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Continuous Transmission of Spatially-Coupled
LDPC Code Chains
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Dmitri Truhachev, Member, IEEE, Daniel J. Costello, Jr., Life Fellow, IEEE

Abstract—We propose a novel encoding/transmission scheme
called continuous chain (CC) transmission that is able to improve
the finite-length performance of a system using spatially-coupled
low-density parity-check (SC-LDPC) codes. In CC transmission,
instead of transmitting a sequence of independent codewords
from a terminated SC-LDPC code chain, we connect multiple
chains in a layered format, where encoding, transmission, and
decoding are performed in a continuous fashion. The connections
between chains are created at specific points, chosen to improve
the finite-length performance of the code structure under iterative
decoding. We describe the design of CC schemes for different
SC-LDPC code ensembles constructed from protographs: a
(J,K)-regular SC-LDPC code chain, a spatially-coupled repeat-
accumulate (SC-RA) code, and a spatially-coupled accumulate-
repeat-jagged-accumulate (SC-ARJA) code. In all cases, signif-
icant performance improvements are reported and it is shown
that using CC transmission only requires a small increase in
decoding complexity and decoding delay with respect to a system
employing a single SC-LDPC code chain for transmission.

Index Terms—codes on graphs, spatially-coupled LDPC codes,
iterative decoding thresholds, finite-length code performance.

I. INTRODUCTION

Spatially-coupled low-density parity-check (SC-LDPC)
codes have attracted a great deal of interest due to their
potential for near-capacity performance under iterative belief
propagation (BP) decoding [1], [2]. The reason for this behav-
ior is the spatial graph coupling that defines the structure of
an SC-LDPC code: the Tanner graph of a block code with M
variable nodes, referred to as the uncoupled LDPC code graph,
is replicated L times to produce a sequence of identical graphs;
following this, the neighboring copies are then connected to
form a chain by redirecting (spreading) certain edges following
a chosen coupling pattern. We say that the resulting “coupled”
graph has L positions with M variable nodes each and that
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it has a so-called “structured irregularity”, since parity check
nodes located at both ends of the chain are connected to a
smaller number of variable nodes than those in the middle [3].
As a result, the nodes at the ends of the graph form strong
“subcodes” and the resulting reliable information generated
there during BP decoding propagates through the chain toward
the center in a wave-like fashion [4].

The finite-length performance in the waterfall region of a
class of SC-LDPC code ensembles has been analyzed in [5],
[6], where scaling laws, that relate the finite-length block
error probability over the binary erasure channel (BEC) to
the length of the code and its other structural parameters,
are computed. These results have been extended to SC-LDPC
code ensembles generated from protographs in [7], where it is
shown that the structure inherited from the the protograph base
matrix improves the finite-length performance. Protograph-
based LDPC codes [8] possess several practical additional
advantages, including smaller decoder memory requirements
due to the simplified graph representation, high-speed decod-
ing utilizing the parallel structure of the graph, and the ability
to combine low error floors and good thresholds [9], [10].

Spatial graph coupling need not be limited to the connection
of graphs to form a single chain. In [11]–[15], more general
ensembles were proposed that are constructed by connecting
together several individual SC-LDPC code chains. The result-
ing structures can be interpreted as longer SC-LDPC codes
with varying coupling patterns. It was demonstrated that, by
optimizing the connection points, the lengths of the connected
chains, and their densities, ensembles with improved decoding
thresholds can be constructed. Also, improvements in the itera-
tive decoding convergence speed were observed. A particularly
interesting example is the loop ensemble [11], [12], which is
constructed by connecting two (J,K)-regular SC-LDPC code
chains of length L in the form of a loop. For small to moderate
L, loop ensembles have a significantly better BP threshold
than a single component (J,K)-regular SC-LDPC code chain
of the same rate, while their thresholds coincide as the chain
length becomes large.

From a communication system point of view, there is
growing research interest in developing modulation and trans-
mission techniques that take advantage of the improved per-
formance offered by SC-LDPC coding schemes. For instance,
in [16], [17] it is shown that optimized bit-mapping of the
SC-LDPC coded bits over modulated QAM symbols can be
used to enforce stronger termination conditions in the decoding
process. This can be exploited to mitigate the SC-LDPC rate
loss, to improve the finite-length performance of the code, or
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even to improve the BP convergence speed [18]. In this paper,
we propose a novel transmission and encoding scheme for SC-
LDPC codes that can be regarded as a “systems” approach
to enhance finite-length code performance, since our solution
affects not only the code design itself, but also the encoding,
transmission, and decoding stages.

The proposed method in this paper is a novel application
of SC-LDPC codes based on terminated connected chains.
In the case of single terminated SC-LDPC code chains, the
entire information squence is split into a number of blocks
such that each block is encoded into independent codewords
corresponding to unconnected consecutive SC-LDPC chains.
We propose to link the different chains and create a continuous
stream of encoded information whose Tanner graph is repre-
sented by an infinite sequence of connected SC-LDPC code
chains. We refer to such an encoding/transmission scheme
to as continuous chain (CC) transmission. Note that, we are
not connecting chains to form a new block code ensemble,
instead we are enforcing a dependence between what before
corresponded to independent codewords. We later show that
a careful selection of the connection points between chains
is critical to boost the CC performance under iterative BP
decoding, improving the error rate of single terminated SC-
LDPC code chains.

The underlying principle that explains the performance
improvement using CC transmission is not described using
asymptotic (threshold like) arguments, but rather by analyzing
the finite-length scaling behavior of a single SC-LDPC code
chain and how it is improved when we connect consecutive
chains. Explaining this effect is our aim in the first part of
the paper, where we show that the finite-length performance
of short and long chains is governed by scaling laws with
different characteristics. For long chains, the reliable informa-
tion generated at the ends of the chain must be propagated
towards the center (the wave-like decoding effect [4]), and
it can be shown that the block error rate (BLER) scales
approximately linearly with the chain length L [5]. However,
for short chains, intermediate positions directly benefit from
the reliable information generated at the ends. We show that
this results in an improvement of the finite-length scaling
behavior of the code.

In CC transmission, the key idea is to connect consecu-
tive SC-LDPC chains in a way that exploits the two strong
subcodes at the ends of each chain to generate reliable infor-
mation at various points in the graph - effectively breaking
the entire connected structure into better protected shorter
chains, thereby improving the finite-length performance of the
system while maintaining the system coding rate. Compare to
the encoding/decoding complexity of independent SC-LDPC
chains, CC transmission is feasible for encoding, since it only
requires some additional memory in the encoding process,
and also for decoding, where one can effectively implement a
windowed decoder [3], [19], requiring only a different order in
the sequence of transmitted bits compared to transmitting un-
connected chains. To the best of our knowledge, this is a new
concept in the field of SC-LDPC codes. In [20], we presented
preliminary results of the CC transmission technique using un-
structured randomly-generated (3, 6)-regular code chains. The

present paper extends the construction to general protograph-
based ensembles. We present the new construction for the case
of representative protograph-based SC-LDPC code ensembles:
a (J,K)-regular SC-LDPC code ensemble, a spatially-coupled
repeat-accumulate (SC-RA) code [21], and a spatially-coupled
accumulate-repeat-jagged-accumulate (SC-ARJA) code [10].
Simulation results for the BEC and the binary input additive
white Gaussian noise (BIAWGN) channel show that the finite-
length performance can be significantly improved with respect
to a system transmitting independently encoded SC-LDPC
chains. Due to the continuous nature of CC transmission, the
proposed technique can also be considered as a candidate
for streaming applications, with the potential to improve on
the performance of unterminated SC-LDPC codes [22]–[24].
Further, CC transmission could be combined with the algebraic
methods recently proposed to design SC-LDPC codes with
larger girths and improved error floors [25], [26]. Finally,
the kind of connected chain structures proposed here for CC
transmission could also be used to design SC-LDPC codes
with unequal error protection (UEP) constraints [27], [28].

The paper is structured as follows. In Section II we review
the construction of different protograph-based SC-LDPC code
chains and discuss the analysis of their finite-length perfor-
mance. In Section III we present the CC transmission scheme
and focus on the analysis of CC structures that improve the
finite-length performance of a system using a (J,K)-regular
SC-LDPC code. In Section IV, we present CC structures for
the SC-RA and SC-ARJA code ensembles. In Section V the
feasibility of CC transmission is analyzed. Finally, we provide
some concluding remarks in Section VI, including potential
research directions on this topic.

II. FINITE-LENGTH SCALING BEHAVIOR OF A SC-LDPC
SINGLE CODE CHAIN

We start by considering a single chain SC-LDPC code
ensemble constructed by means of protographs. A protograph
[8], or projected graph, is a Tanner graph with a relatively
small number of nodes. It can be also represented in compact
form by its bi-adjacency matrix B, called the base matrix.
From a protograph with c check nodes and v variable nodes,
an Nc×Nv parity check matrix H can be derived. A lifting
procedure with lifting factor N replaces each one in B by an
N ×N permutation matrix and each 0 by an N ×N all-zero
matrix.1 An LDPC block code ensemble consists of the set of
all possible matrices H derived from all possible combinations
of N × N permutation matrices. Since the Tanner graph of
H inherits the degree distribution and graph neighborhood
structure of the protograph, the design rate of the ensemble
can be directly computed from the protograph itself.

A. SC-LDPC protographs

Several families of protograph-based SC-LDPC code en-
sembles have been proposed in the literature, all with differ-
ent trade-offs between BP thresholds and minimum distance

1Integer entries larger than one in B, representing multiple edges between a
pair of nodes, are replaced by a sum of non-overlapping permutation matrices.
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Fig. 1. C(3, 6, L) protograph for L = 4. The protograph has L+2 positions,
labelled as 1, 2, . . . , L+ 2 from left to right.
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Fig. 2. CRA(q, L) protograph for L = 4 and q = 6.

growth rate properties. As representative members, we con-
sider the following three constructions: (J,K)-regular SC-
LDPC codes [3], SC-ARJA codes [10], and SC-RA codes
[21]. Due to its simplicity and well-understood behavior, we
first demonstrate the CC transmission scheme for the (J,K)-
regular SC-LDPC code. We selected the SC-ARJA code en-
semble due to its asymptotic near-capacity performance, and
we considered the SC-RA code ensemble since it has been
reported to possess robust finite-length scaling behavior [7].
Our main goal in this paper is to illustrate the implementation
of the CC transmission technique for different practically rele-
vant SC-LDPC code ensembles and demonstrate the resulting
gains in finite-length performance that can be achieved. As
such, the results and designs presented should be regarded as
a proof-of-concept of the CC technique.

The protograph of a (J,K)-regular SC-LDPC code can be
constructed by coupling L (J,K)-regular block code pro-
tographs together, where J is the variable node degree, K
is the check node degree, and L is referred to as the chain
length [3]. Fig. 1 illustrates the construction of a (3, 6)-regular
SC-LDPC code protograph by coupling together a chain of
L = 4 uncoupled (3, 6)-regular block code protographs. To
generate the coupled protograph, edges from variable nodes
are spread to check nodes at neighboring locations, and a
“structured irregularity” is created: the check nodes at the
start and the end of the chain are connected to only 2 or
4 variable nodes, while all the intermediate check nodes
have degree six. All the variable nodes still have degree
3. We denote the SC-LDPC code ensemble generated by
lifting this coupled protograph as C(3, 6, L). Finally, note that,
due to the termination, there is a rate loss compared to the
uncoupled (3, 6)-regular LDPC block code, which has design
rate R = 1/2. Since the protograph in Fig. 1 contains 2L
variable nodes and L + 2 check nodes, the C(3, 6, L) design
rate is R(L) = 1− (L+ 2)/2L = 1/2− 1/L.

In Fig. 2 we show the protograph of an uncoupled RA code,
which contains one degree-two variable node (the accumulator
node) and a degree-q variable node (the repetition node). Note
that q = 6 in Fig. 2. An SC-RA protograph is obtained by
coupling L RA protographs by spreading the edges connected
to the degree-q variable nodes, as indicated in Fig. 2. This

ensemble is denoted as CRA(q, L). Following [21], q−1 accu-
mulator variable nodes are added to the coupled protograph,
thus mitigating the rate-loss incurred and avoiding a degree-
one check node at the end. This coupling creates, along with
lifting, SC-RA code ensembles with near capacity-achieving
properties as q increases. In Fig. 3, we show the protograph of
an uncoupled ARJA code and its spatially-coupled counterpart
for L = 4. We denote the coupled code ensemble by CARJA(L).
The dashed variable nodes represent punctured symbols, i.e.,
associated bits that are not transmitted.

Table I summarizes the design rates of each of the three
SC-LDPC code ensembles discussed above, as well as their
respective iterative decoding thresholds ε∗ over the BEC,
computed for L = 50. For larger chain lengths, the thresholds
are numerically indistinguishable from these values. Note that,
in the limit L→∞, all the ensembles have rate 1/2.

TABLE I
DESIGN RATE R(L) AND BP THRESHOLD ε∗ OVER THE BEC FOR

DIFFERENT SC-LDPC CODE ENSEMBLES

Ensemble R(L) ε∗ (L = 50)
C(3, 6, L) 1− (L+ 2)/2L 0.4881
CRA(4, L) 1− (L+ 3)/(2L+ 3) 0.4846
CRA(5, L) 1− (L+ 4)/(2L+ 4) 0.4910
CRA(6, L) 1− (L+ 5)/(2L+ 5) 0.4934
CARJA(L) 1− (L+ 1)/2L 0.4996

B. Scaling behavior of a SC-LDPC code chain over the BEC

Analysis of the finite-length performance of LDPC codes
is typically performed over the BEC [29]. For the BEC, we
consider an equivalent formulation to BP decoding called
peeling decoding (PD). We start the PD algorithm by removing
all the variable nodes and edges associated with non-erased
symbols, plus any disconnected check nodes from the graph.
At each iteration, PD looks for a degree-one check node, which
is removed along with the variable node it is connected to. In
[30], it was shown that if we apply PD to an LDPC code graph,
the sequence of graphs produced at consecutive decoding
iterations follows a typical path or expected evolution. In the
finite-length regime, the variance around the graph expected
evolution was first derived in [29] for (J,K)-regular and
Poisson-type LDPC code ensembles. Let r1(`) be the process
that represents the evolution along decoding of the fraction of
degree-one check nodes in the graph at iteration `, and r̂1(`)
and δ1(`) its mean and variance, respectively. An estimate of
the PD block error probability is obtained by computing the
cumulated probability that r1(`) ≤ 0 at those points where
r̂1(`) presents a local minimum [29]. These points in time are
called critical points. The resulting estimate to the PD block
error probability is called the scaling law for the LDPC code
ensemble. Following a similar procedure, scaling laws for SC-
LDPC code ensembles have been recently derived in [5] for
unstructured randomly-constructed SC-LDPC code chains and
in [7] for protograph-based SC-LDPC code chains.
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Fig. 3. CARJA(L) protograph for L = 4.
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Fig. 4. Solution to r̂1(τ) for the ensembles C(3, 6, 25) (dashed line) and
C(3, 6, 50) (solid line) for ε = 0.45.

To describe the phenomena that explains the gain in per-
formance obtained using CC transmission schemes, it is im-
portant to review some basic aspects regarding the scaling
behavior of SC-LDPC code chains. To this end, it suffices to
analyze r̂1(`), i.e., the expected evolution of the fraction of
degree-one check nodes in the graph. We refer to [7] for a
detailed description of the computation of the function r̂1(`)
for an arbitrary SC-LDPC protograph.

The SC-LDPC code block length is n = vuncLN + aN ,
where vunc is the number of variables in the uncoupled proto-
graph, a = 0 for the ensembles C(J,K,L) and CARJA(L), but
a = (q−1) for the CRA(q, L) ensemble. Define the normalized
decoding time τ = `

vuncN
. Since the average number of erased

bits, and hence the average number of iterations, is nε, if
follows that τ ∈ [0,Ω(L)), where

Ω(L) = εL+ ε
a

vunc
. (1)

In Fig. 4, we plot the function r̂1(τ) for the ensembles
C(3, 6, 50) (solid line) and C(3, 6, 25) (dashed line) and ε =
0.45. Note that r̂1(τ) for L = 50 does not display a single
critical point, but rather a critical phase in which r̂1(τ) remains
constant; denote this value by r̂1(τ∗). During the critical
phase, reliable information generated at the boundary positions
propagates at constant speed through the chain to the middle
positions, and the decoder might fail at any intermediate point
with uniform probability [4], [17]. In [5], it is shown that

the block error probability during the critical phase can be
estimated as follows:

P ∗ ≈ 1− exp

− Ω(L)− τ◦
√

2π

θ

∫ α
√
N(ε∗−ε)

0

Φ(z)e
1
2 z

2

dz

 , (2)

where
• Ω(L) − τ◦ = εL + ε anu

− τ◦ is the temporal length of
the critical phase, where τ◦ depends on the particular
SC-LDPC ensemble;

• ε∗ is the BP decoding threshold;
• α = limε→ε∗

r̂1(τ
∗)√

δ1(τ∗)(ε∗−ε)
, where δ1(τ∗) is the variance

of the r1(τ) process during the critical phase;
• Φ(z) is the c.d.f. of the standard Gaussian distribution,
N (0, 1); and

• θ is a parameter related to the exponential decay of the
covariance of r1(τ) with time, i.e., COV[r1(τ), r1(ζ)] ∝
exp(−θ|ζ − τ |).

The scaling parameters α and θ depend on the degree distri-
bution and coupling pattern of the SC-LDPC code ensemble,
but they are independent of the chain length L. (The actual
computation of the different parameters in (2) is not relevant
here, see [5] for further details.) An important result that can
be derived from (2) is that, for large N(ε∗ − ε),

P ∗ ≈ 1√
2π

αθεL√
N(ε∗ − ε)

e
−N(ε∗ − ε)2

α2 as N(ε∗ − ε)→∞,
(3)

and hence in the low error rate regime the SC-LDPC code
BLER scales roughly linearly with the chain length L. This
result is expected due to the convolutional structure of the
code.

The scaling behavior model in (2) is only valid as long as
the decoding process is governed by the wave-like propagation
of reliability. After magnification, we observe in Fig. 4 that
r̂1(τ) for the C(3, 6, 25) ensemble presents a single critical
point at τ∗ ≈ 7.4 rather than a critical phase. Such a single
critical point corresponds to that point in time when the graph
is in the following state: the central positions in the graph
have no degree-one check nodes, which can be found only at
the ends of the graph; however, for small chain lengths L, as
soon as the variable nodes connected to the low-degree check
nodes at the ends are successfully decoded, a large fraction of
degree-one check nodes is created along the entire chain and
decoding succeeds with very high probability. In other words,
there is no decoding wave traveling along the chain. In this
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Fig. 5. Solid lines represent the simulated BLER for N = 1000 of the
ensembles C(3, 6, L) for L = 25 (�) and L = 50 (4), while dashed lines
represent 0.5 times the simulated BLER for the C(3, 6, L) ensemble with
L = 50 and L = 100.

case, the variable nodes at the central positions in the chain
directly benefit from the effect of the two stronger subcodes
at both ends, and this increases the robustness of the decoding
process beyond what is predicted by (2). In this case, in [6],
[20] it was shown that the scaling law that explains the relation
between block error probability and the parameters of the code
is given by

P ∗ ≈ Q
(√

N(ε∗ − ε)
α

)
, (4)

where Q (·) is the complementary error function of Gaussian
statistics. Note that, for fixed α, (4) predicts better scaling
between BLER and lifting factor N than (3), since it does not
depend directly on the chain length L.2

For instance, consider the ensemble C(3, 6, L) for L =
25, 50, and 100 with N = 1000. The BP thresholds computed
for these three chain lengths are identical up to the 5th decimal
place, ε∗ ≈ 0.48815. According to (3), for ε far from the
threshold (ε� ε∗) we should observe a linear degradation of
the block error rate as we increase the chain length L. In Fig.
5 we represent the simulated block error rates for these three
ensembles using solid lines. With dashed lines, we represent
the BLER computed for L = 50 and L = 100, multiplied by
a factor of 1/2, which gives the estimated performance of the
ensembles C(3, 6, 25) and C(3, 6, 50), respectively, according
to (3). Note that, while the estimated performance for the
L = 50 case is reasonably accurate, in the L = 25 case the
simulated BLER is substantially better than the one predicted
using (3), since the decoding scaling behavior is ruled by a
different and more robust behavior function in this case.

Experiments carried out for different SC-LDPC code ensem-
bles indicate the same effect is always observed, even though

2The values computed for α in both scenarios are not equal, but minor
differences were observed in [6].
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Fig. 6. In (a), we plot to r̂1(τ) for the ensembles CRA(6, 50) (dashed
line) and CRA(6, 100) (solid line) for ε = 0.45. In (b), we represent the
simulated BLER for N = 1000 of the ensembles CRA(6, L) for L = 50
(4) and L = 100 (◦) using solid lines. With dashed lines we represent 0.5
times the error rate computed for the CRA(6, L) ensemble for L = 100 and
L = 200.

the transition between the finite-lengh models (single critical
point versus critical phase) can occur at different values of L,
depending on the code ensemble. For instance, in Fig. 6(a)
we show the r̂1(τ) solution for the CRA(6, L) ensemble with
L = 50 and L = 100 at ε = 0.45, where a single critical
point can be observed in the L = 50 case. Simulation results
for N = 1000 are included in Fig. 6(b), and they confirm
that the BLER achieved by the L = 50 chain is substantially
better than the BLER simulated for the L = 100 chain and
corrected by a factor 1/2. Note again that the estimate is
accurate, however, if we use the BLER computed for L = 200
to estimate the performance for L = 100.
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Fig. 7. Schematic representation of independent C(3, 6, L) code chains.

III. CONTINUOUS-CHAIN TRANSMISSION FOR
(3, 6)-REGULAR SC-LDPC CODE CHAINS

Design rate is typically a fixed constraint in many communi-
cation systems, and thus the use of short (lower rate) SC-LDPC
code chains that exhibit more favorable finite-length properties
may not be a viable option. Thus, L is usually chosen large
enough to mitigate the rate loss due to the termination. As an
alternative, we present a novel transmission scheme, referred
to as continuous chain (CC) transmission of SC-LDPC codes,
that improves the finite-length performance of a system using
a long SC-LDPC code chain with minimal rate loss, i.e., a
system where the finite-length performance would normally
be predicted via the scaling law in (2). CC transmission
can be regarded as a systems-oriented solution in the sense
that its deployment requires changes in both the encoding,
transmission, and decoding stages. In this section, we present
the fundamentals of CC transmission and illustrate it for a
system using a C(J,K,L) code chain with J = 3 and K = 6.
In Section IV, we extend the discussion to the CRA(q, L)
and CARJA(L) code chains. The designs of the CC structures
discussed in these two sections have been obtained after
extensive heuristic optimization, with the aim of maximizing
the robustness at those points where we connect different SC-
LDPC code chains. This latter aspect is formalized by the
notion of a region threshold, introduced in Section III-B.

A. The CC structure and protograph

Consider first the encoding and transmission of codewords
using a single C(3, 6, L) code chain as an example. The
information stream is divided into blocks of nR(L) bits, where
the design rate R(L) is given in Table I. These blocks are
then independently encoded, transmitted, and decoded at the
receiver. In the following, by transmitting independent code
chains we mean the transmission of independent codewords
that belong to a particular member of the ensemble. Fig. 7
shows a schematic representation of independent C(3, 6, L)
code chains, where the round dots indicate positions with vari-
able nodes, white dotes indicate positions where the variable
nodes are connected to check nodes of degree less than 6,
i.e., they represent regions of better protection as a result of
lower-degree check nodes, and square dots indicate positions
with no variable nodes.

The main idea behind CC transmission is that the finite-
length performance of a system transmitting independent
(long) code chains can be improved if we create a dependency
between these chains, where data is encoded in a continuous



Fig. 8. Schematic representation of a CC structure based on connected
C(3, 6, L) chains. Gray dots indicate positions with variable nodes of degree
greater than 3.

fashion using a convolutional-like structure based on con-
nected SC-LDPC code chains. This structure, which can also
be regarded as a single SC-LDPC code chain with a non-
standard coupling pattern, is hereafter referred to as the CC
structure. Rather than using independent chains, as shown in
Fig. 7, we connect the chains in such a way that creates some
variable nodes with degree greater than 3, which results in
robust regions of better protection in the middle of each chain
that can be succesfully decoded with much higher probability
than the remaining positions. In this way, once the robust
regions are decoded, each of the remaining and still undecoded
chain segments are short enough to present a finite-length
scaling behavior determined by a single critical point, which
improves the overall finite-length performance.

This is precisely the effect achieved by the CC structure
illustrated in Fig. 8, in which we say there is a single C(3, 6, L)
chain per layer. Each chain, which in Fig. 7 corresponds to an
independent codeword, is now jointly encoded with the chain
in the layer above and with the chain in the layer below. Layers
of the CC structure are labeled from 1 to T , and the layer j
chain is simply referred to as chain j, j = 1, 2, . . . , T . The
chains are connected such that the low-degree check nodes at
both ends of chain j in Fig. 7 are used to increase the degrees
of variable nodes in intermediate positions of chain (j − 1),
j = 2, 3, . . . , T . Gray dots in Fig. 8 indicate positions with
variable nodes of degree greater than 3, i.e., variable nodes
that are better protected than those in positions represented by
black dots. Note that, except for chain 1, no chain has low-
degree check nodes anymore. Also note that chain T does not
contain any variable nodes with degree greater than 3 or any
low degree check nodes. The connection points are designed
such that the variable nodes at positions bL/2c and bL/2c+3
of chain j are connected with an extra edge to the check nodes
at positions 1 and L + 2 of chain j + 1, respectively, so that
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Fig. 9. CC protograph with T = 2 layers using C(3, 6, L) chains with
length L = 7.

they have degree 4. Similarly, the variable nodes at positions
bL/2c+ 1 and bL/2c+ 2 are connected with two extra edges
to the check nodes in the layer below, and hence they have
degree 5.

Note that creating the CC structure does not change the
design rate; rather, we simply exploit the termination rate
loss in a different manner. For example, CC structure in Fig.
8 contains exactly the same number of coded bits as if we
transmitted T consecutive independent C(3, 6, L) codewords.
Our goal is to demonstrate that the finite-length performance
measured per chain layer in Fig. 8 is significantly better than
the performance per codeword in Fig. 7.

The parity-check matrix of a code associated with the
CC structure in Fig. 8 can be generated by applying the
lifting procedure to the CC protograph, which is obtained by
connecting T copies of the C(3, 6, L) protograph in Fig. 1
according to Fig. 8. For instance, the CC protograph for T = 2
and L = 7 is shown in Fig. 9, where the additional edges
placed to connect chains at layers 1 and 2 are plotted with
thick lines. Note that, in the upper protograph, the variable
nodes at positions bL/2c and bL/2c + 3 have degree 4 and
those at positions bL/2c+1 and bL/2c+2 have degree 5, while
in the lower protograph, all the variable nodes have degree 3.

B. Asymptotic analysis

Based on the CC protograph, we analyze the asymptotic
(N →∞) performance of the CC structure by computing the
expected evolution of the fraction of degree-one check nodes
in the graph under PD [7]. The first step in the CC design
process is to quantify the robustness of the region created in
the middle of each chain, where variable nodes have higher
degrees. Recall that our goal is to ensure that this region is
succesfully decoded with very high probability, compared to
the decoding threshold of the whole structure. Consider the
region between positions bL/2c and bL/2c + 3 in chains 1
to T − 1. We define the region threshold ε∗bL/2c,bL/2c+3 as
the maximum ε value for which all variable nodes at positions
bL/2c, bL/2c+3 in chains 1 to T−1 are successfully decoded

TABLE II
CC THRESHOLD ε∗CC AND REGION THRESHOLD ε∗bL/2c,bL/2c+3

FOR THE

CC STRUCTURE IN FIG. 8.

L ε∗CC ε∗bL/2c,bL/2c+3

10 0.541 0.541
20 0.5015 0.502
30 0.488 0.502
50 0.488 0.502

in the limit N →∞.3 In addition, we define the CC threshold
ε∗CC as the maximum ε value such that all variable nodes in
chains 1 to T − 1 are successfully decoded.

Table II shows ε∗CC and ε∗bL/2c,bL/2c+3 for different values
of L and the CC structure based on the connected C(3, 6, L)
chains in Fig. 8. Observe that, as L grows, ε∗CC converges
to the threshold of the C(3, 6, L) code ensemble, implying
that asymptotically all chains behave similarly. However,
note that the region threshold ε∗bL/2c,bL/2c+3 saturates at
0.502, above the CC threshold for large L. Since ε ≤ ε∗CC
is the natural operating region, this implies that positions
(bL/2c, bL/2c+ 1, bL/2c+ 3) in chains j = 1, 2, . . . , T − 1
are almost surely decoded. Consequently, connected chains
are essentially broken into chains of length roughly bL/2c in
the decoding process. This means that decoding failures in
chains j = 1, 2, . . . , T −1, will not propagate to lower chains.
More importantly, for intermediate values of the chain length
L, the decoding of each of the two segments of length bL/2c
is described by the single-critical point model in (4), so we
benefit from the much better finite-length scaling properties of
these shorter segments.

To illustrate this, in Fig. 10 we plot the expected graph
evolution for ε = 0.45 of the normalized number of degree-one
check nodes in each chain r̂1(j, τ), j = 1, 2, 3, 4, as a function
of the normalized number of variable nodes per chain v̂(j, τ)
for a CC structure with T = 4 layers based on C(3, 6, L)
chains with L = 50. As we observe from the magnification in
the upper left corner, in contrast to chain 4, the finite-length
performance of chains 1 to 3 is determined by a single critical
point, suggesting that the finite-length performance of chains
1 to 3 will be significantly improved compared to chain 4.

Alternative designs for the connection points yield different
values of the region threshold. For instance, if we modify the
connecting edges in the CC protograph in Fig. 9 to create six
consecutive positions in the upper layer (from bL/2c − 1 to
bL/2c+ 4) with degree 4 variable nodes, the region threshold
for L = 50 drops to ε∗bL/2c−1,bL/2c+4 ≈ 0.494. On the
other hand, if only two consecutive positions with variable
nodes of degree 6 are created, the region threshold numerically
coincides with that of the CC protograph in Fig. 9, i.e.,
ε∗bL/2c,bL/2c+1 ≈ 0.502.

3The evaluation of the expected graph evolution requires the numerical
integration of a very large system of differential equations, and this must be
repeated for each ε value, thus becoming a cumbersome and time-consuming
task. As a consequence, we adopt the following criterion to numerically
estimate the different thresholds: a position in an SC-LDPC code chain is
considered decoded if the fraction of variable nodes undecoded is below
δ = 10−3.
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Fig. 10. Evolution of the normalized number of degree-one check nodes
per layer r̂1(j, τ), j = 1, 2, 3, 4, as a function of the normalized number of
variable nodes per layer v̂(j, τ) during PD for ε = 0.45 and the CC structure
of Fig. 8 and L = 50.

When the rate constraints are even stricter and, as a conse-
quence, we must use even longer chains, e.g., L = 100, the
CC structure in Fig. 8 might not be able to provide the same
gain per layer as for a shorter chain, e.g., L = 50. A possible
alternative is to break each chain of length L = 100 into three
shorter segments by creating two intermediate regions with
stronger protection. We illustrate this construction in Fig. 11
for the case T = 2. Following this approach, note that if we
add another layer to the CC structure, we will need four chains
to improve the performance of the chains in layers 1 and 2.
For an arbitrary number T of layers, the ratio of the number
of strongly protected chains to the total number of chains is

η =

T−1∑
j=1

2j−1

T∑
j=1

2j−1
, (5)

which tends to 1/2 with increasing T . This implies that, when
using CC transmission, half of the chains will enjoy better
performance with no significant increase in encoding/decoding
complexity, as we explain in Section V.

We remark here that many variations on the CC structure
are possible. In fact, alternative structures could be proposed
where the main design goal is to provide unequal error
protection for different chains. For instance, we could use the
CC structure in Figs. 8 and 11 with only two layers, T = 2, to
provide additional protection to half of the chains in the first
case or to one-third of the chains in the second case.

C. Computer simulation results

The above conclusions are corroborated by computer sim-
ulation. Since we focus on intermediate chain length values

L, the performance gains achieved by CC transmission can be
illustrated in terms of either BLER or bit error rate (BER)
figures. In Fig. 12 we show the BER per chain for the
C(3, 6, L) CC structure in Fig. 8 with T = 3, L = 50 and
different lifting factors N . We also include the BER measured
for a single C(3, 6, L) code chain. As predicted, we obtain a
significant gain in performance in chains 1 and 2, of almost
one order of magnitude, even for large codes with 4000 bits per
position. Note that there is no degradation in the performance
of chain 2 with respect to chain 1, even though chain 2 does
not have low-degree check nodes at each end. This is critical
to the success of the CC transmission approach for an arbitrary
number of layers, and this behavior has further been confirmed
by simulation for ensembles with a larger number of layers.
Also, we note that there is no performance degradation in
chain 3 with respect to a single C(3, 6, L) code chain. This
demonstrates the UEP property of CC transmission.

SC-LDPC codes have been shown to be universal, in
the sense that they display capacity-approaching performance
across binary-input memoryless channels [1], [2]. In Fig. 13,
we show exemplary results for the CC structure depicted
in Fig. 8 with parameters T = 2 and L = 50 used for
transmission over the BIAWGN channel. Note that we observe
the same behavior that we did for the BEC. We again observe
that the performance of chain 1 is substantially improved with
respect to chain 2, which in turn has the same performance as
the single chain of the same length and rate.

IV. CC TRANSMISSION FOR SC-RA AND SC-ARJA CODE
CHAINS

In this section, we describe the implementation of CC
transmission for the CRA(q, L) and CARJA(L) ensembles. As
described previously, a careful design of the connection points
between consecutive chains is crucial for CC transmission,
since we need such points to be characterized by region
thresholds above the threshold of the whole CC structure.

A. Creating robust connection points

For the CRA(q, L) and CARJA(L) ensembles, both of which
contain check nodes of high degree, we have found that
to create a region threshold sufficiently above the iterative
decoding threshold of each code chain, we must greatly
increase the degree of the variable nodes while maintaining
the check node degree distribution. The same issue also
arises for the C(4, 8, L) and C(5, 10, L) ensembles and, in
general, for capacity approaching SC-LDPC code ensembles
with high-degree check nodes. This complicates the design
of the connection points, since typically a single code chain
per layer will not be able to provide the necessary number of
additional edges to create a robust connection in the middle
of the code chain in the above layer.

For instance, consider the CRA(6, L) protograph shown in
Fig. 2. There are 30 edges that can be connected to the check
nodes at the boundary positions without creating a check node
of degree higher than 8. By following a CC structure similar to
that in Fig. 8, we can use these additional 30 edges to increase
the degree of the repetition variable nodes from 6 to 12 in five
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Fig. 11. Schematic representation of a two-layer CC transmission scheme where each C(3, 6, L) chain is connected to two chains in the layer below.
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Fig. 12. BER for the CC structure in Fig. 8 with T = 3 layers based on
C(3, 6, L) chains with L = 50. The lifting factors are N = 500 (dashed
lines), N = 1000 (solid lines), and N = 2000 bits (dotted lines).

consecutive positions in each chain. This results in a region
threshold is ε∗bL/2c,bL/2c+4 = 0.463, which however is worse
than the BP threshold of the CRA(6, L) chain, ε∗ = 0.4934.

A possible method to overcome this problem is to use more
than one chain per layer, as illustrated in Fig. 14 for T = 2,
which uses two chains per layer to protect one chain in the
layer above. Two CRA(6, L) code chains per layer can provide
up to 60 additional edges. If we increase the degrees of the
repetition variable nodes from 6 to 18 in five consecutive po-
sitions (maintaining the degree 2 accumulator variable nodes),
we compute a region threshold ε∗bL/2c,bL/2c+4 = 0.493, again
not quite matching the CRA(6, L) threshold. Following this
approach, a third chain per layer would be necessary to further
improve the region threshold above this value. As previously
discussed, however, two chains per layer reduces the ratio of
the number of strongly protected chains to the total number of
chains, which for the CC structure in Fig. 14 tends to ν = 1/2
as T increases. If a third chain per layer is used, this would
reduce the ratio to ν = 1/3 as T increases.

Alternatively, a different approach is to design the CC
structure using a modified CRA(6, L) code chain with a slightly
larger rate loss and, consequently, a code chain that possesses
stronger end terminations. An example is shown for the
CRA(6, L) ensemble in Fig. 15, where we show the protograph
of a CC structure with T = 3 layers and a single chain
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Fig. 13. BLER for transmission over a BIAWGN channel for the CC structure
in Fig. 8 with T = 2 layers based on C(3, 6, L) code chains with L = 50.
The lifting factors used are N = 250 (dashed lines) and N = 500 (solid
lines).

per layer. Note that the accumulator variable nodes in two
consecutive positions at both ends have been removed and that
the corresponding edges are reconnected to repetition variable
nodes in the above layer, thereby decreasing the code rate of
the chains in the lower layers. All chains have length L = 7,
but the chains in the second and third layers, and in any
possible lower layers, have slightly lower design rate than the
CRA(6, L) code chain. In this CC structure, robust regions in
the middle of each layer are created using only 8 edges from
the chain in the layer below, resulting in a region threshold
ε∗bL/2c,bL/2c+3 = 0.498, larger than the threshold ε∗ of the
modified CRA(6, L) ensemble, which is roughly equal to that
of the CRA(6, L) ensemble, i.e., ε∗ ≈ 0.4934.

Designing a CC structure for the CARJA(L) code ensemble
follows a similar procedure, and robust intermediate connec-
tions can be achieved either by using more than one chain per
layer to obtain the necessary additional edges or by slightly
decreasing the rate of the code chain. Indeed, for the CARJA(L)
code ensemble, a moderate increase in the rate loss is less of a
factor since it possesses the smallest rate loss compared to the
other SC-LDPC code ensembles considered (see Table I). In
Fig. 16, we show the CC protograph for T = 2 layers with a
modified lower-rate CARJA(L) code chain in each layer. In the
figure, to improve readability, variable nodes with the same
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Fig. 14. Schematic representation of a CC structure based on connected
CRA(6, L) chains. The two chains in layer 2 are used to create a robust
intermediate region in the above chain.
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Fig. 15. CC protograph with a single chain per layer and T = 3 layers
based on a modified CRA(6, L) code chain with L = 7.

letter represent the same variable node, whose degree is the
sum of the individual degrees. For example, node a has degree
12, node b has degree 9, and node c has degree 6. Recall also
that dashed variable nodes indicate punctured symbols.

For all the cases discussed above, note that the design of
the connection points is not unique and may be suboptimal. In
fact, there might be different configurations that give rise to
similar region thresholds. In general, to design CC structures
like those proposed above, we aim to increase the degrees of
the variable nodes in a certain region of a chain by exploiting
low-degree check nodes at the end terminations of subsequent
code chains. We validated our designs using by combining the
CC protograph with the asymptotic analysis in [7] to confirm
that the resulting local threshold was above the threshold of
the SC-LDPC code chain. As long as this condition is met, we
did not find a significant difference in performance between a
robust region that spans for several positions or a shorter robust
region with very high-degree variable nodes. For instance, in
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Fig. 16. CC protograph with a single chain per layer and T = 2 layers
based on a modified CARJA(L) code chain with L = 4.

both the CC structure based on the C(3, 6, L) ensemble in
Fig. 8 and the CC structure based on the CRA(6, L) ensemble
in Fig. 15, we observe a robust region of four consecutive
positions with variable nodes of higher degree. On the other
hand, for the CC structure of the CARJA(L) ensemble in Fig.
16, the robust region is formed by a single position.

Also, we found that increasing the check node degrees at the
chain terminations above the degrees of the original uncoupled
LDPC block code did not result in viable configurations, since
the region threshold at the connection points was significantly
worse that the SC-LDPC code chain decoding threshold. As
explained above, if additional edges are needed to create
robust regions, we found that using several chains and/or
increasing the rate-loss at chain terminations are more effective
approaches.

B. Computer simulation results

Once we have created robust regions in the intermediate
positions of each chain, the phenomenon that explains the CC
gain in performance occurs as described in Section III. Fig.
17 shows the simulated BER performance for a CC structure
with T = 3 layers based on the modified CRA(6, L) code
chain with (a) L = 50 and (b) L = 100. Similar BERs are
measured in chains 1 and 2, significantly improving on the
BER of chain 3. Also, the BER of chain 3 coincides with the
BER of a system using the modified CRA(6, L) code chain
(again demonstrating the UEP property of the CC structure).
Similar conclusions can be drawn from Fig. 18, where we
use a CC structure with T = 3 layers based on a modified
CARJA(L) code chain with L = 50, where connections are
placed according to Fig. 16.

V. FEASIBILITY OF CC TRANSMISSION

Without loss of generality, in this section we consider CC
transmission using the CC structure based on C(3, 6, L) code
chains in Fig. 8 to show that, compared to transmission of in-
dependent chain codewords, CC transmission using connected
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Fig. 17. BER performance for a CC structure with T = 3 layers based on
the modified CRA(6, L) code chain with (a) L = 50 and (b) L = 100. The
lifting factors are N = 500 (dashed lines) and N = 1000 (solid lines).

SC-LDPC code chains only requires some additional memory
in the encoding stage and a different transmission order for
the encoded bits.

1) Encoding: For a given code belonging to the C(3, 6, L)
ensemble, the encoding process can be implemented sequen-
tially using the syndrome former encoder proposed in [31].
Let u(i), i = 1, 2, . . . , L, be a sub-block of 2NR(L) in-
formation bits and v(i) the corresponding sub-block of 2N
encoded bits. Using the syndrome former encoder, to compute
v(i) we only need u(i) and the previously encoded blocks
v(i−1),v(i−2), . . . , corresponding to the positions in the SC-
LDPC code chain whose variable nodes are connected to the
encoded bits v(i) by the parity check nodes at position i. For
example, v(1) can be obtained directly from u(1), v(2) can be
computed given v(1) and u(2), and then, for i = 3, 4, . . . , L,
we can compute v(i) from u(i), v(i−1), and v(i−2).
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Fig. 18. BER performance for a CC with T = 3 layers based on a modified
CARJA(L) code chain with L = 50. The lifting factors are N = 250 (dashed
lines) and N = 500 (solid lines).

Using the syndrome former encoder, the process of encod-
ing N consecutive layers of the CC structure in Fig. 8 is es-
sentially equivalent in complexity to encoding N consecutive
but independent codewords of the single chain ensemble. The
only difference is that, after the first chain in Fig. 8 has been
encoded, the encoding of the first sub-block in the -th chain,
v
(1)
j , not only requires u(1)

j , but also v
(bL/2c)
j−1 and v

(bL/2c+1)
j−1 ,

j = 2, 3, . . . , T , where the subscript j refers to the layer of
the CC structure. Similarly, to compute the last encoded sub-
block in the j-th chain, v(L)

j , we also need v
(bL/2c+2)
j−1 and

v
(bL/2c+3)
j−1 . Therefore, compared to encoding N independent

chain codewords, we need only some additional memory to
store the encoded sub-blocks v(bL/2c)

j ,v
(bL/2c+1)
j ,v

(dL/2+2e)
j ,

and v
(dL/2+3e)
j that are necessary to encode the chain at layer

j + 1. Note that this additional memory can be reused once
each chain is encoded.

2) Window decoding and transmission order: Efficient de-
coding of long SC-LDPC code chains with low decoding delay
is based on windowed BP decoding [3], [19]. In a nutshell,
decoding is restricted to a window of W positions that ‘slides’
over the graph, exploiting the convolutional structure of the
SC-LDPC code parity check matrix: as bits in the left most
positions of the window are decoded, the window is shifted
right and new bits are included in the decoding window (see
[3] and [19] for further details). For sufficiently large W ,
e.g., a window of length W = 10 positions for the standard
C(3, 6, L) SC-LDPC code chain described in Section II, the
performance is indistinguishable from a standard BP decoder,
while the delay is much less, since decoding can be initiated
before receiving the entire codeword.

The same decoding principle can be simply adapted to
perform efficient decoding of CC transmission of SC-LDPC
codes. For example, for the CC structure in Fig. 8, the
windowed decoder can be initiated at the first position of chain
1. The window will shift until it reaches the middle positions
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of the chain, whose bits are better protected since they are also
connected to check nodes at the boundary positions of chain
2. Therefore, to efficiently continue window decoding of chain
1, channel information from the variable nodes at positions 1,
2, and L of chain 2 must be available. Note that we need this
information even before receiving channel information from
the variable nodes at the remaining positions of chain 1. Once
chain 1 has been decoded, window decoding of chain 2 can be
started using the information already available at the variable
node positions at its boundaries.

Therefore implementing efficient window decoding for CC
transmission reduces to a change in the order in which the
encoded bits are transmitted, so that the receiver can have
the necessary information at the appropriate time. Clearly, it
is necessary for both the transmitter and the receiver to be
aware of the transmission order. Returning to the CC structure
in Fig. 8, for T = 2 layers it would be sufficient to transmit
the encoded blocks v

(i)
j for j = 1, 2 and i = 1, . . . , L in the

following order:

v
(1)
1 → v

(2)
1 → . . .→ v

(bL/2c+3)
1 → v

(1)
2 → v

(2)
2 → v

(L)
2

→ v
(bL/2c+4)
1 → . . .→ v

(L)
1 → v

(3)
2 → . . .→ v

(L−1)
2 .

If we add one layer (T = 3), then we would use the same
transmission policy between the boundary positions in chain
3, i.e., v(1)

3 , v(2)
3 , and v

(L)
3 , and the positions v

(bL/2c+3)
2 and

v
(bL/2c+4)
2 in chain 2.

VI. CONCLUSIONS

In this paper, we have reexamined existing results on the
analysis of the finite-length performance of SC-LDPC code
chains. An important conclusion is that there exists a signifi-
cant performance improvement as we consider shorter chains
that cannot be explained using asymptotic arguments, since
the SC-LDPC code threshold quickly saturates with chain
length. For short chains, intermediate positions directly benefit
from the low-rate terminations at the ends of the graph and
this results in finite-length scaling behavior that resembles the
single critical point behavior that we find in uncoupled LDPC
block code ensembles.

Based on this result, a novel transmission scheme (CC
transmission) designed to boost the performance of a system
using long SC-LDPC code chains was introduced. Using a
peeling decoder analysis for the BEC, we have shown that,
by connecting consecutive SC-LDPC code chains rather than
transmitting the codewords corresponding to each one inde-
pendently, we obtain a significant performance improvement
with only a minor change in the order in which coded bits
are transmitted and some additional memory requirements at
the encoder. The design of the CC structure relies on the
creation of robust regions in the middle of each SC-LDPC
code chain and, to this end, strategies have been presented
for different code ensembles, each with different trade-offs
between design rate and the fraction of code chains for
which improved performance is achieved. CC transmission is
illustrated using several representative protograph-based SC-
LDPC code ensembles proposed to date in the literature,

and computer simulation results verifying the claimed per-
formance improvements are presented. An interesting open
research problem is to combine CC transmission with recently
proposed system design approaches that also aim to enhance
the use of SC-LDPC codes in modern communication system
applications [16], [17].
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