propo-

sition proved that [R
�
⊗⊥m]Ker(·↑R,>) = [(>m)

↓
R,>]Ker(·↑R,>) = Nr(R

∗) , and GC-

dually for intents. The second statement follows from the fact that Ker(·↑R,>)

and Ker(·↓R,>) are equivalences on X and Y, respectively with only two classes:
that related to the top and that related to the bottom.

We make several final remarks:

• Now we can see that if R has no saturated columns—even if we have
an “empty” R = ⊥g×m—then Nr(R

−1) = 〈∅〉K = {⊥m} and only the
bottom of Y maps to the top of X . And GC-dually if R has no saturated
rows.

• On the other hand, if R has all columns saturated R = >g×m (equivalently,
all rows) then Nr(R

−1) = Y and Nr(R
∗) = X with the closure systems

collapsed onto B>(G,M,>g×m) = {(>g,>m)} ∼= 1 .
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As in the FCA case, when ϕ = > a “full” contexts has a concept lattice that
is isomorphic to the unitary lattice. But in all other cases—including when R is
completely empty—the concept lattice is isomorphic to 2 . Although this agrees
with FCA when R = ⊥g×m is does not when that is not the case.

This supports the intuition that ϕ = > is too coarse a grain to “observe”
the context. In the next section we show how we can recover the standard
behavior of FCA on empty and full contexts when ϕ = e besides carrying a
more meaningful exploration of the information in (G,M,R) .

3.8. FCA as Linear Algebra

FCA can easily be carried out as processing vectors in linear algebra over
a complete semifield K . For that purpose, we need a procedure to encode and
decode FCA into K-FCA and vice-versa.

1. The first step is to encode the binary context (G,M, I) into a K-valued
context (G,M,RI). When an object gi is incident to an attribute mj—
that is, giImj—we consider the degree of that attribute in that object
is saturated—that is, its value is (RI)ij = >—otherwise the degree is
zero—that is, the bottom in the semifield, (RI)ij = ⊥.

Note that for this step there is no need to state what concrete algebra K
stands for, since these values are available for every completed semifield.

2. Similarly, the characteristic vector for a set of attributes—yj = e ⇐⇒
mj ∈ y and yj = ⊥ otherwise—only needs the neutral element and the
bottom. Hence, to encode a binary content into a K-context we need only
consider its complete sub-semifield 3 .

3. The next step is to choose the ϕ parameter. As seen in the previous
section, choosing ϕ ∈ {⊥,>} leads to special, non-informative lattices,
hence we choose ϕ ∈ K \ {⊥,>} . Since the case where ϕ 6= e can be
normalized using the technique in Section 3.1, we use ϕ = e .

4. To obtain the object intents and extents in bulk we may close the iden-
tity matrix in Kg×g that encodes the singleton object sets as columns

(Ig)
↑
RI

= RI
t �⊗ I−1

g = RI
t so ((Ig)

↑
RI

)
↓

RI
= RI

�
⊗R∗I . And GC-dually for

the attribute extents (Im)
↓
RI

= RI and intents, ((Im)
↓
RI

)
↑
RI

= Rt
I

�
⊗R−1

I .

This parallelism is one more advantage of the algebraization of FCA.

To see the object concepts Γ and attribute concepts M we build two
matrices: Γ from the object intents and extents, and M from the attribute
intents and extents

Γ =

[
(Ig)

↑
RI

((Ig)
↑
RI

)
↓

RI

]
M =

[
((Im)

↓
RI

)
↑
RI

(Im)
↓
RI

]
and read the concepts off the columns. Note also that since the entries
in RI are in 2 = {⊥>}, the object and attribute extents and intents will
also be in this subset of K .
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5. The final step is to generate the lattice, which is described in the proof of
Proposition 3.29 .

Proposition 3.29. Given a formal context (G,M, I), with RI encoded as above,

B(G,M, I) ∼= Be(G,M,RI)2 .

Proof. We may generate the lattice in terms of Kd
, but since the entries in the

extents and intents so far are in {⊥,>} we can restrict ourselves to using only
these scalars. To see this, in equation (24) describing concept joins, consider

the meet of intents
∑•

i∈I
λ−1
i

�
� bi . Clearly, when λi = ⊥ then the intent bi in

the meet of intents is multiplied by λ−1
i = > and left out of the sum (the min

�
⊕ acting as meet); however, if λi = > (or λi = e), then intent bi is taken into
consideration as is. So this equation performs an intersection of intents in the
encoding mentioned above. GC-dually happens with the equation describing
the meet of concepts in (25) and their meet of extents.

To generate from the attribute intents, choose the subset of index J of the
columns of attribute intents (rows I) which are different, MIJ . By the encoding
above, we know that these include an encoding of the meet-irreducible intents
of B(G,M, I) . If |J | = n, encode all the possible characteristic subsets of
n elements into a matrix C ∈ 2n×2n . Then by the reasoning above, BM =

MIJ

�
⊗C−1 implements all possible combinations of meet irreducible intents—

possibly with repetitions—so BM includes an encoding of all the system of
intents of B(G,M, I) .

To find an encoding of the system of extents, just apply the polar BGM =

R
�
⊗B−1

G . So the concept lattice is encoded into the correlative columns of BGM
and BG .

Of course nothing precludes, GC-dually, calculating the concept lattice by
means of the system of extents of the object concepts.

Note that from the previous procedure and Proposition 3.29 we have proven:

Proposition 3.30. Given a binary context (G,M, I), with RI as above,

Be(G,M,RI)2 = Be(G,M,RI)K

for every possible complete idempotent semifield K .

Proof. Recall that any complete idempotent semifield whose carrier set is re-
duced to {⊥, e,>} is isomorphic to 3 , whose multiplications and additions are
internal laws. It is easy to see that given that the object and attribute extents
and intents of RI only have non-finite {⊥,>} coordinates, the multiplication
by any finite scalar produces the same vector, hence their linear combinations
are actually closed, a sub-semimodule of 3. Since also ϕ = e, reproducing FCA
with K-FCA can be done generically on any complete idempotent semifield with
the procedure above, hence Proposition 3.29 provides the result.
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3.9. Calculation: binary concept lattices using K-Formal Concept Analysis

Consider the context of [1, Fig. 1.5] reproduced in Figure 4.a and asso-
ciated concept lattice in Figure 4.b. The binary relation can be encoded as

a b c d

1 × × × ×
2 × ×
3 × × ×
4 ×
5 × ×

(a) (G,M, I).

1

a

2
d

3

c

5

b

4

(b) B(G,M, I)

RI =


> > > >
> > · ·
· > > >
· > · ·
· > > ·


(c) (G,M,RI)

Γ·1

M·a

Γ·2 M·d

Γ·3

M·c

Γ·5

M·b

Γ·4

(d) Be(G,M,RI)2

Figure 4: The context and its concept lattice from [1, Figs. §1.5 and 1.6.]. An encoding RI of
the incidence I into a complete semifield K, and its e-lattice annotated in the object concepts
(see text).

shown in Figure 4.c where we have written · instead of ⊥ to lessen the visual
cluttering. In semifield 2, encoding the unitary set {m1} results in the vector

m1 =
[
> · · ·

]t
.

Given that ϕ = e is fixed, the result of step 4 in the above procedure is—
where we have placed intents “above” extents, and used E to index the rows for
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the extents and I for the intents of the object Γ and attribute concepts M :

ΓI =


> > · · ·
> > > > >
> · > · >
> · > · ·

 MI =


> · · ·
> > > >
· · > >
· · · >



ΓE =


> > > > >
· > · > ·
· · > > >
· · · > ·
· · · > >

 ME =


> > > >
> > · ·
· > > >
· > · ·
· > > ·


1 2 3 4 5 a b c d

So, for instance,

Γ·4 =
[
· > · · ‖ > > > > >

]t ∼= γ(4) = µ(b) ∼= M·b .

We can also see that attribute intents are all different n = m = 4, whence
C ∈ 24×16 is relatively large. The more so since |B(G,M, I)| = 5 as per
Figure 4.b rather than n = 16 . We obviate the verbose matrix equations but
have annotated in Figure 4.d where the object and attribute concepts appear
which means that the reducing labeling of FCA is also available for K-FCA.

Note that in the example above we did not have to choose whether K was
Rmax,+ or Rmax,× . Indeed, due to the order- and GC-duality we have been tout-
ing, we could have also decided to use Rmin,+, by inverting all the expressions.

4. Discussion of Results

4.1. Summary

Our main result is that K-concept lattices are both Kd-subsemimodules and
K-semimodules, as well as lattice-ordered, and that the polars are also dual
isomorphisms of semimodules, on top of dual lattice isomorphisms.

These results stem from the fact that the polars in the Galois connection are

actually linear in that dual idempotent semifield Kd
, which can be expressed

succinctly in the opposite semifield K−1
. This entails not only that major FCA-

related concepts such as the systems of extents and intents or the concept lattice
have a direct counterpart in linear algebra over the dual idempotent semifield,
but also that the signature of their algebras is enriched, e.g. the action of a scalar
on a formal concept, and that linear algebra concepts known to be important,
e.g. bikernels, lend importance to heretofore overlooked concepts in FCA, e.g.
the quotient sets of the polars.

The analysis in the presence of the extreme elements {⊥,>} is a novelty of
this paper even in the work that originally defined the Galois connection for
idempotent semimodules [21].

As a summary of results we present Table 1 where we enter an isomorphic
lattice to Bϕ(G,M,R)3 for each value of ϕ ∈ {⊥, e,>} and three different values
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Table 1: Lattices isomorphic to Bϕ(G,M,R)3 when sweeping in ϕ and R for some specific
values. Note that B(G,M,×) ∼= 1 and B(G,M,©) ∼= 2—where × indicates a full relation
and © an empty one—and also that ⊥g×m ≤ RI ≤ ⊥g×m .

ϕ\R ⊥g×m RI >g×m
⊥ 1(∼= B(G,M,×)) 1(∼= B(G,M,×)) 1(∼= B(G,M,×))
e 2(∼= B(G,M,©)) Be(G,M,RI)2(∼= B(G,M, I)) 1(∼= B(G,M,×))
> 2(∼= B(G,M,©)) 2(∼= B(G,M,©)) 1(∼= B(G,M,×))

of the multivalued incidence: when R = ⊥g×m, when R = >g×m and when it
comes from encoding a binary incidence R = RI , as in Section 3.8. We also
enclose in parentheses how to obtain such lattices in FCA, since we believe that
it shows some insights into how FCA is encoded as K-FCA.

4.2. Discussion

Other generalizations of FCA. A generalization of FCA similar to K-FCA is
Fuzzy-FCA [30, 31], that is, where relations have incidence degrees over fuzzy
semirings. This is quite extensively developed but its algebraic connection is
not as advanced as the one we present in this paper. We believe this to be due
to the fact that fuzzy semirings, being inclines, lack a multiplicative inverse (see
Sec. 2).

Another proper generalization of FCA, the Logic of Information Systems [32]
is based on logical contexts where formulas are used to replace attributes, that
is, an intension is the set of formulas that hold for the objects in an extent.
Such framework has been mainly developed for information systems, especially
for modeling records whose fields admit formulaic descriptions—dates, restricted
vocabularies, etc.—and the mathematical framework is far from linear algebra.

In yet another extension, Pattern structures [33], the concept of a formal
concept is specialized to model specific methodological entities in its domain of
application: the descriptions of positive and negative examples in supervised
classification [34].

Review of similar work. The standard reference for modern idempotent linear
algebra is [4], but in his seminal work Cuninghame-Green [2, Ch.22] already
developed a construction similar to that of Sec. 3 but describing an adjunction.
The pairs of closed elements that constitute concepts were also not evident in
his exposition: recognizing their importance is the merit of FCA.

The former is also the setting of most work in idempotent linear algebra
where usually the connection between spaces is established as a (dual or not)
residuated pair [22, 23, 26–28]. This leads to left or right Galois adjunctions
and in terms of extended FCA to object or attribute neighborhood lattices [6].
See [25] for a revision of the genesis and importance of Galois connections and
adjunctions, as well as a discussion of the different notation and nomenclatures
for these concepts.

On the other hand, our scaling is reminiscent of that of Cuninghame-Green’s—
technicalities aside–but inspired by [30], although the interpretation of scaling
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as abstraction or concretion only makes sense in terms of similar concepts of
FCA, like the join representing a generalization and the meet a specialization.

Congruences of linear functions were the inspiration for those of the po-
lars. Since the former have a very specific meaning in the geometric approach
to observability and controllability in idempotent Control Theory [26], we con-
jecture that the latter are also important in a different approach to Control
Theory based on Galois connections, which by the present paper would involve
a generalization of FCA. This is to be explored in future work.

Inverses in K-concept lattices. Since K is an idempotent semifield where an
inversion is available, as it is in the ambient spaces, we might wonder whether
the semimodules of extents and intents have a similar inversion available. In
general this is not the case, since a−1 = (a∗)

t
we have for a ∈ Bγ

G(G,M,R) that

a−1 = R
�
⊗(R∗

�
⊗ a−1) . That is, the inverses of extents are actually fixpoints of

a kernel operator, and likewise for intents. Dually, if the inverse a−1 were an
extent, then a would also have to be a fixpoint of that kernel. This would only
happen on very particular extents, and in general ϕ-formal concepts have no
inverses.

Notational matters. Finally, a clarification: previous uses of K-FCA for data
mining—notably [35]—have started from the scalar products 〈x | R | y〉 =
xt ⊗ R ⊗ y defined in the idempotent semifield Rmax,+ or in Rmin,+ . Such
scalar products produce Galois connections that can also be interpreted in the
framework of FCA—and do not involve the concept of the dual semimodule—
but they have the drawback that the isomorphism in Section 3.8—B(G,M, I) ∼=
Be(G,M,RI)3—is not so straightforward. For this reason, we have decided to
start all our development where [6] left off, with the scalar product of Section 3.1
that uses duals. The most important results of this paper in the alternate
definition of the scalar products above can be found in [36].

4.3. Conclusions

This work has proven that the relationship between FCA and Linear Algebra
over idempotent semifields is tighter than suspected.

On the one hand, K-FCA is enriched and set in the wider context of Linear
Algebra over idempotent semifields: concept lattices are complete idempotent
semimodules shaped by the polars which are linear functions in some algebra.

Reciprocally, the unique characteristics of Linear Algebra over idempotent
semifields are better understood by relating to concepts and methods of FCA:
antitone functions, Galois connections and lattices. We believe this should be a
fruitful partnership for future developments in both fields.
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2 (1977) 25–41.
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