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Weak-Shock Interactions with Transonic Laminar Mixing
Layers of Fuels for High-Speed Propulsion
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† Center for Turbulence Research, Stanford University, Stanford CA 94305-3024

This article extends to transonic mixing layers an analysis of Lighthill on the interaction between

weak shocks and laminar boundary layers. As in the previous work, the analysis is carried out un-

der linear-inviscid assumptions for the perturbation field, with streamwise changes of the base flow

neglected, as is appropriate given the slenderness of the mixing-layer flow. The steady-disturbance

profile is determined by taking a Fourier transform along the longitudinal coordinate. Closed-form

analytical functions for the pressure field are derived in the small- and large-wavenumber limits, and

vorticity disturbances are obtained as functions of the pressure perturbations. The analysis is par-

ticularized to ethylene-air and hydrogen-air mixing layers, whose dynamics are of current interest

for hypersonic propulsion. The results provide, in particular, the effective distance of upstream influ-

ence of the pressure perturbation in the subsonic stream. The resulting value, which scales with the

thickness of the subsonic layer, is much smaller than the upstream influence distances encountered

in boundary layers. This study may serve as a basis to understand shock-induced autoignition and

flame-holding phenomena in simplified versions of non-premixed supersonic-combustion problems.

Nomenclature

Cp Normalized specific heat

D Normalized binary diffusion coefficient

f1, F1 Physical- and Fourier-space incident

pressure perturbation

g1, G1 Physical- and Fourier-space reflected

pressure perturbation

J Normalized fuel-diffusion flux

k Normalized streamwise wavenumber
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Le Fuel Lewis number

M Mach number

p, P Physical- and Fourier-space

pressure perturbations

Pr Prandtl number

R Normalized density

Re Reynolds number

L, `m Mixing-layer development distance

and thickness

T Normalized temperature

U , V Normalized streamwise

and transverse velocities

u, v Normalized streamwise and transverse

velocity perturbations

W Normalized mean molecular weight

Y , y, Y Base-flow, perturbation, and Fourier-

transformed fuel mass fractions

X , Z Streamwise and transverse global coordinates

x, z Normalized streamwise and transverse

local coordinates

α Thermal-diffusion factor

β Cotangent of Mach angle

γ Ratio of specific heats

ε Normalized perturbation amplitude

η Selfsimilar variable

Θ, θ Physical- and Fourier-space temperature

perturbations

µ Normalized mean viscosity

ω,$ Physical- and Fourier-space

vorticity perturbations

Ω Vorticity production factor

A. Subscripts

1 Supersonic air stream

2 Subsonic fuel stream

B. Superscripts

′ Dimensional variables

I. Introduction

Mixing layers and shock waves are two different phenomena that coexist in hypersonic and supersonic propulsion

devices. For instance, in supersonic-combustion ramjets (SCRAMJETS), shock waves are typically generated ahead of

the combustion zone, where the supersonic incoming flow enters a converging nozzle and interacts with wedged walls

and fuel injectors. Along its path through the combustor, the flow is subject to complex shock trains and expansion

waves [1].

In SCRAMJETS, shock waves can interact with the flow in many different ways. For instance, shocks may disturb
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the flow near the walls leading to sudden transition to turbulence and augmented wall heating in boundary layers. The

corresponding shock/boundary-layer interaction problem is one of high practical relevance that has received a large

amount of attention in recent years [2, 3, 4, 5]. A relatively less known interaction occurs when shocks impinge on

chemically-reacting mixing layers of fuel and oxidizer. To illustrate the relevance of shock/mixing-layer interaction

phenomena, consider the following standard fuel-injection configurations employed in SCRAMJETS. In one config-

uration, the shock waves interact with the mixing layer that separates the supersonic incoming hot-air stream and the

subsonic fuel flow, and which is generated downstream from a strut fuel injector (see Figs. 5 and 11 in Ref. [6]).

Similarly, in configurations with jet-in-crossflow fuel injection, a reflected bow shock interacts with the mixing layer

generated from the aerodynamics of the fuel jet as it flows into the supersonic incoming hot-air stream (see, for in-

stance, Fig. 4 in Ref. [7]). In all cases, since the residence time of the reactants in the combustor is short in supersonic

regimes, ignition typically cannot be achieved by relying on diffusion and heat conduction alone. Shock waves may

help, however, to heat the mixture and speed-up the mixing process, the former arising from the inherent tempera-

ture rise across the shock wave, and the latter associated with the interaction of the shock with the non-uniform flow

[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

Figure 1. Sketch of the general configuration.

Although the aerodynamic interactions described above are predominantly encountered in highly turbulent flows

in practical applications, analytical solutions to related simplified laminar problems can be advantageous in studying

such supersonic-combustion processes, helping to clarify the real configuration, not only for increasing understanding

but also for suggesting scaling concepts that may prove useful in formulating subgrid-scale models. The present work,

which is of that type, pertains to transonic laminar mixing layers formed by fuels employed in supersonic combustion

and subjected to impingement by a shock from the air stream, roughly as illustrated in Fig. 1. As a first step, an inert

mixing layer is considered, and the shocks are assumed to be sufficiently weak to be treated as linear perturbations of
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the base flow, the non-linear influences of finite-amplitude shocks on combustion and the effects of heat release being

deferred to later investigations. A crucial asset for the present investigation is the earlier work by Lighthill [19, 20],

which was instrumental in understanding the fundamental dynamics of weak-shock impingement on wall boundary

layers. Initially presented in a physical context, it was later shown by Stewartson and Williams [21] that this type

of problem, involving linear (weak-shock) perturbations of a laminar viscous region at large values of the Reynolds

number, Re, can be treated rigorously through matched asymptotic expansions for Re approaching infinity, resulting

in a triple-deck theory. This has been explained carefully in more recent reviews, such as that of Nayfeh [22], where

the relationships to other triple-deck problems are made clear. The mixing-layer problem to be addressed here turns

out to be a particularly simple version of multi-scale problems of this type, for example because it is unnecessary to

deal with the bottom (low-speed, viscous, incompressible) deck.

The objective of this study is to describe, by using asymptotic analysis, the effect of a weak shock on an inert

laminar transonic mixing layer. Particular attention is given to the effect of the perturbations in the nonslender in-

teraction region found around the impingement point, giving a problem that can be treated using Lighthill’s theory

on shock/boundary-layer interaction [19, 20]. Molecular transport effects, which determine the slow evolution of the

mixing layer flow upstream from the impingement location, have, however, a negligible effect on the perturbations in

the interaction region, because the local Reynolds number there is large. Correspondingly, since the streamwise extent

of the interaction region, of the order of the mixing-layer thickness, is much smaller than the mixing-layer develop-

ment length, the streamwise variations of the background flow variables can be neglected when writing the linearized

problem for the perturbations induced by the weak shock. Therefore, for the base flow only transverse changes in the

density and velocity are considered, while the background pressure field is assumed to be constant along and across

the mixing layer in the first approximation. These approximations engender analytic solutions.

The paper is structured as follows: The background laminar mixing layer and the asymptotic perturbation theory

are formulated in Section II. The perturbation pressure field is analyzed by means of a Fourier transformation along the

streamwise direction. An ordinary differential equation for the pressure perturbations, as functions of the transverse

variable, is obtained. The asymptotic results for high-frequency and low-frequency disturbances as functions of the

transverse coordinate and the frequency are provided in Section III, followed in Section IV by an analysis of the

upstream decay of the disturbance. Although the general analysis will be performed for a weak pressure perturbation

of arbitrary shape, the specific interaction with a weak step-pressure wave, emulating the weak shock, is addressed in
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Section V, where the pressure-perturbation distribution throughout the mixing layer is computed and analyzed. The

effects that the weak shock causes on the vorticity field are analyzed separately in Section VI. Finally, the conclusions

are summarized in Section VII.

Figure 2. Sketch of the model problem.

It is relevant to point out that there are three previous investigations of interactions of oblique shocks with mixing

regions, although the specific transonic problems addressed here have not been treated. Riley [23] employed the same

methods adopted here to analyze the interaction of a shock from a supersonic stream, incident at a fixed plane on a

shear layer of infinite extent, in which the Mach number approaches zero at infinity. Although he did not consider

the mixing-layer composition and temperature profiles, such as those that we analyze, instead studying influences of

two model transverse distributions of the Mach number, a number of the results of his theory are the same as ours.

Moeckel [24] derived a simplified method for describing shock shapes in purely supersonic mixing regions. The

same method was employed later by Buttsworth [25], who attempted computations of vorticity fields in mixing layers

of ideal gases with similar and different thermodynamic properties, his investigation being motivated by the same

supersonic-combustion applications that led to our study. All of these excellent contributions explain methods, not

investigated here, for taking into account influences of finite amplitudes of the incident waves.

II. Problem formulation

We consider the interaction of a steady transonic mixing layer -separating a supersonic air stream from a sub-

sonic fuel stream- with a small, external, steady, pressure perturbation approaching from the supersonic side. The

mixing layer develops downstream from a separating splitter plate, with the perturbation reaching the mixing layer

at a downstream distance X = L, as indicated in Fig. 2. The distribution of flow properties across the laminar mix-

ing layer depends on the type of air-fuel mixture, with two different relevant cases considered below. A first set of
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integrations neglects variations of the mean molecular weight and assumes a unity Lewis number when describing

the fuel diffusion velocity, with thermal diffusion neglected. This simplified case is representative of fuels that have

properties close to those of air, such as ethylene, which has been employed in recent supersonic combustion research

[26]. Properties of ethylene [27] are not exactly those of air, but, as will be shown, they are sufficiently close for its

behavior to be approximated well by that of the simplified case. Investigation of hydrogen, also a promising candidate

for high-speed combustion because of its favorable chemical properties (high mass-based energy density and high

reactivity), requires a separate analysis including consideration of its specific physical properties, i.e., low molecular

weight, high diffusivity, and non-negligible thermal diffusion.

The relevant Reynolds number of the flow Re = ρ′1U
′
1L/µ

′
1, based on the velocity U ′1, density ρ′1, and shear

viscosity µ′1 of the supersonic stream is assumed to be moderately large and comparable in magnitude to the corre-

sponding value ρ′2U2L/µ
′
2 based on the subsonic-stream properties. This results in a slender mixing layer, whose

characteristic thickness increases according to [(µ′1/ρ
′
1)X/U1]1/2, reaching a value `m of order Re−1/2L � L at

X = L. Since the relative magnitude of the external pressure perturbation ε is assumed to be infinitesimally small, in

the first approximation the flow variables are given by those of the unperturbed laminar mixing layer, which is known

to possess a selfsimilar solution, to be described below in Section III.A. The interaction of the perturbation with the

mixing layer occurs in a nonslender region of characteristic size `m, where the relevant local Reynolds number is

ρ′1U
′
1`m/µ

′
1 ∼ Re1/2 � 1. As a result, in the double limit Re� 1 and ε� 1 the interaction region can be analyzed,

following Lighthill’s seminal work [19, 20], by linearizing the conservation equations around the background solution,

with molecular-transport terms neglected at leading order, along with the small streamwise variations of the base flow,

of order Re−1/2 for the slender mixing layer considered here.

A. The transonic mixing layer

In the absence of external perturbations, the transonic mixing layer that develops downstream from the splitter plate

possesses a selfsimilar solution in terms of the rescaled transverse coordinate η = Z/[(µ′1/ρ
′
1)X/U ′1]1/2. In the

description, the longitudinal and transverse velocity components are scaled with their characteristic values U ′1 and

[(µ′1/ρ
′
1) U ′1/X]1/2 to define the nondimensional functions U(η) and V (η), while the temperature and density are

scaled with their air-side values T ′1 and ρ′1, respectively, to define T (η) and R(η). The adiabatic pressure disturbances

in the interaction region will be found below to be governed by an equation that depends only on the distribution of

Mach numberM(η) across the mixing layer. Since the ratio γ of specific heats is essentially constant in these ideal-gas
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mixtures, the sound speed is inversely proportional to the square root of the density because the pressure does not vary

appreciably across the mixing layer. As a result, the distribution of Mach number M(η) can be evaluated from the

nondimensional velocity and density profiles according to

M(η) = M1U(η)R(η)1/2 , (1)

where M1 > 1 is the Mach number of the air stream, yielding the relation M2 = M1U2R
1/2
2 < 1 for the fuel-stream

Mach number.

Since nitrogen and oxygen are very similar, they will be treated below as a single species, thereby reducing the

mixing process to that of a binary mixture, with the local composition characterized in terms of the fuel mass fraction

Y . The corresponding fuel diffusion flux, nondimensionalized with [ρ′1µ
′
1U
′
1/X]1/2, can be shown to be expressible

in the explicit form [28]

J = − RD

PrLe

(
dY

dη
+ α

Y (1− Y )

T

dT

dη

)
, (2)

accounting for both species gradient diffusion and thermal diffusion. The latter, the Ludwig-Soret effect, exerts sig-

nificant influences in laminar hydrogen-air mixing layers, while its reciprocal Onsager property, the Dufour effect, has

little influence on the results. Here Pr = µ′cp/λ is the Prandtl number of the gas mixture, assumed here to be constant

and equal to Pr = 0.7, with λ and cp representing the thermal conductivity and the specific heat at constant pressure

of the mixture. The ratio of the thermal diffusivity λ/(ρ′cp) to the fuel-air binary diffusion coefficient D′ is the Lewis

number, a quantity that depends on the mixture composition through the variation of λ/(ρ′cp) with molecular weight.

Its value in the air stream Le = λ1/(ρ
′
1cp1D

′
1) appears multiplying the Prandtl number in (2), which includes the

dimensionless binary diffusion coefficient D = D′/D′1, a function of the temperature given below in (8). The thermal

diffusion factor α (the ratio of the thermal diffusion coefficient to the product Y (1 − Y )ρ′D′) will be taken to be

constant, a sufficiently accurate approximation for hydrogen-air mixtures, for which α ' −0.3 [28].

In terms of the above dimensionless variables, the conservation equations can be written in the boundary-layer
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form

− η

2

d

dη
(RU) +

d

dη
(RV ) = 0 , (3)

R
(
V − η

2
U
) dU

dη
=

d

dη

(
µ

dU

dη

)
, (4)

RCp

(
V − η

2
U
) dT

dη
=

d

dη

(
µCp
Pr

dT

dη

)
− (W−12 − 1)J

dT

dη

− α(γ − 1)

W2γ

d

dη
(WJT ) + (γ − 1)M2

1µ

(
dU

dη

)2

, (5)

R
(
V − η

2
U
) dY

dη
= −dJ

dη
, (6)

where µ = µ′/µ′1, Cp = cp/cp1 and W = W ′/W ′1 (W ′ denoting molecular weights) are the shear viscosity, specific

heat, and mean molecular weight scaled with their air-stream values, and W2 = W ′2/W
′
1.

The above equations must be supplemented with the equation of state

RT = W =
1

1 + (W−12 − 1)Y
(7)

and with the expressions

µ =
1 + [(µ′2/µ

′
1)W

−1/2
2 − 1]Y

1 + (W
−1/2
2 − 1)Y

Tσ1 ,

D = T 1+σ1 , and Cp = [1 + (W−12 − 1)Y ]Tσ2 , (8)

for the variation with temperature and composition of the transport coefficients and specific heat. The representative

values σ1 = 0.7 and σ2 = 0.2 are used below for the temperature exponents. The semi-empiric expression used for

the viscosity of a binary mixture, taken from Ref. [29], and that employed for Cp, which follows from assuming that

the molar specific heat at constant pressure is identical for the fuel and the air, are approximate descriptions that give

excellent accuracy in many configurations of interest, notably for hydrogen-air mixtures. The temperature variations

in (8) and the assumption that the Prandtl number Pr = µ′cp/λ is constant are consistent with a Lewis number

λ/(ρ′cpD
′) that has a negligible temperature dependence and a thermal conductivity that increases with temperature

according to λ ∝ Tσ1+σ2 . In the simplified case that approximates ethylene as the fuel, the dependences on Y

disappear from (7) and (8), withW = W2 = 1 and µ′2 = µ′1, giving µ = 1,Cp = 1, and, in (2), J = Tσ1(dY/dη)/Pr.

The problem reduces to the integration of (3)-(6) supplemented with (7) and (8) and subject to the boundary

conditions U = 1, T = 1, and Y = 0 as η → ∞ and U = U2, T = T2, and Y = 1 as η → −∞, together with

the additional boundary condition M = M1UR
1/2 = 1 at η = 0, stating that the arbitrary origin of the transverse

coordinate η is selected to be the sonic point. The resulting description is similar to that presented in a previous analysis
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Figure 3. Profiles of U , T , R, Y , and M determined by integration of (3)-(6) for simplified and ethylene-air mixing layers (left-hand-side

plots) and for a hydrogen-air mixing layer (right-hand-side plots) with T2 = 0.375, M1 = 2 and M2 = 0.5. In panels (a) and (c), the

solid and dashed curves represent the simplified and ethylene-air cases, respectively; in panels (b) and (d), the dashed and dotted curves

represent results obtained by removing the Soret and Dufour effects, respectively.

of transient hydrogen-air mixing [30]. A distinguishing feature of the present analysis is the inclusion of the last two

terms in (5), which represent, respectively, the Dufour effect, by which an energy flux is generated by gradients of

species concentrations, and the heating by viscous dissipation, relevant for the transonic conditions examined here.

Integrations were performed for fuel streams composed of hydrogen (Le = 0.3, α = −0.3, W2 = 0.069, and

µ′2 = 0.514µ′1) and ethylene (Le = 1.2, W2 = 0.97, and µ′2 = 0.6µ′1, [27]). Additionally, comparisons were made

between ethylene-air and air-air mixing layers (with Le = 1, α = 0, W2 = 1, and µ′2 = µ′1 employed for air), which

show that both configurations yield qualitatively similar results. Sample profiles of U , T , R, and Y obtained for the

case T2 = 0.375 with M1 = 2 and M2 = 0.5 are shown in Fig. 3, which also displays the corresponding distributions

of Mach number, evaluated from (1).

The results shown in Figs. 3(a) and 3(c) appear quite symmetric, while those for hydrogen-air systems are more

irregular, exhibiting, for example, three inflection points in the profiles of density and Mach number. These differences

are due to the specific properties of hydrogen, notably its low molecular weight and high diffusivity. Thus, for both

the ethylene-air and simplified cases, in which the molecular-weight variation is unimportant, the density decreases as
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the temperature increases across the mixing layer from the subsonic to the supersonic stream, i.e., such that dR/dz <

0 everywhere. For the hydrogen-air mixing layer, however, the density changes associated with molecular weight

variations are sufficiently large that, for the air-to-fuel temperature ratio selected in the figure, the corresponding

density profile becomes an increasing function of z. These differences in transverse density gradient will be seen later

to have a significant effect on the vorticity generated by baroclinic torque.

The larger thickness of the hydrogen-air mixing layer, seen from the different scales in the left and right columns

of Fig. 3(b-d), is a direct consequence of the higher molecular diffusivity of the H2 molecules, apparent in their

small Lewis number Le = 0.3, and of the augmented transport rate associated with thermal diffusion. The latter

phenomenon is seen to have a prominent effect on the solution, as was verified by performing calculations with α = 0,

giving the profiles represented by the dashed curves in Fig. 3(b). The modifications in the hydrogen distribution are

seen to alter significantly the profiles of the other flow variables, especially those of density and Mach number. In

particular, as can be inferred from the resulting M(η), in the absence of thermal diffusion the supersonic boundary

of the mixing layer would be much closer to the sonic plane. Also of interest is that the Dufour effect comparatively

has a much smaller influence on the solution, as revealed by the dotted Mach-number profile in Fig. 3(d), obtained by

selectively removing the Dufour term in the energy equation (i.e., setting α = 0 in (5)). Thermal diffusion therefore is

important only through the Soret effect in this problem, as is often the case.

The sonic conditions, denoted by the superscript ∗, are reached at η = 0. At this point, the nondimensional

temperature and fuel mass fraction are T ∗ = 0.71 and Y ∗ = 0.65 for the simplified case and T ∗ = 0.48 and

Y ∗ = 0.36 for hydrogen-air mixing layers. Since the shock penetration will be seen to terminate at the sonic point,

it is thus found to end closer to the properties of the fuel stream in the simplified case than in the hydrogen-air

layer. Largely because of the high sound speed of hydrogen, however, the resulting distance from the sonic point to

the subsonic boundary, measured relative to the total mixing-layer thickness, turns out to be considerably smaller in

hydrogen-air mixing layers when the Mach numbers of the streams are fixed. This specific characteristic of the mixing

layer structure will be seen to have an effect on the rate of decay of the acoustic disturbances. With regard to the

fuel-mass-fraction profiles, it is also worth noting that the stoichiometric value is always a very small quantity (e.g.

Yst = 0.063 and Yst = 0.028 for ethylene-air and hydrogen-air mixtures, respectively), so that the most favorable

mixing conditions for ignition are always found near the air supersonic stream.

The selfsimilar profiles can be used to evaluate the thickness of the mixing layer. Different definitions are appro-
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priate for different applications. Since the interactions investigated below depend fundamentally on the Mach-number

distribution, it seems appropriate to use the condition of achievement of 99% of the free-stream Mach number as the

defining criterion for the location of the upper and lower edges of the mixing layer η1 and η2, giving for instance

η1 = 4.15 and η2 = −2.85 for the ethylene-air case and η1 = 12.25 and η2 = −3.9 for the hydrogen-air mixing layer

shown in Fig. 3. Correspondingly, the analysis yields the value

`m = (η1 − η2)[(µ′1/ρ
′
1)L/U ′1]1/2 (9)

for the mixing-layer thickness at X = L, to be used below as a scale for the interaction region. Because of the initial

factor in this equation, for the conditions of Fig. 3 the hydrogen-air mixing layer is more than twice as thick as the

ethylene-air layer. The convective Mach number, although most commonly employed for turbulent mixing layers, is

also known to be readily definable for laminar mixing layers [31], namely

Mc =
U ′1 − U ′2

[(γ − 1)cp1T
′
1]

1/2
+ [(γ − 1)cp2T

′
2]

1/2
= M1

1− U2

1 +R
−1/2
2

, (10)

which yields 1.05 for the ethylene-air case but only 0.25 for hydrogen-air. This trend is similar to the general one

found in turbulent mixing layers in that mixing-layer thicknesses decrease with increasing convective Mach numbers

[32].

B. The perturbed pressure field

The interactions of the external pressure perturbation with the mixing layer will be studied in a reference frame whose

origin is placed at the intersection of the incident wave with the sonic line, located at (X,Z) = (L,Z∗). Using `m as

characteristic length results in the local coordinates x = (X−L)/`m and z = (Z−Z∗)/`m. In the interaction region,

the streamwise variations of the velocity, density, temperature, and fuel mass fraction of the unperturbed base flow

are small, of order Re−1/2, and they can be therefore neglected in the first approximation, along with the departures

of the base-flow pressure from the ambient value p′o, of order Re−1. The external pressure perturbation introduced is

assumed to be of order εp′o, leading to relative departures from the base flow of order ε given by

u′

U ′1
= U(z) + εu(x, z) ,

v′

U ′1
= Re−1/2V (z) + εv(x, z) ,

(11)

ρ′

ρ′1
= R(z) + ερ(x, z) ,

p′ − p′o
γp′o

= εp(x, z) ,
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where the base profiles U(z), V (z), R(z) can be evaluated from the selfsimilar profiles U(η), V (η), R(η) with use

made of z = η/(η1−η2). The normalized transverse coordinate z is included for completeness in the plots of Fig. 3(a-

d). Note that, with the scaling introduced, the edges of the mixing layer z1 = η1/(η1− η2) and z2 = η2/(η1− η2) are

such that z1 − z2 = 1.

Since the local Reynolds number in the interaction region ρ′1U
′
1`m/µ

′
1 is large, of order Re1/2 � 1, the perturba-

tions are governed by the Euler equations, which can be linearized about the base-flow solution to give

R
∂u

∂x
+ U

∂ρ

∂x
+ v

dR

dz
+R

∂v

∂z
= 0 , (12a)

RU
∂u

∂x
+Rv

dU

dz
+

1

M2
1

∂p

∂x
= 0 , (12b)

RU
∂v

∂x
+

1

M2
1

∂p

∂z
= 0 , (12c)

U
∂p

∂x
=
U

R

∂ρ

∂x
+
v

R

dR

dz
, (12d)

the last expressing the conservation of entropy along any given streamline. The fuel mass fraction and the temperature

are also modified by the external pressure perturbation, giving departures that can be described by introducing Y (z) +

εy(x, z) and T (z) + εθ(x, z). The perturbation to the mass-fraction field, resulting from the deflection of the stream

lines in the interaction region, is determined by integration of

U
∂y

∂x
+ v

dY

dz
= 0 . (13)

On the other hand, the temperature perturbation θ can be obtained from the condition of isentropic flow

(γ − 1)U
∂p

∂x
=
U

T

∂θ

∂x
+
v

T

dT

dz
(14)

or, more directly, from the linearized form of the equation of state

Rθ = γp− Tρ− (W−12 − 1)RTy (15)

in terms of ρ, p, and y.

As shown by Lighthill [19], the equations (12) can be combined to produce a single equation for the pressure

perturbation. The development uses suitable linear combinations of (12a), (12b), and (12d) to yield

(
1−M2

) ∂p
∂x

=
∂

∂z

( v
U

)
(16)

which leads to

∂2p

∂z2
+
(
1−M2

) ∂2p
∂x2
− ∂ lnM2

∂z

∂p

∂z
= 0 (17)
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after elimination of v with use made of (12c). From (17) clearly the solution depends fundamentally on the shape of

the Mach-number distribution M(z).

Following Lighthill, to simplify the treatment we assume that the mixing layer extends across the finite domain

z2 < z < z1 and that the base flow is uniform outside. The problem then reduces to that of integrating (17) in

z2 < z < z1 subject to the condition that p decays as x → ±∞ and to the additional boundary conditions at z = z1

and z = z2 obtained from matching with the pressure field in the uniform streams. There, M2 is constant, and the

pressure-perturbation field obeys the Prandtl-Glauert equation ∂2p/∂z2 + (1 −M2)∂2p/∂x2 = 0, which results in

a hyperbolic or elliptic differential equation, depending on whether the Mach number is larger or smaller than unity,

respectively.

In the supersonic stream, the pressure waves follow real characteristic paths C± = x ± β1z=constant, where

β1 = (M2
1 − 1)1/2, with the two solutions having different specific domains of dependence and ranges of influence.

The pressure wave in the supersonic zone can be represented by an incident (known) wave, described by f1(x+ β1z),

and a reflected (unknown) wave, described by g1(x − β1z), so that p = f1(x + β1z) + g1(x − β1z). This outer

pressure field is to be employed when defining the boundary condition at z = z1, given below for the Fourier analysis

in (24). By way of contrast, since (17) is elliptic for subsonic flows, the associated characteristic paths are complex,

corresponding to constant values of x ± iβ2z, with β2 = (1 −M2
2 )1/2, causing the entire subsonic-flow domain to

be the range of influence and domain of dependence. Boundedness of the solution as z approaches −∞ then provides

the additional needed boundary condition at z = z2, given below in (25) in Fourier space, thereby completing the

definition of the pressure-perturbation problem.

The model of the interaction is sketched in Fig. 4, where the incident wave f1 that travels along the path x +

β1z=constant interacts first with the mixing layer at z = z1 and x = −s1 = −
∫ z1
0

(M2−1)1/2dz. The reflected wave

g1 leaves the mixing layer following the characteristic x−β1z=constant. The functions g1(x−β1z) and f2(x± iβ2z)

are to be found by analyzing the interaction with the mixing layer for a given function f1(x+ β1z).

C. Solution in Fourier space

It is useful to transform the partial differential equation (17) into an ordinary differential equation for z by taking a

Fourier transform over the x variable. The Fourier-transform pressure P(k, z) is defined by its inverse transform

p(x, z) =
1√
2π

∫ ∞
−∞

eikxP(k, z)dk , (18)
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Figure 4. Schematic representation of the incident-wave mixing-layer interaction.

where the independent variable k refers to the Fourier wavenumber of the pressure disturbances. In the formalism

selected here, the unitary transformation (18) includes a factor 1/
√

2π that is not present in Lighthill’s boundary-layer

analysis, a difference to be kept in mind when comparing the boundary-layer and mixing-layer results. In terms of

P(k, z), the governing perturbation equation inside the mixing layer becomes

d2P
dz2
− d lnM2

dz

dP
dz

+ k2
(
M2 − 1

)
P = 0 . (19)

Since M is constant in the supersonic and subsonic streams, in those streams (19) reduces to the equation,

d2P
dz2

+ k2
(
M2 − 1

)
P = 0 . (20)

The solutions to (20) are oscillatory in the supersonic stream (M2 > 1) and exponential in the subsonic stream

(M2 < 1). In the former stream, the pressure field in Fourier space can be written as

P(k, z) = F1(k)eikβ1z +G1(k)e−ikβ1z , (21)

where F1(k) describes the incident perturbation and G1(k) refers to the corresponding reflected wave. Since the

incident perturbation must be prescribed for any given problem, the function F1(k)eikβ1z is known. The function

G1(k), however, is to be determined from (19) by satisfying the boundary condition in the subsonic stream as z

approaches negative infinity. Since G1(k) is unknown, the condition (21) must be replaced by a condition that does

not involve G1(k). A suitable condition, evident from the derivative of (21), is

dP
dz

+ iβ1kP = 2iβ1kF1(k)eikβ1z , (22)

the right-hand side of which is now a prescribed function.
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For any given value of k, (19) can be integrated numerically from a large positive value of z towards z = −∞, if

values of F1(k) and G1(k) are selected. At large negative values of z, this solution will approach the solution to the

subsonic form of equation (20), which can be written as

P(k, z) = F2(k)e+|k|β2z +G2(k)e−|k|β2z , (23)

with the values of F2(k) and G2(k) determined by the selected values of F1(k) and G1(k) through the integration

of (19). Since the solution must, however, be bounded as z approaches negative infinity, G2(k) must vanish. Given

F1(k), there will be a value of G1(k) that will result in G2(k) = 0. This value of G1(k) will correspond to the

correct value for the reflected wave. This shooting computational approach will provideG1(k) accurately because any

inaccuracies in G1(k) would result in an exponentially divergent solution as z approaches negative infinity.

An alternative to this shooting method is to impose boundary conditions at sufficiently large but finite values of |z|,

as did Lighthill [19]. If these boundaries are placed sufficiently far, i.e., at values of |z| where equation (20) applies

because the Mach number is close to its free-stream values, then the solutions employing (22) and (23) withG2(k) = 0

at the computational boundaries will be sufficiently accurate. This approach, moreover, facilitates comparisons with

the Lighthill solutions. That approach therefore is selected here, with the values of z1 and z2 associated with the

condition of achievement of 99% of the free-stream Mach number, as previously mentioned.

Applying (22) at z = z1 gives

Pz(k, z1) + iβ1kP(k, z1) = 2iβ1kF1(k)eikβ1z1 , (24)

where the subscript z denotes differentiation with respect to this coordinate. In the external subsonic zone, where the

pressure distribution (23) holds, the function G2(k) must vanish to avoid a divergent behavior when z → −∞, as

previously mentioned. Correspondingly, the boundary condition for P at z = z2 becomes

Pz(k, z2) = β2|k|P(k, z2) . (25)

For a given F1(k), the pressure perturbation in the mixing layer P(k, z) is obtained by integrating (19) subject

to (24) and (25). The Fourier transform of the remaining flow variables can be written in terms of P and Pz . For

instance, the functions Y(k, z) and Θ(k, z), corresponding to y(x, z) and θ(x, z) in Fourier space, can be evaluated

from

Y = −dY

dz

Pz
k2M2

(26)
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and

Θ = (γ − 1)TP − dT

dz

Pz
k2M2

(27)

obtained from streamwise derivatives of (13) and (14) after (12c) is used to express ∂v/∂x in terms of the transverse

pressure gradient. Also, the solution for P(k, z) can be used to determine the pressure perturbations in the outer

streams, including the reflected wave

G1(k) =
ikβ1P(k, z1)− Pz(k, z1)

2ikβ1
eikβ1z1 (28)

in the supersonic stream, obtained by appropriately eliminating F1(k) after differentiating (21) and evaluating the

result at z = z1, and the transmitted pressure perturbations

F2(k) = P(k, z2)e−|k|β2z2 (29)

in the subsonic stream, obtained by evaluating (23) at z = z2 with G2 = 0.

III. Formal solution in Fourier space and limiting asymptotic forms

The problem of finding P(k, z) requires numerical integration. The small-scale and large-scale structure of the

pressure field can be investigated by considering analytic solutions for large and small values of |k|, respectively. To

facilitate the analytical development, it is convenient to express the solution formally in terms of two independent

orthogonal functions Q and N , defined by the solutions to (19) that obey the modified boundary conditions

Q(k, z2) = 1 , Qz(k, z2) = 0 ,

N(k, z2) = 0 , Nz(k, z2) = 1 . (30)

Using these two independent solutions together with the original boundary conditions (24) and (25) enables the pres-

sure P(k, z) to be expressed in the form

P(k, z)

F1(k)
=

2iβ1k [Q(k, z) + β2|k|N(k, z)]

E(k, z1, β1, β2)
eikβ1z1 , (31)

with E(k, z1, β1, β2) given by

E(k, z1, β1, β2) = Qz(k, z1) + iβ1kQ(k, z1) + β2|k| [Nz(k, z1) + iβ1kN(k, z1)] . (32)

In particular, equation (31) exhibits a linear dependence on the external perturbation F1(k) and a more complicated

dependence on the Mach-number distribution through the functions Q(k, z) and N(k, z). Solutions will be obtained
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below in the limit |k| � 1, by using the WKB-like method developed by Langer [33], and also in the limit |k| � 1,

by introducing regular expansions in powers of k2 for Q(k, z) and N(k, z). The formal solution (31) is also useful to

investigate the upstream influence of the pressure disturbance, whose rate decays for x → −∞ as determined by the

negative imaginary zero of the denominator of (31) with smallest magnitude |k|. This aspect of the solution is to be

investigated in Section V, including the differences with the boundary-layer results of Lighthill [19, 20].

A. The limit of large wavenumber

Consideration of the asymptotic limit k � 1 allows us to explore the small-scale features of the flow. For the analysis,

it is convenient to use, following Ref. [19], the early WKB-like results obtained by Langer [33] for equations of the

form (19). According to Langer’s analysis, if the two variable coefficients d(lnM2)/dη and (M2 − 1) are twice

differentiable in the interval z2 < z < z1, with the latter further satisfying (M2− 1) > 0 for z > 0 and (M2− 1) < 0

for z < 0, as is the case for the transonic mixing layer, then at leading order in the limit k � 1 any solution to (19)

can be expressed as a linear combination of the functions

fa =
√

2πM
|s|1/6
|β|1/2 (ks)1/3J−1/3(ks) ,

fb =
√

2πM
|s|5/6
|β|1/2 (ks)−1/3J1/3(ks)sign(z) ,

(33)

in which

β = (M2 − 1)1/2 , and s =

∫ z

0

β(z′)dz′ , (34)

with z′ being a dummy integration variable and Jν representing Bessel functions of the first kind. The stretched

coordinate s is real in the supersonic domain z > 0 but imaginary for z < 0. Its value at z = z1 is s = s1 =∫ z1
0
β(z)dz, while that at the subsonic edge is given by s = +is2, where

s2 =

∫ 0

z2

(1−M2)1/2dz . (35)

The formulae (33) simplify for values of s such that |ks| � 1, corresponding to any fixed transverse location z

away from the sonic line as |k| → ∞, in that the functions (ks)±1/3J∓1/3(ks) can be replaced by their asymptotic

expressions for large values of the argument, leading to

fa = M
|s|1/6
|β|1/2

[
eiks

(iks)1/6
+

e−iks

(−iks)1/6

]
,

fb = M
|s|5/6
|β|1/2

[
eiks

(iks)5/6
+

e−iks

(−iks)5/6

]
sign(z) .

(36)
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The constants of integration

CQa (k) =
1

2
√

3

√
β2
M2

(
k1/6eks2 + (−k)1/6e−ks2

)
, (37a)

CQb (k) =
1

2
√

3

√
β2
M2

(
k5/6eks2 + (−k)5/6e−ks2

)
, (37b)

CNa (k) =
1

2
√

3

1

k
√
β2M2

(
k1/6eks2 − (−k)1/6e−ks2

)
, (37c)

CNb (k) =
1

2
√

3

1

k
√
β2M2

(
k5/6eks2 − (−k)5/6e−ks2

)
, (37d)

that complete the determination of Q = CQa fa + CQb fb and N = CNa fa + CNb fb are obtained by imposing the

boundary conditions (30) at the subsonic edge of the mixing layer, with the simplified expressions (36) used in the

evaluations, as is appropriate away from the sonic point. These simplified expressions can also be used to evaluate

the denominator of (31), which involves values of the functions and their derivatives at the supersonic edge of the

mixing layer, while the complete expressions (33) must be used for computing the functions Q and N appearing in

the numerator, if a solution valid across the whole mixing layer is to be derived. This evaluation procedure provides

P(k, z)

F1(k)
=
M2

√
β1

M1

√
β2

CQa fa + CQb fb + β2|k|
(
CNa fa + CNb fb

)
k cosh(ks2 − iπ/4) + |k| sinh(ks2 − iπ/4)

keik(β1z1−s1) , (38)

as a uniformly valid expression for the transverse distribution of pressure perturbation for k � 1, giving in particular

P(k, 0)

F1(k)
=

21/3
√
π

32/3(− 1
3 )!

√
β1

M1 [Mz(0)]
1/6

[1 + isign(k)] |k|1/6eik(β1z1−s1) (39)

for the corresponding variation of the pressure at the sonic line z = 0, which is seen to exhibit a weak dependence on

the local Mach-number gradient Mz(0) = (dM/dz)|z=0.

Away from the sonic point (i.e., for z such that |ks| � 1), one may use (36) to evaluate fa and fb in (38), yielding

the simplified expressions

P(k, z)

F1(k)
=

√
β1
β

M

M1

[
eiks + isign(k)e−iks

]
eik(β1z1−s1) , (40)

for z � |k|−1, where the pressure is oscillatory, and

P(k, z)

F1(k)
=

√
β1

2|β|
M

M1
[1 + isign(k)] e−|k||s|eik(β1z1−s1) , (41)

for −z � |k|−1, where the pressure decays exponentially for increasing distances from the sonic line. Correspond-

ingly, the large-wave-number components of the reflected and transmitted waves can be obtained by substituting (40)

into (28) to give

G1(k) = isign(k)e2ik(β1z1−s1) F1(k) , (42)
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and (41) into (29) to give

F2(k) =

√
β1
2β2

M2

M1
[1 + isign(k)] e|k|(β2z2−s2)eik(β1z1−s1)F1(k) . (43)

In consonance with Riley [23], the results at leading order in the limit |k| � 1 indicate that the pressure distribution

across the mixing layer resulting from the external perturbation becomes largely independent of the boundary condition

at the lower edge. Correspondingly, the distribution of P across the mixing layer, given in (38) for |k| � 1, is

identical to that computed by Lighthill [19, 20] for a boundary-layer flow with the same Mach-number distribution

M(z), except in a region of characteristic thickness |k|−1 near the lower edge, where significant differences appear.

As a result, while the pressure perturbation at the sonic line, given in (39), and the shape of the reflected wave, given

in (42), are identical for a mixing layer and a boundary layer that have the same M(z) in the supersonic domain, the

corresponding pressure at the mixing-layer subsonic boundary, obtained by evaluating (41) at z = z2, is half the value

predicted by Lighthill at the boundary-layer wall, given by equation (23) in Ref. [20]. Clearly, these differences in

pressure magnitude are associated with the different nature of the boundary, with the confinement exerted by the wall

resulting in higher pressures.

−0.2 0.0 0.2 0.4 0.6
z

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

P
F1

k = 30

airhydrogen

Figure 5. The real part of the function P/F1(k) as obtained for the hydrogen-air Mach-number distribution of Fig. 3(d) by integration of

(19) (thick black solid curves) and by evaluation of the large-wave-number asymptotic predictions given in (38) (thin grey solid curves) and

in (40) and (41) (dashed curves) for k = 30.

The accuracy of the above large-wave-number asymptotic predictions is tested in Fig. 5, which compares the

variation with z of the real part of P/F1 obtained by numerical integration of (19) subject to (24) and (25) with that

evaluated with use made of (38) for the hydrogen-air mixing layer of Fig. 3(d). For the value k = 30 selected, the

differences are seen to be very small everywhere. The separate predictions given in (40) and (41) for the pressure

disturbances in the supersonic and subsonic domains are also included in the plot. As expected, these simplified

expressions give a sufficiently accurate description away from the sonic point, but they break down as M → 1, in the
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region where |ks| is no longer small, where (40) and (41) predict an erroneous pressure divergence resulting from the

associated factors 1/
√
β and 1/

√
|β|.
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1

2

P
F1

(a) z = z1
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(b) z = 0

10−1 100 101 102

k

0.1

0.0
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Figure 6. The variation with the wavenumber of the real part of the function P/F1(k) at the supersonic boundary z = z1 (a), at the

sonic line z = 0 (b), and at the subsonic boundary z = z2 (c) as obtained for the hydrogen-air Mach-number distribution of Fig. 3(d) by

integration of (19) (solid curves) and from the analytical results for large and small wavenumbers (dashed curves).

The asymptotic results are further tested in Fig. 6(a-c), which compares the variation with wavenumber of the

real part of P/F1 at z = (z1, 0, z2) obtained numerically with those determined from evaluations of the analytic pre-

dictions, given in (39) for the pressure at the sonic line z = 0 and in 40 and (41) for the pressure at the supersonic

and subsonic mixing-layer boundaries, respectively (results corresponding to the small-wave-number limit, to be dis-

cussed below, are also included in the figure). As can be seen, at all three locations the asymptotic predictions remain

reasonably accurate until the wavenumber decreases to values of order unity.

The large-wave-number predictions given above can also be used to evaluate the perturbations to the other flow

variables, e.g., those of the fuel mass fraction and temperature, given in (26) and (27). As expected, the deflection

of the stream lines has a negligible influence on the large-wave-number component of the solution, so that in the

limit |k| � 1 the mass-fraction perturbation Y vanishes while the temperature perturbation (27) reduces to the local

isentropic balance Θ/T = (γ − 1)P .
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B. The limit of small wavenumber

In the opposite limit |k| � 1, the solution can be obtained by introducing the expansionsQ(k, z) = Q0(z)+k2Q1(z)+

· · · and N(k, z) = N0(z) + k2N1(z) + · · · into (19) and solving sequentially the equations that appear at different

orders in powers of k2. The development is facilitated by writing (19) in the compact form

d

dz

(
M−2

dP
dz

)
= k2(M−2 − 1)P . (44)

The right-hand-side term is absent in the equation at leading order

d

dz

(
M−2

dP0

dz

)
= 0 , (45)

where P0 is used to denote either one of the leading-order terms Q0 and N0, so that straightforward integration with

boundary conditions Q0 − 1 = (Q0)z = 0 and N0 = (N0)z − 1 = 0 at z = z2 provides

Q0 = 1 and N0 =

∫ z

z2

(
M

M2

)2

dz′ . (46)

At the following order, we find

d

dz

(
M−2

dP1

dz

)
= k2(M−2 − 1)P0 , (47)

thereby providing

Q1 =

∫ z

z2

M2

(∫ z′

z2

(M−2 − 1) dz′′

)
dz′ (48)

and

N1 =

∫ z

z2

M2

(∫ z′

z2

(M−2 − 1)N0 dz′′

)
dz′ , (49)

upon integration with the homogeneous boundary conditions Q1 = (Q1)z = N1 = (N1)z = 0 at z = z2.

Substitution of the resulting two-term expansions Q(k, z) = Q0(z) + k2Q1(z) and N(k, z) = N0(z) + k2N1(z)

into (31) provides an explicit expression for the small-wave-number pressure distribution that is accurate to order

O(k2) across the mixing layer. The resulting prediction at z = (z1, 0, z2) is compared with the complete numerical

results in Fig. 6(a-c). As can be seen, the two-term expansion for |k| � 1 remains reasonably accurate for values of

the wavenumber |k| ≤ 1.

IV. Upstream decay of the disturbance

To investigate the upstream propagation of pressure disturbances on the subsonic side of the mixing layer, we

adopt the solution strategy utilized by Lighthill [19] for the boundary layer. For x < 0 the inverse transform p(x, z) of
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(18) can be expressed as −
√

2πi times the sum of the residues of P(k, z)eikx at the zeros of the denominator of (31)

in the lower half of the complex k plane, which are located along the imaginary axis (i.e., k = −iκ0,−iκ1,−iκ2, . . .

with κ0 < κ1 < κ2 · · · ). The dominant term in the far field, corresponding to large values of −x, is that associated

with the smallest zero, k = −iκ0. Correspondingly, the product of the inverse logarithmic decrement, κ−10 , and the

mixing-layer thickness `m provides a measure for the effective distance of upstream influence.

To determine κ0, it is convenient to introduce k = −iκ in the denominator of (31) to yield

Qz(−iκ, z1) + β1κQ(−iκ, z1) + β2κ [Nz(−iκ, z1)− β1κN(−iκ, z1)] = 0 , (50)

where the functions Q and N are obtained by integration of (19) with boundary conditions (30). For a given Mach

number distribution, the numerical solution to (50) provides a discrete number of real positive zeros κn of increasing

magnitude. For instance, when the profiles M(z) shown in Fig. 3(c,d) are used in the computation of Q(k, z) and

N(k, z), one obtains for the first three zeros from (50) the values κ0 = 4.7, κ1 = 16.34, and κ2 = 27.23 for the

ethylene-air mixing layer and the values κ0 = 7.32, κ1 = 27.6, and κ2 = 45.22 for the hydrogen-air mixing layer.

The results indicate that, for mixing layers, the decay of the perturbation is quite rapid, because κ0 is moderately

large, so that the pressure disturbance is only felt at distances of the order of a fraction of the mixing-layer thickness.

This is in contrast with the results previously obtained for the boundary layer, in which the decay was seen to be very

slow [20], with perturbations reaching far upstream but it agrees with the results of Riley [23]. Since κ0 was very

small for the boundary layer, the limit of small wavenumbers was correspondingly used by Lighthill [20] to determine

approximate analytic expressions for κ−10 . In the present problem, however, the numerical results suggest that the

opposite limit |k| � 1 should be considered instead, with the value of κ0 obtained from the analysis of the zeros of

the denominator in (38), similar to what was done by Riley [23]. Introducing k = −iκ leads to tan(κs2 +π/4) = −1,

which can be solved to give

κn =
π

2
(1 + 2n)s−12 , (51)

where s2, defined in (35), carries a dependence on the Mach-number distribution across the subsonic layer. Using

in (51) the values s2 = 0.29 and s2 = 0.175 corresponding to the ethylene-air and to the hydrogen-air mixing layers,

respectively, provides the values κ0 = 5.45, κ1 = 16.34, and κ2 = 27.23 and κ0 = 8.98, κ1 = 26.95, and κ2 = 44.92

for the first three zeros. As can be seen by comparing these values with the numerical results, the accuracy of (51)

improves for larger κ, an expected result. The approximation κ0 = π/(2s2) that follows from (51) overpredicts the

first zero by about 20 % for the two mixing layers considered here. As the Mach number of the subsonic stream
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decreases, the accuracies of these approximations decrease, approaching results like those of Lighthill [20].

It is worth mentioning that, while the inverse logarithmic decrement κ−10 in boundary layers is found to be approx-

imately proportional to the square of the supersonic Mach number M2
1 [20], in mixing layers the large-wave-number

analysis provides a value κ−10 = 2s2/π entirely independent of the Mach-number distribution in the supersonic stream.

Since s2 is proportional to |z2|, the characteristic distance of upstream influence κ−10 `m becomes proportional to the

thickness of the subsonic portion of the mixing layer, which is seen in Fig. 3(c,d) to be markedly smaller for the

hydrogen-air mixing layer, as was indicated previously. The differences in profiles of M(z) shown in Fig. 3(c,d) also

indicate that consideration of a sufficiently accurate molecular transport model is essential in computing s2 accurately,

so that, for instance, Soret effects cannot be neglected when dealing with hydrogen.

V. Interaction with a weak shock

The above theory applies to the interaction of any given weak external pressure perturbation with a transonic

mixing layer. The specific response to a weak shock can be investigated by considering an incident pressure jump

defined by the Heaviside step function f1 = H(x+ β1z + s1 − β1z1), whose Fourier transform is given by F1(k) =

(πδ(k)+1/ik) exp [ik(s1 − β1z1)] /
√

2π. The resulting distribution of pressure perturbation p(x, z) across the mixing

layer can be obtained from the inverse transformation (18) once the Fourier pressure function P(k, z) is determined

by integration of (19) subject to (24) and (25). Since the response to the pressure discontinuity is anticipated to have

a dominant large-wave-number component at distances x of order unity, the simplified results obtained above in the

limit |k| � 1 can be used in the analysis of the solution in the interaction region. The computation of the pressure is

still far from trivial, since it involves the cumbersome task of inverting the Bessel-type functions present in (38) when

use is made of (33). The solution is facilitated by working with the simplified expressions (40) and (41), which hold

away from the sonic point in the supersonic and subsonic domains, respectively, yielding

p(x, z) =

√
β1
β

M

M1


H (x+ s) , if x < s

−γ̃π−1 − ln (x− s)π−1 , if x > s

(52)

and

p(x, z) =
1

π

√
β1

2|β|
M

M1

[
π

2
− γ̃ − ln

(√
|s|2 + x2

)
− tan−1

(
x

|s|

)]
(53)

upon application of the inverse Fourier transform. The symbol γ̃ refers to the Euler-Mascheroni constant. These

pressure functions are not valid in the vicinity of the sonic line z = 0, where they should be replaced by the inverse

23 of 35

American Institute of Aeronautics and Astronautics



transform of the Fourier pressure (38). In particular, its value at z = 0, given in (39), can be used to derive

p(x, 0) =

√
β1√

2M1 [Mz(0)]
1/6

[
61/3(1/6)!

√
2 +
√

3

(−1/3)!

][
1 +

1−
(
2−
√

3
)

sign(x)

|x|1/6

]
, (54)

for the pressure perturbation along the sonic line.

The supersonic-side pressure distribution (52) comprises two different waves, namely, the incident perturbation

and a reflected wave. The former is just the incident step pressure wave that follows the path x = −s(z), with an

amplitude proportional to M/(M2 − 1)1/4. On reflecting from the sonic line, the step changes its character to give

a positive logarithmic infinity, i.e., a sudden compression followed by an expansion zone, that propagates outwards

along the characteristic x = s(z). As the point of incidence (x, z) = (0, 0) is approached, (52) ceases to be valid.

The step and logarithmic singularities are seen to merge in the near-sonic region, leading to an algebraic singularity,

with the pressure diverging proportional to |Mz(0)x|−1/6, as can be seen in (54). In the subsonic layer, the solution

given in (53) is regular for any nonzero value of z < 0. The solution is completed by the reflected wave in the outer

supersonic zone

g1(x, z) = −γ̃ − 1

π
ln [x− β1z + β1z1 − s1] , (55)

which can be obtained directly by the Fourier inversion of (42) (or simply by setting z = z1 in the right-traveling wave

in (52)), and by the wave transmitted into the subsonic side,

f2(x, z) =
1

π

√
β1
2β2

M2

M1

{
π

2
− γ̃ − tan−1

(
x

s2 + β2z2 − β2z

)
− ln

[√
(s2 + β2z2 − β2z)2 + x2

]}
, (56)

obtained with use made of (53). Note that the logarithmic nature of g1 corresponds to that of the mixing-layer pressure

wave along the right-running characteristic x = −s(z).

The pressure perturbations given in (52) and (53) for the supersonic and subsonic domains and the intermediate

sonic-line pressure distribution 54 are represented in Fig. 7(a-f) for the ethylene-air and hydrogen-air mixing layers.

The trajectories of the incident and reflected waves in the supersonic stream and the distributed pressure disturbances

in the subsonic stream are qualitatively similar for both mixing layers, although quantitative differences arise from

the associated differences in Mach-number distribution displayed in Fig. 2(c,d) . Along the sonic line, however, the

streamwise pressure distributions are practically indistinguishable, because the values of [Mz(0)]1/6 in (54) happen

to be approximately equal for these two configurations. Since in the limit of |k| � 1 the functions P and Θ are

proportional, as dictated by (27), the corresponding temperature-perturbation field θ(x, z) would satisfy θ = (γ−1)Tp,

thereby giving a spatial distribution qualitatively similar to that shown in Fig. 6 for the pressure-perturbation field.
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Figure 7. The large-wave-number pressure perturbation caused by a weak shock as obtained from evaluation of (a,b) equation (52) for

the supersonic side, (c,d) equation (54) corresponding to the sonic line, and (e,f) equation (53) for the subsonic side, for the ethylene-air

(left-hand-side plots) and hydrogen-air (right-hand-side plots) Mach-number distributions of Fig. 3(c,d).
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The logarithmic singularity of the reflected wave and the algebraic singularity |x|−1/6 at the point of incidence,

both of which also are present in the original boundary-layer analysis of Lighthill [19], appear to be inconsistent

with the hypothesis of small disturbances. They emerge in the linear theory as a consequence of the discontinuous

nature of the incident pressure wave. It is naturally expected that, in realistic configurations, the singularity would

disappear as a consequence of nonlinear effects acting locally, leading to a pressure field that would be similar to that

depicted in Fig. 7(a,f), except near the singularities, where the infinities would be replaced by large but finite values

of the pressure. As noted by Lighthill [19] for boundary-layer flows, this view seems to be supported by experimental

observations [34, 35, 36, 37].

In the framework of the linear theory, the pressure singularity can be removed by accounting for the finite thickness

of the incident weak shock, an approach that is motivated by the fact that the shock thickness is inversely proportional

to the shock strength [38]. As a simplified example, one may consider external perturbations with a piecewise linear

pressure distribution

f1(x, z) =
(x+)H(x+)− (x+ − `s)H(x+ − `s)

`s
, (57)

where x+ = x + β1z + s1 − β1z1 is the incident-wave path and `s is the ratio of the shock-wave thickness to the

mixing-layer thickness `m. The corresponding Fourier transform

F1(k) =

[
1− eik`s

k2
+ `sπδ(k)

]
eik(s1−β1z1)

`s
√

2π
, (58)

can be used in the large-wave-number prediction (40) to generate from (18) the pressure distribution

p(x, z) =

√
β1
β

M

M1

[
(x+ s)H (x+ s)− (x+ s− `s)H(x+ s− `s)

`s

]
(59)

if x < s, and

p(x, z) =

√
β1
β

M

M1

[
− γ̃ + 1

π
− (x− s) ln (x− s)− (x− s− `s) ln(x− s− `s)

π`s

]
(60)

if x > s, which, unlike (52), yields a finite value of p along the right-running characteristic x = −s(z). Similarly,

contrary to their counterparts (54) and (55), the corresponding expressions for the pressure distribution along the sonic

line

p(x, 0) =

√
β1√

2`sM1 [Mz(0)]
1/6

61/3(−5/6)!
√

2 +
√

3

5(−1/3)!

×
[
(2−

√
3)
(
|x− `s|5/6 − |x|5/6

)
− |x− `s|5/6sign (x− `s) + |x|5/6sign (x)

]
(61)
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and the associated reflected shock, that follows the path x− = x+ β1z1 − s1 − β1z,

g1(x, z) = − γ̃ + 1

π
− (x−) ln (x−)− (x− − `s) ln(x− − `s)

π`s
(62)

are free from singularities, with the infinities in pressure present in (54) and (55) being replaced by large peak values

of order `−1/6s in (61) and of order ln(`−1s ) in (62). These results indicate that the singularities of the infinitesimally

thin shock translate into a ridge when the finite thickness of the shock is considered.

VI. Vorticity production

Although, unlike the work of Buttsworth [25], only weak shocks are addressed in this study, the results can be

used to examine trends of induced effects in applications involving shock-wave ignition of fuel-air mixing-layer flows,

of interest for combustion processes in supersonic engines. For example, the direct effects of the incident pressure

wave on the fuel and temperature distributions are described by (26) and (27), giving results that could be incorpo-

rated as perturbations in computations of ignition distances by integration of the flow equations downstream from the

interaction region. The results would be qualitatively indicative of the influences of stronger shocks.

The interaction of the pressure wave leads to an additional indirect (although possibly important) effect associated

with the local generation of vorticity, which may promote the instability of the mixing-layer flow, thereby enhancing

the combustion rate by increasing the downstream mixing rate of the two streams. Alternatively, this effect could

also reduce the vorticity and thereby inhibit instability and its associated turbulent mixing. In examining vorticity

production, it is convenient to express the perturbed nondimensional vorticity, scaled with its characteristic value

U ′1/`m, in the form Uz(z) + εω(x, z). Here Uz , clearly positive in the mixing layer, corresponds to a positive base-

flow vorticity according to the conventional right-hand rule, this being the component of the vorticity vector in the

direction pointing into the paper in Fig. 2. Positive values of ω therefore increase the vorticity and thus presumably

enhance the instability of the laminar mixing layers, leading to earlier onset of turbulence along with increased overall

mixing rates.

The equation for ω = ∂u/∂z − ∂v/∂x can be shown from (12) to be given by

U
∂ω

∂x
+ vUzz = Uz

(
∂u

∂x
+
∂v

∂z

)
− 1

M2
1

Rz
R2

∂p

∂x
, (63)

which indicates that, along the perturbed stream line, the vorticity changes through the combined effects of variable-

density flow stretching and baroclinic torque, the two source terms on the right-hand side of (63). The former arises as
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a result of the interaction of the induced dilatation rate with the background shear, while the latter is the result of the

nonalignment of the induced pressure gradient and the background density gradient. The second term on the left-hand

side of (63) emerges because of the deflection of the stream lines, its magnitude being proportional to the curvature of

the base-flow velocity Uzz .

The vorticity equation (63) can be expressed in a more compact form by using (1) together with

∂u

∂x
+
∂v

∂z
= −U ∂p

∂x
, (64)

obtained from a straightforward combination of (12a) and (12d), to yield

∂ω

∂x
= −Ω

∂p

∂x
− Uzz

U
v (65)

where the vorticity-production factor

Ω(z) = Uz +
U

M2

Rz
R

(66)

measures the collective effects of flow stretching and baroclinic torque. Taking the streamwise derivative of (65) and

expressing the result in Fourier space, after using (12c) to eliminate ∂v/∂x, yields

$ = −ΩP − Uzz
Pz

k2M2
, (67)

for the transform $(k, z) of the vorticity perturbation, defined by its inverse transform

ω(x, z) = (2π)−1/2
∫ ∞
−∞

eikx$(k, z)dk . (68)

Equation (67) can be used to evaluate $ from the results of the pressure-perturbation transform P and its derivative

Pz , together with the transverse distributions of Ω(z), Uzz(z), and M(z). For large wavenumbers |k| � 1, the

streamline deflection is seen from (67) to produce a negligible influence, and the resulting vorticity field becomes

linearly proportional to the pressure perturbation, with Ω entering as a proportionality factor.

Profiles of Ω(z) and its stretching and baroclinic contributions corresponding to the mixing layers of Fig. 2(a-d) are

shown in Fig. 8(a,b). For the hydrogen-air mixing layer, bothUz andRz are positive, with the result that flow stretching

and baroclinic torque cooperate to create vorticity of the same sign. The resulting function Ω is everywhere positive

and shows a prominent peak in the subsonic stream near the sonic line. For mixing layers with constant molecular

weight approximating ethylene-air, however, Rz < 0, because the density is inversely proportional to the temperature

and the air stream is hotter. In this case, the competition of flow stretching and baroclinic torque causes the resulting
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Figure 8. The vorticity-production factor Ω (solid lines) along with the stretching (dashed lines) and baroclinic (dotted lines) contributions

as a function of the dimensionless coordinate z for the ethylene-air and hydrogen-air mixing layers of Fig. 2(a-d).

function Ω, shown on Fig. 8(b), to be predominantly negative in the subsonic domain, where the baroclinic torque is

dominant, and positive in the supersonic domain, where flow stretching prevails. Its magnitude is significantly smaller

than that corresponding to hydrogen-air mixing layers, suggesting that the perturbations to the vorticity field are more

important for the latter, especially in the vicinity of the sonic line. Clearly, many of these quantitative results depend on

the specific set of boundary conditions selected for the mixing-layer problem. For example, consideration of smaller

fuel-side temperatures T2 is seen to extend the range of negative Ω in the ethylene-air mixing layer. Likewise, for

sufficiently small T2, a region of negative Rz appears in the hydrogen-air mixing layer near the subsonic boundary,

where Ω may become negative.

According to (65), vorticity can be either created or destroyed depending on the sign of the product −Ω∂p/∂x,

the Uzz term being smaller. This possibility of creation or destruction also occurs for finite-amplitude waves in purely

supersonic flow [25]. It can be concluded from the pressure fields shown in Fig. 6 that at any given transverse location

z there is an upstream region of adverse pressure gradient (∂p/∂x > 0), including a finite pressure jump across

the shock in the supersonic stream, and a downstream region of favorable pressure gradient (∂p/∂x < 0). For the

hydrogen-air mixing-layer result in Fig. 7(b), for which Ω is positive everywhere, vorticity is destroyed upstream and

produced downstream all across the mixing layer. This interaction thus may tend to delay the transition to turbulence

ahead of shock impingement in this case. For the other case considered, however, the sequence is reversed in the

subsonic domain with Ω < 0, where there is vorticity production in the upstream region of adverse pressure gradient

followed by vorticity destruction in the downstream region with ∂p/∂x < 0. The effect of the shock on mixing-layer

transition thus will be different for different fuels and in different flows. These qualitative observations may be of help

in attempts to tailor flows to affect mixing.
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VII. Conclusions

A notable finding of this investigation is the relative simplicity of shock interaction with transonic mixing layers, in

comparison with its interaction with boundary layers on walls, as studied by Lighthill [19, 20]. The triple-deck analysis

that underlies the latter problem reduces to just two decks for this mixing layer. The reason for this simplification is

that the Mach number of the subsonic stream does not become small. The present analysis applies for a wide range of

Mach numbers of order unity, but it fails if the subsonic-stream Mach number becomes small compared with unity.

Although the same generalized Prandtl-Glauert equation applies in the transonic region, a number of differences in

conclusions arise from the fact that the appropriate asymptotic analyses for large Reynolds numbers in laminar flows

differ in this transonic case. For example, while Lighthill found that the pressure disturbances in the boundary layer

make themselves felt far upstream from the point of shock-wave impingement on the wall, in the transonic mixing

layer those influences are restricted to a small region, having a streamwise distance of the same order as the thickness

of the mixing layer. As a consequence, in the context of the Fourier transform in the streamwise direction, the WKB

asymptotic expansions for large values of the streamwise wavenumber provide more accurate results for variations of

pressure-wave influences in the flow direction than do corresponding regular expansions for small values, in transonic

problems.

In this weak-shock limit, which decouples the underlying mixing-layer base flow from the pressure-interaction

analysis, pressure-wave interactions modify the mixing layer appreciably only in a region extending upstream and

downstream for a distance of the order of the mixing-layer thickness or less. It was found that an incident step-function

pressure wave curves and tends to become normal to the flow direction at the sonic line, its discontinuity disappearing

there but generating a distributed pressure field in the subsonic region. In addition, the sharp-fronted incident pressure

wave generates a reflected wave that follows an approximately mirror-image trajectory in the supersonic stream but

possesses a distributed rather than sharp structure, exhibiting a logarithmic profile that builds rapidly to pressures in

excess of that of the incident wave but then slowly decays, reminiscent of a rarefaction. Even though the derived

structures and wave dynamics pertain specifically to linear theory, similar behaviors would be expected for sufficiently

weak finite-amplitude shocks, so long as their strength is not great enough to alter the incoming subsonic portion of

the mixing layer significantly. Methods of Riley [23] and Buttsworth [25] can address finite-amplitude influences in

transonic and supersonic mixing layers, respectively.

Although these general attributes are common to all interactions of sufficiently weak pressure waves with transonic
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mixing layers, there are notable differences that depend on differences in the properties of ideal gas mixtures that are

assumed to be present in each of the two streams. The structures of the transonic mixing layers themselves differ,

depending on the composition of each stream, even before any pressure-wave interaction. The two specific cases

investigated here correspond to both streams effectively having the properties of air and to the supersonic stream

being air and the subsonic stream hydrogen. In the former case, more relevant for fuels such as ethylene, velocity,

temperature, and composition profiles are approximately symmetrical across the mixing layer, while with hydrogen

they are not, indicating different behaviors of these two SCRAMJET fuels.

The detailed consideration of the hydrogen case, motivated by interest in supersonic combustion, pertains to con-

ditions in which the air stream is appreciably hotter than the hydrogen stream, as occurs in such applications. In that

case, property variation across the mixing layer, particularly the profile of the Mach number, which is of primary

relevance to the pressure-wave interactions, are especially asymmetrical, monotonic but exhibiting three points of in-

flection. Moreover, Soret diffusion exerts a strong influence on such profiles, while Dufour effects remain negligible.

The presence of hydrogen also leads to an appreciably thicker mixing layer because of its large molecular diffusivity,

with the sonic point occurring closer to the hydrogen side, for a fixed Mach-number ratio of the two streams, because

of its higher sound speed. These variations clearly depend strongly on the specific conditions selected for the analysis,

and different profiles, in some cases even possibly non-monotonic, would be encountered under other conditions.

The different structures of the mixing layers lead an incoming pressure wave to induce different modifications to

those structures. For example, the modifications to the profiles of the temperature and composition fields are different

in the two different cases analyzed. This will be significant in future considerations of influences of the incident waves

on autoignition times in the mixing layers. Here, besides deriving the resulting temperature, pressure, and fuel-mass

fraction fields, we examined, in particular, the different influences on modifications of vorticity profiles, with the

thought that increased vorticity enhances instabilities that result in transition to turbulence, beneficial to subsequent

combustion, by introducing a turbulent contribution to the mixing.

Two physical phenomena were found to modify the vorticity fields, namely the baroclinic torque produced by the

pressure-gradient variation and the action of the local base-flow strain rate on the dilatation that is produced by the

incident disturbance. A non-dimensional function of the base-flow profiles was identified that quantifies the magnitude

of the vorticity-field modifications, including both of these effects.

It was found that the incident perturbations could increase the vorticity in portions of the mixing layers and decrease
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it in other portions. For example, in the mixing layer with air properties on both sides, the relevant parameter is positive

in the supersonic part of the mixing layer and negative in the subsonic part. The parameter was found to be positive

everywhere across the mixing layer for the particular hydrogen case analyzed, although that need not be true always

for hydrogen. It does, however, appear that while the baroclinic and dilatation effects tend to be of opposite sign for

mixing layers in which both streams have similar properties, they both tend to be positive with hydrogen in one stream,

yet another difference for different SCRAMJET fuels. Upstream from the impingement point, where the modifications

to the vorticity generally are the largest, the effect is to reduce vorticity levels in the hydrogen-air mixing layer.

Ongoing extensions of this work include the consideration of non-linear interactions of mixing layers with finite-

amplitude shock waves that occur in SCRAMJETS [6, 7, 9, 10, 11, 12]. In addition, particularly for the hydrogen-air

case considered here, it is worthwhile to proceed to analyze the autoignition occurring in the laminar mixing layer,

to determine the extent to which pressure perturbations incident from the supersonic stream may augment ignition,

thereby reducing ignition distances. Further extensions of this work also include consideration of shock-generated

disturbances on steady combustion of diffusion flames. For all of these problems, turbulence is a complicating effect

for which it could be misleading to try to extend the present results by simplified methods such as merely replacing

laminar diffusivities by turbulent diffusivities, since shock-turbulence interactions can be complex. Related problems

for turbulent mixing layers therefore deserve extensive further study.
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