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Abstract—This work analyzes the sensitivity to neutrons of 

SIMD (Single Instruction Multiple Data) microprocessor 
extensions. To this purpose, the ARM SIMD coprocessor 
(NEON™) was selected as a case study and neutron radiation 
experiments were performed on a commercial device running 
NEON software. In addition, we analyze the benefits of using the 
NEON coprocessor as a means to efficiently implement data-flow 
hardening approaches. Experimental results show that SIMD 
extensions have a great potential to improve performance and 
reduce the overheads associated to software data-flow hardening.  
 

Index Terms— Neutrons, SIMD, ARM, NEON, fault tolerance, 
software hardening. 

I. INTRODUCTION 
ICROPROCESSORS currently require high-end capabilities 
in order to execute complicated and tightly-constrained 

software applications. Algorithms are increasing in complexity 
and performance needs in all application fields, even in those 
that must satisfy high reliability requirements. To cope with the 
increasing demand for computational power, microprocessors 
gradually include more sophisticated architectures and new 
features. Among these features, SIMD (Single Instruction 
Multiple Data) coprocessors are a noteworthy extension that 
can be found in advanced microprocessors. Examples of these 
coprocessors are NEON™ in the case of ARM microprocessors 
[1] or SSE [2] in the case of Intel and AMD microprocessors.  

An SIMD coprocessor is intended to improve performance 
for algorithms that perform the same computations over large 
data sets. Examples of this type of algorithms can be found in 
digital signal processing or image processing. For instance, 
image filtering usually involves multiply-accumulate 
operations that must be repeated for every single image pixel. 
To this purpose, an SIMD coprocessor contains a parallel 
Arithmetic-Logic Unit (ALU) that is able to process multiple 
data with a single instruction. Data are stored in a special 
register file with wider registers, where each register can 
allocate several data, and a special set of SIMD instructions is 
used to implement operations on these registers. Notably, 
SIMD instructions are similar to regular instructions, so that 
they do not add any particular fetching or decoding overhead. 

 
 
 
 

Thus, using a SIMD coprocessor, computations over large data 
sets can be significantly accelerated through data parallelism. 

In this context, the objective of this work is twofold. On the 
one hand, we want to evaluate the susceptibility of the ARM 
SIMD coprocessor (NEON) under neutron irradiation. The 
ARM architecture is currently one the favourite choices in the 
embedded market and it is also being used in high-reliability 
sectors, such as automotive [3-4] or medical [5-6]. In previous 
work, we have evaluated the sensitivity of NEON to low-energy 
protons [7]. In this work we analyse the behaviour of NEON 
under neutrons, which have more interest for ground 
applications. Radiation experiments were performed at Los 
Alamos National Laboratory’s (LANL) Los Alamos Neutron 
Science Center (LANSCE). 

On the other hand, we want to study the benefits of using the 
NEON coprocessor as a means to implement data-flow 
hardening techniques. Data-flow hardening techniques 
typically rely on the replication of variables in the sofware [8]. 
Operations are repeated for each data replica and then the 
results are compared to detect or correct errors. Repeating 
computations entails large overheads in performance and 
memory usage. The capability of a SIMD coprocessor to 
concurrently execute instructions on multiple data can be 
exploited to reduce these overheads. To this purpose, data can 
be replicated in the NEON registers, so that the processing of 
the replicas can be executed in parallel.  

This paper is organized as follows. Section II introduces the 
SIMD extensions. Section III presents a novel SIMD 
application to data-flow error detection. Section IV presents the 
experimental results and finally Section V summarizes the 
conclusion of this work. 

II. SIMD EXTENSIONS 
SIMD extensions provide an efficient way of performing the 

same operation over a data set. The conventional serial 
microprocessor architectures are not efficient for this type of 
computations. Assuming the data needed by a computation is in 
the register file, each instruction must be fetched, decoded, 
executed and finally store the result in a register or in memory. 
If the next instruction is computing the very same operation but 
with different data, the process must be repeated. Instead, in a 
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SIMD processor a single instruction can perform an operation 
over several data in parallel. Results are also stored in parallel 
register files, so that following SIMD instructions can work 
seamlessly on the parallel data set. 

Many advanced microprocessors include SIMD extensions 
in their architectures, which are typically implemented as 
coprocessors. These coprocessors are able to perform the very 
same operation over a data set of configurable size with a single 
instruction. They have a specific register file that contains wider 
registers. Taking as an example the ARM architecture (32 bits), 
its SIMD coprocessor (NEON) includes 128-bit registers [9]. 
These registers can store a vector of data and support several 
data types. When the data type is small, that NEON vector 
contains a larger amount of elements. For instance when 32 bit 
data is used, the 128 bit NEON vector can allocate 4 elements. 
If data size is reduced to 8 bits, the number of elements per 
vector is increased to 16. The elements of SIMD vectors are 
named lanes. 

When an operation is performed over a NEON vector, this 
operation usually involves the utilization of all the elements or 
lanes of the vector. For instance, addition of NEON vectors is 
performed with the VADD assembly instruction. Following is 
a complete example of the use of this instruction: 

 
VADD.I32 D0, D0, D1 
 
When this instruction is executed, all the lanes of NEON 

vector D0 are added with the corresponding lanes of NEON 
vector D1 and stored back in vector D0. Carry is not considered 
between lanes. In this example, the selected data type is 32 bit 
integer (I32), meaning that with one NEON instruction four 
additions of 32 bit integers are performed. 

SIMD coprocessors require loading data into their register 
file in an efficient manner. To this purpose, specific SIMD 
instructions and data type qualifiers are provided to support 
load, store and move operations with SIMD coprocessor 
registers. Depending on the data structure and the used 
algorithm, the programmer must devise an optimal strategy to 
arrange data in the most efficient way for the processing. 

NEON programming can be done in three different ways: 
using automatic compilation options, using specific C 
functions, called intrinsics, or directly coding in assembly using 
NEON assembly instructions. To use automatic compilation, 
the code must be adapted so that the compiler is able to detect 
code structures that are suitable for implementation with NEON 
instructions. The generated code must be checked to verify if 
the compiler has been effective in the NEON usage.  

Assembly coding leads to the best results in terms of 
performance, but it also involves the highest development 
effort. Intrinsics are a good trade-off between performance 
improvement and design effort. Intrinsics make possible to use 
the NEON instruction set in a very easy way, because they free 
the programmer from low-level decisions such as register 
mapping while detailed NEON operations can be specified. 
With intrinsics, programmers can have low-level control of the 
entire NEON processing including the load of NEON vectors, 
the arrangement of NEON operations and the storing of NEON 

results back. 

III. DATA-FLOW ERROR DETECTION USING SIMD 
Data-flow software hardening techniques usually involve a 

significant performance decrease [10]. These techniques are 
generally based on duplicating all data and operations. Then, 
for every computation, the affected variables and their copies 
are compared. If a discrepancy is detected, a data error is 
triggered [8]. This technique has two clear disadvantages: it 
increases the memory occupation, due to duplicated data, and 
decreases the performance. The decrease in performance is due 
to the duplicated data flow, which requires duplicating the 
processing and comparing the results. To reduce the 
performance penalty, some authors propose using a tunable 
number of comparisons or a configurable reliability level by 
selecting a subset of variables to be protected by duplication 
[11]. 

SIMD is intended to accelerate repeated computations and 
this capability can be exploited for duplicated data. Data 
duplication is based on storing each variable twice and 
performing the same operations with each copy of the variables. 
As the operations performed on the duplicated variables are the 
same, they are perfectly suited to be implemented with SIMD 
instructions. To this purpose, duplicated variables are stored in 
the SIMD register file and then processed with SIMD 
instructions. If the SIMD coprocessor is used efficiently, the 
decrease in performance for the data-flow duplication can be 
overcome.  

The technique we are proposing takes advantage of a part of 
the microprocessor that is not always in use. Many applications 
are not suitable for parallelization and cannot take advantage of 
the SIMD coprocessor. In this case, the proposed technique can 
be implemented with minimal overhead. In the case of software 
that uses the SIMD coprocessor, only a subset of functions are 
usually affected. The proposed technique can still be used at the 
expense of proportionally reducing the speed-up achieved by 
the SIMD accelerated functions. 

Loading data into the SIMD register file and retrieving 
results from it are performance critical processes that must be 
carefully implemented. There are several choices to manage the 
loading of NEON vectors that can ease the process. To 
maximize the SIMD parallel processing capacity, NEON 
vectors must use all lanes and load/store must be as less 
frequent as possible. That typically requires rearranging 
original data and copies in a smart way. The most efficient load 
for a NEON vector consist in directly accessing an array and 
store array elements in different lanes of the NEON vector. In 
our implementations we have merged the original data and the 
duplicated data in one single array to enable an optimal load of 
NEON vectors. 

Note that the proposed technique cannot accelerate the 
comparison of original data and duplicated data. SIMD 
instructions are intended for parallel processing without 
conditional evaluation that could decrease the performance 
speedup. 
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IV. EXPERIMENTAL RESULTS 
To evaluate the neutron sensitivity of NEON-based 

applications, a neutron radiation campaign was performed in 
September of 2017 at Los Alamos Neutron Science Center 
(LANSCE), Los Alamos National Laboratory (LANL). 
LANSCE facility has a white neutron source which emulates 
the energy spectrum of the atmospheric neutron flux. In the 
following subsections we describe the experimental setup and 
the results obtained in this campaign. 

A. Experimental setup 
For the experiments we have used eight Zybo boards [12], 

each one containing a XC7Z010 Zynq All Programmable 
System-on-Chip (APSoC) device from Xilinx [13]. Xilinx 
Zynq technology integrates hard-core ARM processors within 
an SRAM-based FPGA. The selected device contains a dual 
core ARM CORTEX™-A9 with SIMD capabilities, i.e. one 
NEON™ coprocessor per core. For the experiments, only one 
ARM core was used at the nominal 650 MHz clock frequency. 
The programmable logic was not used in this work. 

In order to maximize the number of events, all the eight 
boards were exposed to the beam during the complete duration 
of the radiation campaign. The campaign took six days.  

Two external hosts located outside the beam were used to 
collect and classify the observed errors and to restart the 
Devices Under Test (DUTs) when needed. Each external host 
controlled four Zybo boards, each through a separated USB 
connection. To restart a device when an error was observed, the 
external hosts control a set of relays that switch off the power 
and then switch it on again. The external monitors also include 
watchdog timers that trigger the restart of a DUT when it does 
not respond for some predefined amount of time, which 
indicates that the processor is lost.  

The experiments were performed with several versions of a 
matrix multiplication benchmark: conventional matrix 
multiplication code (Mmult), matrix multiplication using 
NEON coprocessor (Mmult_N) and matrix multiplication with 
hardened data-flow using NEON coprocessor (Mmult_DN). 
The data-flow hardening was implemented using the technique 
described in section III in which the NEON coprocessor 
processes duplicated data with NEON instructions. All 
benchmarks used 20x20 data arrays of 32 bit input data.  

Table I shows the number of cycles and execution time for 
all the benchmarks. We have also included in the table the case 
of the hardened data-flow matrix multiplication benchmark 
(Mmult_D) implemented with conventional instructions 
instead of the NEON coprocessor. This benchmark was not 
irradiated and it is only included here for the sake of 
performance comparison. 

The data in Table I shows that the use of NEON improves 
the performance by 2.4 times with respect to the conventional 
implementation. If the data-flow is duplicated using NEON 
(Mmult_DN), the performance decreases, but it is still 1.67 
times better than the basic Mmult implementation. On the 
contrary, the duplication of the data-flow in a conventional 
manner (Mmult_D) introduces a high performance penalty 
(3.63 times w.r.t. Mmult). This is due to the duplication and 

comparison of the computations and to the need to reduce 
compilation optimization in order not to destroy the duplicated 
data-flow software structure. 

 
A. Experimental Results 
Tables II, III and IV summarize the results of the 

experiments. They show the observed errors for each of the 
tested benchmarks, Mmult, Mmult_N, and Mmult_DN, 
respectively. Error categories reported in the tables are the 
following: 
 Hang errors: The microprocessor cannot continue with 

normal execution of the benchmark any longer and 
needs external intervention. An error has provoked that 
the microprocessor is stuck at an infinite loop or has 
produced an abnormal termination. Hang errors are 
detected by the watchdog in the external host. After 
collecting and storing the error, the external host restarts 
the DUT.  

 Silent Data Corruption (SDC) errors: After every 
iteration of the executed algorithm, the result is 
compared with a golden result. SDC errors are detected 
when there is any discrepancy between the actual and the 
golden result. SDC errors are detected by the software 
and reported to the external host for recording and 
classification. 

 Communication error (Comm.): The microprocessor 
cannot perform communication in a proper way with the 
external host. Although this is not an indication of a 
microprocessor error, the DUT must be restarted to be 
able to report its state. Tables II, III and IV show that 
this type of error represents a negligible fraction of the 
observed errors. 

 Detected Data error (Det.): This category detects data 
errors and it is only available for the NMmult_DN 
benchmark (Table IV), which is the only benchmark that 
implements data-flow hardening. 

The comparison of the results in Tables II and III show that 
the Mmult conventional version (Mmult) and the NEON Mmult 
version (Mmult_N) present approximatively the same error 
distribution (see column 3, errors/total errors).  

Table IV shows the error distribution for the NEON-based 
data-flow hardening technique. Simply using duplicated data in 
the NEON coprocessor, 30% of the observed errors were 
detected. This is a reasonable result taking into account that 
only the data-flow was hardened. For a complete solution, the 
proposed techniques must be combined with other hardening 
techniques [15], particularly for the control-flow, which usually 
accounts for the majority of errors in microprocessors [14]. 

TABLE I: PERFORMANCE 

Benchmark #cycles Execution time (µs) 

Mmult 50,442 77.60 
Mmult_N 20,877 32.12 
Mmult_DN 29,979 46.12 
Mmult_D 183,190 281.83 
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There are solutions for control-flow error detection which can 
be implemented with low performance penalty [15]. However, 
data-flow hardening is usually implemented in software at the 
expense of severely reducing performance. The proposed 
NEON-based approach can significantly alleviate this 
performance penalty. 

Experimental results also show that Hang errors are much 
less frequent than SDC errors for all Mmult benchmarks. This 
result corresponds to the characteristics of the matrix 
multiplication algorithm, because it is intensive in data. Thus, 
it can be expected that most errors show up as SDC errors.  

 

 

 
Table V reports the fluence and the cross section for all 

benchmarks. Mmult_N increases the cross section w.r.t. Mmult 
by a factor of 1.6. However, this increase is offset by the 
performance improvement (2.4 times). This result is in 
agreement with previously reported results using low-energy 
protons [7]. The smaller cross-section of Mmult is because it 
uses a small amount of registers. If the ARM register file is fully 
used, the cross section is no better than that of Mmult_N (the 
details of this discussion will be provided in the final paper). 
The error rate increases for the Mmult_DN benchmark because 
it contains duplicated variables and uses more resources. Thus, 
the cross section is higher (5.02ꞏ10-9 cm2) taking into account 
all errors. However, it reduces to 3.84ꞏ10-9 cm2 if only the 
undetected errors are considered. 

V. CONCLUSIONS AND FUTURE WORK 
This work explores the reliability of SIMD extensions under 

neutron irradiation. In particular we have used the NEON 

coprocessor, which is the SIMD extension of the ARM 
architecture. We have also proposed a new approach to 
implement data-flow hardening that makes an effective use of 
the NEON coprocessor.  

Experimental results show that the use of NEON can provide 
a good balance between performance and cross-section. In 
addition, it can be used to implement data-flow hardening 
techniques in an effective way to significantly reduce the 
performance penalty caused by these techniques. Future work 
is intended to combine the proposed approach with other 
hardening techniques towards the development of complete 
microprocessor hardening solutions. 

Additional experimental results with more benchmarks will 
be provided in the final paper. 
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TABLE II: MMULT experimental results  

Error type Observed errors Errors/total errors 

Hang 20 10.64% 
SDC 168 89.36% 
Comm. 0 0.00% 
Total 188 100% 

TABLE III: MMULT_N experimental results  

Error type Observed errors Errors/total errors 

Hang 39 16.32% 
SDC 192 80.33% 
Comm. 8 3.35% 
Total 239 100% 

TABLE IV: MMULT_DN experimental results 

Error type Observed errors Errors/total errors 

Hang 17 6.16% 
SDC 172 62.32% 
Comm. 4 1.45% 
Det. 83 30.07% 
Total 276 100% 

 

TABLE IV: CROSS SECTION 

Benchmark Fluence (n/sꞏcm2) Cross section (cm2) 

Mmult 7.15ꞏ1010 2.63ꞏ10-9

Mmult_N 5.58ꞏ1010 4.28ꞏ10-9 
Mmult_DN 5.02ꞏ1010 5.50ꞏ10-9 / 3.84ꞏ10-9 




