
This is a postprint version of the following published document:

Pena-Fernandez, M., Lindoso, A., Entrena, L., Garcia-
Valderas, M., Morilla, Y. & Martin-Holgado, P. (2019).
Online Error Detection Through Trace Infrastructure in
ARM Microprocessors. IEEE Transactions on Nuclear
Science, 66(7), pp. 1457–1464.

DOI: 10.1109/tns.2019.2921767

 © 2019, IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/429686446?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/tns.2019.2921767

1


Abstract—This work presents a solution for error detection in

ARM microprocessors based on the use of the trace infrastructure.
This approach uses the Program and Instrumentation Trace
Macrocells that are part of ARM’s CoreSight™ architecture to
detect control-flow and data-flow errors, respectively. The
proposed approach has been tested with low-energy protons.
Experimental results demonstrate high accuracy with up to 95%
of observed errors detected in a commercial microprocessor with
no hardware modification. In addition, it is shown how the
proposed approach can be useful for further analysis and
diagnosis of the cause of errors.

Index Terms— ARM, microprocessor trace, fault tolerance,
error detection.

I. INTRODUCTION

ROCESSORS for space applications are generally required to
be hardened or tolerant to radiation effects. However, the

available choices of rad-hard processors are scarce and very
expensive. Moreover, rad-hard processors usually lag several
generations behind COTS (Components Off-The-Shelf)
microprocessors and SoCs (System on-a-Chip) [1], [2]. Thus,
there is a growing interest in the use of COTS microprocessors
in space applications, particularly for small satellites with tight
budget constraints and missions that require high processing
power. COTS microprocessors can enable scientific missions
and reduce development time and cost, provided that sufficient
error detection or mitigation is achieved [3].

Mitigation of radiation effects in COTS microprocessor is
difficult because the hardware cannot be modified and there are
many internal elements that are not accessible. Error detection
and recovery is more generally used, which can be based on
software-implemented fault tolerance or processor redundancy
(e.g., lock-step techniques). Software techniques are limited
and introduce severe penalties in terms of performance.
Processor redundancy is costly in terms of hardware resources
and power consumption. These approaches generally make use
of external hardware units for comparison of the computation
results and error checking [4-12].

In this work we propose a solution based on on-chip trace

This work has been supported in part by the projects ESP-2015-68245-C4-

1-P and ESP2015-68245-C4-4-P (Spanish MINECO) and by the Community
of Madrid under grant IND2017/TIC-7776.

M. Peña-Fernández is with Arquimea Ingenieria SLU., Leganes, Madrid,
Spain (email: mpena@arquimea.com)

A. Lindoso, L. Entrena and M. García-Valderas are with the Department of
Electronic Technology, Universidad Carlos III de Madrid, Avda. Universidad

infrastructures for error detection in COTS microprocessors.
Debug and trace macrocells are commonly included in COTS
microprocessors to support the increasing complexity of
software debugging tasks. However, once the application has
been developed, they become useless and can be reused for on-
line monitoring in an inexpensive way. In particular, trace
infrastructures can provide a good deal of information about the
instructions executed by a microprocessor in a non-intrusive
manner.

The use of the trace interface for error detection and
correction has been successfully demonstrated in [6], [7]. Errors
are detected or corrected by observing the instruction flow and
comparing it among several executions in the same processor
or in different processors. Later works based on this idea [8-11]
focused on soft cores, where the program-flow trace can be
conveniently accessed through a raw or a custom interface.
However, the access to the trace in COTS microprocessors is
generally provided through hard macrocells that impose
specific access protocols and limit the available information.
Moreover, the program-flow trace can only detect control-flow
errors. To cover data-flow errors, these techniques need to be
combined with software-implemented techniques [8-10].

The processor selected for this work is an ARM
microprocessor, which is a very popular choice in the
commercial market. Debug and trace support is provided in the
ARM processors by the CoreSight™ architecture. The ARM
Cortex-A9 family of processors includes two CoreSight
macrocells: the Program Trace Macrocell (PTM) and the
Instrumentation Trace Macrocell (ITM). In the proposed
approach, the PTM and the ITM are used to detect control-flow
and data-flow errors, respectively. The program-flow trace is
monitored through the PTM, while selected computed data are
monitored through the ITM. Both traces are checked by an
external hardware module developed for this purpose, that we
have called Program & Data Trace Checker (PDTC). To the
best of our knowledge, this is the first time that a full approach
based on trace macrocells, intended to detect both control-flow
and data-flow errors, is proposed and tested under radiation.

In addition, the proposed approach can be useful for error
diagnosis, as it is able to collect the trace of the processor at the

30, E-28911 Leganes, Madrid, Spain (e-mail: alindoso@ing.uc3m.es;
entrena@ing.uc3m.es; mgvalder@ing.uc3m.es).

Y. Morilla and P. Martín-Holgado are with the Centro Nacional de
Aceleradores (Universidad de Sevilla, CSIC, JA). Avda. Tomás Alba Edison nº
7, E-41092 Sevilla, Spain (e-mail: ymorilla@us.es; pmartinholgado@us.es).

.

Online error detection through trace
infrastructure in ARM microprocessors

M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, Y. Morilla, P. Martín-Holgado

P

2

time an error occurs. To this purpose, a secondary experiment
was performed using the Embedded Trace Buffer (ETB), which
is another component included in the CoreSight™ architecture.
The trace stored in the ETB was further analyzed to reconstruct
the processor execution status at the time an error was detected.

The remaining of this paper is as follows. Section II
summarizes related work. Section III describes the proposed
trace-based error detection approach. Section IV shows the
experimental setup and the results using proton irradiation.
Finally, section V presents the conclusions of this work.

II. RELATED WORK

Conventional fine-grain hardware redundancy techniques,
such as Dual Modular Redundancy (DMR) or Triple Modular
Redundancy (TMR) on flip-flops, are not suitable for COTS
microprocessors because they require modification to the
circuit. Thus, fault-tolerant architectures based on COTS
microprocessors generally rely on software techniques, external
hardware, or hybrid techniques that use a combination of both
[12]. Microprocessor errors are usually divided into control-
flow errors and data errors. Control-flow errors affect the
instruction flow, provoking incorrect jumps. Data errors affect
the results of the computations. Each of these types of errors are
usually addressed with different error detection or correction
techniques.

Software techniques are based on software modifications
used to include redundancy in the operations performed by the
microprocessor. They are quite convenient for microprocessors
because they do not imply hardware modification. From this
point of view, they can be considered more manageable than
hardware modifications. Their common drawbacks are
performance decrease and increased memory size. A large
number of works proposing software techniques for both data
and control-flow errors can be found in the literature. For data
errors the most common and direct approach is data duplication
[13], [14]. Data duplication techniques duplicate all data used
by the microprocessor and check the consistency between the
copies at several points of the executed program. Looking for a
trade-off between performance and error coverage, the amount
of duplicated data and checkpoints in the program may vary
[16]. For control-flow errors, the most common software
techniques are signature-based. These techniques assign a
signature to each basic block of the executed code. Their goal
is to validate the changes in the execution flow. Incorrect jumps
in the execution flow can be detected by checking the
signatures. Examples of this kind of techniques can be found in
[15]. The most important drawbacks of signature-based
techniques are that they generally require a large amount of
memory to store the correct signatures in the system and
signature computation and checking may introduce significant
performance penalties.

All software techniques present a common problem due to
the intrinsic characteristics of these techniques. Their error
coverage is limited to the parts of the architecture that can be
accessed from the programmer’s side. With this approach,
critical registers that are not accessible from software can be
completely unprotected.

Alternatively, hardware techniques can be used. In the case
of COTS that cannot be modified, hardware techniques are
implemented by external hardware connected to the
microprocessor. The connection point is an issue itself, and
observed information and results can vary depending on its
location. Existing techniques are limited by the accessible
connections and the kind of information they can provide.
Memories storing data or program are a common choice but it
must be noted that information is read or written by the
microprocessor but it is not processed in the memory. An
instruction can be read from memory and checked by external
hardware but the error may appear when it is being executed in
the microprocessor. The same reasoning can be translated to
data stored in memory. The complexity of the external
hardware can vary from very small and simple circuits to
sophisticated ones with a complexity similar to the
microprocessor to be monitored.

A simple approach is to use the very same architecture to
replicate the program execution and compare the results. This
can be accomplished in several ways, using time redundancy or
hardware redundancy. In the first case, the execution of the
software is replicated and results are compared for error
detection or correction. Error checking can be implemented in
the software or in external hardware [4]. The latter option is
more robust and contributes to reduce the performance
penalties. Alternatively, two or more processors can be used to
execute the same software in hardware redundancy. The
increasing availability of multicore processors on a chip makes
it an appealing approach. However, fault isolation is required to
avoid that a fault in any single component leads to the failure of
the entire chip [26]. External hardware modules are needed for
error checking and management of the architecture. The DMT
(Duplex Multiplexed in Time) and DT2 (Dual Duplex Tolerant
to Transients) architectures developed by CNES [2] are good
examples of the time redundancy and the hardware redundancy
approaches, respectively.

Lockstep [17], [18] is a micro-synchronization variant of the
processor replication techniques. Lockstep works by executing
the same application simultaneously and symmetrically in two
identical processors. In an error-free execution, both processors
are expected to perform the same operations in every clock
cycle. A hardware checker module monitors both processors to
detect any discrepancy, in which case the processors are
restored to a safe state through a rollback mechanism.

Except for pure software approaches, all fault-tolerant
architectures based on COTS are generally hybrid, i.e., they
require some software support (e.g., replication of the software
or application of software-implemented fault tolerance
techniques) as well as some hardware support to monitor the
executions and check for errors. Hybrid approaches try to
combine all the positive characteristics of both software and
hardware techniques. Hardware techniques can help to reduce
performance penalties while software techniques are better
suited to deal with data errors. Examples of hybrid approaches
can be found in [4], [5], [8], [9], [10], [11]. In these cases, the
external hardware monitor is typically in charge of checking the
instruction addresses to detect control-flow errors.

3

Modern microprocessors usually provide a trace interface so
that software can be debugged during the design cycle. This part
of the circuit is not used during normal operation, so that it can
be reused for other tasks. The use of the trace interface to
observe microprocessor behavior by connecting an external
hardware monitor was first proposed in [6]. The trace interface
can provide the flow of instructions executed by the processor
in a non-intrusive manner. For instance, in [9] this approach
was used to monitor a LEON3 microprocessor through its trace
interface with good error detection rates. Recent work for ARM
processors [19] has proposed also the use of the trace interface
to collect trace data and then recreate the control-flow graph
off-line.

To the best of our knowledge the trace information has been
used so far for detecting control-flow errors [8-12]. However, a
complete solution requires the detection of data-flow errors as
well. To this purpose, these techniques are usually combined
with software techniques for data-flow error detection [8-10].
In the approach proposed in this work, the trace interface is also
used for on-line detection of data errors.

III. TRACE-BASED ERROR DETECTION APPROACH

In this paper, a novel error detection technique for COTS
microprocessors is presented. The proposed approach is based
on retrieving control-flow and data-flow information from the
processor and use it to determine if execution is correct or not.
The proposed approach has been developed for an ARM
CORTEX™-A9 microprocessor and a hardware monitor
(PDTC) has been developed as an IP core to observe the
microprocessor through its trace interface. The PDTC can be
implemented in external hardware or in programmable logic.
For convenience, a Zynq-7010 All Programmable SoC [20] was
used as a test platform and the PDTC was implemented in the
Programmable Logic (PL) of the device.

The CoreSight™ trace subsystem is provided along with the
ARM cores. To setup the system, the necessary CoreSight
components [21] must be configured and enabled in the
microprocessor software initialization. CoreSight trace
Subsystem and PDTC are connected through the Extended
Multiplexed Input Output (EMIO) available on the Zynq SoC.
The main elements involved in the system are displayed in
Fig. 1. These elements are described in the following
subsections.

Fig. 1. General trace-based error detection architecture

A. CoreSight subsystem

In our case, we focus on two different CoreSight
components: the Instrumentation Trace Macrocell (ITM) [21]
and the Program Trace Macrocell (PTM) [22].

The ITM is a software-application driven trace source. It is a
CoreSight component of the trace source class. The ITM
produces various types of data packets of compressed
information. The most interesting packet for our application is
the SoftWare Instrumentation Trace (SWIT) packet, which
exports through the trace interface any desired 32-bit data value
related to the software. To trigger SWIT packet generation,
software must write a value in any of the 32 stimulus ports of
the ITM, which are mapped in memory as stimulus registers.
When any of the stimulus registers is written, the ITM exports
a SWIT packet indicating the number of the port (0-31) and the
value of the written data in leading-zeroes compression.

The PTM is a real-time module that provides instruction
tracing of a processor. It is a CoreSight component of the trace
source class based on the ARM Program Flow Trace (PFT)
architecture specification [22]. The PTM also generates trace
information organized in packets. Among all PTM packets, we
focus on the ones that contain Program Counter (PC) address
information (I-sync, Branch Address and Waypoint Update).

A waypoint is a point where instruction execution by the
processor might involve a change in the program flow. The
PTM does not generate PC information unless a waypoint is
reached. The PC address is presented in different formats
depending on the packet: while I-sync packets always contain
the full (32-bit) value of the Program Counter, the Branch
Address and Waypoint Update packets are compressed and
only contain the bits that have changed since the last PC address
information. To maximize PC address available information
from the trace port, the Branch Broadcasting option has been
enabled on the PTM. With this option, the destination address
for all branch instructions is included in the trace. When the
waypoint does not provoke a change in the program flow (i.e.
when a conditional branch is not taken), this situation is
reported by an Atom packet.

The trace information produced by the macrocells is
combined by the Funnel, which is a CoreSight component of
the trace link class. Every input channel can be enabled or
disabled through user programmable configuration registers,
and priority can also be selected for each one.

Combined trace information is sent from the Trace Port
Interface Unit (TPIU) to the PDTC through the EMIO interface.
The TPIU is a CoreSight component of the trace sink class. To
manage trace information coming from several sources, the
Formatter [23] must be enabled on the TPIU. The Formatter
rearranges trace information along with source IDs in a defined
structure called frame. To increase flexibility, the TPIU
includes FIFO queues and can output trace information
synchronized with an independent clock. In our approach, the
TPIU runs with the same clock as the PDTC. The TPIU has
been configured with 8-bit wide data port in Normal operation
mode.

4

B. Program & Data Trace Checker

The PDTC receives the trace information from the TPIU port
and processes it on-line. It has been designed to reconstruct
trace information from the trace frames and to identify all trace
packets from both sources (ITM and PTM). First, the PDTC
decodes relevant packets and extracts useful information about
execution flow and software data values. Trace information is
then directed to the Program Checker or the Data Checker
according to its origin for the corresponding check to be
performed. The PDTC is software-programmable via
configuration registers, which can be accessed through the
system bus (AXI) interface. In addition, its modular
implementation enables flexibility and future scalability as
more capabilities can be easily introduced without requiring
modifications to the actual design.

The retrieved program-flow information processed by the
Program Checker is related to PC addresses. This information
is used to implement a PC follower capable of updating the last
known address executed by the processor, including exceptions.
The PC address is then compared with up to eight user-
programmable address ranges to determine if execution has
reached a forbidden or unexpected region. In such a case, an
error signal is raised.

The software data values obtained from the trace interface
are related to the state of selected variables during execution, so
the Data Checker can determine if their values are valid or not,
using two different techniques described below. To this
purpose, software is instrumented to write stimulus registers in
relevant points of the execution. In this work, we propose to
arrange groups among the 32 available stimulus registers and
assign each of the groups to different functionalities as it is
represented in Fig. 2. Thus, when the PDTC receives a SWIT
packet, it extracts the stimulus register number from it, and
depending of that number, the required checking is executed
using the respective value. If an inconsistency is detected, an
error signal is raised.

Fig. 2. Code instrumentation examples and Data Checker operation

Related to software data, two different error detection

techniques have been developed: range checking and value

comparison. Range checking determines if relevant values are
within a specified range. Ranges are critical when running loops
or indexing arrays. The Data Checker can be configured for up
to four programmable ranges. Value comparison is important to
ensure correct execution of branch conditions or to check data
consistency. To this purpose, some stimulus registers have been
grouped by pairs and each pair has been assigned to one boolean
operation (equal, not equal, greater than, greater or equal than),
so the Data Checker can determine whether the received values
satisfy the selected condition.

Table I shows the synthesis results of the PDTC implemented
in the programmable logic. The Checker requires a small
amount of resources (4.8% and 3.2% of the available LUTs and
flip-flops, respectively) and most of them are used for the Trace
Decoder. In fact, the AXI interface, which is required to
configure the Checker through the system bus, requires a
similar amount of resources. Thus, the PDTC can be viewed as
a fairly simple peripheral.

TABLE I

SYNTHESIS RESULTS

 # LUTs (% usage) #FFs (% usage)

AXI Interface 425 (2.4%) 1073 (3.0%)

PDTC 836 (4.8%) 1109 (3.2%)

Total 1261 (7.2%) 2182 (6.2%)

With respect to performance, a major advantage of trace

subsystems is that they are implemented as a side channel that
does not interfere with the execution of the application. As a
matter of fact, trace subsystems are intended to deal with
asynchronous events which are difficult to reproduce and
debug, so they are designed to provide reliable information with
minimal intrusiveness. The PTM does not introduce any time
overhead. Compared to other control-flow checking techniques,
[27] shows up to 61% performance overhead using signature-
based techniques and [4] shows up to 34% performance
overhead using assertions. For data checking, the time overhead
is proportional to the amount of stimulus register writes. The
more stimulus register writes, the lower the error detection
latency but the higher the performance overhead. This is a
similar trade-off to the case of software implemented fault-
tolerance. However, the performance penalty is reduced in the
proposed approach because the checking is performed
externally and the software only needs to report the values. It
also benefits from existing hardware resources to collect trace
data on a side channel without affecting the execution.
Importantly, the use of the trace interface does not introduce
any delay penalty, unlike other approaches that require access
to critical interfaces such as the memory bus [2], [4], [5], [8],
[17]. Eventually, the ITM can introduce a significant
performance overhead if there are many consecutive stimulus
register writes. In such a case, we have experimentally observed
that the ITM might stall the processor in order to avoid losing
information. This problem can be solved, if needed, by
computing signatures or compressing the data to be reported

5

through the stimulus registers.

IV. EXPERIMENTAL RESULTS

A proton irradiation campaign was performed at CNA
(Centro Nacional de Aceleradores) in Spain to validate the
proposed approach. In the following subsections we describe
the experimental setup and the radiation results. Finally, we
describe how trace information can be analyzed using the
proposed approach.

A. Experimental setup

For the radiation campaign we used an external beam line of
the 18/9 IBA compact cyclotron. The Device Under Test (DUT)
was irradiated in open air with 15 MeV protons. The energy of
incident protons in the silicon active area is in the order of 10
MeV. According to previous experiments [25], this energy is
sufficient to produce SEEs in the 28 nm technology device
without thinning it.

We selected a Xilinx Zynq-7010 All Programmable SoC
device for the experiments [20]. Zynq devices integrate hard-
core ARM CORTEX™-A9 processors with SRAM-based
FPGA. Our experiments were conducted over a basic
commercial board (Zybo) with a XC7Z010 device that contains
a dual core of ARM CORTEX™-A9. For the experiments only
one of the cores was used at the nominal 650 MHz clock
frequency. The PDTC was implemented in the Programmable
Logic (PL) of the device. The PDTC can only detect errors in
the ARM cores. To correct errors in the configuration memory
of the PL that may affect the PDTC, we have used the Xilinx
Soft Error Mitigation (SEM) Controller IP [24].

We used an SD card to store the boot code, the bitstream and
the application software. Upon power up, this information is
loaded to the On-Chip Memory (OCM) of the microprocessor
to configure the device and start operation.

In order to control the DUT that is exposed to the beam, an
external host has been connected to the Zybo board. The
external host is in charge of the control of the DUT and the
retrieval of information during the experiments. To this
purpose, it is connected to the ARM core through a USB
interface and to the error signals provided by the PDTC through
dedicated pins. When an error is detected, the external host
switches off the power of the device and then restarts it again.
The system is also restarted in some other cases to ensure the
experimental results are fair, as follows. The external host
retrieves information from the SEM about errors in the
programmable logic. When an unrecoverable error is detected
by the SEM, the external host restarts the device. If the
communication between the processor and the external host is
experiencing a malfunctioning and the host receives corrupted
data, the system is restarted as well. Unrecoverable SEM errors
and communication errors are not taken into account in the
results of the experiments reported in the next section.

The PDTC is able to detect control-flow and data errors
thanks to the information provided by the trace subsystem. In
order to verify the correctness of the results obtained with the
PDTC during the experiments, both error types were double
checked by additional means. First, the external host controls

the time required for the application and triggers a timeout error
when it is exceeded. Second, data checks were implemented in
the software as well. Every variable was duplicated and every
operation was repeated for the duplicated variable. Consistency
checks were implemented immediately after every variable and
its copy were updated. At the end of every execution, the results
were also compared with a golden reference.

The Zybo board was partially covered, leaving only the DUT
exposed to the beam. The external host was placed outside the
beam.

B. Radiation results

The experiments were performed with three different
software benchmarks: matrix multiplication (MMULT),
Advanced Encryption Standard (AES) and a recursive
implementation of the sorting algorithm quicksort (QSORT).
The benchmarks were run on bare metal, but they could also
run in principle on an operating system because the
configuration and instrumentation is made at high level. All
benchmarks implemented duplicated variables and consistency
checks in the software according to the approach described in
the previous section. Data values were sent through the ITM
ports to be checked by the PDTC. In the current
implementation, the checks were configured by hand, but an
automatic tool is feasible. Thanks to the combination of error
detection in the software and external monitoring we were able
to double check all the observed errors reported by the PDTC.

MMULT benchmark is characterized by intensive data-flow
operations (multiply-accumulation) and few control decisions.
For the experiments we used matrices of 32x32 data size. AES
is an encryption algorithm which is characterized by intensive
shifting and logical operations. It makes a high usage of XOR
operations. The tested implementation uses a key length of 256
bits and 10 iterations.

QSORT is a sorting algorithm which is characterized by
intensive use of control decisions and few computational
operations. This algorithm could be considered as opposite to
MMULT with respect to the structure of the code and the type
of executed instructions, because it has a more complex control-
flow and uses simpler operations. Our implementation of this
algorithm was done in a recursive way to test also how the
proposed approach works with intensive function calls. For
QSORT algorithm we used vectors of 500 elements.

The performance overhead caused by stimulus register writes
depends on the ratio of reported data to the instructions required
to compute them. We instrumented the benchmarks to report all
computed data and indices of the loops as they are being
produced. With this approach, the overhead was 11% for
MMULT, 20% for AES, including intermediate results after
each iteration, and 51% for QSORT. The latter has the worst
ratio between reported data and instructions. For the radiation
experiments we included additional data register writes to
increase observability of intermediate operations.

All benchmarks were compiled with SDK Xilinx tool and
minimum optimization effort (-O0) to preserve data-flow
duplication. Table II shows the results of the radiation
campaign for all benchmarks. Columns of Table II report the

6

experimental results for each benchmark, namely MMULT,
AES and QSORT. Every row reports the observed errors for a
particular error category for all benchmarks. Errors are reported
in number and percentage with respect to the total number of
observed errors for each benchmark.

The first three rows of Table II report the errors detected by
the PDTC, divided in three subcategories (Det. TO, Det. Data
and Det. OP). The fourth and fifth rows report the errors
undetected by the PDTC, divided in two subcategories (Undet.
TO and Undet. Data). And finally the last two rows provide the
total number of errors (TOTAL ERRORS) and the total number
of errors detected by the PDTC (TOTAL DET).

The error categories used in Table II are defined as follows:
• Det. TO (Detected Timeout error): The PDTC detects an

error that is confirmed by a host timeout error.
• Det. Data (Detected Data error): The PDTC detected a

data error which is also detected by a software check
(discrepancy in duplicated data or in the final result).

• Det. OP (Error detected only by the PDTC): the PDTC
raises an error that is not detected by the software
checking or the host.

• Undet. TO (Undetected Timeout error): the host detects
a timeout condition but the PDTC does not raise an error.

• Undet. Data (Undetected Data error): Data errors that are
only detected by software checks.

TABLE II
RADIATION RESULTS: OBSERVED ERRORS

ERRORS MMULT AES QSORT

Det. TO 61 (19.06%) 51 (17.41%) 81 (32.27%)

Det. Data 234 (73.13%) 189 (64.51%) 111 (44.22%)

Det. OP 11 (3.44%) 25 (8.53%) 23 (9.16%)

Undet. TO 7 (2.19%) 22 (7.51%) 24 (9.56%)

Undet. Data 7 (2.19%) 6 (2.05%) 12 (4.78%)

TOTAL
ERRORS

320 (100%) 293 (100%) 251 (100%)

TOTAL
DET

306 (95.63%) 265 (90.44%) 215 (85.66%)

In the experiments we observed a total of 320 errors for

MMULT benchmark, 293 for AES benchmark and 251 for
QSORT benchmark. The detection capability of the PDTC
varies from 85.66% of detected errors for QSORT to 95.63%
for MMULT. The latter result is in line with that reported in
[28] for a hybrid approach with a simpler soft core processor
(miniMIPS) under neutron radiation. The variations in the error
detection capabilities of the PDTC with respect to the different
benchmarks are related with the characteristics of the codes.
The worst case results are obtained for QSORT, which is the
benchmark that has a more complex control flow. Moreover,
this benchmark uses recursiveness, which makes the stack
pointer a very critical register in this case. However, the stack
pointer was not checked by the PDTC in the used
implementation.

A few errors were only detected by the PDTC (Det. OP). The

causes of these errors may vary. They may be temporary errors
that are eventually corrected or errors that remain latent and
may cause a malfunction later on. They may also be errors in
the Coresight trace subsystem or in the PDTC. It must be noted
that the trace subsystem could not be protected because it is part
of the microprocessor. The PDTC was partially protected by the
SEM. Nevertheless, the amount of errors of Det.OP category is
small, ranging from 3.5% to 9.1%. In any case, it is generally
advisable to consider them as errors and restart the system in
these cases. For the experiments we have considered Det. OP
errors as real errors and they have triggered a system restart.

The latency of error detection is very small because the trace
information is transmitted as a data stream that is directly
captured by the PDTC from the TPIU. As a matter of fact, we
have experimentally realized that the error signals provided by
the PDTC are generally raised before the error is confirmed by
the microprocessor. We have estimated the latency by
artificially forcing an error and measuring the time until the
processor catches an interrupt produced by the PDTC error
signals with a timer. The average measured latency was 225
processor clock cycles (345 ns at the processor clock frequency
of 650 MHz). This includes the time used for the Coresight
subsystem to encode and transfer the corresponding data
packet, and for the PDTC to decode the packet, detect the error
and signal it. Note that the TPIU and the PDTC run at a lower
clock frequency (150 MHz) than the processor and the TPIU
port was configured for a small data width (8 bits). In the
current implementation, the PDTC uses 153 ns (23 clock cycles
at 150 MHz clock frequency) to detect and signal an error,
which is about 45% of the total latency. These choices can be
optimized to reduce the error detection latency. It must be noted
that previous works using on-line control-flow checking from
an external hardware monitor were developed for soft cores. In
these cases, the error detection latency is not reported but it is
presumably minimal, because the external hardware monitor is
connected to the memory bus or to a raw trace interface.
However, in a hard core processor, neither of these interfaces is
generally available. Nevertheless, the proposed approach can
achieve an acceptable error detection latency using the built-in
trace subsystem.

Table III shows the fluence and the cross-section for all
benchmarks. The cross-section reported in the second row
(Cross-section, All errors) takes into account all the observed
errors. In the third row (Cross-section, Undetected errors), the
reported cross-section has been computed taking only into
account the errors that were undetected by the PDTC. The
results reported in Table III show the high error detection
capabilities of the proposed approach, with a reduction in cross-
section up to two orders of magnitude when the PDTC is used.
This is a remarkable result because the PDTC is only using
some basic features and there is room for improvement with
more elaborated checks of the trace information.

7

TABLE III
RADIATION RESULTS: CROSS SECTION

 MMULT AES QSORT

Fluence
(p/cm2)

1.6·1012 3·1012 4.1·1012

Cross-section
(cm2)
All errors

2·10-10 9.77·10-11 6.12·10-11

Cross-section
(cm2)
Undetected
errors

8.75·10-12 9.33·10-12 8.78·10-12

C. Trace information analysis

As a proof of concept, a secondary experiment was
performed with the same DUT and software benchmarks. Its
main purpose is to test the diagnosis capabilities of the trace
information. It has been performed preventing any disturbance
to the primary experiment about detection capabilities under the
radiation conditions explained before. To enable this
experiment, the Embedded Trace Buffer (ETB) [21] was used
to store and retrieve the trace information.

The ETB is a CoreSight component of the trace sink class. It
is provided within the processing system of the Zynq SoC and
it is internally connected to the same trace bus than the TPIU,
so it receives the very same information that is processed by the
PDTC. The ETB has been enabled and its Formatter has also
been configured with the same parameters as the TPIU
Formatter to produce the same data. The ETB contents can be
accessed through the AXI interface using memory mapped
registers available from the software application. The ETB
buffer size is 4 kilobytes.

The ETB is continuously storing the trace interface in a
circular manner, so that, at any time, it contains the most recent
trace information. Taking advantage of the detection
capabilities of the PDTC, trace capture can be disabled just at
the time an error is detected, so a snapshot of the trace remains
in the buffer and can be accessed later, either on-line or off-line.
In our experiment, the buffer was recorded in the external host
for off-line analysis.

When an error is detected, the software first checks for data
consistency. Then, just before the system is rebooted, the
software enters a function that reads the ETB and sends its
contents through a serial port. This is what we have called a
trace dump. The external host receives the trace dump and
stores it in independent files.

To analyze the trace information, our approach is to simulate
the PDTC for the collected trace dumps. This way, we can know
exactly how the PDTC has processed the trace information.
This simulation approach has also been helpful to identify
PDTC design errors in the initial versions of its development.
A test bench has been designed to get the data directly from the
trace dump files and use it as input stimuli for the PDTC in
VHDL simulation, so the evolution of the internal signals can
be easily tracked. This approach does not require complete trace
information since the beginning of the software execution

because the PDTC can get synchronized using synchronization
packets. The only requirement is to have enough trace
information prior to the error to let the PDTC synchronize
before the error appears.

Using the technique explained above, it is possible to
reconstruct the processor execution status in the moment of an
error. The available information for this analysis can be as rich
as needed, since the software can be extensively instrumented
by adding instructions to export any variable value in any point
of execution. The combination of variable instrumentation with
program counter information enables promising novel
diagnosis capabilities to evaluate circuit reliability and the
effectiveness of fault-tolerance techniques. In addition,
obtained diagnostics could be applied to the development of
more complex, new detection techniques.

Although the presented work is a first approach, and major
improvements can still be done, it has been possible to
experimentally confirm the trace information capabilities to
reconstruct the execution status. In particular, for the detected
timeout errors (Det. TO in Table II), it was verified that an out-
of-range PC address was found on the program trace. A wrong
PC address can provoke a jump to an invalid code region that
causes the processor to hang. The PC addresses can be checked
with the original program to locate the wrong instruction that
was being executed when the error happened. A similar analysis
was performed for data errors to verify that there was incorrect
data on the data trace. In all the cases that a trace dump related
to a detected error has been analyzed, the information contained
in the trace dump confirmed the detected error.

We could also analyze the errors detected by the PDTC that
were not detected by the software checks (Det. OP in Table II).
These errors can have a variety of sources. They may
correspond to benign execution errors, i.e., errors that do not
cause malfunctioning, but also to errors inside the Coresight
trace subsystem or the PDTC. However, with the current
implementation it is not generally possible to know exactly
where the error occurred. It must be noted that the Coresight
trace subsystem is susceptible to errors and it cannot be
hardened as we used a commercial device. The PDTC can be
hardened, but the benefits would be marginal due to its
relatively small size in comparison with the Coresight trace
subsystem. The PDTC used in the experiments was
implemented in the PL and we used the SEM IP to correct
configuration memory errors. If the collected trace dump
contains an error that is verified by simulating it with the PDTC,
it may be a benign error or an error in the Coresight subsystem.
If the collected trace dump does not trigger the PDTC error
detection, it may be an error in the PDTC or an error at the
TPIU. Both cases were observed in the collected trace dumps.
However, the amount of trace dumps that we were able to
collect for this type of errors was small and additional
experiments are required in order to reach to a conclusion about
the relative sensitivity of each component in the trace
processing chain.

V. CONCLUSIONS

In this work we have proposed a new approach for error

8

detection in ARM microprocessors based on available on-chip
trace infrastructures. A hardware module is used to monitor
both the program-flow trace and a highly configurable data
trace. This approach can be extended to other COTS
microprocessors that support program and data tracing.

Experimental results demonstrate that the proposed approach
has a high error detection capability, even though only some
basic checks were implemented. Control-flow errors are
detected in a non-intrusive manner and with no performance
penalty. Data can be reported for checking through the trace
interface, at the expense of a time overhead that is proportional
to the amount of stimulus register writes. Error detection
latency is small, despite the fact that trace information has to
traverse the trace subsystem. In summary, the trace interface is
a viable means to implement error detection in COTS
microprocessors. Additionally, traces can be collected for
further analysis and diagnosis of the cause of errors.

This work has shown that the checking of trace information
has a great potential to detect and diagnose radiation induced
errors in complex microprocessors. Future work is oriented to
improve the error detection rate, by making a more elaborated
use of the rich information that the trace subsystem can provide,
and to improve the diagnosis capabilities.

REFERENCES
[1] R. Ginosar, “Survey of processors for space”, Proc. Int. Space System

Engineering Conf. (DASIA), 1B, 2012.
[2] M. Pignol, “DMT and DT2: Two Fault-Tolerant Architectures developed

by CNES for COTS-based Spacecraft Supercomputers”, Proc. 12th Int.
On-Line Testing Symposium (IOLTS), pp. 203-212, 2006.

[3] K. A. LaBel, “NEPP Roadmaps, COTS, and Small Missions”, Presented
at NEPP Electronics Technology Workshop (ETW), Goddard Space
Flight Center, June, 2016.

[4] J. R. Azambuja, M. Altieri, J. Becker, and F. Lima Kastensmidt, “HETA:
Hybrid error-detection technique using assertions,” IEEE Transactions on
Nuclear Science, vol. 60, no. 4, pp. 2805–2812, Aug. 2013.

[5] J. R. Azambuja, S. Pagliarini, M. Altieri, F. Lima Kastensmidt, M. J.
Becker, G. Foucard, and R. Velazco, “A Fault Tolerant Approach to
Detect Transient Faults in Microprocessors Based on a Non-Intrusive
Reconfigurable Hardware”, IEEE Transactions on Nuclear Science, vol.
59, no. 4, pp. 1117-1124, Aug. 2012.

[6] M. Grosso, M. Sonza Reorda, M. Portela-Garcia, M. Garcia-Valderas, C.
Lopez-Ongil, L. Entrena, “An on-line fault detection technique based on
embedded debug features”, Proc. 16th IEEE On-Line Testing
Symposium, pp. 167-172, 2010.

[7] M. Portela-Garcia, M. Grosso, M. Gallardo-Campos, M. Sonza Reorda,
L. Entrena, M. Garcia-Valderas, C. Lopez-Ongil, “On the use of
embedded debug features for permanent and transient fault resilience in
microprocessors”, Microprocessors and Microsystems, vol. 36, no. 5, pp.
334-343. July, 2012.

[8] L. Parra, A. Lindoso, M. Portela, L. Entrena, F. Restrepo-Calle, S.
Cuenca-Asensi, A. Martinez-Alvarez, “Efficient Mitigation of Data and
Control Flow Errors in Microprocessors”, IEEE Transactions on Nuclear
Science, vol. 61, no. 4, pp. 1590-1596. Aug. 2014.

[9] L. Parra, A. Lindoso, M. Portela-Garcia, L. Entrena, B. Du, M. Sonza
Reorda, L. Sterpone, "A New Hybrid Nonintrusive Error-Detection
Technique Using Dual Control-Flow Monitoring", IEEE Transactions on
Nuclear Science, vol. 61, no. 6, pp. 3236-3243, Dec. 2014.

[10] A. Lindoso, L. Entrena, M. García-Valderas, L. Parra, "A hybrid fault-
tolerant LEON3 soft core processor implemented in low-end SRAM
FPGA", IEEE Transactions on Nuclear Science, vol. 64, no. 1, pp. 374-
381, Jan. 2017.

[11] B. Du, M. Sonza Reorda, L. Sterpone, L. Parra, M. Portela-García, A.
Lindoso, L. Entrena, "On-line Test of Control Flow Errors: A new Debug
Interface-based approach", IEEE Transactions on Computers, vol. 65, no.
6, pp. 1846-1855, Jun. 2016.

[12] L. Entrena, A. Lindoso, M. Portela-Garcia, L. Parra, B. Du, M. Sonza-
Reorda, L. Sterpone, “Fault-tolerance techniques for soft-core processors
using the Trace Interface”, In “FPGAs and Parallel Architectures for
Aerospace Applications. Soft Errors and Fault-Tolerant Design”, F.
Kastensmidt, P. Rech, Paolo (Eds.), Springer Switzerland, 2016.

[13] P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo, M. Sonza Reorda,
M. Violante, “Experimentally evaluating an automatic approach for
generating safety-critical software with respect to transient errors”, IEEE
Transactions on Nuclear Science, vol. 47, no. 6, pp. 2231–2236, Dec.
2000.

[14] B. Nicolescu, R. Velazco, “Detecting soft errors by a purely software
approach: method, tools and experimental results”, Design, Automation
and Test in Europe (DATE) Conf., pp. 57 – 62, March 2003.

[15] M. Rebaudengo, M. Sonza Reorda, and M. Violante, “Software level soft-
error mitigation techniques,” in “Soft Errors in Modern Electronic
Systems”, M. Nicolaidis (Ed.), New York, NY, USA, Springer, 2011.

[16] E. Chielle, J. R. Azambuja, R. S. Barth, F. Almeida, F. L. Kastensmidt,
“Evaluating Selective Redundancy in Data-Flow Software-Based
Techniques”, IEEE Transactions on Nuclear Science, vol. 60, no. 4, pp.
2768-2775, Aug. 2013.

[17] F. Abate, L. Sterpone, M. Violante, “A New Mitigation Approach for Soft
Errors in Embedded Processors”, IEEE Transactions on Nuclear Science,
vol. 55, no. 4, pp. 2063-2069, Aug. 2008.

[18] A. B. de Oliveira, G. S. Rodrigues, F. L. Kastensmidt, "Analyzing
lockstep dual-core ARM cortex-A9 soft error mitigation in FreeRTOS
applications," Proc. 30th Symp. on Integrated Circuits and Systems
Design (SBCCI), pp. 84-89, 2017.

[19] A. W. Hoppe, F. L. Kastensmidt, J. Becker, “Control Flow Analysis for
Embedded Multi-core Hybrid Systems”, In “Applied Reconfigurable
Computing. Architectures, Tools, and Applications. ARC 2018”, N.
Voros, M. Huebner, G. Keramidas, D. Goehringer, C. Antonopoulos, P.
Diniz (Eds.), Lecture Notes in Computer Science, vol 10824, pp. 485–
496, Springer Cham, 2018.

[20] ”Zynq-7000 All Programmable SoC: Technical Reference Manual”,
Xilinx Inc., Technical Ref. Manual UG585, Sept. 2016.

[21] “CoreSight Components. Technical Reference Manual”, ARM Ltd., DDI
0314H, 2009.

[22] “CoreSight Program Flow Trace. Architecture Specification”, ARM Ltd.,
IHI 0035B, 2011.

[23] “CoreSight Architecture Specification v2.0”, ARM Ltd., IHI 0029D,
2013.

[24] “Soft error mitigation controller v4.1 Product guide,” Xilinx Inc., White
Paper PG036, Nov. 2014.

[25] A. Lindoso, M. García-Valderas, L. Entrena, Y. Morilla and P. Martín-
Holgado, "Evaluation of the Suitability of NEON SIMD Microprocessor
Extensions Under Proton Irradiation," IEEE Transactions on Nuclear
Science, vol. 65, no. 8, pp. 1835-1842, Aug. 2018.

[26] N. Aggarwal, P. Ranganathan, N. P. Jouppi, J. E. Smith. “Benefits from
Isolation in Commodity Multicore Processors”. IEEE Computer, vol. 40,
no. 6, pp. 49-59, June 2007.

[27] J. R. Azambuja, A. Lapolli, L. Rosa, and F. L. Kastensmidt, “Detecting
SEEs in microprocessors through a non-intrusive hybrid technique,” IEEE
Trans. Nucl. Sci., vol. 58, no. 3, pp. 993–1000, Jun. 2011.

[28] J. R. Azambuja et al., "Evaluating Neutron Induced SEE in SRAM-Based
FPGA Protected by Hardware- and Software-Based Fault Tolerant
Techniques," IEEE Transactions on Nuclear Science, vol. 60, no. 6, pp.
4243-4250, Dec. 2013.

