
This is a postprint version of the following published document:

Lindoso, A., Garcia-Valderas, M., Entrena, L., Morilla,
Y. & Martin-Holgado, P. (2018). Evaluation of the
Suitability of NEON SIMD Microprocessor Extensions
Under Proton Irradiation. IEEE Transactions on
Nuclear Science, 65(8), pp. 1835–1842.

DOI: 10.1109/tns.2018.2823540

 © 2018, IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

https://doi.org/10.1109/tns.2018.2823540

Abstract—This work analyzes the suitability of SIMD (Single
Instruction Multiple Data) extensions of current microprocessors
under radiation environments. SIMD extensions are intended for
software acceleration, focusing mostly in applications that require
high computational effort, which are common in many fields such
as computer vision. SIMD extensions use a dedicated coprocessor
that makes possible packing several instructions in one single
extended instruction. Applications that require high performance
could benefit from the use of SIMD coprocessors, but their
reliability needs to be studied. In this work NEON™, the SIMD
coprocessor of ARM microprocessors, has been selected as a case
study to explore the behavior of SIMD extensions under radiation.
Radiation experiments of ARM CORTEX™-A9 microprocessor
have been accomplished with the objective of determining how the
use of this kind of coprocessors can affect the system reliability.

Index Terms—SIMD, Fault tolerance, software hardening,
ARM, NEON.

I. INTRODUCTION

odern complex microprocessors provide SIMD (Single
Instruction Multiple Data) extensions that can improve

computation performance through data parallelism. SIMD
makes vectorization possible: one single operation can be
executed at the same time for several data. SIMD achieves a
performance speed-up that is needed for high computational
load applications. Computer vision, digital signal processing
and any application that requires performing the very same
operation over large amounts of data can achieve significant
performance benefits from the use of SIMD extensions.

The use of SIMD architectures dates back to the time of
vector supercomputers of the early 70s which could operate on
a vector of data with a single instruction. Later, it reached the
desktop computer as a means to support the increasing demand
for high-performance multimedia processing. Currently, many
widely-used microprocessors have upgraded their architectures
to include specific SIMD extensions, such as NEON™ in the
case of ARM microprocessors [1] or SSE [2] in the case of Intel
and AMD microprocessors. These extensions consist in specific
coprocessors that allow for vectorization.

Manuscript received September 29, 2017. This work has been supported in
part by the Spanish Ministry of Economy and Competitiveness under projects
ESP2015-68245-C4-1-P and ESP2015-68245-C4-4-P.

A. Lindoso, M. Garcia-Valderas and L. Entrena are with the Department of
Electronic Technology, Universidad Carlos III de Madrid, Avda. Universidad

The computational requirements for space missions are
steadily increasing. Innovative space instruments generate large
data volumes that need to be processed on board and the results
may even be required to be used in real time for autonomous
mission control operations. As the processing requirements
often exceed the capabilities of space qualified processors,
high-performance alternatives need to be considered, such as
Digital Signal Processors (DSPs), FPGAs, multi-core
processors and Graphics Processing Units (GPUs) [3], [4].
Among these alternatives, there is special interest in
microprocessors endowed with a SIMD coprocessor in order to
obtain a performance increase for more complex and fast
sensors and circuits connected to the microprocessor.

Missions involving image processing in an autonomous way,
such as RAVEN of NASA [5], are expected to become usual in
the near future. NASA and ESA are developing new fault-
tolerant multi-core processors in order to increase their
computational power and at the same time cope with errors due
to the high radiation environment [6], [7]. As a matter of fact,
the use of commercial processors is being considered in space
missions in order to benefit from their higher performance in
comparison with rad-hard microprocessors. Even though they
are not protected against errors, they could be used for less
critical computations with system redundancy or in low-orbit
missions with limited budget [8], and some mission types that
have moderate radiation dose requirements as well as high
processing power needs [9]. Their use can reduce cost, weight
and at the same time increase notably the system capabilities.

When SIMD coprocessors are used in application fields that
require a high reliability, such as space, it is necessary to know
if they are more or less error prone than conventional processing
architectures. In this work, we explore how radiation affects the
system behavior when SIMD coprocessors are in use. We have
selected NEON™ SIMD coprocessor of ARM microprocessor
as a case study and evaluated the cross-section and performance
tradeoffs. To the best of our knowledge, the suitability of SIMD
coprocessors with respect to SEEs has never been tested before
under radiation.

Our aim in this work is to study the effects of radiation for

30, Leganés, Madrid, 28911 Spain (e-mail: alindoso@ing.uc3m.es,
mgvalder@ing.uc3m.es, entrena@ing.uc3m.es).
Y. Morilla and P. Martín-Holgado are with the Centro Nacional de
Aceleradores (Universidad de Sevilla, CSIC, JA). Avda. Tomás Alba Edison nº
7, E-41092 Sevilla, Spain (telephone: +34954460553, e-mail: ymorilla@us.es).

Evaluation of the suitability of SIMD
microprocessor extensions in radiation

environments

A. Lindoso, M. García-Valderas, L. Entrena, Y. Morilla, P. Martin-Holgado

M

applications with intensive SIMD use and compare the results
with the very same application implemented in a conventional
way without SIMD extensions. To this purpose, radiation
experiments have been conducted with protons at Centro
Nacional de Aceleradores (Spain). The evaluation was
performed with two different application benchmarks. The
effects of errors were classified into different categories and
analyzed for several implementations with data sets of different
sizes. This information is intended to provide insight into the
tradeoff between reliability and performance when SIMD
extensions are used.

This paper is organized as follows. Section II summarizes the
related work. Section III provides an overview of the NEON™
coprocessor. Section IV summarizes the experiments,
introducing the software benchmark and the experimental
setup. Section V presents the experimental results. Finally,
section VI presents the conclusions of this work.

II. RELATED WORK

Errors induced by radiation in a microprocessor may cause
wrong computations or even losing control of the entire system.
Therefore, there is a high interest in evaluating soft error rates
in microprocessors and developing techniques to mitigate them
[10].

Error mitigation in microprocessors can be achieved with
software and hardware techniques, or a combination of both.
From the hardware point of view, hardening can be achieved by
using rad-hard technologies or Radiation Hardening By Design
(RHBD) at several abstraction levels. However, most RHBD
techniques focus on the lower levels of abstraction: developing
hardened cell libraries, adding hardware redundancy (TMR),
etc. Approaches at the architectural level are not so common,
mainly because architectural optimizations typically imply re-
designing the processor and convey a large development effort.
This kind of approaches are not suitable for COTS (Commercial
Off The Shelf) devices because in such a case the architecture
cannot be easily modified. Recent work proposes the use of
external IPs to monitor the microprocessor behavior in a non-
intrusive way [11].

There is a growing interest in evaluating and comparing
existing processor architectures in order to determine which
processors are best suited for high-reliability applications
[12],[13]. Modern microprocessor architectures have many
complex components and their usage is application dependent.
In this work, we want to explore the relationship between the
usage of a part of the architecture and the reliability of the
microprocessor. Other works have explored architectural
components. In [14] and [15] cache memories are studied to
determine their resilience to radiation environments. In [16]
operating systems are studied to characterize their behavior
under radiation.

As the processing needs increase in many critical
applications, new high-performance approaches are being used
and their reliability is being measured. Among these approaches
we can include multi-core and many-core architectures [17],
multithreading [18], Graphics Processing Units (GPUs) [19],
[20], etc.

In this work we explore SIMD coprocessors that are common
for applications in many fields [21], [22]. Their usage in high
reliability applications could improve considerably the system
performance but it could be hazardous in terms of reliability.
Xilinx has studied the reliability of Zynq SoCs with multiple
radiation experiments [23]. The used workload included SIMD
instructions but in a very small quantity and experiments were
not carried out specifically for applications with intensive use
of SIMD.

III. THE NEON™ COPROCESSOR

ARM SIMD coprocessor (NEON™) was introduced with
ARMv7 architecture. The NEON™ coprocessor has a specific
register bank that can be addressed as thirty-two 64-bit double
word registers (D0-D31) or sixteen 128-bit quad-word registers
(Q0-Q15) or a combination of both [24]. Every Q register
consists of two consecutive D registers. This register file is also
used for floating point operations. Figure 1 shows the structure
of the register file and the structure of vector operation.

In addition to the register file, the components of NEON™
coprocessor are the following: integer execute pipeline, single
precision floating-point execute pipeline and load/store and
permute pipeline.

NEON™ vectors consist of several data with the same data
type that includes 8-bit, 16-bit, 32-bit, 64-bit (signed or
unsigned) and single precision floating point. The different data
elements of a NEON™ vector are named lanes. A single
instruction is used to specify a common operation which is
performed for all lanes in parallel. This way, applications that
must perform the same operations over large data sets can be
accelerated. The performance speed-up depends on the
capability of packaging data into NEON™ vectors (number of
lanes).

Fig. 1. NEON™ Register file and NEON™ operations.

NEON™ vectors are processed with specific vector
instructions. The NEON™ instruction set includes addition,
multiplication, multiplication and accumulation (MAC),
multiplication and subtraction, shifting, logical operations,
arithmetic operations, minimum and maximum, polynomial
computations and load and store for vectors and lanes. Standard
ALU flags cannot be used with SIMD instructions but a subset
of the instruction set provides special comparison operations.

This kind of operations evaluate SIMD data and store results as
a bitmask in a NEON™ vector. The resulting bitmask can be
used with bitwise selection instructions.

Figure 1 shows an example of a NEON™ instruction that
adds 4 32-bits integers with a single NEON™ instruction. All
NEON™ mnemonics start with a V. The example in Figure 1
shows VADD instruction which is the mnemonic for SIMD
addition. After the mnemonic, several data types can be
specified. In this example, it is .I32 which stands for 32 bit
integers. In the example shown in Figure 1, three Q registers
(128 bits) are selected as operands and destination respectively,
making possible to compute 4 additions of 32 bits with one
single instruction.

Generally, NEON™ instructions use 128 bits which can be
typically configured as 8 lanes of 16 bits, 4 lanes of 32 bits or 2
lanes of 64 bits. Instructions can also use modifiers that can
affect the result: Q (saturation), H (halved), D (doubled before
saturation) and R (rounded). There are other modifiers to
change the data type of the result with respect to the operands.
The relationship between operands and result is named shape
and can be narrow (-N) if the width of result elements is half of
the operands elements, wide (-W) if the width of result elements
width doubles the operands elements, and long (-L) if the width
of result and the first operand are twice the width of the second
operand.

SIMD in ARM microprocessors can be used with three
different approaches:

 Assembly code. Then NEON™ coprocessor has a
specific extension of the instruction set. When high
performance requirements must be met, ARM
recommends implementing the critical parts of the code
directly in assembly.

 Intrinsics. Intrinsic data types and functions provide an
intermediate approach between high-level source code
and assembly. Intrinsics can be seen as C functions that
provide access to the NEON™ assembly set, but the
compiler frees the programmer from making some low-
level decisions such as register selection.

 Automatic vectorization. The compiler is prepared to
vectorize software into the SIMD instruction set. To
activate automatic vectorization, maximum optimization
and specific compilation flags regarding NEON™ must
be used. If this is the preferred choice, the code must be
adapted to maximize the compiler capability to detect
vectorization. When automatic vectorization is selected,
the assembly code must be checked to make sure that
vectorization has been correctly accomplished by the
compiler.

IV. DESCRIPTION OF THE EXPERIMENTS

The evaluation has been carried out with two different
benchmarks that are suitable for the utilization of SIMD.
Several variations of the benchmarks have been developed
according to the needs of the different performed experiments.
In the following subsections the different benchmarks and their
variations are explained in a detailed manner. All the software
benchmarks have been adapted for the experimental setup

described in section IV.C.

A. Matrix multiplication

This benchmark is generally proposed as an SIMD
application example and is also commonly used for radiation
testing of microprocessors [13].

Three different versions of the matrix multiplication code are
compared:

 Matrix multiplication.
 NEON™ version of matrix multiplication. This code is

a modified version of matrix multiplication software
using SIMD extensions. Data and loops were arranged
in order to exploit parallelism on 32-bit multiply,
addition and accumulation for groups of four 32 bits
data. Intrinsics and automatic vectorization have been
used to implement this software.

 Data-flow hardened matrix multiplication. In order to be
able to categorize the possible errors, we have developed
another software version of matrix multiplication that
implements data-flow hardening. As we are studying
SIMD that implies intensive data handling, our purpose
is to focus on data errors. The hardening approach is
based in data-flow duplication [25] and inverted
branches [26].

The main characteristics of the matrix multiplication
benchmark versions in terms of performance are shown in
Table I. Columns show the characteristics of the different
matrix multiplication software codes: MMULT (matrix
multiplication), MMULT N20 (NEON™ implementation) and
MMULT DH (data-flow hardened). Table I rows show
respectively the number of clock cycles, the execution time at
the nominal clock frequency (650 MHz,) and performance
improvement of MMULT N20 and MMULT DH
implementations with respect to the basic implementation
(MMULT). Results of Table I have been obtained with 20x20
arrays of 32 bits input data. Cache memories were disabled in
all cases, as they could introduce significant performance
variations.

TABLE I: BENCHMARKS SUMMARY I (MMULT)

 MMULT

MMULT
N20

MMULT
DH

#cycles 50442 20877 183190
Time(µs) 77.60 32.12 281.83
Performance
increase

- 2.42x 0.28x

Table I shows that MMULT N20 software version achieves

2.42x performance speed-up. The execution time reported in
Table I for all benchmarks does not include boot and initial
configuration of microprocessor elements, such as
communication with an external monitor, that are used in the
code. It must be noted that the reported time in the case of
MMULT N20 software includes data arrangement to improve
parallelization. The hardened software version (MMULT DH)
presents a performance penalty of 3.63 times with respect to the
original version.

Additional benchmarks were obtained by varying the size of
the matrices being multiplied. Table II reports the performance
characteristics of the MMULT NEON™ software for the
selected matrix sizes: 8x8 (MMULT N8), 48x48 (MMULT
N48) and 128x128 (MMULT N128). The last row of Table II
reports the relative performance with respect to the benchmark
MMULT N20 (20x20 matrix) whose characteristics are
reported in Table I. As expected, the time required to execute
each benchmark grows proportionally to the number of required
MAC operations.

TABLE II: BENCHMARKS SUMMARY II (SIZE VARIATION)

 MMULT
N8

MMULT
N48

MMULT
N128

#cycles 1566 275403 7672813
Time(µs) 2.41 423.70 11804.33
Performance
increase

32.21x 0.18x 0.01x

B. Wavelet Transform

Wavelet transform is commonly used in the field of image
processing [27]. Wavelet performs iterative 2-dimensional
filters of different subsets of pixels of an image. The selected
family of filters and the way data is selected for the
computations may vary. Wavelet transform can be accurate in
time or frequency and is very useful when multiresolution is
required. Wavelet operation is based in filtering, which is also
a typical application example for SIMD instructions.

For the experiments, two different versions of the wavelet
transform benchmark have been developed, namely wavelet
transform and NEON™ implementation of the wavelet
transform. Our wavelet implementation uses a Level 1 dyadic
Haar wavelet [27].

The main characteristics of the software versions in terms of
performance are shown in Table III. Columns report the
characteristics of the two versions: wavelet transform using
fixed point data (WT) and NEON™ implementation of wavelet
transform (WT N). Results provided in Table II do not use
cache memories and input data are 32x32 arrays of 16 bits. The
last row of Table III reports the performance increase of WT N
benchmark with respect to WT benchmark. The NEON™
wavelet implementation increases performance by a factor of
5.15 times.

TABLE III: BENCHMARKS SUMMARY (III) (WAVELET)

WT WT

N

#cycles 261029 50716
Time(µs) 401.58 78.02
Performance
increase

- 5.15x

C. Experimental setup

Experiments took place during two different proton
irradiation campaigns in April and August of 2017 at CNA
(Centro Nacional de Aceleradores), Spain. The experiments

were performed using the external beam line installed in the
18/9 IBA compact cyclotron. The DUTs were irradiated in open
air with up to 15.4 MeV protons, with 300 keV energy spread.
The uniformity of the flux was better than 90% in the exposed
area of interest, maintaining the flux stability within 5% during
each experiment.

For the experiments, one Zybo board [28] was used per
software code, giving a total of 8 boards. Zybo contains a
XC7Z010 device from Zynq-7000 FPGA family [29] of Xilinx,
which contains a dual core ARM CORTEX™-A9 with one
NEON™ coprocessor for SIMD per core. One single core of
the Zybo board was used for each experiment running at the
nominal 650 MHz clock frequency. The Zybo board is
connected through USB with an external monitor that controls
the experiment. The external monitor collects the errors that are
sent from Zybo through USB connection and resets and
program again the device when the error is not recoverable.
Boot, bitstream and software code are stored in an SD card that
is copied to OCM (On Chip Memory) in the programming and
reset process. The programmable logic was not used during the
experiments. Both the Zybo board and the external monitor
were biased independently. For the experiments all algorithms
of the different software versions were executed in an infinite
loop.

A picture of the experimental setup is shown in Figure 2.

Fig. 2. Experimental setup

D. Error classification

Observed errors during the experiments were categorized as
follows:

 SDC (Silent Data Corruption) errors: After every
execution of the algorithm the result is compared with a
golden result. Whenever there are differences between
the actual result and the golden results, an SDC error will
be triggered by the microprocessor and sent to the
external monitor.

 Hang errors: The microprocessor is stuck at an infinite
loop or produces an abnormal termination that requires
external intervention, in our case, reprogram and boot
from the external monitor. Hang errors are detected by a

timeout condition that is working as a watchdog timer.
Our external monitor has also a timeout condition, so
that Hang errors can be detected even in the case the
internal mechanism does not work properly.

 Communication errors: The microprocessor cannot
communicate correctly with the external monitor. This
type of events typically represent a very small amount of
the observed errors and they do not occur in all the
experiments. In this category we have also included
possible problems when device programming takes
place. During the complete set of experiments we
observed some errors that affected the selection of the
location of the programming file of the device. It
provoked the loss of control of the circuit by the external
monitor. This type of event only occurred twice and took
place in two different experiments.

 Data errors: Software detects a data error. This type of
errors can only be detected by the software version that
is data-flow hardened (DH). Our hardened software
duplicates all variables and instructions, and compare
variable values with the copies. Whenever a discrepancy
appears, the microprocessor triggers a data error that will
be collected by the external monitor.

In the following section, cross-sections and percentages of
the different types of errors observed for all the experiments are
reported. The cross section of a single error category is
computed by dividing the number of observed events of every
error type by the total fluence, similar to the Hang cross-section
reported in [30].

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Matrix multiplication results

Table IV reports at every column a summary of the
parameters used for the experiments of matrix multiplication
software, namely: MMULT (matrix multiplication), MMULT
N20 (Matrix multiplication optimized with NEON™) and
MMULT DH (Data-flow Hardened version of matrix
multiplication). For these experiments, all the software codes
used 20x20 arrays of 32-bit data.

TABLE IV: EXPERIMENTS PARAMETERS I (MMULT)

 MMULT

MMULT
N20

MMULT
DH

Energy (MeV) 15.4 15.4 15.4
Flux (p/cm2·s) 1.7·108 5.2·108 5.2·108
Fluence (p/cm2) 1.2·1012 1.0·1012 9.4·1011

Table V shows the cross-section (cm2) obtained in the

experiments for codes MMULT, MMULT N20 and MMULT
DH. For the sake of comparison, cross-section is reported for
all error categories and for the total number of observed events.
The last column provides the total cross-sections and the 95%
confidence intervals. These confidence intervals are computed
using the standard deviation with a normal approximation of the
Poisson mean.

The final row of Table V reports the increase in cross-section
that is produced when MMULT software is compared with
MMULT N20 software for all the different error categories.

TABLE V: RADIATION TEST RESULTS I (MMULT)

 SDC
(cm2)

HANG
(cm2)

Comm.
(cm2)

TOTAL
(cm2)

MMULT 6.67·10-11 1.08·10-11 5.83·10-12 8.33·10-11

(6.70·10-11,
9.97·10-11)

MMULT N20 1.12·10-10 4.70·10-11 7.00·10-12 1.67·10-10

(1.41·10-10,
1.91·10-10)

MMULT DH 8.08·10-11 5.00·10-11 3.19·10-12 2.90·10-10
(2.56·10-10,
3.25·10-10)

MMULT N20
/MMULT

1.68 4.34 1.20 1.99

The results show that MMULT N20 code presents a

significant increase in cross-section for all categories except for
communication. Anyhow, the cross-section of communication
errors is very similar in all cases and much smaller than that of
of SDC or Hang errors. Considering the total cross-section, we
observe an increase of 1.99 times for MMULT N20 code. The
increase is 1.68 times for SDCs and 4.34 times for Hangs. It is
interesting to note that the performance increase provided by
the MMULT N20 code (2.4 times) is higher than the cross-
section increase (1.99 times), so that the Mean Work To Failure
(MWTF), defined as the amount of work completed between
failures [31], slightly improves when NEON™ coprocessor is
used.

For the MMULT DH benchmark, cross-section increases
3.49 times with respect to the MMULT benchmark, which
approximately matches the performance decrease (3.63)
reported in section IV.A. However, the cross-section of data
detected errors for this benchmark is 1.57·10-10, which stands
for 53.85% of the observed errors. Therefore, the cross-section
of undetected errors reduces to 1.34·10-10. Even so, data-flow
hardening was not sufficient to improve cross-section with
respect to the conventional MMULT code and it is only slightly
better than the NEON™ code, MMULT N20.

With regard to the error categories, both SDC and Hang
errors increase for the MMULT DH benchmark, but the relative
relevance of each of them varies significantly. This benchmark
presents a large reduction of SDC errors when compared with
MMULT benchmark: from 80% (MMULT) to 27.84%
(MMULT DH). This reduction is almost equivalent to the
percentage of detected errors, which can be expected because
the data-flow hardening techniques mainly mitigate this type of
errors. In the case of Hang errors, the variation is small and
remains in the same order of magnitude, from 13% (MMULT)
to 17.21% (MMULT DH). The increase of Hang errors seems
to be related to the increase of execution time of the DH
benchmark. Communication errors in the case of MMULT DH
are reduced to 1.1% while MMULT has 7%. The variation of
communication errors seems to be affected by the execution
time of the benchmark that is irradiated, with a tendency to

show a smaller proportion of errors when execution time is
larger.

B. Variation with the size of the data set

Another set of experiments were performed in order to
evaluate the cross-section variation with the size of the data set
used by the software. For these experiments, we selected the
matrix multiplication benchmarks optimized for NEON™ for
several matrix sizes: 8x8 (MMULT N8), 20x20 (MMULT
N20), 48x48 (MMULT N48) and 128x128 (MMULT N128).

Table VI reports a summary of the parameters used in the
experiments and Table VII shows the cross section (cm2) for
every error category and for the total errors. The last column of
Table VII reports the total cross-section and the 95%
confidence intervals. MMULT N20 parameters and cross-
section have been included respectively in Tables VI and VII
for the sake of comparison.

Table VI shows that the flux was reduced for the experiments
with larger data sets. During the experiments we observed a
significant increase in the error rate in these cases, and we had
to reduce the flux in order to be able to properly monitor the
events.

TABLE VI: EXPERIMENTS PARAMETERS II (SIZE VARIATION)

 MMULT
N8

MMULT
N20

MMULT
N48

MMULT
N128

Energy (MeV) 15.4 15.4 15.3 15.3
Flux (p/cm2·s) 4.6·108 5.2·108 1.7·108 9.5·107
Fluence (p/cm2) 8.3·1011 1.0·1012 1.5·1011 1.0·1011

TABLE VII: RADIATION TEST RESULTS II (SIZE VARIATION)

 SDC
(cm2)

HANG
(cm2)

Comm.
(cm2)

TOTAL
(cm2)

MMULT
N8

2.53·10-11 3.25·10-11 7.23·10-12 6.51·10-11

(4.77·10-11,
8.24·10-11)

MMULT
N20

1.12·10-10 4.70·10-11 7.00·10-12 1.67·10-10
(1.41·10-10,
1.91·10-10)

MMULT
N48

1.6·10-10 7.40·10-10 1.33 10-11 9.13·10-10

(7.60·10-10,
1.07·10-9)

MMULT
N128

3.00·10-11 1.18·10-9 0 1.21·10-9
(9.94·10-10,
1.43·10-9)

Table VII shows that the total cross-section increases with

increasing array size. This increase roughly correlates with the
dimension of the matrices.

Regarding the error type, there is a remarkable increase of
Hang errors with increasing array size, while SDC errors show
a much moderate increase or even a decrease in the case of the
largest tested matrix size (128x128). Figure 3 shows the
percentage of errors of the different categories (SDC, Hang and
communication) for the NEON™ implementations of MMULT
with different matrix sizes (N8, N20, N48 and N128). For the
smaller data set (N8), the percentages of SDC and Hang errors
are of the same order of magnitude. The percentage of SDC
errors first grows as the size increases (N20) but then Hang

errors clearly dominate for the larger sizes.
A possible explanation for this behavior is the fact that the

use of NEON™ instructions increases together with the
execution time for large data sets. When the SIMD coprocessor
is used more intensively, events can cause errors in the SIMD
coprocessor pipeline that lead to Hang errors. The compiler
optimization level for all the NEON™ optimized benchmarks
was required to be the maximum (-O3). When this optimization
level is used, program instructions are reordered to speed up
execution. In this case, there is a higher probability for errors
to affect the control flow.

These experiments show that data size is very relevant when
SIMD coprocessor is used and must be considered when
software is designed.

Fig. 3. MMULT size variation results (Percentage of observed errors)

C. Wavelet Transform

Table VIII reports a summary of the main parameters for the
experiments using wavelet transform benchmarks, namely WT
and WT N (NEON™ version of wavelet transform), and Table
IX shows the measured cross sections (cm2). Input data size for
both software versions was 32x32 arrays of 16 bit data. The last
column of Table IX reports the total cross-section and the 95%
confidence intervals.

TABLE VIII: EXPERIMENTS PARAMETERS III (WAVELET)

 WT WT N

Energy (MeV) 15.3 15.3
Flux (p/cm2·s) 4.5·108 4.3·108
Fluence (p/cm2) 8.8·1011 8.6·1011

TABLE IX: RADIATION TEST RESULTS III (WAVELET)

 SDC
(cm2)

HANG
(cm2)

Comm.
(cm2)

TOTAL
(cm2)

WT 1.16·10-10 3.40·10-11 6.81·10-12 1.57·10-10

(1.30·10-10,
1.82·10-10)

WT N 1.03·10-10 4.30·10-11 5.81·10-12 1.52·10-10
(1.26·10-10,
1.78·10-10)

WT N/
WT

0.89 1.26 0.85 0.97

The results of Table IX show that the NEON™ version of the

wavelet benchmark (WT N) slightly reduces the cross-section.
Regarding the different error categories, both SDC and
communication errors slightly decrease but Hang errors
increase by a factor of 1.26. This increase of Hang errors when
NEON™ is in use shows the same behavior as the MMULT
benchmark. The total cross-section slightly decreases due to the
smaller quantity of SDC and communication errors.

Taking into account both the cross-section and the speed-up,
it is clear that the use of the NEON™ coprocessor is highly
beneficial for this benchmark, because it can be sped up by
more than 5 times with a similar cross-section.

Figure 4 shows a comparison of the percentages of every type
of error for MMULT, MMULT N20, WT and WT N. We can
observe that when the SIMD coprocessor is used, the
percentage of SDC errors decreases and the percentage of Hang
errors increase for both benchmarks. The increase of Hang
errors is more noticeable in the case of the matrix multiplication
benchmark. Figure 4 also shows that the NEON™ versions of
both benchmarks provide similar results in percentage.
However, when the SIMD coprocessor is not used, the wavelet
transform benchmark presents a larger percentage of Hang
errors.

Fig. 4. Comparison of error categories for MMULT and WT vs.
NEON™ implementations.

VI. CONCLUSIONS

This paper has analyzed the suitability of SIMD (Single
Instruction Multiple Data) extensions under radiation with a
case study based on ARM CORTEX™-A9 and its NEON™
SIMD coprocessor. SIMD extensions are present in many
modern microprocessors, including ARM, Intel and AMD
architectures, in order to improve their performance for
applications with a high computational load, such as
multimedia applications. As the computational requirements
for space missions are steadily increasing, SIMD extensions
may become a solution for onboard processing of large amounts
of data.

 Zynq SoC devices with ARM Cortex™-A9 hard-core
microprocessors were irradiated with protons with an energy up

to 15.4 MeV. Eight different boards were used with several
versions of two typical data-intensive code benchmarks,
namely matrix multiplication and wavelet transform.

Experimental results demonstrate that the use of the
NEON™ coprocessor notably improves performance but can
also increase cross-section. However, the performance increase
is generally higher than the cross-section increase, so that the
Mean Work To Failure improves when NEON™ coprocessor
is used.

Experiments were also performed for data sets of different
sizes in order to evaluate how this may affect cross-section. The
results show that the total cross-section increases with the size
of the workload. In particular, there is a remarkable increase of
Hang errors for large data sets, which make a more intensive
use of the SIMD coprocessor. These results show that data size
is very relevant when SIMD coprocessor is used and must be
considered when the software application is designed.

REFERENCES

[1] ARM Inc, “ARM architecture reference manual”, 2000.
[2] Intel Inc., “Intel® 64 and IA-32 Architectures, Software Developer’s

Manual, Volume 1: Basic Architecture”, 2016.
[3] R. Trautner, "ESA's roadmap for next generation payload data

processors". Proc. Data Systems In Aerospace (DASIA), 2011.
[4] R. L. Davidson, C. P. Bridges, "Adaptive multispectral GPU accelerated

architecture for Earth Observation satellites," 2016 IEEE International
Conference on Imaging Systems and Techniques (IST), Chania, pp. 117-
122, 2016.

[5] M. Strube, R. Henry, E Skeleton, J. V. Eepoel, N. Gill, R. McKenna,
“Raven: An On-Orbit Relative Navigation Demonstration Using
International Space Station Visiting Vehicles”, AAS Guidance and
Control Conference, 2015.

[6] J. Andersson, J. Gaisler, R. Weigand, “The next generation multipurpose
microprocessor”, Proc. of Data Systems In Aerospace (DASIA), 2010.

[7] R. Doyle, et al, “High performance spaceflight computing (HPSC) next-
generation space processor (NGSP): a joint investment of NASA and
AFRL”, Proc. of the Workshop on Spacecraft Flight Software, 2013.

[8] D. Sinclair, J. Dyer. “Radiation effects and COTS parts in SmallSats”,
Small Satellite Conference, 2013.

[9] R. Trautner, R., Vitulli, "Ongoing developments of future payload data
processing platform at ESA", Second International Workshop on On-
Board Payload Data Compression (OBPDC), 2010.

[10] M. Nicolaidis, “Soft errors in modern electronic systems”, Springer, 2011.
[11] L. Parra, A. Lindoso, M. Portela-Garcia, L. Entrena, B. Du, M. Sonza

Reorda, L. Sterpone, “A New Hybrid Nonintrusive Error-Detection
Technique Using Dual Control-Flow Monitoring”, IEEE Transactions on
Nuclear Science, vol. 61, no. 6, pp. 3236-3243, Dec. 2014.

[12] H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp, G. Duran, “Software
Resilience and the Effectiveness of Software Mitigation in
Microcontrollers”, IEEE Transactions on Nuclear Science, vol. 62, no. 6,
pp. 2532-2538, Dec. 2015.

[13] H. Quinn et al. “Using Benchmarks for Radiation Testing of
Microprocessors and FPGAs”, IEEE Transactions on Nuclear Science,
vol. 62, no. 6, pp. 2547-2554, Dec. 2015.

[14] L. Antunes Tambara, F. L. Kastensmidt, N. H. Medina, N. A. Vitor, A. P.
Aguiar, F. Aguirre, E. L. A. Macchione, M. A. G. Silveira, “Heavy Ions
Induced Single Event Upsets Testing of the 28 nm Xilinx Zynq-7000 All
Programmable SoC”, IEEE Radiation Effects Data Workshop (REDW),
pp. 1 – 6, 2015.

[15] T. Santini, P. Rech, G. L. Nazar, F. Rech, “Beyond Cross-Section: Spatio-
Temporal Reliability Analysis”, ACM Transactions on Embedded
Computing Systems, vol. 15, no. 1, Article 3, 2015.

[16] T. Santini, L. Carro, F. R. Wagner, P. Rech, “Reliability Analysis of
Operating Systems and Software Stack for Embedded Systems”, IEEE
Transactions on Nuclear Science, vol. 63, no. 4, pp. 2225 – 2232, Aug.
2016.

[17] V. Vargas et al., "Radiation Experiments on a 28 nm Single-Chip Many-
Core Processor and SEU Error-Rate Prediction," IEEE Transactions on
Nuclear Science, vol. 64, no. 1, pp. 483-490, Jan. 2017.

[18] S. S. Mukherjee, M. Kontz and S. K. Reinhardt, "Detailed design and
evaluation of redundant multi-threading alternatives", Proc. 29th Annual
International Symposium on Computer Architecture, pp. 99-110, 2002.

[19] P. Rech, T. D. Fairbanks, H. M. Quinn, L. Carro, "Threads Distribution
Effects on Graphics Processing Units Neutron Sensitivity," IEEE
Transactions on Nuclear Science, vol. 60, no. 6, pp. 4220-4225, Dec.
2013.

[20] D. A. G. de Oliveira, L. L. Pilla, T. Santini and P. Rech, "Evaluation and
Mitigation of Radiation-Induced Soft Errors in Graphics Processing
Units," IEEE Transactions on Computers, vol. 65, no. 3, pp. 791-804,
March 2016.

[21] R. Wang, J. Wan, W. Wang, Z. Wang, S. Dong, W. Gao, “High definition
IEEE AVS decoder on ARM NEON platform”, IEEE International
Conference on Image Processing, pp. 1524 – 1527, 2013.

[22] H. Yong, R. Wang, W. Wang, Z. Wang, S. Dong, B. Han, W. Gao,
“Acceleration of HEVC transform and inverse transform on ARM NEON
platform”, International Symposium on Intelligent Signal Processing and
Communication Systems, pp.169-173, 2013.

[23] A. Lesea, W. Koszek, G. Steiner, G. Swift, D. White, “Soft error study of
ARM SoC at 28 nanometers”, Proc. IEEE Workshop on Silicon Errors in
Logic – System Effects, 2014.

[24] ARM Inc., “NEON programmer’s guide”, 2013.
[25] M. Rebaudengo, M. S. Reorda, M. Torchiano, M. Violante, “Soft-error

detection through software fault-tolerance techniques,” Proc.
International Symp. on Defect and Fault Tolerance in VLSI Systems, pp.
210–218, 1999.

[26] J. R. Azambuja et al., “A fault tolerant approach to detect transient faults
in microprocessors based on a non-intrusive reconfigurable hardware,”
IEEE Transactions on Nuclear Science, vol. 59, no. 4, pp. 1117–1124,
Aug. 2012.

[27] R.C. Gonzalez, R.E. Woods, “Digital Image Processing”, Pearson, 2008.
[28] Digilent Inc, “Zybo reference manual”, 2014
[29] Xilinx Inc.: “Zynq-7000 All Programmable SoC: Technical Reference

Manual”, UG585, 2016.
[30] F. Irom, “Guideline for Ground Radiation Testing of Microprocessors in

the Space Radiation Environment”, Jet Propulsion Laboratory, 2013.
[31] G. A. Reis, J. Chang, N. Vachharajani, S. S. Mukherjee, R. Rangan, and

D. I. August, “Design and evaluation of hybrid fault-detection systems,”
Proc. International Symp. on Computer Architecture, pp. 148–159, 2005.

