
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

This is a postprint version of the following published document:

Lindoso, A., Garcia-Valderas, M. & Entrena, L. (2019).
Analysis of neutron sensitivity and data-flow error
detection in ARM microprocessors using NEON SIMD
extensions. Microelectronics Reliability, vol. 100-101,
113346.

DOI: 10.1016/j.microrel.2019.06.038

© 2019 Elsevier Ltd.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/429686486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.microrel.2019.06.038

1

Abstract—This work analyzes the sensitivity to neutrons of

SIMD (Single Instruction Multiple Data) microprocessor
extensions. To this purpose, the ARM SIMD coprocessor
(NEON™) was selected as a case study and neutron radiation
experiments were performed on a commercial device running
NEON software. In addition, we analyze the benefits of using the
NEON coprocessor as a means to efficiently implement data-flow
hardening approaches. Experimental results show that SIMD
extensions have a great potential to improve performance and
reduce the overheads associated to software data-flow hardening.

Index Terms— Neutrons, SIMD, ARM, NEON, fault tolerance,
software hardening.

I. INTRODUCTION
ICROPROCESSORS currently require high-end capabilities
in order to execute complicated and tightly-constrained

software applications. Algorithms are increasing in complexity
and performance needs in all application fields, even in those
that must satisfy high reliability requirements. To cope with the
increasing demand for computational power, microprocessors
gradually include more sophisticated architectures and new
features. Among these features, SIMD (Single Instruction
Multiple Data) coprocessors are a noteworthy extension that
can be found in advanced microprocessors. Examples of these
coprocessors are NEON™ in the case of ARM microprocessors
[1] or SSE [2] in the case of Intel and AMD microprocessors.

An SIMD coprocessor is intended to improve performance
for algorithms that perform the same computations over large
data sets. Examples of this type of algorithms can be found in
digital signal processing or image processing. For instance,
image filtering usually involves multiply-accumulate
operations that must be repeated for every single image pixel.
To this purpose, an SIMD coprocessor contains a parallel
Arithmetic-Logic Unit (ALU) that is able to process multiple
data with a single instruction. Data are stored in a special
register file with wider registers, where each register can
allocate several data, and a special set of SIMD instructions is
used to implement operations on these registers. Notably,
SIMD instructions are similar to regular instructions, so that
they do not add any particular fetching or decoding overhead.

Thus, using a SIMD coprocessor, computations over large data
sets can be significantly accelerated through data parallelism.

In this context, the objective of this work is twofold. On the
one hand, we want to evaluate the susceptibility of the ARM
SIMD coprocessor (NEON) under neutron irradiation. The
ARM architecture is currently one the favourite choices in the
embedded market and it is also being used in high-reliability
sectors, such as automotive [3-4] or medical [5-6]. In previous
work, we have evaluated the sensitivity of NEON to low-energy
protons [7]. In this work we analyse the behaviour of NEON
under neutrons, which have more interest for ground
applications. Radiation experiments were performed at Los
Alamos National Laboratory’s (LANL) Los Alamos Neutron
Science Center (LANSCE).

On the other hand, we want to study the benefits of using the
NEON coprocessor as a means to implement data-flow
hardening techniques. Data-flow hardening techniques
typically rely on the replication of variables in the sofware [8].
Operations are repeated for each data replica and then the
results are compared to detect or correct errors. Repeating
computations entails large overheads in performance and
memory usage. The capability of a SIMD coprocessor to
concurrently execute instructions on multiple data can be
exploited to reduce these overheads. To this purpose, data can
be replicated in the NEON registers, so that the processing of
the replicas can be executed in parallel.

This paper is organized as follows. Section II introduces the
SIMD extensions. Section III presents a novel SIMD
application to data-flow error detection. Section IV presents the
experimental results and finally Section V summarizes the
conclusion of this work.

II. SIMD EXTENSIONS
SIMD extensions provide an efficient way of performing the

same operation over a data set. The conventional serial
microprocessor architectures are not efficient for this type of
computations. Assuming the data needed by a computation is in
the register file, each instruction must be fetched, decoded,
executed and finally store the result in a register or in memory.
If the next instruction is computing the very same operation but
with different data, the process must be repeated. Instead, in a

Analysis of neutron sensitivity and data-flow
error detection in ARM microprocessors using

NEON SIMD extensions
A. Lindoso, M. Garcia-Valderas, L. Entrena

M

2

SIMD processor a single instruction can perform an operation
over several data in parallel. Results are also stored in parallel
register files, so that following SIMD instructions can work
seamlessly on the parallel data set.

Many advanced microprocessors include SIMD extensions
in their architectures, which are typically implemented as
coprocessors. These coprocessors are able to perform the very
same operation over a data set of configurable size with a single
instruction. They have a specific register file that contains wider
registers. Taking as an example the ARM architecture (32 bits),
its SIMD coprocessor (NEON) includes 128-bit registers [9].
These registers can store a vector of data and support several
data types. When the data type is small, that NEON vector
contains a larger amount of elements. For instance when 32 bit
data is used, the 128 bit NEON vector can allocate 4 elements.
If data size is reduced to 8 bits, the number of elements per
vector is increased to 16. The elements of SIMD vectors are
named lanes.

When an operation is performed over a NEON vector, this
operation usually involves the utilization of all the elements or
lanes of the vector. For instance, addition of NEON vectors is
performed with the VADD assembly instruction. Following is
a complete example of the use of this instruction:

VADD.I32 D0, D0, D1

When this instruction is executed, all the lanes of NEON

vector D0 are added with the corresponding lanes of NEON
vector D1 and stored back in vector D0. Carry is not considered
between lanes. In this example, the selected data type is 32 bit
integer (I32), meaning that with one NEON instruction four
additions of 32 bit integers are performed.

SIMD coprocessors require loading data into their register
file in an efficient manner. To this purpose, specific SIMD
instructions and data type qualifiers are provided to support
load, store and move operations with SIMD coprocessor
registers. Depending on the data structure and the used
algorithm, the programmer must devise an optimal strategy to
arrange data in the most efficient way for the processing.

NEON programming can be done in three different ways:
using automatic compilation options, using specific C
functions, called intrinsics, or directly coding in assembly using
NEON assembly instructions. To use automatic compilation,
the code must be adapted so that the compiler is able to detect
code structures that are suitable for implementation with NEON
instructions. The generated code must be checked to verify if
the compiler has been effective in the NEON usage.

Assembly coding leads to the best results in terms of
performance, but it also involves the highest development
effort. Intrinsics are a good trade-off between performance
improvement and design effort. Intrinsics make possible to use
the NEON instruction set in a very easy way, because they free
the programmer from low-level decisions such as register
mapping while detailed NEON operations can be specified.
With intrinsics, programmers can have low-level control of the
entire NEON processing including the load of NEON vectors,
the arrangement of NEON operations and the storing of NEON

results back.

III. DATA-FLOW ERROR DETECTION USING SIMD
Data-flow software hardening techniques usually involve a

significant performance decrease [10]. These techniques are
generally based on duplicating all data and operations. Then,
for every computation, the affected variables and their copies
are compared. If a discrepancy is detected, a data error is
triggered [8]. This technique has two clear disadvantages: it
increases the memory occupation, due to duplicated data, and
decreases the performance. The decrease in performance is due
to the duplicated data flow, which requires duplicating the
processing and comparing the results. To reduce the
performance penalty, some authors propose using a tunable
number of comparisons or a configurable reliability level by
selecting a subset of variables to be protected by duplication
[11].

SIMD is intended to accelerate repeated computations and
this capability can be exploited for duplicated data. Data
duplication is based on storing each variable twice and
performing the same operations with each copy of the variables.
As the operations performed on the duplicated variables are the
same, they are perfectly suited to be implemented with SIMD
instructions. To this purpose, duplicated variables are stored in
the SIMD register file and then processed with SIMD
instructions. If the SIMD coprocessor is used efficiently, the
decrease in performance for the data-flow duplication can be
overcome.

The technique we are proposing takes advantage of a part of
the microprocessor that is not always in use. Many applications
are not suitable for parallelization and cannot take advantage of
the SIMD coprocessor. In this case, the proposed technique can
be implemented with minimal overhead. In the case of software
that uses the SIMD coprocessor, only a subset of functions are
usually affected. The proposed technique can still be used at the
expense of proportionally reducing the speed-up achieved by
the SIMD accelerated functions.

Loading data into the SIMD register file and retrieving
results from it are performance critical processes that must be
carefully implemented. There are several choices to manage the
loading of NEON vectors that can ease the process. To
maximize the SIMD parallel processing capacity, NEON
vectors must use all lanes and load/store must be as less
frequent as possible. That typically requires rearranging
original data and copies in a smart way. The most efficient load
for a NEON vector consist in directly accessing an array and
store array elements in different lanes of the NEON vector. In
our implementations we have merged the original data and the
duplicated data in one single array to enable an optimal load of
NEON vectors.

Note that the proposed technique cannot accelerate the
comparison of original data and duplicated data. SIMD
instructions are intended for parallel processing without
conditional evaluation that could decrease the performance
speedup.

3

IV. EXPERIMENTAL RESULTS
To evaluate the neutron sensitivity of NEON-based

applications, a neutron radiation campaign was performed in
September of 2017 at Los Alamos Neutron Science Center
(LANSCE), Los Alamos National Laboratory (LANL).
LANSCE facility has a white neutron source which emulates
the energy spectrum of the atmospheric neutron flux. In the
following subsections we describe the experimental setup and
the results obtained in this campaign.

A. Experimental setup
For the experiments we have used eight Zybo boards [12],

each one containing a XC7Z010 Zynq All Programmable
System-on-Chip (APSoC) device from Xilinx [13]. Xilinx
Zynq technology integrates hard-core ARM processors within
an SRAM-based FPGA. The selected device contains a dual
core ARM CORTEX™-A9 with SIMD capabilities, i.e. one
NEON™ coprocessor per core. For the experiments, only one
ARM core was used at the nominal 650 MHz clock frequency.
The programmable logic was not used in this work.

In order to maximize the number of events, all the eight
boards were exposed to the beam during the complete duration
of the radiation campaign. The campaign took six days.

Two external hosts located outside the beam were used to
collect and classify the observed errors and to restart the
Devices Under Test (DUTs) when needed. Each external host
controlled four Zybo boards, each through a separated USB
connection. To restart a device when an error was observed, the
external hosts control a set of relays that switch off the power
and then switch it on again. The external monitors also include
watchdog timers that trigger the restart of a DUT when it does
not respond for some predefined amount of time, which
indicates that the processor is lost.

The experiments were performed with several versions of a
matrix multiplication benchmark: conventional matrix
multiplication code (Mmult), matrix multiplication using
NEON coprocessor (Mmult_N) and matrix multiplication with
hardened data-flow using NEON coprocessor (Mmult_DN).
The data-flow hardening was implemented using the technique
described in section III in which the NEON coprocessor
processes duplicated data with NEON instructions. All
benchmarks used 20x20 data arrays of 32 bit input data.

Table I shows the number of cycles and execution time for
all the benchmarks. We have also included in the table the case
of the hardened data-flow matrix multiplication benchmark
(Mmult_D) implemented with conventional instructions
instead of the NEON coprocessor. This benchmark was not
irradiated and it is only included here for the sake of
performance comparison.

The data in Table I shows that the use of NEON improves
the performance by 2.4 times with respect to the conventional
implementation. If the data-flow is duplicated using NEON
(Mmult_DN), the performance decreases, but it is still 1.67
times better than the basic Mmult implementation. On the
contrary, the duplication of the data-flow in a conventional
manner (Mmult_D) introduces a high performance penalty
(3.63 times w.r.t. Mmult). This is due to the duplication and

comparison of the computations and to the need to reduce
compilation optimization in order not to destroy the duplicated
data-flow software structure.

A. Experimental Results
Tables II, III and IV summarize the results of the

experiments. They show the observed errors for each of the
tested benchmarks, Mmult, Mmult_N, and Mmult_DN,
respectively. Error categories reported in the tables are the
following:
 Hang errors: The microprocessor cannot continue with

normal execution of the benchmark any longer and
needs external intervention. An error has provoked that
the microprocessor is stuck at an infinite loop or has
produced an abnormal termination. Hang errors are
detected by the watchdog in the external host. After
collecting and storing the error, the external host restarts
the DUT.

 Silent Data Corruption (SDC) errors: After every
iteration of the executed algorithm, the result is
compared with a golden result. SDC errors are detected
when there is any discrepancy between the actual and the
golden result. SDC errors are detected by the software
and reported to the external host for recording and
classification.

 Communication error (Comm.): The microprocessor
cannot perform communication in a proper way with the
external host. Although this is not an indication of a
microprocessor error, the DUT must be restarted to be
able to report its state. Tables II, III and IV show that
this type of error represents a negligible fraction of the
observed errors.

 Detected Data error (Det.): This category detects data
errors and it is only available for the NMmult_DN
benchmark (Table IV), which is the only benchmark that
implements data-flow hardening.

The comparison of the results in Tables II and III show that
the Mmult conventional version (Mmult) and the NEON Mmult
version (Mmult_N) present approximatively the same error
distribution (see column 3, errors/total errors).

Table IV shows the error distribution for the NEON-based
data-flow hardening technique. Simply using duplicated data in
the NEON coprocessor, 30% of the observed errors were
detected. This is a reasonable result taking into account that
only the data-flow was hardened. For a complete solution, the
proposed techniques must be combined with other hardening
techniques [15], particularly for the control-flow, which usually
accounts for the majority of errors in microprocessors [14].

TABLE I: PERFORMANCE

Benchmark #cycles Execution time (µs)

Mmult 50,442 77.60
Mmult_N 20,877 32.12
Mmult_DN 29,979 46.12
Mmult_D 183,190 281.83

4

There are solutions for control-flow error detection which can
be implemented with low performance penalty [15]. However,
data-flow hardening is usually implemented in software at the
expense of severely reducing performance. The proposed
NEON-based approach can significantly alleviate this
performance penalty.

Experimental results also show that Hang errors are much
less frequent than SDC errors for all Mmult benchmarks. This
result corresponds to the characteristics of the matrix
multiplication algorithm, because it is intensive in data. Thus,
it can be expected that most errors show up as SDC errors.

Table V reports the fluence and the cross section for all

benchmarks. Mmult_N increases the cross section w.r.t. Mmult
by a factor of 1.6. However, this increase is offset by the
performance improvement (2.4 times). This result is in
agreement with previously reported results using low-energy
protons [7]. The smaller cross-section of Mmult is because it
uses a small amount of registers. If the ARM register file is fully
used, the cross section is no better than that of Mmult_N (the
details of this discussion will be provided in the final paper).
The error rate increases for the Mmult_DN benchmark because
it contains duplicated variables and uses more resources. Thus,
the cross section is higher (5.02ꞏ10-9 cm2) taking into account
all errors. However, it reduces to 3.84ꞏ10-9 cm2 if only the
undetected errors are considered.

V. CONCLUSIONS AND FUTURE WORK
This work explores the reliability of SIMD extensions under

neutron irradiation. In particular we have used the NEON

coprocessor, which is the SIMD extension of the ARM
architecture. We have also proposed a new approach to
implement data-flow hardening that makes an effective use of
the NEON coprocessor.

Experimental results show that the use of NEON can provide
a good balance between performance and cross-section. In
addition, it can be used to implement data-flow hardening
techniques in an effective way to significantly reduce the
performance penalty caused by these techniques. Future work
is intended to combine the proposed approach with other
hardening techniques towards the development of complete
microprocessor hardening solutions.

Additional experimental results with more benchmarks will
be provided in the final paper.

REFERENCES
[1] ARM Inc, “ARM architecture reference manual”, 2000.
[2] Intel Inc., “Intel® 64 and IA-32 Architectures, Software Developer’s

Manual, Volume 1: Basic Architecture”, 2016.
[3] X. Iturbe, B. Venu; J. Jagst; E. Ozer; P. Harrod; C. Turner; J. Penton,

“Addressing Functional Safety Challenges in Autonomous Vehicles with
the Arm Triple Core Lock-Step (TCLS) Architecture”, IEEE Design &
Test, : DOI 10.1109/MDAT.2018.2799799.

[4] I. Stoychev, P. Wehner, J. Rettkowski, T. Kalb, D. Göhringer, J. Oehm,
“Sensor data fusion with MPSoCSim in the context of electric vehicle
charging stations”, IEEE Nordic Circuits and Systems Conference
(NORCAS), pp 1-6, 2016.

[5] C. Wang, J. Zhou, L. Liao, J. Lan, J. Luo, X. Liu, M. Je, “Near-Threshold
Energy- and Area-Efficient Reconfigurable DWPT/DWT Processor for
Healthcare-Monitoring Applications”, IEEE Transactions on Circuits and
Systems II: Express Briefs, Vol: 62, Issue: 1, pp: 70 – 74, 2015.

[6] Y. Fu; F. Zhang; X. Ma; Q. Meng, “Development of a CPM Machine for
Injured Fingers”, 2005 IEEE Engineering in Medicine and Biology 27th
Annual Conference, pp: 5017 – 5020, 2005.

[7] A. Lindoso; M. García-Valderas; L. Entrena; Y. Morilla; P. Martín-
Holgado, “Evaluation of the suitability of NEON SIMD microprocessor
extensions under proton irradiation”, IEEE Transactions on Nuclear
Science, DOI:10.1109/TNS.2018.2823540, 2018.

[8] M. Rebaudengo, M. S. Reorda, M. Torchiano, M. Violante, “Soft-error
detection through software fault-tolerance techniques,” Proc. Intl. Symp.
on Defect and Fault Tolerance in VLSI Systems, pp. 210–218, 1999.

[9] ARM Inc., “NEON programmer’s guide”, 2013.
[10] M. Nicolaidis, “Soft errors in modern electronic systems”, Springer New

York, 2011.
[11] A. Benso, S. Chiusano, P. Prinetto, L. Tagliaferri, “A C/C++ source-to-

source compiler for dependable applications”, Proceeding International
Conference on Dependable Systems and Networks. DSN 2000, pp: 71 –
78, 2000.

[12] Digilent Inc, “Zybo reference manual”, 2014.
[13] Xilinx Inc.: “Zynq-7000 All Programmable SoC: Technical Reference

Manual”, UG585, 2016.
[14] L. Parra, A. Lindoso, M. Portela-Garcia, L. Entrena, B. Du, M. Sonza

Reorda, L. Sterpone, “A New Hybrid Nonintrusive Error-Detection
Technique Using Dual Control-Flow Monitoring”, IEEE Transactions on
Nuclear Science, vol. 61, no. 6, pp. 3236-3243, Dec. 2014.

[15] A. Lindoso, L. Entrena, M. García-Valderas, L. Parra. "A hybrid fault-
tolerant LEON3 soft core processor implemented in low-end SRAM
FPGA". IEEE Transactions on Nuclear Science, vol. 64, no. 1, pp. 374-
381, Jan. 2017.

TABLE II: MMULT experimental results

Error type Observed errors Errors/total errors

Hang 20 10.64%
SDC 168 89.36%
Comm. 0 0.00%
Total 188 100%

TABLE III: MMULT_N experimental results

Error type Observed errors Errors/total errors

Hang 39 16.32%
SDC 192 80.33%
Comm. 8 3.35%
Total 239 100%

TABLE IV: MMULT_DN experimental results

Error type Observed errors Errors/total errors

Hang 17 6.16%
SDC 172 62.32%
Comm. 4 1.45%
Det. 83 30.07%
Total 276 100%

TABLE IV: CROSS SECTION

Benchmark Fluence (n/sꞏcm2) Cross section (cm2)

Mmult 7.15ꞏ1010 2.63ꞏ10-9

Mmult_N 5.58ꞏ1010 4.28ꞏ10-9
Mmult_DN 5.02ꞏ1010 5.50ꞏ10-9 / 3.84ꞏ10-9

