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Abstract—This work analyzes the suitability of SIMD (Single 
Instruction Multiple Data) extensions of current microprocessors 
under radiation environments. SIMD extensions are intended for 
software acceleration, focusing mostly in applications that require 
high computational effort, which are common in many fields such 
as computer vision. SIMD extensions use a dedicated coprocessor 
that makes possible packing several instructions in one single 
extended instruction. Applications that require high performance 
could benefit from the use of SIMD coprocessors, but their 
reliability needs to be studied. In this work NEON™, the SIMD 
coprocessor of ARM microprocessors, has been selected as a case 
study to explore the behavior of SIMD extensions under radiation. 
Radiation experiments of ARM CORTEX™-A9 microprocessor 
have been accomplished with the objective of determining how the 
use of this kind of coprocessors can affect the system reliability. 

Index Terms—SIMD, Fault tolerance, software hardening, 
ARM, NEON.  

I. INTRODUCTION

odern complex microprocessors provide SIMD (Single 
Instruction Multiple Data) extensions that can improve 

computation performance through data parallelism. SIMD 
makes vectorization possible: one single operation can be 
executed at the same time for several data. SIMD achieves a 
performance speed-up that is needed for high computational 
load applications. Computer vision, digital signal processing 
and any application that requires performing the very same 
operation over large amounts of data can achieve significant 
performance benefits from the use of SIMD extensions. 

The use of SIMD architectures dates back to the time of 
vector supercomputers of the early 70s which could operate on 
a vector of data with a single instruction. Later, it reached the 
desktop computer as a means to support the increasing demand 
for high-performance multimedia processing. Currently, many 
widely-used microprocessors have upgraded their architectures 
to include specific SIMD extensions, such as NEON™ in the 
case of ARM microprocessors [1] or SSE [2] in the case of Intel 
and AMD microprocessors. These extensions consist in specific 
coprocessors that allow for vectorization. 
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The computational requirements for space missions are 
steadily increasing. Innovative space instruments generate large 
data volumes that need to be processed on board and the results 
may even be required to be used in real time for autonomous 
mission control operations. As the processing requirements 
often exceed the capabilities of space qualified processors, 
high-performance alternatives need to be considered, such as 
Digital Signal Processors (DSPs), FPGAs, multi-core 
processors and Graphics Processing Units (GPUs) [3], [4]. 
Among these alternatives, there is special interest in 
microprocessors endowed with a SIMD coprocessor in order to 
obtain a performance increase for more complex and fast 
sensors and circuits connected to the microprocessor.  

Missions involving image processing in an autonomous way, 
such as RAVEN of NASA [5], are expected to become usual in 
the near future. NASA and ESA are developing new fault-
tolerant multi-core processors in order to increase their 
computational power and at the same time cope with errors due 
to the high radiation environment [6], [7]. As a matter of fact, 
the use of commercial processors is being considered in space 
missions in order to benefit from their higher performance in 
comparison with rad-hard microprocessors. Even though they 
are not protected against errors, they could be used for less 
critical computations with system redundancy or in low-orbit 
missions with limited budget [8], and some mission types that 
have moderate radiation dose requirements as well as high 
processing power needs [9]. Their use can reduce cost, weight 
and at the same time increase notably the system capabilities. 

When SIMD coprocessors are used in application fields that 
require a high reliability, such as space, it is necessary to know 
if they are more or less error prone than conventional processing 
architectures. In this work, we explore how radiation affects the 
system behavior when SIMD coprocessors are in use. We have 
selected NEON™ SIMD coprocessor of ARM microprocessor 
as a case study and evaluated the cross-section and performance 
tradeoffs. To the best of our knowledge, the suitability of SIMD 
coprocessors with respect to SEEs has never been tested before 
under radiation.  

Our aim in this work is to study the effects of radiation for 
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applications with intensive SIMD use and compare the results 
with the very same application implemented in a conventional 
way without SIMD extensions. To this purpose, radiation 
experiments have been conducted with protons at Centro 
Nacional de Aceleradores (Spain). The evaluation was 
performed with two different application benchmarks. The 
effects of errors were classified into different categories and 
analyzed for several implementations with data sets of different 
sizes. This information is intended to provide insight into the 
tradeoff between reliability and performance when SIMD 
extensions are used. 

This paper is organized as follows. Section II summarizes the 
related work. Section III provides an overview of the NEON™ 
coprocessor. Section IV summarizes the experiments, 
introducing the software benchmark and the experimental 
setup. Section V presents the experimental results. Finally, 
section VI presents the conclusions of this work. 

II. RELATED WORK

Errors induced by radiation in a microprocessor may cause 
wrong computations or even losing control of the entire system. 
Therefore, there is a high interest in evaluating soft error rates 
in microprocessors and developing techniques to mitigate them 
[10]. 

Error mitigation in microprocessors can be achieved with 
software and hardware techniques, or a combination of both. 
From the hardware point of view, hardening can be achieved by 
using rad-hard technologies or Radiation Hardening By Design 
(RHBD) at several abstraction levels. However, most RHBD 
techniques focus on the lower levels of abstraction: developing 
hardened cell libraries, adding hardware redundancy (TMR), 
etc. Approaches at the architectural level are not so common, 
mainly because architectural optimizations typically imply re-
designing the processor and convey a large development effort. 
This kind of approaches are not suitable for COTS (Commercial 
Off The Shelf) devices because in such a case the architecture 
cannot be easily modified. Recent work proposes the use of 
external IPs to monitor the microprocessor behavior in a non-
intrusive way [11].  

There is a growing interest in evaluating and comparing 
existing processor architectures in order to determine which 
processors are best suited for high-reliability applications 
[12],[13]. Modern microprocessor architectures have many 
complex components and their usage is application dependent. 
In this work, we want to explore the relationship between the 
usage of a part of the architecture and the reliability of the 
microprocessor. Other works have explored architectural 
components. In [14] and [15] cache memories are studied to 
determine their resilience to radiation environments. In [16] 
operating systems are studied to characterize their behavior 
under radiation.  

As the processing needs increase in many critical 
applications, new high-performance approaches are being used 
and their reliability is being measured. Among these approaches 
we can include multi-core and many-core architectures [17], 
multithreading [18], Graphics Processing Units (GPUs) [19], 
[20], etc.  

In this work we explore SIMD coprocessors that are common 
for applications in many fields [21], [22]. Their usage in high 
reliability applications could improve considerably the system 
performance but it could be hazardous in terms of reliability. 
Xilinx has studied the reliability of Zynq SoCs with multiple 
radiation experiments [23]. The used workload included SIMD 
instructions but in a very small quantity and experiments were 
not carried out specifically for applications with intensive use 
of SIMD.  

III. THE NEON™ COPROCESSOR

ARM SIMD coprocessor (NEON™) was introduced with 
ARMv7 architecture. The NEON™ coprocessor has a specific 
register bank that can be addressed as thirty-two 64-bit double 
word registers (D0-D31) or sixteen 128-bit quad-word registers 
(Q0-Q15) or a combination of both [24]. Every Q register 
consists of two consecutive D registers. This register file is also 
used for floating point operations. Figure 1 shows the structure 
of the register file and the structure of vector operation. 

In addition to the register file, the components of NEON™ 
coprocessor are the following: integer execute pipeline, single 
precision floating-point execute pipeline and load/store and 
permute pipeline. 

NEON™ vectors consist of several data with the same data 
type that includes 8-bit, 16-bit, 32-bit, 64-bit (signed or 
unsigned) and single precision floating point. The different data 
elements of a NEON™ vector are named lanes. A single 
instruction is used to specify a common operation which is 
performed for all lanes in parallel. This way, applications that 
must perform the same operations over large data sets can be 
accelerated. The performance speed-up depends on the 
capability of packaging data into NEON™ vectors (number of 
lanes).  

Fig. 1. NEON™ Register file and NEON™ operations. 

NEON™ vectors are processed with specific vector 
instructions. The NEON™ instruction set includes addition, 
multiplication, multiplication and accumulation (MAC), 
multiplication and subtraction, shifting, logical operations, 
arithmetic operations, minimum and maximum, polynomial 
computations and load and store for vectors and lanes. Standard 
ALU flags cannot be used with SIMD instructions but a subset 
of the instruction set provides special comparison operations. 



 

This kind of operations evaluate SIMD data and store results as 
a bitmask in a NEON™ vector. The resulting bitmask can be 
used with bitwise selection instructions. 

Figure 1 shows an example of a NEON™ instruction that 
adds 4 32-bits integers with a single NEON™ instruction. All 
NEON™ mnemonics start with a V. The example in Figure 1 
shows VADD instruction which is the mnemonic for SIMD 
addition. After the mnemonic, several data types can be 
specified. In this example, it is .I32 which stands for 32 bit 
integers. In the example shown in Figure 1, three Q registers 
(128 bits) are selected as operands and destination respectively, 
making possible to compute 4 additions of 32 bits with one 
single instruction.  

Generally, NEON™ instructions use 128 bits which can be 
typically configured as 8 lanes of 16 bits, 4 lanes of 32 bits or 2 
lanes of 64 bits. Instructions can also use modifiers that can 
affect the result: Q (saturation), H (halved), D (doubled before 
saturation) and R (rounded). There are other modifiers to 
change the data type of the result with respect to the operands. 
The relationship between operands and result is named shape 
and can be narrow (-N) if the width of result elements is half of 
the operands elements, wide (-W) if the width of result elements 
width doubles the operands elements, and long (-L) if the width 
of result and the first operand are twice the width of the second 
operand.  

SIMD in ARM microprocessors can be used with three 
different approaches: 

 Assembly code. Then NEON™ coprocessor has a 
specific extension of the instruction set. When high 
performance requirements must be met, ARM 
recommends implementing the critical parts of the code 
directly in assembly. 

 Intrinsics. Intrinsic data types and functions provide an 
intermediate approach between high-level source code 
and assembly. Intrinsics can be seen as C functions that 
provide access to the NEON™ assembly set, but the 
compiler frees the programmer from making some low-
level decisions such as register selection.  

 Automatic vectorization. The compiler is prepared to 
vectorize software into the SIMD instruction set. To 
activate automatic vectorization, maximum optimization 
and specific compilation flags regarding NEON™ must 
be used. If this is the preferred choice, the code must be 
adapted to maximize the compiler capability to detect 
vectorization. When automatic vectorization is selected, 
the assembly code must be checked to make sure that 
vectorization has been correctly accomplished by the 
compiler. 

IV. DESCRIPTION OF THE EXPERIMENTS 

The evaluation has been carried out with two different 
benchmarks that are suitable for the utilization of SIMD. 
Several variations of the benchmarks have been developed 
according to the needs of the different performed experiments. 
In the following subsections the different benchmarks and their 
variations are explained in a detailed manner. All the software 
benchmarks have been adapted for the experimental setup 

described in section IV.C. 

A. Matrix multiplication 

This benchmark is generally proposed as an SIMD 
application example and is also commonly used for radiation 
testing of microprocessors [13]. 

Three different versions of the matrix multiplication code are 
compared: 

 Matrix multiplication. 
 NEON™ version of matrix multiplication. This code is 

a modified version of matrix multiplication software 
using SIMD extensions. Data and loops were arranged 
in order to exploit parallelism on 32-bit multiply, 
addition and accumulation for groups of four 32 bits 
data. Intrinsics and automatic vectorization have been 
used to implement this software. 

 Data-flow hardened matrix multiplication. In order to be 
able to categorize the possible errors, we have developed 
another software version of matrix multiplication that 
implements data-flow hardening. As we are studying 
SIMD that implies intensive data handling, our purpose 
is to focus on data errors. The hardening approach is 
based in data-flow duplication [25] and inverted 
branches [26]. 

The main characteristics of the matrix multiplication 
benchmark versions in terms of performance are shown in 
Table I. Columns show the characteristics of the different 
matrix multiplication software codes: MMULT (matrix 
multiplication), MMULT N20 (NEON™ implementation) and 
MMULT DH (data-flow hardened). Table I rows show 
respectively the number of clock cycles, the execution time at 
the nominal clock frequency (650 MHz,) and performance 
improvement of MMULT N20 and MMULT DH 
implementations with respect to the basic implementation 
(MMULT). Results of Table I have been obtained with 20x20 
arrays of 32 bits input data. Cache memories were disabled in 
all cases, as they could introduce significant performance 
variations. 

TABLE I: BENCHMARKS SUMMARY I (MMULT) 

 MMULT 
 

MMULT 
N20 

MMULT 
DH 

#cycles 50442 20877 183190 
Time(µs) 77.60 32.12 281.83 
Performance 
increase 

- 2.42x 0.28x 

 
Table I shows that MMULT N20 software version achieves 

2.42x performance speed-up. The execution time reported in 
Table I for all benchmarks does not include boot and initial 
configuration of microprocessor elements, such as 
communication with an external monitor, that are used in the 
code. It must be noted that the reported time in the case of 
MMULT N20 software includes data arrangement to improve 
parallelization. The hardened software version (MMULT DH) 
presents a performance penalty of 3.63 times with respect to the 
original version.  



 

Additional benchmarks were obtained by varying the size of 
the matrices being multiplied. Table II reports the performance 
characteristics of the MMULT NEON™ software for the 
selected matrix sizes: 8x8 (MMULT N8), 48x48 (MMULT 
N48) and 128x128 (MMULT N128). The last row of Table II 
reports the relative performance with respect to the benchmark 
MMULT N20 (20x20 matrix) whose characteristics are 
reported in Table I. As expected, the time required to execute 
each benchmark grows proportionally to the number of required 
MAC operations. 

TABLE II: BENCHMARKS SUMMARY II (SIZE VARIATION) 

 MMULT 
N8 

MMULT 
N48 

MMULT 
N128 

#cycles 1566 275403 7672813 
Time(µs) 2.41 423.70 11804.33 
Performance 
increase 

32.21x 0.18x 0.01x 

 

B. Wavelet Transform 

Wavelet transform is commonly used in the field of image 
processing [27]. Wavelet performs iterative 2-dimensional 
filters of different subsets of pixels of an image. The selected 
family of filters and the way data is selected for the 
computations may vary. Wavelet transform can be accurate in 
time or frequency and is very useful when multiresolution is 
required. Wavelet operation is based in filtering, which is also 
a typical application example for SIMD instructions. 

For the experiments, two different versions of the wavelet 
transform benchmark have been developed, namely wavelet 
transform and NEON™ implementation of the wavelet 
transform. Our wavelet implementation uses a Level 1 dyadic 
Haar wavelet [27].  

The main characteristics of the software versions in terms of 
performance are shown in Table III. Columns report the 
characteristics of the two versions: wavelet transform using 
fixed point data (WT) and NEON™ implementation of wavelet 
transform (WT N). Results provided in Table II do not use 
cache memories and input data are 32x32 arrays of 16 bits. The 
last row of Table III reports the performance increase of WT N 
benchmark with respect to WT benchmark. The NEON™ 
wavelet implementation increases performance by a factor of 
5.15 times. 

TABLE III: BENCHMARKS SUMMARY (III) (WAVELET) 

 
WT WT  

N 

#cycles 261029 50716 
Time(µs) 401.58 78.02 
Performance 
increase 

- 5.15x 

  

C. Experimental setup 

Experiments took place during two different proton 
irradiation campaigns in April and August of 2017 at CNA 
(Centro Nacional de Aceleradores), Spain. The experiments 

were performed using the external beam line installed in the 
18/9 IBA compact cyclotron. The DUTs were irradiated in open 
air with up to 15.4 MeV protons, with 300 keV energy spread. 
The uniformity of the flux was better than 90% in the exposed 
area of interest, maintaining the flux stability within 5% during 
each experiment.  

For the experiments, one Zybo board [28] was used per 
software code, giving a total of 8 boards. Zybo contains a 
XC7Z010 device from Zynq-7000 FPGA family [29] of Xilinx, 
which contains a dual core ARM CORTEX™-A9 with one 
NEON™ coprocessor for SIMD per core. One single core of 
the Zybo board was used for each experiment running at the 
nominal 650 MHz clock frequency. The Zybo board is 
connected through USB with an external monitor that controls 
the experiment. The external monitor collects the errors that are 
sent from Zybo through USB connection and resets and 
program again the device when the error is not recoverable. 
Boot, bitstream and software code are stored in an SD card that 
is copied to OCM (On Chip Memory) in the programming and 
reset process. The programmable logic was not used during the 
experiments. Both the Zybo board and the external monitor 
were biased independently. For the experiments all algorithms 
of the different software versions were executed in an infinite 
loop. 

A picture of the experimental setup is shown in Figure 2.  
 

 
 

Fig. 2. Experimental setup 
 

D. Error classification 

Observed errors during the experiments were categorized as 
follows: 

 SDC (Silent Data Corruption) errors: After every 
execution of the algorithm the result is compared with a 
golden result. Whenever there are differences between 
the actual result and the golden results, an SDC error will 
be triggered by the microprocessor and sent to the 
external monitor. 

 Hang errors: The microprocessor is stuck at an infinite 
loop or produces an abnormal termination that requires 
external intervention, in our case, reprogram and boot 
from the external monitor. Hang errors are detected by a 



 

timeout condition that is working as a watchdog timer. 
Our external monitor has also a timeout condition, so 
that Hang errors can be detected even in the case the 
internal mechanism does not work properly. 

 Communication errors: The microprocessor cannot 
communicate correctly with the external monitor. This 
type of events typically represent a very small amount of 
the observed errors and they do not occur in all the 
experiments. In this category we have also included 
possible problems when device programming takes 
place. During the complete set of experiments we 
observed some errors that affected the selection of the 
location of the programming file of the device. It 
provoked the loss of control of the circuit by the external 
monitor. This type of event only occurred twice and took 
place in two different experiments. 

 Data errors: Software detects a data error. This type of 
errors can only be detected by the software version that 
is data-flow hardened (DH). Our hardened software 
duplicates all variables and instructions, and compare 
variable values with the copies. Whenever a discrepancy 
appears, the microprocessor triggers a data error that will 
be collected by the external monitor. 

In the following section, cross-sections and percentages of 
the different types of errors observed for all the experiments are 
reported. The cross section of a single error category is 
computed by dividing the number of observed events of every 
error type by the total fluence, similar to the Hang cross-section 
reported in [30]. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Matrix multiplication results 

Table IV reports at every column a summary of the 
parameters used for the experiments of matrix multiplication 
software, namely: MMULT (matrix multiplication), MMULT 
N20 (Matrix multiplication optimized with NEON™) and 
MMULT DH (Data-flow Hardened version of matrix 
multiplication). For these experiments, all the software codes 
used 20x20 arrays of 32-bit data. 

TABLE IV: EXPERIMENTS PARAMETERS I (MMULT) 

 MMULT  
 

MMULT 
N20 

MMULT 
DH 

Energy (MeV) 15.4 15.4  15.4 
Flux (p/cm2·s) 1.7·108 5.2·108 5.2·108 
Fluence (p/cm2) 1.2·1012 1.0·1012 9.4·1011 

 
Table V shows the cross-section (cm2) obtained in the 

experiments for codes MMULT, MMULT N20 and MMULT 
DH. For the sake of comparison, cross-section is reported for 
all error categories and for the total number of observed events. 
The last column provides the total cross-sections and the 95% 
confidence intervals. These confidence intervals are computed 
using the standard deviation with a normal approximation of the 
Poisson mean. 

The final row of Table V reports the increase in cross-section 
that is produced when MMULT software is compared with 
MMULT N20 software for all the different error categories. 

TABLE V: RADIATION TEST RESULTS I (MMULT) 

 SDC 
(cm2) 

HANG 
(cm2) 

Comm. 
(cm2) 

TOTAL 
(cm2) 

MMULT 6.67·10-11 1.08·10-11 5.83·10-12 8.33·10-11 

(6.70·10-11, 
9.97·10-11) 

MMULT N20 1.12·10-10 4.70·10-11 7.00·10-12 1.67·10-10 

(1.41·10-10, 
1.91·10-10) 

MMULT DH 8.08·10-11 5.00·10-11 3.19·10-12 2.90·10-10 
(2.56·10-10, 
3.25·10-10) 

MMULT N20 
/MMULT 

1.68 4.34 1.20 1.99 

 
The results show that MMULT N20 code presents a 

significant increase in cross-section for all categories except for 
communication. Anyhow, the cross-section of communication 
errors is very similar in all cases and much smaller than that of 
of SDC or Hang errors. Considering the total cross-section, we 
observe an increase of 1.99 times for MMULT N20 code. The 
increase is 1.68 times for SDCs and 4.34 times for Hangs. It is 
interesting to note that the performance increase provided by 
the MMULT N20 code (2.4 times) is higher than the cross-
section increase (1.99 times), so that the Mean Work To Failure 
(MWTF), defined as the amount of work completed between 
failures [31], slightly improves when NEON™ coprocessor is 
used. 

For the MMULT DH benchmark, cross-section increases 
3.49 times with respect to the MMULT benchmark, which 
approximately matches the performance decrease (3.63) 
reported in section IV.A. However, the cross-section of data 
detected errors for this benchmark is 1.57·10-10, which stands 
for 53.85% of the observed errors. Therefore, the cross-section 
of undetected errors reduces to 1.34·10-10. Even so, data-flow 
hardening was not sufficient to improve cross-section with 
respect to the conventional MMULT code and it is only slightly 
better than the NEON™ code, MMULT N20. 

With regard to the error categories, both SDC and Hang 
errors increase for the MMULT DH benchmark, but the relative 
relevance of each of them varies significantly. This benchmark 
presents a large reduction of SDC errors when compared with 
MMULT benchmark: from 80% (MMULT) to 27.84% 
(MMULT DH). This reduction is almost equivalent to the 
percentage of detected errors, which can be expected because 
the data-flow hardening techniques mainly mitigate this type of 
errors. In the case of Hang errors, the variation is small and 
remains in the same order of magnitude, from 13% (MMULT) 
to 17.21% (MMULT DH). The increase of Hang errors seems 
to be related to the increase of execution time of the DH 
benchmark. Communication errors in the case of MMULT DH 
are reduced to 1.1% while MMULT has 7%. The variation of 
communication errors seems to be affected by the execution 
time of the benchmark that is irradiated, with a tendency to 



 

show a smaller proportion of errors when execution time is 
larger. 

B. Variation with the size of the data set 

Another set of experiments were performed in order to 
evaluate the cross-section variation with the size of the data set 
used by the software. For these experiments, we selected the 
matrix multiplication benchmarks optimized for NEON™ for 
several matrix sizes: 8x8 (MMULT N8), 20x20 (MMULT 
N20), 48x48 (MMULT N48) and 128x128 (MMULT N128). 

Table VI reports a summary of the parameters used in the 
experiments and Table VII shows the cross section (cm2) for 
every error category and for the total errors. The last column of 
Table VII reports the total cross-section and the 95% 
confidence intervals. MMULT N20 parameters and cross-
section have been included respectively in Tables VI and VII 
for the sake of comparison.  

Table VI shows that the flux was reduced for the experiments 
with larger data sets. During the experiments we observed a 
significant increase in the error rate in these cases, and we had 
to reduce the flux in order to be able to properly monitor the 
events.  

TABLE VI: EXPERIMENTS PARAMETERS II (SIZE VARIATION) 

 MMULT 
N8 

MMULT 
N20 

MMULT 
N48 

MMULT 
N128 

Energy (MeV) 15.4 15.4  15.3  15.3 
Flux (p/cm2·s) 4.6·108 5.2·108 1.7·108 9.5·107 
Fluence (p/cm2) 8.3·1011 1.0·1012 1.5·1011 1.0·1011 

 

TABLE VII: RADIATION TEST RESULTS II (SIZE VARIATION) 

 SDC 
(cm2) 

HANG 
(cm2) 

Comm. 
(cm2) 

TOTAL 
(cm2) 

MMULT 
N8 

2.53·10-11 3.25·10-11 7.23·10-12 6.51·10-11 

(4.77·10-11, 
8.24·10-11) 

MMULT 
N20 

1.12·10-10 4.70·10-11 7.00·10-12 1.67·10-10 
(1.41·10-10, 
1.91·10-10) 

MMULT 
N48 

1.6·10-10 7.40·10-10 1.33 10-11 9.13·10-10 

(7.60·10-10, 
1.07·10-9) 

MMULT  
N128 

3.00·10-11 1.18·10-9 0 1.21·10-9 
(9.94·10-10, 
1.43·10-9) 

 
Table VII shows that the total cross-section increases with 

increasing array size. This increase roughly correlates with the 
dimension of the matrices. 

Regarding the error type, there is a remarkable increase of 
Hang errors with increasing array size, while SDC errors show 
a much moderate increase or even a decrease in the case of the 
largest tested matrix size (128x128). Figure 3 shows the 
percentage of errors of the different categories (SDC, Hang and 
communication) for the NEON™ implementations of MMULT 
with different matrix sizes (N8, N20, N48 and N128). For the 
smaller data set (N8), the percentages of SDC and Hang errors 
are of the same order of magnitude. The percentage of SDC 
errors first grows as the size increases (N20) but then Hang 

errors clearly dominate for the larger sizes. 
A possible explanation for this behavior is the fact that the 

use of NEON™ instructions increases together with the 
execution time for large data sets. When the SIMD coprocessor 
is used more intensively, events can cause errors in the SIMD 
coprocessor pipeline that lead to Hang errors. The compiler 
optimization level for all the NEON™ optimized benchmarks 
was required to be the maximum (-O3). When this optimization 
level is used, program instructions are reordered to speed up 
execution. In this case, there is a higher probability for errors  
to affect the control flow. 

These experiments show that data size is very relevant when 
SIMD coprocessor is used and must be considered when 
software is designed. 
 

 
 

Fig. 3. MMULT size variation results (Percentage of observed errors) 
 

C. Wavelet Transform 

Table VIII reports a summary of the main parameters for the 
experiments using wavelet transform benchmarks, namely WT 
and WT N (NEON™ version of wavelet transform), and Table 
IX shows the measured cross sections (cm2). Input data size for 
both software versions was 32x32 arrays of 16 bit data. The last 
column of Table IX reports the total cross-section and the 95% 
confidence intervals. 

TABLE VIII: EXPERIMENTS PARAMETERS III (WAVELET) 

 WT WT N 

Energy (MeV) 15.3 15.3  
Flux (p/cm2·s) 4.5·108 4.3·108 
Fluence (p/cm2) 8.8·1011 8.6·1011 

 

TABLE IX: RADIATION TEST RESULTS III (WAVELET) 

 SDC 
(cm2) 

HANG 
(cm2) 

Comm. 
(cm2) 

TOTAL 
(cm2) 

WT 1.16·10-10 3.40·10-11 6.81·10-12 1.57·10-10 

(1.30·10-10, 
1.82·10-10) 

WT N 1.03·10-10 4.30·10-11 5.81·10-12 1.52·10-10 
(1.26·10-10, 
1.78·10-10) 

WT N/ 
WT 

0.89 1.26 0.85 0.97 



 

 
The results of Table IX show that the NEON™ version of the 

wavelet benchmark (WT N) slightly reduces the cross-section. 
Regarding the different error categories, both SDC and 
communication errors slightly decrease but Hang errors 
increase by a factor of 1.26. This increase of Hang errors when 
NEON™ is in use shows the same behavior as the MMULT 
benchmark. The total cross-section slightly decreases due to the 
smaller quantity of SDC and communication errors.  

Taking into account both the cross-section and the speed-up, 
it is clear that the use of the NEON™ coprocessor is highly 
beneficial for this benchmark, because it can be sped up by 
more than 5 times with a similar cross-section.  

Figure 4 shows a comparison of the percentages of every type 
of error for MMULT, MMULT N20, WT and WT N. We can 
observe that when the SIMD coprocessor is used, the 
percentage of SDC errors decreases and the percentage of Hang 
errors increase for both benchmarks. The increase of Hang 
errors is more noticeable in the case of the matrix multiplication 
benchmark. Figure 4 also shows that the NEON™ versions of 
both benchmarks provide similar results in percentage. 
However, when the SIMD coprocessor is not used, the wavelet 
transform benchmark presents a larger percentage of Hang 
errors. 
 

 
 

Fig. 4. Comparison of error categories for MMULT and WT vs.  
NEON™ implementations. 

 

VI. CONCLUSIONS  

This paper has analyzed the suitability of SIMD (Single 
Instruction Multiple Data) extensions under radiation with a 
case study based on ARM CORTEX™-A9 and its NEON™ 
SIMD coprocessor. SIMD extensions are present in many 
modern microprocessors, including ARM, Intel and AMD 
architectures, in order to improve their performance for 
applications with a high computational load, such as 
multimedia applications. As the computational requirements 
for space missions are steadily increasing, SIMD extensions 
may become a solution for onboard processing of large amounts 
of data. 

 Zynq SoC devices with ARM Cortex™-A9 hard-core 
microprocessors were irradiated with protons with an energy up 

to 15.4 MeV. Eight different boards were used with several 
versions of two typical data-intensive code benchmarks, 
namely matrix multiplication and wavelet transform. 

Experimental results demonstrate that the use of the 
NEON™ coprocessor notably improves performance but can 
also increase cross-section. However, the performance increase 
is generally higher than the cross-section increase, so that the 
Mean Work To Failure improves when NEON™ coprocessor 
is used.  

Experiments were also performed for data sets of different 
sizes in order to evaluate how this may affect cross-section. The 
results show that the total cross-section increases with the size 
of the workload. In particular, there is a remarkable increase of 
Hang errors for large data sets, which make a more intensive 
use of the SIMD coprocessor. These results show that data size 
is very relevant when SIMD coprocessor is used and must be 
considered when the software application is designed. 
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