
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 

This is a postprint version of the following published document:

Del Campo, R., Savoini, B., Muñoz, A., Monge, M. 
A., & Pareja, R. (2017). Processing and mechanical 
characteristics of magnesium-hydroxyapatite metal 
matrix biocomposites. Journal of the Mechanical 
Behavior of Biomedical Materials, 69, 135-143

DOI: https://doi.org/10.1016/j.jmbbm.2016.12.023 

© Elsevier, 2017

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


PROCESSING AND MECHANICAL CHARACTERISTICS OF MAGNESIUM-

HYDROXYAPATITE METAL MATRIX BIOCOMPOSITES 

R. del Campoa, B. Savoinia,b, A. Muñoza,b, M. A. Mongea,b, R. Parejaa,b 

1Universidad Carlos III de Madrid, Departamento de Física, Avda. de la Universidad 30, 
28911, Leganés, Spain. 

2Instituto Tecnológico de Química y Materiales Alvaro Alonso Barba (IAAB), Avda. 
Universidad 30, 28911, Leganés, Spain. 

 

Abstract 

 Magnesium/hydroxyapatite composites were produced by conventional 

extrusion and their mechanical behavior studied under uniaxial compression at room 

temperature. The results evidence the capability of the HA for strengthening the Mg 

material, lowering its microstructural anisotropy and inhibiting deformation twinning. 

They also reveal that the ECAP processing is effective for improving the grain structure 

and reducing the crystallographic texture of these composites, giving rise to a 

significant enhancement of their yield strength and microhardness although the ultimate 

compressive stress worsens. The analysis of the strain hardening rate of the flow curves 

demonstrates that the HA addition and the ECAP processing are also effective in 

inhibiting non-basal dislocation slip.  
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1. Introduction 

Magnesium is a biocompatible, osteoconductive, osseointegrable and lightweight 

material with mechanical properties quite similar to bone tissue that can be used for 

load-bearing degradable implants replacing advantageously other metallic biomaterials. 

Magnesium, as an essential cofactor of the alkaline phosphatase isozymes, may 

effectively contribute to the healing or remodeling of bone tissue. Moreover, it has 



superior fracture toughness and a Young modulus closer to the one of nature bone than 

synthetic hydroxyapatite (HAP), Ca10(PO4)6(OH)2, or other bioceramics. The behavior 

of diverse magnesium-based materials as biomaterial has been reported and some of 

their restrictive issues identified (Atrens et al., 2011; Staiger et al., 2006; Witte, 2010) 

Magnesium is very susceptible to corrosion and decomposes very fast under in vivo 

conditions causing intrusive gas release and failure of the implants before achieving the 

envisaged effect in the receptor (Staiger et al., 2006; Virtanen, 2011; Witte et al., 2005; 

Witte et al., 2008). Then, load-bearing degradable implants require magnesium based 

materials with reduced corrosion rates that preserve their mechanical reliability during 

the period of bone fixation until the complete resorption. HA reinforced magnesium 

matrix composites appear to be ideal materials for designing such implants with 

adjustable corrosion resistance and mechanical properties. This reinforcement phase 

besides reducing the corrosion rate is highly insoluble in the physiological environment 

of bone tissue and may enhance the mechanical resistance (del Campo et al., 2014; Gu 

et al., 2010; Mensah-Darkwa et al., 2013; Witte et al., 2007). Furthermore, non-toxic 

elements would release in the case of a pure magnesium matrix. The current commercial 

magnesium alloys, which were not developed for medical applications, contain alloying 

impurities such as Al, Zn, Zr, Ca, Li, Y and RE to enhance the mechanical properties 

and corrosion resistance in an environment quite different to the corresponding to a 

living organism (Li et al., 2008; Neubert et al., 2007; Song, 2007; Sun et al., 2009). The 

corrosion reaction of these alloys in the physiological environment can release the 

alloying impurities resulting in a detrimental effect on their cytocompatibility and 

mechanical properties. In order to progress in knowledge of the biodegradable 

magnesium materials and contribute to the development of pure magnesium matrix-

HAP composites, the effect of their processing route on the mechanical properties, 

corrosion resistance and cytocompatibility deserves to be investigated. 

The present paper reports the microstructural and mechanical characteristics of pure 

magnesiumHAP composites produced by conventional extrusion, and subsequent 

equal channel angular pressing (ECAP) to modify its microstructure and improve the 

mechanical properties. The in vitro studies of corrosion and cytocompatibility for these 

materials will be reported elsewhere. 

 



2. Experimental 

2.1. Processing of the magnesium-HA composites 

Magnesium-xHA composites with x=5, 10 and 15 wt % (2.9, 5.9 and 9.0 vol %) 

were fabricated following different powder metallurgy routes. The starting powders 

were 99.8% pure magnesium with average particle size of 38 µm supplied by Alfa 

Aesar, and high purity synthetic HA powder supplied either by Berkeley Advanced 

Biomaterials (BABI-HAP-P mesh 100) with an average particle size of 25 µm and 

Ca/P ratio of 1.64, or Plasma Biotal Ltd. (Captal ‘S’ HA) with a Ca/P ratio of 1.67 and 

average size of 6 m. Powders with the target compositions were blended for 6 h in a 

Turbula Wab mixer and compacted in silicone moulds by cold isostatic pressing at 250 

MPa pressure for 5 min. The compacts were consolidated by conventional extrusion at 

400 °C with a extrusion ratio R=11 and a final diameter of 10 mm. The extrusion rates 

were 120 mm/min for the composites with Berkeley HA (labeled as L-xHAP) and 30 

mm/min for the composites with Plasma HA (labeled as S-xHAP).   8 mm × 120 mm 

cylindrical rods, machined from the consolidates billets of the L-xHAP composites, 

were ECAP processed at 300 °C and 30 mm/min through a die with an intersection 

angle of 105° for 4 passes following the so-called route BC. Route BC consists in 

rotating the billet +90° around its longitudinal axis in the same direction before inserting 

in the die for the subsequent pass. The materials processed by ECAP were labeled as 

LE-xHAP.  

2.2.Microstructural and mechanical characterization 

The consolidation grade of the composites was quantified by the ratio between the 

density measured in a He ultrapycnometer and the theoretical density calculated 

applying the mixture rule. The microstructure of the composites was examined by 

optical and scanning electron microscopy (SEM) and energy dispersive spectroscopy 

(EDS). Moreover, crystallography texture measurements were carried out applying the 

Schulz reflection method in a Siemens TM Kristalloflex D5000 diffractometer equipped 

with a eulerian cradle. The reference system for the samples maintained the Z-axis 

along the extrusion direction, is shown in Figure 1. The orientation distribution 

functions (ODFs) were obtained from the measurements of the  2000 ,  0101 , 

 2101  and  0211  pole figures taken at X-Y sections. In order to characterize the 



sharpness of the texture by a single parameter, the texture index J was determined for 

each sample. It is calculated by the integral of the square of the texture function and it 

varies between 1 for a completely random orientation and ∞ for an ideal single crystal 

(Bunge, 2015). 

Vickers microhardness measurements were performed on the parallel (X-Z planes) 

and normal (X-Y planes) sections to the extrusion axis of the samples applying a load of 

9.81 N for 20 s. At least 10 indentations were made to obtain the microhardness mean 

value. Room temperature uniaxial compression tests at a constant strain rate of 104 s1 

were performed on  6 mm × 10.5 mm cylindrical samples machined with their 

longitudinal axis along the extrusion direction. Barrelling of the samples during the 

compression tests was effectively inhibited applying hexagonal BN powder as lubricant 

between the compression platens and the ends of the samples. 

For the microstructure and compositional analyses, as well for the mechanical 

characterization, the samples were abraded using SiC papers and carefully polished with 

-alumina slurry (0.3 m) and cloths. The optical and electron microscopy images were 

taken after etching the samples for 5 s in a solution of 1.5 g of picric acid, 25 ml of 

ethanol, 5 ml acetic acid and 10 ml of distilled water. 

 

3. Results and discussion 

3.1. Microstructure and crystallographic texture 

Figures 2 and 3 show the microstructure of pure S-Mg and the S-xHAP composites 

in the as-extruded conditions. In the case of pure S-Mg, the consolidation extrusion 

under the present conditions caused a grain structure composed of grains elongated 

along the extrusion direction with typical lengths of 20 – 50 m and widths of  3 m 

giving rise to the expected  0101  fiber texture, as the experimental pole figures in 

Figure 4 reveal. The calculated orientation distribution functions (ODFs) for S-Mg and 

S-15HAP represented in Figure 5 exemplify the texture changes induced by the HA 

addition. The HA addition increased meaningfully the grain width reducing the aspect 

ratio from 14 to a typical value of  6, and the texture index J from 5.55 to 2.20 (see 

Figure 4 and Table 1). The HA phase, which appears as dark inclusions in the optical 

images, or light grey in the SEM images, is found quite homogeneously distributed. 



Their sizes range from less of 1 m to  30 m. The smaller particles appear 

preferentially alongside the boundaries of the elongated grains besides inside the Mg 

grains, as it can be shown in Figure 3d). On the contrary, the larger particles partially 

tend to cluster together in groups, Figure 3c). In addition to HA particles, the EDS 

analyses revealed a small presence of MgO particles with typically submicron sizes. 

The effect of the ECAP processing on the microstructure and texture of the Mg/HA 

composites are summarized in Table 1. Since the ECAP processed composites, i.e. the 

LE-xHAP samples, were prepared with HA powder from different supplier and rougher 

than the one used for the S-xHAP composites, the results for the counterpart non-ECAP 

processed composites (L-xHAP) reported in Ref. (del Campo et al., 2014) are also 

included for comparison in Table 1. Figures 6 and 7 show the grain structure and HA 

phase distribution in ECAP processed composites. As the starting HA powder used for 

these samples was rougher, the HA particles result to be less homogenously distributed 

and their sizes up to  25 m compared with S-xHAP composites. The reduction of the 

grain lengths by ECAP deformation without meaningful effect on the grain widths, 

resulting in a significant change in the aspect ratio of the grains, is clear as the images of 

Figures 6 and 7 and the data in Table 1 reveal. Moreover, the ECAP processing 

produced the effective destruction of the initial fiber texture of the Mg/HA composites. 

This is apparently assisted by the HA content as the pole figures in Figure 8 show. The 

calculated ODFs for LE-5HAP and LE-15HAP represented in Figure 9, in combination 

with the ODFs in Figures 5, show the texture changes induced by ECAP deformation. 

3.2. Mechanical characterization 

 Figures 10 and 11 depict the stress-strain curves of the uniaxial compression 

tests for the S-xHAP composites and the ECAP deformed LE-xHAP composites, along 

with those for Mg pure samples extruded under the corresponding conditions to the 

composites. The results are summarized together with the microstructural characteristics 

in Table 1. All the flow stress curves exhibit the characteristic concave shape respect the 

upper compression stress (UCS) revealing the formation of  2101  deformation twins 

(Barnet et al., 2004; Kelley and Hosford, 1968; Sarker et al., 2015). It is clear noticed 

from the stress-strain curves and the texture index given in Table 1 that the ECAP 

processing, besides destroying the original fiber texture, lowers the concave upwards 

shape of the flow curves. The Mg/HA composites in general exhibit better mechanical 



properties that the extruded Mg samples. In the S-xHAP composites, increasing the HA 

fraction the UCS value and the yield strength apparently increase. On the contrary, in 

the ECAP deformed LE-xHAP composites the UCS drops while the yield strength rises, 

appreciably. 

Furthermore, it is found that the microhardness values increase linearly with the HA 

fraction and the inverse of the texture index J as Figures 12 and 13 show. Figure 13 

reveals anisotropy in the microhardness when the J value is above 2. It is also apparent 

that the ECAP deformation reduced the J values below 2. It is worth noticing that the 

microhardness increasing rate with J 1 is virtually independent of measurement plane 

as the plots in Figure 13 for the S-xHAP and L-xHAP composites in the as-extruded 

condition reveal. They result in increasing rates of 21319 and 23524 MPa for the S-

xHAP samples in the transversal (X-Y) and longitudinal (X-Z) planes, respectively, and 

22321 and 28060 MPa for the L-xHAP samples. Besides destroying the 

microhardness anisotropy, the ECAP processing rises the microhardness and its 

increasing rate with J 1. These rates were respectively 1020120 and 83060 MPa in 

the transversal (X-Y) and longitudinal (X-Z) planes. An interpretation of microhardness 

dependence on J 1 will be given later on.  

 

3.2. Discussion 

 

Although the L-xHAP composites exhibit a quiet inhomogeneous distribution of the 

HA reinforcement and a microstructure worse than the one developed in the S-xHAP 

composites, the compressive properties and microhardness are unexpectedly better. This 

is attributed to a profuse presence of other secondary phase identified as MgO by EDS 

analyses in the L-xHAP samples (del Campo et al., 2014). The less controlled extrusion 

processing of the L-xHAP composites may be responsible for abundant formation of the 

MgO phase resulting in a higher fraction of reinforcement particles in the composites. 

 To get insight on the mechanical behavior of these Mg/HA composites the 

compression flow curves have been analyzed using the Kocks-Mecking approach 

(Kocks and Mecking, 2003) according to the terms applied for magnesium alloys in 

Refs. (Cáceres and Blake, 2007; Cáceres et al., 2008; Figueiredo et al., 2010). This has 



been accomplished via the representation of the  
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UCS for each material. The stress at the lower yield point of the corresponding flow 

curve was taken as the yield strength value of the material. 
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where h  represents the athermal contribution of the dislocations to the strain 

hardening rate, and r  the softening due to dynamic recovery. In absence of dynamic 

recovery, the  

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0  curves should render a straight line through the origin when 

dislocation slip is the main deformation mechanism contributing to the strain hardening. 

So, the slope of the straight line would be sensitive to the crystallographic texture of 

samples since it corresponds with h , which explicitly depend on the Taylor factor 

(Cáceres and Blake, 2007; Kocks and Mecking, 2003) . The  

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curves are shown in Figure 14 along with the curves corresponding to the as-extruded 

L-xHAP composites obtained from the data reported elsewhere (del Campo et al., 

2014). The plot for the pure S-Mg sample exhibits a lineal region represented by a 

straight line that intercepts the abscise axis at  20 MPa, see Figure 14a). This indicates 

that twinning significantly contribute to the initial strain hardening (Cáceres et al., 

2008). Increasing the HA fraction in the S-xHAP composites the h  value is 

progressively reduced and the interception on the abscise axis shifts towards the origin. 

This behavior can be considered as evidence for a gradual weakening of the twinning 

contribution to the strain hardening (Cáceres et al., 2008; Kocks and Mecking, 2003), as 

Figure 15 supports. The same behavior is observed for the L-xHAP composites in the 

as-extruded condition, and after ECAP deformation, i.e. for LE-xHAP samples. 



Furthermore, it is also evident that the ECAP processing induces an additional reduction 

of the strain hardening rate h  as the curves of Figures 14b) and c) and the values given 

in Table 1 reveal. These h  values are found linearly correlated with the inverse of the 

texture index J 1, as Figure 16 reveals. This is clear evidence for weakening of the 

texture hardening in extruded magnesium by HA addition as well as by ECAP 

processing. Such  h  J 1 dependence would be expected if texture hardening is 

effective since it reflects the volume fraction of sample, or number of grains, 

contributing to the observed strain hardening behavior, i.e. with favorable orientation 

for dislocation slip. Note that the texture index J derives from the integration of the 

ODF, which conveys the grain fraction for each specific orientation in a polycrystalline 

sample. Moreover, it is to be observed that the relationship between number of oriented 

grains and J 1 should lead to an asymptotic value for J=1, i.e. for grain orientations at 

random. 

Pure S-Mg as well as the composite sample with a HA fraction of 5% exhibit h  

values of 3.30 and 3.17 GPa, respectively. These strain hardening rate values can be 

representative of pyramidal c+a dislocation slip in combination with prismatic and 

basal a slip according with the results reported for textured Mg samples (Cáceres and 

Lukác, 2008). After the ECAP processing of the Mg/HA composites and consequent 

reduction of the texture to J values under 2, the strain hardening rate turns into h  1 

GPa, what should correspond to pure basal a slip in untextured pure Mg (Cáceres and 

Blake, 2007; Cáceres and Lukác, 2008). In fact, h  values as small as 0.9 GPa have 

been reported for random polycrystalline Mg tested under uniaxial compression 

(Cáceres and Blake, 2007). 

The inhibition of the mechanical twinning by the HA phase is tentatively attributed 

to the capability of the HA particle for blocking the twin propagation in the matrix, what 

would lead to an early activation of the dislocation slip to accommodate the plastic 

deformation. 

Finally, a plausible explanation for the microhardness dependence on J 1 shown in 

Figure 13 may be given as follows. Microhardness, as a simple measurement of the 

material resistance to local plastic flow, has to be correlated with the flow stress. In 



particular, it appears that the microhardnes values for f.c.c. and b.c.c. materials exhibit a 

grain size dependence similar to the experimental Hall-Petch relationship describing the 

grain size effect on the flow stress , i.e.: 

 
1

2
o Hk D 


    (2) 

where D is the mean grain size, o the lattice friction stress and kH the Hall-Petch slope. 

There exist models for polycrystalline samples predicting a linear texture dependence of  

kH and o via the effective Taylor orientation factor M, that is to say, kH and o  M, 

besides being temperature, strain rate and strain dependent (Armstrong et al., 1962; 

Conrad, 2004). Specifically, the experimental evidence for the dependence of kH on the 

type and intensity of the texture have been reported for pure Mg (Wilson and Chapman, 

1963; Sambasiva Rao and Prasad, 1982; Wilson, 1970; Cáceres et al. al., 2008). In this 

case, it was found that the Hall-Petch slope kH increases when the texture intensity 

weakens, and results in the highest value for random oriented polycrystals. If it is 

tentatively assumed that the microhardness HV for Mg alloys also exhibit a Hall-Petch 

relationship as 

 
1

2
V oVH H KD
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where K and HoV would maintain dependences on texture and strain rate comparable to 

those for kH and o, then Equation (2) renders HV values that scale up with the effective 

Taylor factor M. As the M values for pure Mg increase with reducing texture intensity, 

the HV values would scale up with the reciprocal of the texture index J 1 when grain 

size of the sample remains constant. Since the grain size measurements given in Table 1 

do not render a Hall-Petch relationship for the yield strength because of the undecided 

change in the grain sizes, the microhardness dependence on J 1 shown in Figure 13 

would reflect the effect of the texture. Moreover, the slope change for J≤2 appears to be 

correlated with the change in the dislocation slip mechanism. 

 

4. Conclusions 

The following remarkable conclusions have been drawn from the present study:  



 The microstructural analysis and mechanical characterization of the Mg/HA 

produced by conventional extrusion have revealed the capability of HA for 

strengthening and inhibiting the extrusion induced texture, reducing the 

microstructural anisotropy and preventing the deformation twinning of Mg. 

 The ECAP processing applied to these composites, besides enhancing the grain 

structure and destroying the initial fiber texture, leads to a significant enhancement 

of their yield strength and microhardness and a consequent reduction of the UCS 

values. 

 The analysis of the athermal strain hardening rate of the flow curves under uniaxial 

compression at room temperature demonstrates that the HA addition and the ECAP 

processing are effective for inhibiting non-basal dislocation slip, what produces the 

observed impairing in the UCS. 

 The relationship found between athermal strain hardening rate and texture index 

indicates that texture hardening controls the dislocation slip responsible for the 

strain hardening behavior of the Mg/HA composites investigated. 
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Figure captions 

Figure 1. Reference system for the samples with Z-axis along the extrusion direction. 

Figure 2. Optical microscopy images from pure S-Mg and S-xHAP composites in the 

as-extruded conditions. 

Figure 3. BSE-SEM images of a) S-5HAP, b) S-10HAP and c) S-15HAP in the as-

extruded conditions. Figure 3d) SE-SEM of S-10HAP with detail of the boundary 

grains. 

Figure 4. Experimental pole figures for S-Mg, S-5HAP, S-10HAP and S-15HAP in the 

as-extruded conditions for  0101 ,  2000  and  0211 . 

Figure 5. Calculated ODFs for S-Mg and the S-15HAP composite. 

Figure 6. Optical microscopy images for Mg/HAP composites ECAP processed (LE-

xHAP) for 4 passes via route BC. 

Figure 7. BSE-SEM images of a) LE-5HAP, b) LE-10HAP and c) LE-15HAP processed 

for 4 passes via route BC. Fig. 6d) SE-SEM of LE-10HAP with detail of the boundary 

grains. 

Figure 8. Experimental pole figures for Mg/HAP composites ECAP processed (LE-

xHAP) for 4 passes via route BC for  0101 ,  2000  and  0211 . 

Figure 9. Calculated ODFs for the LE-5HAP and LE-15HAP composites. 



Figure 10. Compressive stress-strain curves for pure Mg and S-xHAP composites 

extruded at the same conditions. 

Figure 11. Compressive stress-strain curves for pure Mg and ECAP processed LE-

xHAP composites extruded at the same conditions. 

Figure 12. HA content effect on the microhardness of the Mg/HAP composites on (X-Y) 

and (X-Z) sections. 

Figure 13. Relationship between microhardness and texture index J for Mg/HAP 

composites on (X-Y) and (X-Z) sections. 

Figure 14. Kocks-Mecking plots showing the strain hardening behavior for the Mg/HAP 

composites. 

Figure 15. Optical images showing deformation twinning for a) pure Mg and b) S-

15HAP composite. 

Figure 16. Athermal strain hardening rate versus J‒ 1 for pure magnesium and 

magnesium/HAP composites. 

 

 

Table 1 Microstructural and mechanical characteristics for Mg/HAP composites  

 

 

Sam
ple 

/cal 
(%) 

Gra
in 

leng
th 

(m
) 

Grai
n 

widt
h 

(m) 

Asp
ect 
rati

o 

J 
Text
ure 

index 

Hv(T
) 

(MP
a) 

Hv(L
) 

(MP
a) 

YS 
(MP

a) 

UC
S 

(MP
a) 

Unifo
rm 

strain 
(%) 

h 
(GP
a) 

S-
Mg 

98.8±
0.2 

37±
17 

2.6±
1.0 14 5.55 523

5 
500

7 189 296 0.09 3.3
0 

S-
5HA

P 

98.9±
0.2 

30±
16 

4.2±
1.5 7 3.85 543

7 
520

5 202 329 0.10 3.1
7 

S-
10H

96.9±
0.2 

41±
23 

5.4±
1.7 8 2.70 559

7 
540

7 205 334 0.13 1.9
1 



AP 
S-

15H
AP 

96.4±
0.2 

27±
17 

4.8±
1.7 6 2.20 585

8 
570

10 207 348 0.14 1.6
5 

LE-
5HA

P 

97.7±
0.2 

19±
7 

5.8±
2.3 3 2.00 586

3 
590

10 231 355 0.17 1.0
7 

LE-
10H
AP 

97.6±
0.2 

10±
6 

4.1±
1.5 2 1.85 640 

20 
621

7 235 342 0.13 1.1
0 

LE-
15H
AP 

98.0±
0.2 9±4 4.7±

1.2 2 1.65 690
20 

680
20 237 326 0.13 0.7

9 

L-
5HA

P 

96.4±
0.2 

25±
15 

5.2±
2.3 5 5.70 560

10 
530

10 213 449 0.14 3.4
5 

L-
10H
AP 

96.0±
0.2 

29±
18 

5.5±
2.0 5 3.30 593

7 
580

10 215 410 0.15 2.3
7 

L-
15H
AP 

94.0±
0.3 

32±
17 6±5 5 2.20 623

9 
610

10 222 373 0.12 1.8
3 

 

Highlights 

 

 Mg-HAP composites were produced by a powder metallurgy followed by 
extrusion and ECAP. 

 The HAP addition to Mg enhances compressive strength, reduces extrusion 
texture and prevents deformation twinning. 

 ECAP deformation of these composites destroys the initial texture and improves 
yield strength and microhardness. 

 A lineal correlation is found between athermal strain hardening rate and inverse 
of texture index. 






















