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Abstract— In this article, we discuss the use of advanced 
statistical techniques (functional data analysis) in millimeter-wave 
(mm-wave) spectroscopy for biomedical applications. We employ a 
W-band transmit-receive unit with reference channel to acquire the 
spectral data. The choice of the W-band is based on a trade-off 
between penetration through the skin providing an upper bound for 
the frequencies and spectral content across the band. The data 
obtained are processed using Functional Principal Component Logit 
Regression (FPCLoR), which enables to obtain a predictive model 
for sustained hyperglycemia, typically associated with diabetes. The 
predictions are based on the transmission data from non-invasive 
mm-wave spectrometer at W-band. We show that there exists a 
frequency range most suitable for identification, classification, and 
prediction of sustained hyperglycemia when evaluating the 
functional parameter of the FPCLoR model (β). This allows for the 
optimization of the spectroscopic instrument in the aim to obtain a 
compact and potential low-cost non-invasive instrument for 
hyperglycemia assessment. Furthermore, we also demonstrate that 
the statistical tools alleviate the problem of calibration, which is a 
serious obstacle in similar measurements at terahertz and IR 
frequencies.   
 

Index Terms— Functional Data Analysis (FDA), Functional 
Principal Components Logit Regression (FPCLoR), Millimeter-
wave (mm-wave) spectroscopy, non-invasive diagnostics, 
sustained hyperglycemia, W-band reflectometer, W-band 
transmit/receive unit. 
 

I. INTRODUCTION 

illimeter-wave (mm-wave) spectroscopy has received 
much attention for biomedical applications, due to its 

spectral resolution, high sensitivity, measurement speed, and 
richness in information contained in the acquired spectrum. 
Many biomedical applications have been addressed recently 
utilizing mm-wave spectroscopy [1]–[5], being diabetes 
detection one of the first applications envisaged for this 
technique. Microwave, mm-wave and terahertz (THz) 
spectroscopy have been proposed for Diabetes Mellitus (DM) 
diagnostic associated with instantaneous glucose level 
measurement [6]–[10] and sustained hyperglycemia states 
detection [11], both relevant to the diagnostic and patient 
control. However, in both cases, we are still far from an 
operational diagnostic based on these techniques that leverages 
the advantages identified for such a system, such as non-
invasiveness, the use of nonionizing radiation, and the potential 
low cost of the developed system. 

DM is a very complicated metabolic disorder affecting a 
great part of the world  population, which is severely increased 
every year [12]–[16]. This metabolic disorder, which is 
characterized by the presence of high blood glucose content 
known as ‘Hyperglycemia’ [17], brings several and serious 
irreversible health consequences if it is not detected and treated 
on time: heart attacks, strokes, kidney failure, vision loss, etc. 
[18], [19]. The current medical procedures for diabetes control 
are mainly based on invasive technologies facing multiple 
disadvantages: high follow-up costs, painful in some cases, and 
disturbing in daily life, which explains somehow the 
unwillingness of people to completely follow medical 
recommendations in diabetes care. Therefore, there is a 
worldwide effort to develop new technologies that are able to 
diagnose and monitor diabetes non-invasively (or minimally 
invasive), improving the existing medical procedures, specially 
using spectroscopic techniques but with limited success due to 
the lack of accuracy or feasibility of the proposed spectroscopic 
technique [20]–[24]. Furthermore, the measure of free glucose 
in the blood as the diagnostic parameter for diabetes also has its 
drawbacks, as blood glucose level is strongly conditioned by 
many physiological processes, such as eating, exercise or the 
related ones to strong emotions. Hence, new non-invasive 
techniques that reduce the influence of external factors 
enhancing the diagnosis and monitoring of diabetes are needed. 

An important indicator of DM is hyperglycemia, generally 
caused by DM and having a strong impact on the physiological 
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functionality of the organism. The formation of Advanced 
Glycation End-products (AGEs) associated with the sustained 
high-glucose concentration in blood is responsible for the most 
relevant complications associated with DM. An early and non-
invasive diagnostic for such sustained hyperglycemic states is 
crucial, not only for diabetes diagnostics thus facilitating an 
early intervention to regulate the carbohydrate metabolism but 
also for metabolomic control and supervision of the patients.  

This article proposes a mm-wave reflect/transmit setup using 
a multiplied source and subharmonic Schottky diode receivers 
and appropriate statistical spectroscopy techniques to arrive at 
a diagnostic tool for non-invasive control of sustained 
hyperglycemia. The focus of the paper is on the discussion of 
the importance of using adequate statistical techniques to 
process the spectral data in mm-wave spectroscopy to develop 
biomedically relevant diagnostic systems, as for example, in 
DM diagnostic.  

Until now, multivariate statistical techniques have been 
widely used for data analysis and statistical modeling in 
spectroscopic applications (e.g. [25]–[29]), and for 
optimization of the frequency spectrum used for interrogation 
(e.g. [30], [31]). In biomedical spectroscopic applications, the 
acquired data correspond to complicated spectra with 
overlapping responses from many different constituents of the 
biomedical sample. This overlap of spectral responses prevents 
the isolation of a specific component within the sample and 
perform spectral classification. In addition, other factors 
adversely affecting the spectral classification, such as 
environmental influences, instrument noise, and interferences 
by physiological processes, have an impact on the spectral data 
and necessitate the systematic analysis of a set of discrete and 
independent variables. The acquired spectral data might 
become very large and lead to dimensionality problems, 
hindering the data processing, and requiring dedicated 
statistical analysis. The Functional Data Analysis (FDA) [32] is 
currently employed in biomedical applications based on 
spectroscopic techniques [33], [34] since it provides a set of 
more suitable and powerful statistical tools for the processing 
and analysis of the spectral information. 

We demonstrate in this article a spectrometer working in the 
W-band (75-110 GHz) with reflect and transmit measurement 
capabilities using a nonspecific approach. In this way, the 
proposed technique allows us to discriminate the metabolic 
animal condition (normoglycemic or hyperglycemic) without 
the need to isolate or quantify the specific response of a single 
component or metabolite. To achieve this, we employ FDA to 
obtain a continuous representation (function) from each 
spectrum measured at discrete frequencies within the W-band. 
Continuous representation of the spectrum using FDA allows 
for better flexibility for high-dimensional data and longitudinal 
data analysis, as well as improves the spectral variability 
analysis.  

In our spectral analysis, we apply the Functional Principal 
Component Logit Regression (FPCLoR) [37] to obtain a 
predictive model as a diagnostic tool for hyperglycemia in the 
animal models. We study qualitatively and quantitatively how 
the obtained spectral response characterizes the hyperglycemia 

condition in the animal models by interpreting the FPCLoR 
model. Finally, we demonstrate that the frequency bandwidth 
can be halved using the FPCLoR model when choosing the 
main contributing frequencies to hyperglycemia discrimination. 
These results show the potential of the FDA establishing a 
feedback to the W-band spectral results and the spectroscopic 
analysis tool presented here.  

The article is organized as follows. In section II, we describe 
the spectroscopic instrument and methods of sample 
preparation. In section III, we study and discuss the data 
acquisition and data processing algorithms, and in section IV, 
we discuss the achieved results. Finally, the article finishes with 
the conclusions and outlook. 

II. MATERIALS AND METHODS 

A. Millimeter wave spectroscopy instrument  

The spectral interrogation for the non-invasive assessment of 
sustained hyperglycemia was carried out by a spectrometer 
operating across the full W-band with steps of 1.5 GHz. As 
shown in Fig.1, generators deliver a swept signal in the Ku-
band (12.5-18.5 GHz in steps of 0.25 GHz) with 0.3 MHz 
frequency difference between the two signals. One signal 
generator is connected to an Active Frequency Sixtupler 
(MULT), resulting in a frequency sweep within the W-band. 
The MULT is realized in a waveguide housing and exhibits a 
WR10 waveguide output.  The output signal from the MULT is 
fed to a dual-directional coupler. The coupled arms of the 
coupler define the reference and reflect channels, respectively, 
with subharmonic mixer receivers at each coupled port. The 
thru branch of the coupler is fed into a waveguide probe and 
device under test (DUT). The transmission path is measured 
with equivalent subharmonic mixer receivers, as in the 
reference and reflect ports. The outputs of the subharmonic 
receivers deliver an intermediate frequency of IF = 1.8 MHz 
and are connected to a data acquisition unit (Handyscope HS4-
10, TiePie engineering, Sneek, Netherlands), which digitizes 
the measured signals with a sampling rate of 10 MHz. Finally, 
all the sampled signals are filtered and processed using 
LabVIEW software.  
 

 
More details of the spectrometer already reported can be 

found in [11], [38].  Fig. 2 shows a photograph of the mm-wave 
instrument identifying all the components mentioned above.   

In the present article, we exclusively employ transmission 
amplitude measurements, even though phase results are also 
available, as the amplitude values are sufficient for the FPCLoR 
analysis. The output power of the signal generator was adjusted 

 
Fig. 1. Simplified block diagram of the set-up. See text for details. 
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to obtain a flat frequency response at the transmission port 
without the biological sample. No previous calibration is 
required for the amplitude data. These aspects enormously 
simplified the diagnostic system and allows for further low cost 
and compact implementations. 
 

B. Experimental protocol 

The mm-wave spectroscopic measurements were performed 
at the Centro de Investigaciones Energéticas, 
Medioambientales, y Tecnológicas (CIEMAT) Laboratory 
Animals Facility (Spanish registration number 28079-21 A), 
which provided the animal models. The animals were not 
subjected to special treatments before the mm-wave 
measurements. Mice hair were regularly cut to ensure and 
facilitate the positioning of the probes but were not totally 
shaved. Insensitivity of the measured results to hair skin in mice 
was proven earlier in [7]. Prior to the measurement process, 
each mouse was anesthetized to prevent movement and self-
harm risks during the measurements. Two anesthesia methods 
were followed to carefully avoid the impact of anesthesia 
treatment. In experiment A, the anesthesia was administered by 
injection using standard rodent anesthesia 
(ketamine/medetomidine).  Then, for experiment B, the mice 
were anesthetized by inhalation using isoflurane mixed with 
oxygen, which reduces the induction time and is less harmful to 
animals.  

As shown in Fig. 3, mice were assessed one by one, and the 
spectral interrogation was performed directly on a fold of the 
skin on the back of each mouse. The probes of the spectrometer 
instrument were two previously aligned straight cuts of a WR10 
waveguide tapered on the outside to facilitate the skinfold. The 
separation between the straight cuts was fixed to hold the 
skinfold without harming the animal. The measuring process 
takes around 45 seconds and the anesthetic gas was 
continuously supplied to the animal via a mask during the 
whole period in experiment B. The measurement time is mainly 
limited by the control electronics and not by the mm-wave 
instrument. 

All experimental procedures were carried out according to 
European and Spanish laws and regulations (European 
convention ETS 1 2 3, about the use and protection of vertebrate 
mammals used in experimentation and other scientific 
purposes, Directive 2010/63/UE and Spanish Law 6/2013, and 
R.D. 53/2013 about the protection and use of animals in 
scientific research). Procedures were approved by the Animal 

Experimentation Ethical Committee of the CIEMAT according 
to all external and internal bio-safety and bio-ethics guidelines, 
and by Spanish competent authority with registered number 
PROEX 176/15. 

C. Sample population 

Two experiments were conducted with sixteen months 
elapsed between the first and second experiment, and a different 
sample of mice for each experiment referred to as “A” and “B”. 
In both experiments, the sample of mice included animals with 
normoglycemic and hyperglycemic conditions. Healthy mice of 
different strains with an expected blood glucose level of 100 
mg/dl were considered as normoglycemic animals. Within the 
hyperglycemic cases, two different types of hyperglycemia 
were considered: obese mice due to a genetic mutation that 
causes a deficiency of leptin (Lepob/ Lepob) and diabetic mice 
due to a genetic mutation that causes insulin resistance (Lepdb/ 
Lepdb) [39]. The expected glucose level for the hyperglycemic 
cases is above 150 mg/dl and 250 mg/dl for the obese mice and 
the diabetic mice, respectively. TABLE I summarizes the 
sample of mice measured at each experiment. 

All animals were purchased from Elevage-Janvier (France) 
and housed individually in pathogen-free conditions at 
CIEMAT. 

 

 
TABLE I 

SAMPLES POPULATION DESCRIPTION 
 

Experiment Condition Type Mean 
glucose level Label Quantity 

A 

Normoglycemia - 136 mg/dl Healthy 10 

Hyperglycemia Leptin-
deficient 180 mg/dl Obese 5 

Hyperglycemia Insulin-
resistant 500 mg/dl Diabetic 5 

B 

Normoglycemia - 144 mg/dl Healthy 18 

Hyperglycemia Leptin-
deficient 245 mg/dl Obese 9 

Hyperglycemia Insulin-
resistant 380 mg/dl Diabetic 6 

 

 
Fig. 2. Mm-wave spectroscopic instrument for the non-invasive sustained 
hyperglycemia assessment. 

  

 

 

Fig. 3. Photograph taken during the measuring process. 
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III. DATA PROCESSING AND STATISTICAL ANALYSIS 

As described in section II, the spectroscopic measurement 
provides a 1-D array (vector) whose entries correspond to a 
finite set of observed amplitudes for each frequency. This 
vector is then transformed into a continuous function of 
frequency, which allows the application of FDA [32].  

A. Functional data approximation 

Measurements are usually affected by, systematic errors, 
noise and/or other external interferences. Therefore, data is 
assumed to be smooth but observed with an associated error, in 
our case: 

𝑥𝑖𝑘 = 𝑥𝑖(𝑓𝑖𝑘) +  𝜖𝑖𝑘 , 𝑘 = 1,… ,𝑚, 𝑖 = 1,… , 𝑛,  (1) 
where 𝑥𝑖𝑘 is the i-th discrete sample path (raw spectra), 𝑥𝑖(𝑓𝑖𝑘) 
is a smooth function observed at the frequency points 𝑓𝑖𝑘  and 
𝜖𝑖𝑘 is an error term representing noise, with n being the sample 
size (number of assessed mice) and m the number of frequency 
points. Then, the function is approximated by assuming that the 
sample paths belong to a finite dimensional space generated by 
an orthogonal basis {𝜙1(𝑓), … , 𝜙𝑝(𝑓)}, so that  

𝑥𝑖(𝑓) =  ∑ 𝑎𝑖𝑗𝜙𝑗(𝑓),
𝑝

𝑗=1
 𝑓 ∈ 𝐹, 𝑖 = 1,… , 𝑛, (2) 

where 𝑥𝑖(𝑓) is the estimated curve, 𝑎𝑖𝑗  are the basis 
coefficients, 𝜙𝑗(𝑓) are the basis functions, and F is the 
observation interval (frequency interval). Since our data is 
smooth but observed with some noise, a basis of smooth 
functions must be considered. Cubic B-splines basis generates 
the space of splines of degree 3, defined as curves consisting of 
piecewise polynomial of degree 3, that join up smoothly in a set 
of nodes with continuity in their derivatives up to order 2 [40]. 
Regression splines and P-splines can be used to estimate the 
basis coefficients with least squares criterion and differing by 
the control of the degree of smoothness of the fitted curves. P-
splines add a penalty term in the least square’s equation so that 
the lack of smoothness in the curves is controlled by a 
smoothing parameter 𝜆 [41]. Obviously, the degree of 
smoothness in the fitted curves influences the statistical 
analysis and the data interpretation. Therefore, the researcher, 
according to the goal of the experiment and the nature of the 
measure, should define such adjustment. Fig. 4 shows two 
different approximations by using regression splines, defined 
on 17 not equally spaced nodes (at the top) and P-splines 
defined on 17 equally spaced nodes with 𝜆 = 0.11 (at the 
bottom). For each approximation, the fitted curves for a 
normoglycemic (left panel) and a hyperglycemic (right panel) 
case are shown in Fig. 4. Both approximations will be discussed 
in the results section.  
 

B. Functional Principal Component Analysis 

A Functional Principal Component Analysis (FPCA) [42] 
was applied to the measured W-band data to explore and 
highlight variability among the estimated functional spectra, 
determining a set of uncorrelated functions called Functional 
Principal Components (FPCs).  The principal components are 
obtained as uncorrelated generalized linear combinations of the 

sample curves with maximum variance. In general, the j-th 
principal component scores are given by 

𝜉𝑖𝑗 = ∫𝑥𝑖(𝑓)𝑤𝑗(𝑓)𝑑𝑓
𝐹

, 𝑖 = 1, … , 𝑛, (3) 

with 𝑤𝑗  being the weight functions or loadings obtained by 
solving the following maximization problem, under the 
orthonormality constraints  

{
 
 

 
 max

𝑤
𝑣𝑎𝑟 [∫𝑥𝑖(𝑓)𝑤(𝑓)𝑑𝑓

𝐹

]

𝑠. 𝑡. ‖𝑓‖2 𝑎𝑛𝑑 ∫𝑤𝑗(𝑓)𝑤𝑙(𝑓)𝑑𝑓 = 0, ∀ 𝑗 < 𝑙.
𝑇

 (4) 

For more details see [32]. The advantages of working with 
FPCs are reduced dimensionality of the statistical problem and 
avoidance of multicollinearity problems in the regression 
analysis.  

C. Functional Principal Component Logit Regression 

The detection of sustained hyperglycemia has been 
addressed as a classification problem with a binary response: 
normoglycemia or hyperglycemia. Therefore, we applied 
functional logit regression [43] to obtain a predictive model. 
The logit regression is widely used in social and medical 
applications, modeling qualitative variables by a set of 
independent variables as predictors. The Functional Logit 
model (FLoR) is the extension of the logit regression to the 
FDA context, but in this case, the predictor is a functional 
variable. The FLoR model is formulated as follows:  

𝑦𝑖 = 𝜋𝑖 + 𝜖𝑖 , 𝑖 = 1, … , 𝑛 (5) 

where 𝑦𝑖 ∈ {0,1}, 𝑖 = 1,… , 𝑛, is the value of the response 
variable associated to the i-th observation of the functional 
predictor 𝑥𝑖(𝑓), being 0 ≡ normoglycemia and 1 ≡ 
hyperglycemia, 𝜖𝑖 are the independent errors with zero mean 

 

Fig. 4. Estimated and measured transmission amplitude for a normoglycemic 
(left panel) and a hyperglycemic mouse (right panel) by using two different 
approximations: regression splines (at the top) defined on 17 not equally spaced 
nodes and P-splines (at the bottom) defined on 17 equally spaced nodes 
with 𝜆 = 0.11. 
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and  𝜋𝑖 = 𝑃[𝑌 = 1|{𝑥𝑖(𝑓): 𝑓 ∈ 𝐹}] is the expectation of the 
response variable given by   

𝜋𝑖 = 
𝑒𝑥𝑝{𝛼 + ∫ 𝑥𝑖(𝑓)𝐹

𝛽(𝑓)𝑑𝑓}

1 + 𝑒𝑥𝑝{𝛼 + ∫ 𝑥𝑖(𝑓)𝐹
𝛽(𝑓)𝑑𝑓}

,

𝑖 = 1,… , 𝑛. 
(6) 

As it can be seen in (6), 𝜋𝑖 is modelled by a real parameter 𝛼 
and a functional parameter 𝛽(𝑓). Equivalently, (6) can be 
rewritten in terms of the logit transformation as follows: 

𝑙𝑖 = 𝑙𝑛 [
𝜋𝑖

1 − 𝜋𝑖
] = 𝛼 + ∫𝑥𝑖(𝑓)

𝐹

𝛽(𝑓)𝑑𝑓,   𝑖 = 1, … , 𝑛. (7) 

In order to solve the estimation problems in the FLoR model a 
set of FPCs can be used as predictor variables [37]. Then the 
FLoR model can be expressed in matrix form in terms of a 
reduced set of q principal components (FPCLoR) as follows: 

𝐿 =  𝛼 +  Γ𝛾, (8) 

with Γ = (𝜉𝑖𝑗)𝑛𝑥𝑞  being the matrix comprising the columns of 
the first q principal components and 𝛾 the vector of the model 
coefficients. Finally, by assuming the basis representation of 
the functional parameter 𝛽(𝑓) and the weight functions 𝑤𝑗(𝑓),
𝑗 = 1,… , 𝑝, the functional parameter of the FLoR model is 
estimated by 𝛽 = 𝐌(𝑝𝑥𝑞)𝛾(𝑞𝑥1), where 𝛽 = (𝛽1, … , 𝛽𝑝)

′
 is the 

vector of basis coefficients of 𝛽(𝑓) and 𝐌 is a matrix whose 
columns contain the vectors of basis coefficients of the weight 
functions associated with the first q principal components [37]. 

A significant additional contribution of the FLoR is the 
interpretation of  𝛽(𝑓). This function represents the relation 
between the response variable and the functional predictor, and 
it can be interpreted in terms of the odds ratio [44]. Let us 
consider 𝑙𝑖 the logit transformation of a sample function 𝑥𝑖(𝑓) 
and 𝑙𝑖∗ a resulting scaled logit transformation of a sample 
function 𝑥𝑖∗(𝑓) scaled by the factor 𝐾 within a frequency 
bandwidth [𝑓0, 𝑓0+ℎ] ⊆ 𝐹. Then, the odds ratio for 𝑙𝑖 and 𝑙𝑖∗, 
considering (7) will be 

𝑒𝑥𝑝(𝑙𝑖
∗ − 𝑙𝑖) =  𝑒𝑥𝑝 (𝐾 ∫ 𝛽(𝑓)𝑑𝑓

𝑓0+ℎ
𝑓0

). (9) 

This means that a constant increment in K units in a fixed 
interval for 𝑥(𝑓) increases the odds of 𝑦 = 1 against 𝑦 = 0 by 
a factor of the same magnitude K. This kind of interpretation is 
very useful to understand the relation between the spectral 
response, measured by the spectroscopic system and the 
achieved classification. This interpretation provides not only 
information (in the quantitative sense) about the aimed 
discrimination but also it can be useful to identify which 
interrogation frequency intervals are more relevant for such a 
discrimination. This approach will be illustrated in the results 
section by interpreting the FPCLoR for the sustained 
hyperglycemia detection in animal models. 

IV. RESULTS AND DISCUSSION 
 

This section focuses on the robustness and prediction of the 
diagnostic tool utilizing W-band measured spectra. First, 
sample B is used for a multi-test analysis to study the 
performance and robustness of the fitted model for 
hyperglycemia discrimination. In this study, the results 
obtained from both approximations, regression splines and P-
splines, will be compared. Then, in a second subsection, the 
diagnostic tool will be validated by testing the prediction 
capability of the fitted model on the sample A. Additionally, the 
FPCLoR model is analyzed by interpreting the functional 
parameter. All the data processing and analysis were performed 
using the statistical software R project [45], and the fda package 
[46].  

An important observation of the diagnostic tool is that the 
measured amplitude of the transmitted skinfold signals is 
sufficient for accurate analysis. Even though the phase of the 
signal is also acquired by the spectroscopy system, results did 
not improve when taking phase into account. Furthermore, 
there is no need to preprocess or calibrate the amplitude data. 

A. Multi-test analysis: performance and robustness of the 
diagnostic tool   

The functional data obtained from sample B was employed 
for a multi-test analysis. As reported in TABLE I, the functional 
data contains 33 observations. The training sample consisted of 
80% of the functional data and the remaining 20% were 
assigned as a test sample. The observations for each group were 
selected randomly preserving the original proportion of both 
classes within the global group: 54% of the cases are 
normoglycemic and 46% are hyperglycemic. Then, a FPCLoR 
model was fitted from the training sample, and the test sample 
was used to assess the prediction of the model. This process was 
repeated 100 times, and every time the performance of the 
predictive model was evaluated measuring four validation 
parameters: the Area Under ROC Curve (AUC), True Positive 
Rate (TPR), True Negative Rate (TNR) and Correct 
Classification Rate (CCR).  The TPR and TNR, also known as 
sensitivity and specificity, respectively, are commonly used in 
medical diagnostics [47]. The TPR, TNR and CCR values are 
estimated taking into account the confusion matrix, shown in 
TABLE II, as follows: 
 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,      𝑇𝑁𝑅 =  𝑇𝑁

𝑇𝑁+𝐹𝑃
,      𝐶𝐶𝑅 =

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 
 

The Receiver Operating Characteristic (ROC) curve shows 
the inverse relationship between the sensitivity and the 
specificity (sensitivity vs 1-specificity) varying the diagnostic 
criterion (the defined value to assign 𝑦 = 1) of the test, and the 

 
TABLE II 

CONFUSION MATRIX 
 

  True condition 
  Hyperglycemia Normoglycemia 

Predicted 
condition 

Hyperglycemia 
Hyperglycemia 

correctly classified 
(True Positive) 

Normoglycemia 
misclassified 

(False Positive) 

Normoglycemia 
Hyperglycemia 
misclassified 

(False Negative) 

Normoglycemia 
correctly classified 

(True Negative) 
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AUC, which can be estimated by numerical integration 
methods,   provides an effective measure of the diagnostic 
accuracy of the predictive model. TABLE III summarizes the 
results of the multi-test analysis for both approximations: 
regression splines and P-splines (see Fig.4). 

Comparing both cases, we can see that the mean value of 
AUC is slightly higher for the model based on regression 
splines than P-splines. However, for both cases, this value is 
above 0.95 (excellent discrimination capability) and very robust 
with a standard deviation under 0.02. This indicates that the 
FPCLoR model clearly discriminates the inter-condition 
(normoglycemia and hyperglycemia) variability captured by 
the spectroscopic instrument. As shown in TABLE III, the 
predictive capabilities for both cases are very good with a mean 
value of CCR above 80%, being 10% higher for the case of 
regression splines. These results suggest that the FPCLoR 
model obtained from regression splines is the best in terms of 
the prediction capabilities. Nevertheless, as mentioned above, a 
significant advantage of working with the FPCLoR is the 
interpretation of the estimated functional parameter 𝛽(𝑓), 
which offers relevant information to improve the diagnostic 
tool. Here, we can emphasize that the lack of smoothness in 
functional data is reflected in the estimated functional 
parameter. Fig. 5 shows one of the functional parameters 
estimated for both approaches, based on regression splines (left 
panel) and P-splines (right panel). The functional parameter 
estimated from the regression splines exhibits strong oscillation 
versus frequency making its interpretation difficult. 
Considering a noisy function, as the obtained from the 
regression splines, it can be seen in (9) that the frequency 
domain must be divided in several subintervals so that the  
integral of the beta function does not tends to zero, which 
implies an estimated odds ratio close to one.  This minimizes 
the contribution of the frequencies for discrimination and forces 
to consider very short frequency intervals, losing a lot of 
information. On the other hand, a smoother functional 
parameter is obtained by the P-spline approach. Therefore, in 
the next subsection, we will work with the P-splines since the 
resulting functional parameter offers a much better 
interpretation of the FPCLoR model and both provide excellent 
multi-test results.  

 

 
B. Validation and analysis of the diagnostic tool. 

The multi-test analysis showed that the diagnostic tool allows 
for correct diagnosis (detection) of hyperglycemia in animal 
models with excellent and very robust results.  Then, sample A, 
measured at a second experiment, was used to validate the 
consistency of the diagnostic tool to discriminate the condition 
in a new sample. Once again, a FPCLoR model was fitted using 
the 33 mice from sample B as training sample, and sample A 
was the test sample. As reported in TABLE I, sample A consists 
of 20 mice with hyperglycemia and normoglycemia 
proportionately distributed. Functional data from both, sample 
A and sample B were estimated by using P-splines defined on 
17 equally spaced points in the spectrum, as shown in Fig.4 
(bottom). The ROC curve corresponding to the fitted model is 
shown in Fig. 6 with the AUC = 0.95. Testing the prediction 
capabilities of the fitted FPCLoR model on the test sample, we 
obtain a 100% on the new observations correctly classified 
(CCR). These results validate the consistency of the measured 
spectral response for sustained hyperglycemia, and 
consequently, supports the reliability of the spectroscopy 
instrument.  

 

 
TABLE IIII 

SUMMARY OF THE MULTI-TEST ANALYSIS 
 

Parameter 
Regression splines P-splines 

Mean Std. Dev. Mean Std. Dev. 

AUC 0.99 0.01 0.96 0.02 

CCR 0.92 0.08 0.82 0.11 

TPR 0.91 0.18 0.74 0.23 

TNR 0.93 0.11 0.87 0.18 

 

 

 
Fig. 5. Functional parameter 𝛽(𝑡) estimated for FPCLoR on the functional 
data approximated by regression splines and P-splines (left and the right, 
respectively). 
 

 

 

 
Fig. 6. ROC Curve estimated for the FPCLoR model. 
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Finally, the functional parameter for the sustained 
hyperglycemia discrimination, obtained from the FPCLoR 
model, is shown in Fig. 7. As a first observation, we notice that 
the beta function varies from negative to positive values versus 
frequency with a zero crossing at 86 GHz, indicated by a red 
line. The frequency interval is then subdivided into two 
sections, which inversely relate the spectral response and the 
hyperglycemia. To illustrate this, we will interpret the odds 
ratio for both frequency intervals considering a constant 
increase in the measured transmission amplitude of 0.3mV 
(𝐾 = 0.3) for the spectral response. The estimated odds ratio 
for both frequency intervals is presented in (10) and indicate 
that such a constant increment in the transmitted amplitude for 
frequencies under 86 GHz reduce the odds of being diabetic to 
one half, in contrast to frequencies above 86 GHz, where the 
odds is six-fold. In this way, we are able to measure the impact 
of a change in the spectral response on the diagnosis, enabling 
for further development of a quantified diagnostic measure for 
accurate diagnosis in management of diabetes 

𝑂𝑅75−86
0.3 = 0.516 𝑂𝑅86−111

0.3 = 6.52. (10) 

Additionally, to show the potential of the statistical approach, 
we reduce the frequency band, keeping the inflection point of 
the functional parameter (~ 86 GHz) within the band, with the 
lower and upper frequency limit chosen arbitrarily to be 78 GHz 
and 93 GHz, respectively, indicated by green lines in Fig. 7. 
The frequency range was delimited around the frequency in 
which the functional parameter crosses zero since that 
frequency interval provides two regions which relates strongly 
and inversely the spectral response to the hyperglycemia 
condition, enhancing the discrimination. The reduction of the 
frequency range represents a drastic improvement in 
measurement time, if one can assume to use the same frequency 
step. It has also an important impact of instrument complexity. 
However, since less frequencies are considered, less 
information is provided to the regression model, and that may 
affect the discrimination. Therefore, the discrimination of 
sustained hyperglycemia was evaluated on the new 
measurement span (78-93GHz). As before, a FPCLoR model 

was fitted for the resulting set of functional data estimated from 
the reduced spectra corresponding to sample B. Then, the 
prediction capability of the FPCLoR model was tested on 
sample A. For both data sets, functional data were 
approximated by P-splines defined on 11 equally spaced 
spectral points with 𝜆 = 0.528. The validation parameters of 
the fitted FPCLoR model for the selected frequency interval are 
AUC = 1, CCR = 0.95, TPR = 0.90, and TNR = 1. This 
represents an improvement in discrimination as compared to 
TABLE III. This improvement is attributed to the fact that the 
major contribution to the discrimination in our case originates 
from this frequency interval and the remaining frequency 
interval is essentially contributing with potential errors to the 
overall analysis.  

V. CONCLUSIONS 
This article demonstrates the suitability of mm-wave 

spectroscopy in the W-band for hyperglycemia discrimination 
using advanced statistical methods. The article also shows that 
the model developed here is predictive and provides excellent 
results across several independent tests. The results obtained for 
sustained hyperglycemia discrimination and prediction, which 
is strongly related to diabetes condition, were based on spectral 
data from the transmission reflection setup covering the full W-
band.  

The spectral data employed in this work are based on 
transmission amplitude data only, demonstrating that the 
amplitude spectrum contains the major information, leading to 
the conclusion that transmission through the skinfold is 
important. An advantage of this technique is its inherent 
insensitivity to skin reflectivity. Moreover, no previous 
calibration by a reference response from spectrometer has to be 
performed to the measured amplitude prior the statistical 
analysis. These results simplify the overall spectroscopy system 
resulting in a simple transmission type spectrometer with 
limited frequency bandwidth of operation. We also show that 
interpreting the FPCLoR model allows to detect the most 
contributing frequencies for discrimination so that spectral 
interrogation can be optimized by selecting a substantially 
narrower frequency band enough for discrimination.  

A major contribution lies in the advanced statistical 
techniques applied to mm-wave spectroscopy data. We have 
used a set of measured spectra representative of different 
glycemic states in animal models. Normoglycemic mice with 
an expected blood glucose level ~ 100 mg/dl and mice suffering 
sustained hyperglycemia with chronically elevated levels of 
glucose in blood >150 mg/dl, were non-invasively tested by the 
mm-wave instrument. The transmitted amplitude data were 
evaluated applying FPCLoR obtaining a predictive model for 
sustained hyperglycemia, typically associated with diabetes.  
The analysis was carried out combining a non-specific 
approach and FDA. A multi-test analysis, with 100 iterations, 
was performed on a sample of 33 mice (18 normoglycemic 
cases and 15 hyperglycemic cases) studying two different 
approaches for the approximation of the functional data: 
regression splines and P-splines. The mean values for both 
approaches in an area under the ROC curve AUC > 0.95 and in 
a correct classification rate CCR > 80%. The multi-test analysis 

 

 
Fig. 7. Discriminating function 𝛽(𝑡) for sustained hyperglycemia detection 
of the FPCLoR model. The red line indicates a sign change for the function at 
the frequency of 86 GHz. The green lines indicate the frequencies, chosen 
arbitrarily, as the lower and upper limits for a reduced frequency band. 
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shows that discrimination of hyperglycemia was slightly better 
using regression splines, but the lack of smoothness in the 
approximation of the functional data makes it difficult to 
interpret the fitted model. Considering the roughness of the 
approximation for functional data, we were able to reduce the 
spectral frequency range by almost one half, with only a 5% 
penalty, as the CCR decreased from 100% to 95% in the 
validated predictive model. These results indicate the great 
applicability of combining the mm-wave spectroscopy with a 
non-specific approach for new non-invasive diagnostic tools, 
and the potential of the FDA developing spectroscopic 
diagnostic tools.  
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