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Summary 
 
The oomycete Aphanomyces euteiches is an important pathogen infecting roots of legumes 

(pea, alfalfa...) and the model legume Medicago truncatula. Oomycetes and other microbial 

eukaryotic pathogens secrete and deliver effector molecules into host intracellular 

compartments (intracellular/cytoplasmic effectors) to manipulate plant functions and 

promote infection. CRN (Crinkling and Necrosis) proteins are a wide class of intracellular, 

nuclear-localized effectors commonly found in oomycetes and recently described in true 

fungi whose host targets, virulence roles, secretion and host-delivery mechanisms are poorly 

understood. We addressed the functional characterization of CRN proteins AeCRN5 and 

AeCRN13 of A. euteiches and AeCRN13’s homolog of the chytrid fungal pathogen of 

amphibians Batrachochytrium dendrobatidis, BdCRN13. Gene and protein expression 

studies showed that AeCRN5 and AeCRN13 are expressed during infection of M. 

truncatula’s roots. Preliminary immunolocalization studies on AeCRN13 in infected roots 

indicated that the protein is secreted and translocated into root cells, depicting for the 

first time CRN secretion and translocation into the host during infection. The heterologous 

ectopic expression of AeCRNs and BdCRN13 in plant and amphibian cells indicated that 

these proteins target host nuclei and lead to t h e  perturbation of host physiology. By 

developing an in vivo FRET-FLIM-based assay, we revealed that these CRNs target host 

nucleic acids: AeCRN5 targets plant RNA while AeCRN13 and BdCRN13 target DNA. 

Both CRN13 exhibit a HNH-like motif commonly found in endonucleases and we further 

demonstrated that both CRN13 display a nuclease activity in vivo inducing double-stranded 

DNA cleavage. This work reveals a new mode of action of intracellular eukaryotic effectors 

and brings new aspects for the comprehension of CRN’s activities not only in oomycetes 

but, for the first time, also in true fungi. 

 

 
 

Keywords: CRN, oomycetes, nucleus, effector, secretion, FRET-FLIM, Aphanomyces 

euteiches 
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Résumé 
 
 
L’oomycète Aphanomyces euteiches est un pathogène racinaire de légumineuses cultivées 

(pois, luzerne …) et de la plante modèle Medicago truncatula. Les oomycètes, comme 

d’autres microorganismes pathogènes eucaryotes, secrètent et transloquent des molécules à 

l’intérieur des cellules de l’hôte (effecteurs intracellulaires/cytoplasmiques) dans le but 

de manipuler les fonctions de la plante et de faciliter l’infection. Les protéines CRN 

(Crinkling and Necrosis) constituent une famille d’effecteurs nucléaires largement répandue 

chez les oomycètes et récemment décrites chez des espèces fongiques. Leurs cibles et rôle 

dans la virulence ainsi que leurs mécanismes de sécrétion et de translocation sont encore 

mal compris. Nous avons entrepris la caractérisation fonctionnelle des protéines AeCRN5 et 

AeCRN13 d’A.euteiches ainsi que de l’homologue d’AeCRN13 du champignon pathogène 

d’amphibien Batrachochytrium dendrobatidis, BdCRN13. Les analyses d’expression 

génique et protéique ont permis de montrer que  AeCRN5 et AeCRN13 sont exprimés 

durant l’infection des racines de M. truncatula. Des résultats préliminaires d’immuno-

localisation d’AeCRN13 ont révélé, pour la première fois, la sécrétion et translocation d’un 

CRN durant l’infection. Leur expression hétérologue, à la fois dans les cellules de plantes et 

d’amphibiens, a montré que ces protéines se localisent dans les noyaux où leurs activités 

conduisent à la perturbation de la physiologie de l’hôte. En développant un système in 

vivo basé sur la technique de FRET-FLIM, nous avons démontré que ces CRN ciblent les 

acides nucléiques: AeCRN5 cible l’ARN des plantes tandis qu’AeCRN13 et BdCRN13 lient 

l’ADN. Ces deux effecteurs CRN13 exhibent un motif de type HNH, lequel est 

typiquement retrouvé dans des endonucleases. Nous avons démontré que les CRN13 

présentent une activité nuclease in vivo conduisant à la génération de coupures double brin 

de l’ADN. Ce travail a permis de mettre en évidence un nouvel mécanisme d’action des 

effecteurs de microorganismes eucaryotes et apporte des nouveaux aspects pour la 

compréhension de l’activité des protéines CRN d’oomycète mais aussi, pour la première 

fois, de champignon. 

                                                                                                                                                                                                                                                                                                 

 

Mots clefs : CRN, oomycète, noyau, effecteur, sécrétion, FRET-FLIM, Aphanomyces 

euteiches 
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General introduction 
 
 

The emergence of agriculture took place 10,000 years ago in eastern China, 

Mesopotamia, and MesoAmerica (Purugganan and Fuller, 2009) and was a crucial step for 

human survey and the blowing of civilizations. The cultivation of plants, rather than their 

gathering from nature, permitted humans to control when and how much food plants were 

grown and by this way ensure their food supply. This practice resulted in the domestication 

of wild plant species and conducted progressively to the appearance of plants presenting 

advantageous traits for humans (as rapid growth, bigger fruits…) and to modern crops. First 

agro-systems initiated, thus, with the beginning of plant domestication and, ever since their 

emergence, infectious plant diseases have manifested as a threat for food production and 

other human activities that depend on it. 

Plant-pathogen microorganism associations are as old as 315 Ma, as evidenced in plant 

fossil records documenting the first pathogenic oomycetes in vascular plants (Strullu-

Derrien et al., 2011). Human awareness of plant diseases date back to 3500 BC in Greek 

civilization and first descriptive reports were brought by Théophraste (370-286 BC). Plant 

diseases caused by microorganisms posed problems in ancient crop systems: japanese 

literature of the 600 century AC makes allusion to infectious diseases (blast disease on rice) 

that resulted in serious famines back in the days (Akai, 1974). But one can only speculate 

about their causative agents since it was only till principles in biology were cemented that 

plant pathology and etiology of plant diseases established their biotic origin. 

From the beginning of our modern times, serious episodes of plant infectious diseases have 

taken place on various important crops. An emblematic example of how plant diseases 

affect humans is the potato blight disease caused by the oomycete P. infestans, responsible 

for the “Great Irish Famine” in the 1840s that led to important demographic and cultural 

changes in Ireland. Another oomycete, P. viticola, caused considerable losses for the 

European grape industry in the beginnings of the 20th  century, reaching up to 70% loss in 

1915 in France (Gessler et al., 2011). 

Today the problem persists. Actually, it has been estimated that only infectious 

diseases, are responsible for 10% of all crop losses (Strange and Scott, 2005) and recent 

studies have raised the alarm on novel infectious diseases that are emerging and spreading, 

putting at risk plant health and thereby food security (Fisher et al., 2012). For instance, the 

black stem of wheat caused by the strain Ug99 of the fungus P. gramini sf. tritici, which has 

being threating wheat cultures since 1998, is having a calamitous impact in the Middle East 
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and West Asia and other wheat-growing countries (Flood, 2010; Pennisi, 2010). Another 

example is the fungus Magnaporthe oryzae (the rice blast disease agent) aggressively 

infecting rice as well as other grass species including wheat. Only on rice, estimations 

indicate that harvest losses per year could feed 60 million people (Pennisi, 2010). Hence, it is 

urgent to provide means to avoid or to better manage these infections. To address this 

challenge it is crucial to better comprehend plant-pathogen interactions at the molecular 

level. 

Among all microorganisms responsible for the contemporary menaces, the filamentous 

eukaryotic fungi and oomycetes stand as the most serious (Fisher et al., 2012; Flood, 2010; 

Pennisi, 2010). Indeed, oomycetes stand as notorious plant pathogens causing dramatic losses 

on crops, estimated at $ 6.7 billion for P. infestans on tomato and potato (Haas et al., 

2009) and from $1 to $2 billion for P. sojae on soybean (Tyler, 2007). In addition to crop 

systems, oomycetes can severely affect semi-natural and natural ecosystems, like in the case 

of P. ramorum, responsible for the sudden-oak-death disease (Grünwald et al., 2012). Despite 

the relevance of these diseases, means to avoid and control oomycete are scarce and often 

unsuccessful. Oomycete control recommendations include continuous spraying of complex 

fungicidal mixtures and prophylactic measures (Blum et al., 2010; Hobbelen et al., 2011). 

Fungicides extensively used for the control of fungal diseases often become ineffective 

because of the rapid appearance of insensitivity and long standing resistance (Judelson 

and Senthil, 2006; Pang et al., 2013). In addition, these can be inefficient because the 

metabolic pathways and key components that they target in fungi can be absent in oomycetes. 

Studies on the molecular basis governing pathogenicity and plant susceptibility can provide 

answers of why plants are susceptible to certain pathogens and identify the mechanisms 

through which pathogens infect successfully their hosts. 

 

The general introduction of the manuscript is divided in different sections. First section 

is devoted to a general presentation of the current knowledge of the biology of oomycetes 

with a particular focus on the legume root rot pathogen agent Aphanomyces euteiches. Next 

section presents main concepts of molecular plant-microbe interactions and the emerging role 

of the plant nucleus in this context, followed by a description of microbial effectors that 

target this organelle. Lastly, the objectives of the PhD work are presented. 



Figure 1. Schematic representations of the likely phylogeny of eukaryotes 
and the relationships of main phyla and classes of the Chromalveolata 
ensemble. A. Scheme of the current consensus of eukaryotic phylogeny 
showing the six super-ensembles: Opisthokonta, Plantae, Chromalveolata, 
Excavata, Rhizaria and Amoebozoa.  Stramenopiles (within Heterokonts) are 
high-lighted in yellow. Adapted from Brinkmann and Phillippe (2007). B. 
Summary of the phylogenetic relationships of oomycetes (blue squared) within 
Stramenopiles (yellow squared) and their closest related groups. Adapted from 
Beakes and Sekimoto (2009). 

B 

A 
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Oomycetes: plant and animal disease agents. 
 
Oomycetes are distinct from fungi 
 

Oomycetes (commonly referred to as water moulds) are eukaryotic microorganisms 

regrouped in the Stramenipila kingdom (Brinkmann and Philippe, 2007; Beakes et al., 2012). 

They are heterotrophic organisms acquiring nutrients by absorption (osmotrophs) thanks 

to the transport into cells of nutrients produced by secreted depolymerizing enzymes on 

extracellular complex biological material. They present a hyphal tip-growth development that 

leads to the formation of complex branched mycelia. Because of these characteristics, 

oomycetes were thought to be related to fungi. It is known, now, that is not the case and that 

many traits shared with fungi are the result of convergent evolution. In fact, molecular 

phylogenetic studies based on the mitochondrial cox2 gene (Thines et al., 2008), SSU and 

LSU rDNA genes (Voglmayr and Riethmüller, 2006) have replaced oomycetes in the super 

ensemble Chromalveolata (and within it, in Stramenopiles) far distant from true fungi 

(Opistokonta) (figure 1 A). Oomycetes appear closely related to brown algae and diatoms 

and quite close to Apicomplexans (figure 1 B). The relatedness to brown algae together with 

the fact that the most ancestral oomycetes known today (Eurychasma dicksonii and 

Haptoglossa spp) are marine habitants, supports a marine origin of oomycetes (Beakes et al., 

2012). 

Cytological and biochemical studies corroborate the lack of relatedness to fungi and 

highlight main differences distinguishing them. Oomycetes present a coenocytic thallus 

which remains diploid throughout its vegetative stage (only formation of haploid nuclei 

occurs through meiosis for gamete formation). In contrast, fungal thalli are septate and carry 

haploid nuclei during vegetative stages. Additionally, their cell-wall polysaccharide 

composition is different. While chitin, N-acetylglucosamine residus 1,4-linked (1,4-GlcNac), 

remains largely the primary structural component of fungal cell-walls, oomycetes present a 

more diverse polymer composition. Cellulose and β-glucans remain the principle structural 

cell-wall constituents of late-divergent oomycetes (like P. infestans), whereas early-divergent 

species like Saprolegnia spp and A. euteiches present, in addition to cellulose, different 

levels of chitin (Badreddine et al., 2008; Guerriero et al., 2010). Recently, the cell-wall 

analysis of A. euteiches evidenced the presence of original polymers found for the first time 

in eukaryotes: 1,6-linked GlcNac residus in association to β-1,6 glucans (Mélida et al., 2013; 

Nars et al., 2013). Another major trait resides in the absence of biosynthetic pathways 

implicated in the synthesis of sterols in a large majority of oomycetes, compounds that 

oomycetes acquire from hosts by the secretion of sterol-carrier proteins during infection 
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(Mikes et al., 1998). 

 
Oomycetes: diverse microorganisms and notorious plant pathogens 

 
Between 600 and 1500 species are counted in the oomycetes lineage and, within 

Stramenopiles, they define a solely branch of highly diverse microorganisms. This is 

reflected, in a first instance, by the variety of their ecological niches since they occupy fresh- 

water, marine and terrestrial environments ubiquitously throughout the globe (Thines and 

Kamoun, 2010). In these environments, they present different life styles: as free-living 

organisms able to acquire nutrients from complex dead organic matter (saprophytes) and/or in 

association with other organisms. These symbioses are very often parasitic and ensure the 

derivation of all or part of their nutrition from the living host. When taking place, they are in 

a large extent pathogenic as they lead to the establishment of disease and mortality of hosts. It 

is worth to note that, to date, no mutualistic symbiotic oomycete has been described and that 

the earliest divergent oomycete, Eurychasma dicksonii, is an obligate pathogen of brown sea 

weeds (Grenville-Briggs et al., 2011). Thus, the capacity of parasitism seems to have 

appeared early in the history of oomycetes as well as their pathogenic behaviour which is a 

hallmark of this lineage. 

Pathogenic oomycetes are highly diverse themselves, presenting a wide range of hosts 

which can be animals (like crustaceans, fishes, mammals including humans, nematodes) as 

well as algae and plants (Thines & Kamoun, 2010). Their impact can be seriously 

detrimental for natural ecosystems with important ecological consequences. For example, the 

plant pathogen oomycete Phytophthora ramorum (the agent of the sudden oak death disease) 

is destroying entire native North American forests and leading to a decrease of the woody 

species diversity as well as to changes on carbon and soil nitrogen cycling (Cobb et 

al., 2013). Another example is the crayfish plague caused by Aphanomyces astaci (listed as a 

notifiable disease of the World Organisation for Animal Health 

(http://www.oie.int/en/animal-health-in- causing the disappearance of entire species 

populations (Filipova et al., 2013; Vrålstad1 et al., 2011). Pathogenic oomycetes also 

constitute a serious threat to agricultural systems and therefore to food security (Fisher et al., 

2012; Phillips et al., 2008). In this regard, phytopathogenic oomycetes merit considerable 

attention. It is estimated that 60% of oomycete species known today are plant pathogens 

(Thines & Kamoun, 2010). Among these, several stand as the most deadly pathogens of 

important cultivated plants. As already mentioned, the “plant destroyer” Phytophthora 

infestans, has been and continues to be a threat to potato and tomato representing an 

economical and societal problem worldwide (Nowicki et al., 2012). Other cultivated plants 

http://www.oie.int/en/animal-health-in-
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like soybean, grape, broccoli, lettuce and sugar beet endure important diseases hosting 

species like Phytophthora sojae,  Plasmopara viticola, Peronospora parasitica, Bremia 

lactucea and Aphanomyces cochlioides, respectively. 
 
 
Phylogenetic distribution of oomycetes 
 

Oomycetes appeared 430-400 million years ago (Matari and Blair, 2014) and are 

grouped in two major taxonomic groups/lineages that encompass the most late-diverging 

groups of oomycetes or “crown oomycetes” (to exclude early-diverged basal lineages) as 

termed by Beakes and Sekimoto (2009):  the Saprolegnialean and the Peronosporalean 

lineages (figure 2). The latter groups have been estimated to split 200 million year ago in 

the history of oomycetes and have, thus, different evolutionary histories which can be 

evidenced by biochemical features as for example the ability to synthesize sterols, a 

trait found only in Saprolegniales and in their closest relatives, the brown algae (Gaulin 

et al., 2010). Another distinctive trait concerns their ecological prevalence. Saprolegniales 

are predominantly found in aquatic environments (fresh water and estuarine) while 

Peronosporales occupy mainly terrestrial environments. The water-dependence of 

Saprolegniales is considered an ancestral trait and the tendency to have a lesser 

dependence on water is thought to be an evolutionary trend in oomycetes (Beakes and 

Sekimoto 2009). 

Phytopathogenic oomycetes species are found in both lineages (figure 2) with a 

majority in the Peronosporalean lineage which stands as a phytopathogenic line. Species 

ascribed to genera Phytophthora (over 100 species, Kroon et al., 2012), Albugo and 

Hyaloperonospora as well as Pythium are phytopathogenic. Main exceptions are restricted to 

Pythium species since among the 150 plant pathogenic species some are animal pathogens 

like P. insidiosum (infecting mammals, Uzuhashi et al., 2010). 

In contrast, the Saprolegnialean lineage is more heterogeneous since in addition to a large 

number of exclusively saprophytic species the group harbors zoopathogenic and 

phytopathogenic facultative species. Animal pathogens species of the genus Saprolegnia 

(i.e: S. parasitica) infect freshwater fishes, insects and amphibians (Sarowar et al., 2013). In 

Aphanomyces genus, species A. invadans and A. astaci develop on fishes and crayfishes 

species with elevated economic and ecological impacts (Phillips et al., 2008). Few plant 

pathogens species have been identified in Saprolegniales and are all included in the genus 

Aphanomyces. 
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Figure 3. Close up summary scheme on Aphanomyces phylogeny, lifestyle and 
principal hosts or substrates.  
The phylogenetic relationships were established by analysis of ITS sequences of 
nuclear rDNA of the principal Aphanomyces spp identified till date. Lifes styles 
displayed by these species correlates to their phylogenetic regrouping defining three 
independent lineages:  a plant pathogen lineage, a saprophytic/ oportunistic lineage and 
animal pathogenic lineage. Species A. laevis and A. helicoides are generally assigned as 
saprotrophs but isolated studies have documented their development on animals 
(insects). A. stellatus has been found as a free-living species but its ITS sequence 
analysis assigned it to the zoopathogenic lineage.The scheme was performed based on 
Dieguez-Uribeondo et al.,  (2009). 
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Aphanomyces genus 
 
An ancestral genus harboring diverse species 
 

Aphanomyces genus regroups about 40 species (Diéguez-Uribeondo et al., 2009). 

This is an approximate number because their proper identification is difficult due to the 

reticence of some species to be isolated and maintained in pure cultures. Hence, its taxonomy 

is still in progress. Nevertheless, studies converge to the conclusion that Aphanomyces is an 

ancestral Saprolegniale group (Petersen and Rosendahl, 2000). 

In an overall view, most species have prevalence for aquatic niches (fresh water and marine, 

mostly estuarine) with the exception of plant pathogens which occur in terrestrial wet 

environments. Phylogenetic studies of Aphanomyces genus regroup species in three 

independent lineages globally correlated to their life-styles (figure 3). A first line comprises 

plant pathogenic species, which in the Saprolegnialean line are only restricted to 

Aphanomyces genus. Within, species like A. cladogamus have a broad range of hosts of 

different families as Fabaceae (Phaseolus vulgaris, common bean), Poaceae (Hordeum 

vulgare, barley), Solanaceae (Lycopersicon esculentum, tomato) and Chenopodiaceae 

(Spinacia oleacera, spinach). A. euteiches displays a quite marked specialization for 

Fabaceae species while A. cochlioides is a host-narrow species reported so far only on sugar 

beet (Beta vulgaris) (Diéguez-Uribeondo et al., 2009). A second lineage harbors species with 

prevalence for saprophytism as A. laevis and A. helicoides which can exhibit opportunistic 

parasitism. Lastly, the zoopathogenic lineage regroups A. astaci (infecting  freshwater 

crayfishes, Filipova et al., 2013) or A. invadans (responsible for the epizootic ulcerative 

syndrome of various species of estuarine fishes, (Boys et al., 2012) as well as A. stellatus, 

which, consensualy defined as a saprotroph, has been found to develop on crustaceans 

(Royo et al., 2004). 

The diversity of life styles and hosts of Aphanomyces species (animal/ plant pathogens and 

saprobe species) gives to this genus a special taxonomic position among Saprolegniales 

and towards Peronosporales. 

Aphanomyces life cycle presents sexual and asexual stages. Sexual reproduction 

leads to the formation of oospores as the result of the fertilization of oogonia (female 

reproductive structures carrying the female haploid nuclei) by antheridia (male reproductive 

structures delivering haploid male nuclei). Oospores are long-resting structures which 

germinate to produce biflagellate motile zoospores (the primary infection entity). Such 

zoospores can also be produced as the result of asexual reproduction by live mycelium in 

roots via specialized hyphae (sporangium). As zoospores reach host surfaces, they encyst and 



Figure 4. Infection life cycle of A. euteiches (Saprolegniales). Oospores present in 
soil germinate producing a sporangium (1). Primary spores (2N) are formed in the 
apex of the sporangium and release zoospores (asexual, biflagellate spores) through 
a pore of their cell wall (2). Zoospores can encyst en germinate to produce a novel 
sporangium giving rise to a second generation of primary spores and zoospores (3) a  
phenomenon  called Repeated Zoospore Emergence (RZE). Zoospores that reach the 
host rhizoplane encyst and germinate producing an hyphae that directly penetrates 
host tissues (4).  Infectious hyphae develops intercellularly (5) to completely 
colonize the root system and subsequently progress to hypocotyls (6). Within roots, 
sexual reproduction is assured by the differentiation of hyphae into antheridia and 
oogonia, carrying haploid nuclei (1N) and whose fusion results in the formation of 
oospores (2N). During the decomposition of dead plant tissue, oospore are then 
released in soils were they can remain dormant for up to 10 years (7). Adapted from 
the American Phytopathological Society (APS) https://www.apsnet.org/ 
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germinate to penetrate host surfaces (figure 4 ). It is worth to note that some physiological 

and developmental behaviours are linked to the parasitic life style. Parasitic species 

present the capacity of Repeated Zoospore Emergence (RZE). This refers to the ability of a 

motile zoospore to encyst and to produce a second generation of zoospore rather than directly 

infect the host. It is believed that RZE allows to extend the duration of the infective stage and 

so the chances to come upon a suitable host. Also, plant parasitic species usually present both 

sexual and asexual stages whereas in animal pathogens the sexual stage is often absent or rare 

(Diéguez-Uribeondo et al., 2009). 

 

A. euteiches and the root rot disease of legumes 
 

Aphanomyces euteiches was first described by Dreschler in 1925 from infected pea 

(Pisum sativum) in the United States. It is a soil borne pathogen infecting roots of legumes as 

well as a facultative pathogen which means that it is able to grow as a saprobe outside the 

host (Papavizas and Davey, 1960). This renders its axenic culture possible. Its developmental 

cycle includes sexual and asexual stages. The species is homothallic (self-fertile) and 

presents sexual reproduction typically achieved by the formation of diploid oospores capable 

to subsist up to 10 years in soils on harsh conditions (Gaulin et al., 2007). 

The disease caused by A. euteiches is commonly known as the root rot of legumes. 

Legumes affected include pea (Pisum sativum), alfalfa (Medicago sativa), snap and red 

kidney bean (Phaseolus vulgaris), faba bean (Vicia faba,) red clover (Trifolium pratense) and 

white clover (Trifolium repens). Thus, A. euteiches has a relative large range of hosts within 

Fabaceae. Nevertheless its occurrence and degree of pathogenicity can differ from one host to 

another. Its characterization on pea and alfalfa has defined pathotypes: pea-infecting strains 

and alfalfa infecting strains from the USA and from France (Malvick and Grau 2001; 

Moussart et al., 2007; Wicker and Rouxel, 2001). 

Infection takes place in roots as zoospores, chemo-attracted by root compounds 

(Sekizaki et al., 1993), encyst in the rhizoplane and germinate to penetrate root cortex 

tissues. Total colonization of roots is followed by the spread of the pathogen to stem 

(hypocotyls, epicotyls). Typically, its development provokes the disintegration of cortex 

tissues denoted by the appearance of softened and water-soaked areas of roots which become 

orange-brown or blackish-brown at later times of pathogen development. Symptoms can 

advance to stems and become evident by the necrosis of epicotyls and hypocotyls, and 

chlorosis of cotyledons followed by total discoloration (death) or foliage milting. Completion 

of infection is marked by the formation of oospores that ensure the dissemination. When 
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Figure 5. Infection model in the Medicago truncatula/ Aphanomyces euteiches 
pathosystem. A. Macroscopic symptoms displayed by M. truncatula F83005.5 (highly 
susceptible) and ecotypes A17 (partially resistant) infected with A. euteiches in in vitro 
conditions (Djébali et al.,2009). B. Scheme of a transversal section of a root infected by 
A. euteiches (green). On the left side, the scheme describes infection in F83005.5 were 
an asexual spore (S) has landed on the rhizoplane and germinated to produce a germ 
tube giving rise to an infectious hyphae that directly penetrates root cortex tissues (a). 
Hyphae develops between root cells of cortex which becomes completely colonized 6 
days post inoculation. Cortical cells died as A. euteiches develops leading to root 
disassembly and water-soaked symptoms typical of root rot disease (b). The pathogen 
reaches the vascular cylinder before completion of its cycle (not shown) (c). On the right 
side, the infection is depicted in the tolerant host (A17) were the plant produces 
supplementary pericyle cell layers with higher levels of lignin in their cell-walls, 
reinforcing the root stele. In addition to this mechanical barrier, cells produce 
antimicrobial compounds (d). These cytological responses restrain the advance of the 
pathogen to the vascular cylinder. C. Cross-sections of infected roots showing full 
invasion (F83005.5) and partial invasion (A17) by A. euteiches (green) and the 
production of antimicrobial compounds by A17 (bleu) in the root stele, 15 days post 
inoculation (Djébali et al.,2009). 
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conditions are appropriate, oospores germinate in the vicinity of hosts to produce 

zoosporangia. 

Root rot disease occurs wherever host species are grown. Specially, it is a problem for pea 

and alfalfa-growing regions in North American and European countries. In France, it 

affects primary forage pea in northern regions (Gaulin et al., 2007). No effective control 

exists once A. euteiches is installed in soils. In addition, no fully resistant line of pea or 

alfalfa is available. Only prophylactic measures and crop rotation are preconized to prevent 

crop losses. Currently, improvement of crop resistance is done via the characterization of 

broad range resistance and identification of QTLs, which is the only type of resistance 

towards this pathogen (Djébali et al., 2009; Hamon et al., 2013; Bonhomme et al., 2014). 

 

 

A.euteiches and M. truncatula pathosystem 
 

The legume Medicago truncatula is a close relative of the cultivated alfalfa (M. sativa) 

that has become a largely used model plant (Cook, 1999). Protocols suited for laboratory 

research have been established and a wide collection of mutants and natural genotypes are at 

disposition for the scientific community. Genomic resources include sequences of over 288 

accessions (Stanton-Geddes et al., 2013). More interestingly, it is a host of A. euteiches 

showing great variability of susceptibility to this pathogen (Moussart et al., 2008). 

A. euteiches/M. truncatula pathosystem has been developed and exploited in our 

research group to understand the molecular aspects behind the suceptible variability of the 

plant. The pathosystem makes use of a pea isolate of A. euteiches (ATCC 201684) 

and different genotypes of M. truncatula that display different degrees of tolerance to this 

strain. Two accessions exemplifying the opposite resistance degrees are line A17 (partially 

resistance) and line F83005.5 (highly susceptible). Genetic approaches and the use of an in 

vitro infection assay coupled to the characterization of infection phenotypes have led to the 

identification of a  QTL (Djébali et al., 2009). Recently, the variability of 176 M. 

truncatula genotypes towards A. euteiches has been correlated to gene sequence architecture 

through a Genome Wide Association Study (GWAS). Single Nucleotide Polymorphisms 

(SNPs) in the promoter and coding region of an F-box gene have been spotted out and linked 

to M. truncatulas's variability to A. euteiches (Bonhomme et al., 2014). Although no 

expression polymorphism between resistance and susceptible lines could be shown, the 

identified SNPs are preconized to lead to functional and non-functional forms of the F-box 

protein which are associated to susceptibility and resistance, respectively. In addition to the F-
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box gene, and consistent with the quantitative type of resistance towards A. euteiches, other 

genes have also been identified through the GWAS. These latter are associated to hormone 

regulation, notably the biosynthesis of cytokinine and transcription factors associated to 

ethylene response as well as giberrilin and abcissic acid (Bonhomme et al., 2014). 

Molecular and cytological approaches carried in lines A17 and F83005.5 have 

evidenced particular plant mechanisms that might be implicated in the contrasting tolerance 

to A. euteiches. In both lines, upon inoculation of roots with zoospores, A. euteiches 

penetrates and starts to develop between cells of the outer cortex tissue within 1 day. No 

specialized infectious hyphae structures as appressoria or haustoria have been evidenced. The 

pathogen presents an intercellular development and invades the whole cortex area within 3 to 

6 days. But, while in F83005.5 total invasion of cortical tissues is followed by the progression 

of the pathogen to vascular system, in A17 roots the pathogen progression is mostly 

restrained to cortical tissues. This inability to progress into the vascular system is correlated 

to the capacity of A17 to deploy a whole set of defense mechanisms like the production of 

phenolic compounds, the reinforcement of cell walls and, more particularly, the formation of 

supplementary pericycle cell layers that might act as a physical barrier for the invading 

hyphae (figure 5). Intriguingly, partial resistance of A17 is accompanied by an increase of 

lateral roots (Djébali et al., 2009). 

 
 
Molecular interplay between pathogen effectors and plant immunity 
 
 

Plant pathogen microorganisms have acquired the ability to take profit of the nutrient- 

rich niche that may be provided by plants to develop and reproduce. Indeed plants represent a 

well lasting source of carbon, nitrogen and water as well as a physical protection (Zuluaga et 

al., 2013). This mode of living implies an intimate association with plants in order to exploit 

goods. Because the development of associated microorganisms affects host plant health, 

conducting eventually to plant disease and death, these associations are termed as pathogenic. 

 
 
Plant immunity and effectors 
 

As any other living organism exposed to a multitude of microorganisms, plants sense 

these external cues to respond in the best-adapted manner. To defend themselves against 

pathogens, plants possess constitutive defenses consisting in pre-existing physical or 



Table 1. Pathogen Molecular Associated Patterns (PAMPs) of bacteria fungi and 
oomycetes and their cognate receptors in plants. 

Organism PAMP (name) Plant Receptor Reference 

Bacteria 

Flagellin (flg22) FLS2 
(A.thaliana) 

Félix et al. , 1999  
Gomez-Gomez et al., 
2001 

Elongtion factor EF-Tu 
(elf18/26) 

ERF 
(A.thaliana) Kunze et al., 2004 

Cold shock protein 
(RNP) Not identified Félix and Boller, 2003 

Lipopolysaccharide Not identified Newman et al., 2005 

Peptidoglycan Lym1, Lym2  
(A. thaliana) 

Erbs et al., 2008a 
Willmann et al., 2011 

Fungi 
chitin 

CeBip, (rice) 
CERK1 
(A.thaliana) 

Kouzai et al., 2014 
Petutschnig et al., 2010 

Xylanase (EIX) EIX (tomato) Ron and Avni, 2004 

Oomycetes 

CBEL Not identified Gaulin et al.,2006 
Larroque et al., 2013 

Pep13 Not identified Nürnberger et al.,1994 
Brunner et al., 2002 

Β-hepta glucans GEBP (putative, 
soybean) Umemoto et al., 1997 

INF1 NbLRK1 
(N.benthamiana) Kanzaki et al., 2008 
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biochemical barriers (i.e. hydrophobic cuticles, surface antimicrobial compounds…) that 

act as  a  first  level  of  protection  to  avoid  and  limit  development  of  potential  

harmful microorganisms. In addition, they possess an inducible multi-layered immune system 

that allows them to perceive microorganisms and activate a whole set of modular defenses 

(figure 6 A) (Dodds and Rathjen, 2010). 

The first level of plant immunity is activated by the direct perception of conserved 

epitopes in commonly occurring molecules of microbes (pathogen or non-pathogen) called 

“Pathogen/Microbial-Associated Molecular Patterns “P/MAMPs”. These molecular 

signatures can be of different nature (protein, oligosaccharides...), they identify a whole 

classe of microbes and are absent from plants (table 1). Their recognition involves Pattern 

Recognition Receptors (PRRs) associated to the plasma membrane that belong to the family 

of Receptor-Like-Kinases (RLKs) and Receptor-like Proteins (RLP) (Boller and Felix, 2009) 

(figure 6). Best characterized examples are the 22-peptide present in the bacteria flagellin 

protein (flg22) and peptides elf18/26 of the bacterial EF-Tu elongation factor protein 

perceived by the RLKs FLS2 and EFR, respectively (Boller & Felix, 2009). Fungal chitin is 

perceived in rice by CEBiP (Kouzai et al., 2014) and by CERK1 in A. thaliana via their 

LysM extracellular domains (Petutschnig et al., 2010).  The activation of the defense 

signaling after PAMP perception requires the association of these receptors to a central RLK 

regulator, named BAK1 (Kim et al., 2013) (figure 6). The importance of BAK1 in mediating 

PAMP-defense signaling and activation is well known for the above mentioned bacterial and 

fungal PAMPs and has been recently established for defense against nematodes and insects 

(Peng and Kaloshian, 2014). Oomycete PAMPs that elicite defense in plants have been 

identified but their cognate receptors and mechanisms behind their recognition remain for the 

most unknwon. These include the epitote pep13 of transglutaminases (Brunner et al., 2002), 

the heptaglucans of P. sojae which has been proposed to be perceived by the GEBP 

(soybean) (Umemoto et al., 1997), the cellulose- binding domain of the cell-wall protein 

CBEL of Phytophthora parasitica (Gaulin et al., 2006) for which its eliciting activity 

requires BAK1 (Larroque et al., 2013) and finally, the sterol-binding protein elicitin INF1 

from Phytophthora spp (Kamoun et al., 1998) for which a  RLK has been identified 

(Kanzaki et al., 2008) (table 1).  

PAMP/MAMPs recognition triggers a level of immunity referred to as PAMP-Triggered 

Immunity (PTI) also called basal immunity given the broad sprectrum of occurrence of 

PAMP/MAMPs, not specific to a given pathogen. PTI includes subsets of early responses like 

the production of ROS species and ion fluxes. More intermediate events include the 

activation of signaling cascades involving mitogen-activated protein kinases (MAPKs) 



A 

B 

Figure 6. Global concepts of plant susceptibility triggered by microbial 
effectors (A) and plant  immunity (B).  A. Pathogens such as bacteria, fungi and 
oomycetes establish a close physical encounter with host cells. They secrete 
effectors into the apoplasm (apoplastic effectors) of inside plant cells 
(intracellular effectors). Bacteria deliver them into host cells via the Type 3 
secretion system  (T3SS) and filamentous pathogens via infectious structures 
(haustoria). Apoplastic effectors interact with apoplastic effector targets (AET) 
and intracellular effectors with intracellular effector targets (IET). In susceptible 
plants (A), their interaction with targets perturb different plant processes that 
benefit the outcome of infection. Among these processes, PTI is an important 
target whose suppression is required for successful infection. B. Plant immunity 
activation resides on the perception of pathogens, which can be performed 
through two modes. A first mode, consists on  the perception of PAMPs by PRRs 
(Patter Recognition Receptors) at the plasma membrane leading to the activation 
of PTI (PAMP-Triggered Immunity). Initiation of PTI signalling pathway 
requires the co-receptor BAK1. A second mode, relies on the direct perception of 
effectors (1) or on the perception of effector activities on plant targets (2) via 
intracellular nucleotide-binding receptors (NB-LRR), conducting to ETI 
(Effector-triggered Immunity). 
(Modified from Win et al., 2011) 
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(Pitzschke et al., 2009) that ultimately conduct to the activation of transcription factors (TFs) 

and expression of pathogenesis-related genes (PR) encoding antimicrobial compounds like 

chitinases and glucanases which directly degrade cell-wall structural components of 

pathogens (Dodds & Rathjen, 2010). Phytohormones like salicylic acid (SA) and jasmonic 

acid (JA) also play key roles in the signal transduction (Tsuda and Katagiri, 2010). All 

together, these defenses are generally sufficient to arrest pathogen infection and maintain 

plant health. Nevertheless, adapted pathogens have evolved means to break down or evade 

such defenses. These pathogens produce secreted molecules termed “effectors” which 

designates “all proteins and small molecules” produced and secreted by pathogens that “alter 

host-structure and function” and facilitate infection (Hogenhout et al., 2009). Effectors are 

secreted into the apoplasm interface (apoplastic effectors) or are addressed inside host cells 

(intracellular effectors) to interact with plant targets. By doing so, effectors can suppress 

plant immunity and perturb other plant processes that conduct to host susceptibility or 

Effector-Triggered Susceptibility, a state benefiting the outcome of the infection (figure 6 A). 

Manipulation of PTI can be achieved by avoiding PAMP recognition or by directly 

suppressing PTI. For instance, the fungal LysM apoplastic effectors bind chitin, preventing its 

recognition by plants (Kombrink and Thomma, 2013). In oomycetes, several apoplastic- 

secreted protease inhibitors form P. infestans have been shown to directly bind plant 

apoplastic enzymes, suppressing directly their activities in this host space (Tian et al., 

2005, 2007; Song et al., 2009). 
 

Another type of defense relies on the recognition of specific effectors or effectors’s 

activities and is referred to as Effector-Triggered Immunity (ETI) (figure 6 B). This 

mechanism for pathogen recognition involves a particular class of receptors called R proteins 

(Resistance proteins) that are generally cytosolic. Effector recognition by R proteins leads to 

specific resistance and incompatible interactions, reason why in this context, recognized 

effectors are called Avirulence (Avr) proteins. This mechanism follows the gene-for-gene 

model conceptualized by Flor’s work (1971). ETI is similar in nature but is more rapid and 

strong than PTI (Tao et al., 2003; Tsuda and Katagiri, 2010) and is often accompanied with a 

cell-death or Hypersensitive Response (HR). Because it relies on the perception of effectors, 

it is a specific immunity. 

R proteins are classified into two classes depending on the type of Nterminal domain: (Toll- 

like Receptor) TIR-NB-LRR or (coiled-coiled) CC-NB-LRR proteins. Two modes of 

effector recognition exist: (1) direct physical interaction of R proteins to effectors or (2) 

indirect interaction of R proteins. In this case, R proteins perceive modifications of plant 

proteins to which the R protein is associated and monitors (figure 6 B). These modified plant 
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proteins can be genuine virulence target of the effector (the  guard model) or a mimic of one 

(the decoy model).  It has been shown that activated R proteins interact with other 

proteins forming complexes mediating the signaling that conducts to defense response such 

signaling  requires complexes to relocalize to specific subcellular compartments of plant 

cells (Dodds & Rathjen, 2010; Engelhardt et al., 2012; Qi and Innes, 2013). 

In that instance, studies have recently demonstrated the importance of a nucleo-cytoplasmic 

trafficking of R proteins and other immune components for the activation of defense 

responses. The accepted model is that such relocalization is induced by pathogen perception 

and allows immune receptors to accumulate in the plant nucleus where they activate immune 

responses through transcriptional reprogramming (Qi and Innes, 2013). 

 
 
Effector identification 

 

Effector proteins were firstly identified thanks to their avirulence activity. In an ETI 

context, the effector behaves as an avirulent protein and the resultant incompatible interaction 

was of great aid to identify avirulence proteins in fungi, bacteria and oomycetes. Their 

cloning and molecular characterization pointed out the presence of secretion leaders either 

typical of the Type 3 Secretion System (T3SS, for bacteria Avr proteins) or canonical 

eukaryotic signal peptides (in oomycetal and fungal Avr proteins) (Armstrong et al., 2005; 

Staskawicz et al., 1984; van Kan et al., 1991). It was then suggested that such key factors 

were likely to be secreted by pathogens to reach host structures and compounds. 

Effector identification has been possible by the use of transcriptomic, proteomic and genomic 

approaches coupled to functional screening systems based mostly on the capacity of effectors 

to modulate plant immunity. Transcriptomic studies have allowed to determine genes 

differentially expressed during infection and even specifically in particular infection 

stages and pathogen structures as haustoria (Godfrey et al., 2010; Hahn and Mendgen, 1997; 

Huang et al., 2004). Expressed Sequenced Tags (ESTs) obtained on cDNA libraries coupled 

with computational searches for secretion peptides provide putative effector secretomes and 

thus putative effector repertoires. By this means, 31 hautoria-specific in planta-induced genes 

from the rust fungus Uromyces faba were identified (Hahn and Mendgen, 1997) as well as 

100 putative secreted proteins expressed predominantly in haustoria of Blumeria gaminis 

(Godfrey et al., 2010). Moreover, P. infestans secretome analysis based on ESTs led to the 

identification of CRN proteins (Torto et al., 2003). 

Proteomic approaches and/or biochemical purification of active secreted molecules have 
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proven to be successful on the characterization of key factors of infection. Mass spectrometry 

analysis of total proteins extracted from xylem sap of susceptible tomato infected with the 

vascular pathogen Fusarium oxysporum resulted on the identification of SIX (Secreted In 

Xylem) proteins of F. oxysporum specifically present during infection (Houterman et al., 

2007). Further characterization of SIX1 and SIX2 proteins demonstrated their requirement for 

full virulence and as poteins recognized in tomato lines expressing I-3 and I-2 resistance 

proteins (Rep et al., 2004; Houterman et al., 2009). Proteomic approaches can be also useful 

when combined with predicted approaches. For instance, mining of P. infestans’s in vivo 

secretome has not only corroborated repertoires established in silico via gene model 

prediction on genomic data but has also extended the secretome repertoire (Meijer et al., 

2014). 

As numerous complete genomes are available, effector repertoires can be established 

directly on gene models and can be combined to transcriptomic and proteomic data to further 

support their effector role. In silico criteria to determine candidate secreted effector proteins 

(CSEPs) on genomic data are principally based on the presence of secretion leaders and the 

absence of transmembrane domains. For such criteria, sequence surveys make use of 

computational strategies developed to ensure accuracy of predictions (Bendtsen et al., 

2004; Torto et al., 2003). Other criteria can be taken into account for the determination of   

CSEPs and have become widely used and accepted in the scientific community throughout 

observations made on some experimental data. As very often, the studied effector proteins 

display small sizes and a high content of cysteine, such caracters are usually taken into 

account when defining potential candidates.  These criteria have led to determine 929 

proteins in the oomycete Albugo candida (Links et al., 2011) and 491 and 365 proteins from 

fungi Blumeria graminis and Colletotrichum higginsianum, respectively, have been 

proposed as putative effectors (Pedersen et al., 2012b; O’Connell et al., 2012). Genome 

survey on Ustilago maydis revealed 426 proteins potentially secreted (Mueller et al., 2008) 

and tissue-specific expressed, as revealed by transcriptome profiling (Gao et al., 2013). 

Further amino acid sequence inspection of CSEPs repertoires has evidenced the presence of 

commonly occurring amino residues for some of them. These amino acids define motifs that 

serve as a basis for protein family classification and as a criterion when inspecting novel 

pathogen genomes (table 2). This was typically the case of oomycetes, for which 

sequence comparison of Avr proteins like ATR13 of H. parasitica, and Avr3a of P. 

infestans (Allen et al., 2004; Armstrong et al., 2005) led to determine a conserved Nterminal 

RxLR (Arginine, any amino acid, Leucine, Arginine) motif (Rehmany et al., 2005). Since 

evidenced as a sequence trait of Avr effectors, this motif has been used on genomic data of 



Table 2. Conserved Nterminal motifs identified on Candidate Secreted Effectors 
Proteins (CSEPs) in fungi anf oomycetes. 

Motifs Protein Species Reference 

RxLR(dEER) RxLR effectors 
Phytophthora spp, 
H. arabidopsidis 
A. Laibachii 

 
Rehmany et al., 2005;  
Haas et al., 2009;  
Baxter et al., 2010 
Kemen et  al., 2011 
  

LSSLR(ILKS)L(KQ)SL Ac-RXL A. candida  Links et al. ,2011 

LxLFLAK  

CRN effectors  
  

Phytophthora spp  
H. arabidopsidis, 
A. euteiches 

Torto et al.,2003 ;  
Haas et al.,2009 ;  
Stam et al.,2013 
Baxter et al.,2010 

CRN-like R. irregularis Lin et al., 2014 

HVVVxxP  CRN effectors   A. euteiches  
Gaulin et al.,2008 ;  
Gaulin et al., in 
preparation 

LxLYLAR /K  CRN effectors P.ultimum Adhikari et al.,2013 

CHxC  CHxC 
  

A. candida,  
A. laibachii 
P. infestans  

Pais et al., 2013 ; 
Kemen et al.,2011 ;  
Links et al., 2011  

Y/F/WxC 
  

Y/F/WxC 
  

B. graminis 
P. graminis 
M. lini 

Godfrey et al., 2010b ; 
Pedersen et al., 2012 
Saunders et al., 2012 
Duplessis et al. , 2011 

RFYR AvrL567 M. lini Rafiqi et al.,2010 

RGFLR, KFLK, RDLA AvrM M.  lini Rafiqi et al.,2010 

RYWT, RTLK AvrLm6 L. maculans Kale et al. , 2010 

RMLH and RIYER Avr2 F. oxysporum Kale et al., 2010 

FYIQYLxNQPV and/or 
LVAA CRN-like B. dendrobatidis Sun et al., 2011 



24 
 

all oomycetes and has led to the identification of a large number of RxLR proteins defining 

the RxLR class of oomycete effectors (563 coding genes in P.infestans, Haas et al., 2009, 134 

in H. parasitica, and 396 in P.sojae, Baxter et al., 2010). The conservation of the Nterminal 

motif L/Q/FLAK has also allowed the identification and cataloguing of CRN effectors in 

oomycetes (Baxter et al., 2010; Haas et al., 2009; Stam et al., 2013a). Moreover, a CHXC 

motif has been recently proposed as a motif characterizing a third large class of effectors in 

oomycetes (Pais et al., 2013; Kemen et al., 2011; Links et al., 2011). In fungi, RxRL-like 

motifs (ie, RRLQ RGFLR... Rafiqi et al., 2010; Khang  et  al.,  2010) have been proposed in 

Nterminal domains of CSEPs. In addition, a Nterminal Y/F/WxC motif, firstly found in the 

100 haustoria-expressed CSEPs of Blumeria graminis (Godfrey et al., 2010; Pedersen et al., 

2012) have also been reported in CSEPs of Puccinia graminis and Melampsora larici-

populina  (Duplessis et al., 2011; Saunders et al., 2012). 

In addition to these criteria (presence of secretion signals, absence of transmembrane 

domains, small size, high content of cysteine residues), other sequence signatures like the 

signs of diversifying selection can pinpoint their potential effector role as this may infer that 

the protein in question is submitted to a counter selection by hosts. Indeed, this has been 

demonstrated for the carboxyl terminal domains of RxLR effector secretomes (Win et al., 

2007). 

With established effector repertoires in a considerable number of species, it is now 

possible to perform comparative genomics to provide clues explaining pathogen host-

adaptation and particular infection strategies. For example, comparison of putative effectors 

of the closely related smut fungi U. maydis and Sporisorium reilianum (both infecting maize) 

have determined specific subsets of effectors in both species. These subsets could be at the 

basis of their different infection behaviours on maize and may also imply the targeting of 

distinct maize functions (Schirawski et al., 2010). Another example is the comparison made 

on seven pathogenic necrotrophic Pythium species that revealed the absence of RxLR 

effectors. Because RxLR proteins are present in the related hemibiotrophs Phytophthora 

spp and the obligate biotroph H. arabidopsidis) and display in planta functions related to the 

suppression of host defenses, they have been generaly attributed to the support of biotrophic 

lifestyles. The lack of RxLR effectors in Pythium spp could further support the latter idea as 

RxLR functions seem unrelevant for Pythium necrotophic lifestyle (Adhikari et al., 2013). 

Genomic studies aiming to identify putative effectors can be directed on particular genomic 

environments. Actually, in Leptosphaeria maculans, putative effector coding genes are 

mainly found in AT-rich isochores and are often associated to transposable elements (TE)  

(Rouxel et al.,2011). These effector-TE associations have also been observed for P. infestans 
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RxLR and CRN genes (Haas et al., 2009). Therefore, identifying such genetic environments 

in species might be used as a strategy to spot out CSEPs. 

 
 
Functional characterization of effectors 
 

The different predictive approaches for effector identification can result in important 

number of candidates. Demonstrating their actual contribution to virulence, studying their 

effect and biochemical activities in plants as well as identifying their targets can be time 

consuming because of their number, because reverse genetic approaches may not lead to a 

phenotype and because, for some pathosystems, genetic manipulation of pathogens is not 

possible. Given this, rapid and efficient functional methods are required in order to screen and 

functionally characterize effectors. 

For this purpose, and based on the concept that effectors are secreted molecules that act 

in plant cell interfaces, different systems have been developed to heterogously express 

effectors in planta, in order test directly their cellular localization and any disturbance of 

plant physiology. Typically, effector proteins tagged with  fluorescent proteins are 

overexpressed with or without their signal peptide (SP) to directly test their cellular 

localization by plant cell imaging (by means of confocal microscopy) (Caillaud  et  al.,  

2012; Stam  et  al.,  2013a/b). Heterologous expression systems are also used to test the 

“pathogen-independent'” host-delivery of effectors. As the presence of the SP is expected 

to drive the secretion of effectors into the plant apoplasm, by expressing full length effector 

proteins (containing their SP), it is inferred that effectors localizing inside cells have re-

entered the cytoplasm autonomously via intrinsic translocation signals in the protein. Based 

on this, it is then inferred that these effectors are likely to localize inside plant cells during 

infection (Rafiqi et al., 2010; Ribot et al., 2013). 

N.benthamiana and N.tabaccum (Solanaceae) have become widely used for molecular plant- 

microbe interactions studies since they display different degrees of susceptibility to a 

variety of microorganisms as oomycetes (P.capsici, P.infestans), fungi (Verticillium dahlia, 

Colletotrichum orbiculare), bacteria (P. syringae), viruses (TMV, PVX…) and several cDNA 

libraries and molecular tools like microarrays are available (Goodin et al., 2008). Their foliar 

tissues are particularly amenable for genetic transformation via the bacteria Agrobacterium 

tumefaciens, compared to other plant model species like A. thaliana and crop species like 

barley. Infection with A. tumefaciens strains carrying an effector coding gene allows 

to, locally and transiently, transform plant cells and constitutes an easy way to express 
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efficiently an important number of effectors in plant cells. As an example, Caillaud and 

associates (2012) used this approach to screen the localization and cell-death activity of 49 

intracellular RxLR effectors of H. arabidopsidis, evidencing the diversity of the subcellular 

compartments targeted by these proteins. Co-agroinfiltration of N.benthamiana leaves is also 

possible and has been validated, for example, for the study of Avr/R proteins resulting in 

the expected HR response (Van der Hoorn et al., 2000; Bos et al., 2006). Besides 

agroinfiltration, Pseudomonas syringae and its T3SS provide another strategy for delivering 

effector proteins directly in the cytosol of plant cells by translationnally fusing T3 secretion 

leaders to the studied effectors. This strategy was used by Whisson and collegues (2007) to 

demonstrate that the RxLR effector, Avr3a, is recognized by the R protein R3a in the 

cytoplasm of plant cells and thus that Avr3a is translocated inside plant cells during infection, 

proving for the first time that RxLR proteins are intracellular effector proteins (Whisson et al., 

2007). 

Cellular systems have also been developed for rapid and accurate functional studies. 

Methods based on protoplasts have been described and improved to transiently express 

effectors and/or reporter genes on various plant crop species like rice, maize, parsley, 

tomato...(Chen et al., 2006; Sheen, 2001). Such systems have been used to characterize 

molecular events linked to MAMP/PAMP perception, signal transduction of defense 

responses and effector activities (Brunner et al., 2014; Kansaki et al., 2014). Recently, a 

screen on 33 RxLR effectors using protoplasts of tomato and A. thaliana allowed to identify 

immune suppressive RxLR effectors and to correlate these activities to their cellular 

localization (Zheng et al., 2014). In addition, screening of 42 in silico-identified putative 

secreted effectors of M. oryzae permitted to identify 5 effectors capable of triggering cell-

death on rice protoplast (Chen et al., 2013). Finally protoplasts can be also used to screen 

cDNA libraries for protein-protein interactions, analogously to Yeast-two Hybrid approaches 

(Y2H). This has been performed to identify plant protein partners of effectors of 

A.tumefaciens (Lee et al., 2012). 

All together, these systems have rendered possible to bridge in silico identification to rapid 

validation of effector candidates and even their functional molecular dissection. Still, 

although providing a rapid way to initiate an effector characterization, experimental systems 

providing a natural host/microorganism context are required to accurately assess effector’s 

functions. 
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Effector delivery and localization 
 

Effectors are secreted to exert their functions either on the apoplasm (apoplastic 

effectors) or inside host cells (intracellular/cytoplasmic effectors).  I n the case of gram 

negative bacteria, apoplastic effectors are secreted via the Type 2 Secretion System (T2SS) 

(Nivaskumar and Francetic, 2014) while apoplastic effectors from filamentous eukaryotic 

microorganisms are secreted via the classical endomembrane secretion pathway (Giraldo et 

al., 2013). 

To reach host cytoplasm, intracellular effectors require passing across pathogen outer 

structures, the apoplastic space and outer structural components of host cells (cell-wall and 

plasma membrane). General concepts of secretion and host-delivery are schematized in figure 

7. Delivery systems and mechanisms are well characterized for prokaryotic pathogens, which 

use the Type 3 and/or Type 4 Secretion System (T3SS/T4SS) to ensure the direct injection of 

effectors into the host cytosol (Büttner and Bonas, 2006). A total of 52 T3SS effector 

families have been identified in Xanthomonas spp, 58 in Pseudomona syringae and 100 in 

Ralstonia solanacearum which display a great variability between strains (Baltrus et al., 

2011; Peeters et al., 2013; Ryan et al., 2011). Intracellular effectors of nematodes are 

delivered into host cytoplasm via a protusible stylet that pierces plant cell-wall and mediates 

their injection across the host plasma membrane (Mitchum et al., 2013). For filamentous 

eukaryotic pathogens, secretion and delivery systems are less understood. In the case of 

fungi, it was very recently shown that intracellular effectors of the rice blast fungus 

Magnaporthe oryzae undergo an alternative secretion pathway different from the classical 

ER-Golgi secretory endomembrane pathway used for the secretion of apoplastic effectors 

(Giraldo et al., 2013). Such alternative secretion mechanisms result in the accumulation of 

effectors in particular zones of the infectious hyphae termed Biotrophic Interfacial Complex 

(BIC) (Giraldo et al., 2013; Khang et al., 2010).  

In oomycetes, it is still not known whether intracellular effectors are secreted by 

particular secretion routes, but pioneer studies, using GFP-tagged effectors expressed by the 

pathogen, revealed their accumulation in located zones of haustoria, inferring that these 

structures ensure effector delivery into host cells. How fungal and oomycete effector proteins 

are secreted outside the pathogen plasma membrane and transported across the host-cell outer 

structures is a current topic of considerable interest and controversy. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 7. Schematic representation of the general concepts of secretion (S) 
and host-cell delivery (HCD) of intracellular effectors by phytopathogenic 
fungi, oomycetes, bacteria and nematodes.   
Secretion and translocation of bacterial intracellular effectors to the interior of 
host cells is ensured by host-cell-contact-dependent secretion molecular 
systems (T3SS and T4SS). 
Fungi and oomycetes intracellular effectors accumulate in infection structures 
as haustoria from which they translocate inside host cytoplasm. While it has 
been shown that intracellular effectors undergo ER-Golgi independent 
secretion pathways in the fungus M. oryzae (Giraldo et al., 2103) it is still not 
clear whether this can be a generality for other fungi and oomycete species.  
Nematode intracellular effectors are produced in oesophageal gland cells and 
secreted via the ER-Golgi secretory network into secretory granules 
transported along the stylet and subsequently released into host cytoplasm via 
the stylet orifice. Structural analyses have depicted a small pore in the plasma 
membrane at the stylet orifice thought to allow direct delivery of effector 
proteins (Mitchum et al., 2013). 
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The studies on the translocation of fungal and oomycete effectors have shown that the N-

terminal domains might carry the translocation signals. In oomycetes, amino terminal 

conserved motifs (downstream of their signal peptide sequences) like the RxLR motif (in 

RxLR effectors) and the L/Q/FLAK (in CRN effectors) characterize these regions and have 

been shown to act as signals for host delivery (Dou et al., 2008; Kale et al., 2010; Schornack 

et al., 2010; Whisson et al., 2007). In contrast, fungal amino terminal domains do not present 

an obvious conservation of residues. For some proteins, algorithm-based sequence surveys 

have suggested RxLR-like motifs.  

Interestingly, the oomycete RxLR motif is highly similar and functionally equivalent to the 

RxLxE/D/Q (termed ”Pexel”) found in intracellular effectors of the human parasite 

Plasmodium falciparum (phylogenetically related to oomycetes) (Bhattacharjee et al., 2006; 

Hiller et al., 2004; Marti et al., 2004). The dissection of their export mechanisms has shown 

that, once addressed into the secretory pathway by secretion signals, these proteins interact 

with the lipid phosphatidylinositol 3-phosphate PI(3)P present in the endoplasmic reticulum 

(ER) membrane. In the ER lumen, the RxLxE/ D/Q is cleaved by the aspartic protease 

Plasmepsin V, a process that is thought to liberate the protein from the ER membrane to 

allow its subsequence vesicular ER-Golgi export. Once outside the plasma membrane, their 

actual translocation inside host cells has been proposed to be mediated by a Plasmodium- 

derived protein machinery or "translocon" (Bhattacharjee et al., 2012). 

Functional translocation studies directed on the RxLRs motifs of Phytophthora spp have been 

based on recombinant proteins corresponding to tagged-Nterminal halves of RxLR 

effectors or tagged-full length proteins. First studies showed that the RxLR motif is sufficient 

to ensure the self-translocation of the fusion protein inside host cells without the need of 

pathogen-derived machinery, implying that translocation factors are provided by the host 

(Dou et al., 2008; Whisson et al., 2007). Kale and associates (2010) provided evidence that 

Nterminal moieties of oomycete RxLR effectors and RxLR-like fungal effectors bind PI(3)P 

via these motifs and that such binding is necessary for effector entry (Kale et al., 2010). They 

proposed an internalization model in which binding to PI(3)P present at the surface of the 

host cell would trigger endocytocis. Effectors would then be in host-derived plasma 

membrane vesicles and liberated thereafter, localizing freely in host cytoplasm (Kale et al., 

2010). But at present, this model has been challenged as the same experiments have not been 

reproducible by other laboratories (Wawra et al., 2013). Latest studies, indicate that RxLR 

motifs are not sufficient to such binding and propose also the contribution of Cterminal 

domains. In addition to the cell entry, Cterminal binding to PI3P would also be required for 

the stability of the protein and for its virulence activity inside plant cells (Sun et al., 2013; 
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Yaeno et al., 2011). Such studies have included structural analyses that revealed that, despite 

the great variability of Cterminal domains between RxLR effectors in the scale of primary 

sequence, some Ctermini present similar protein folding where positively charged patches 

may explain their lipid binding properties (Yaeno et al., 2011). 

 

The demonstration of the actual passage of effectors into host cytoplasm during 

infection has only been brought for fungal effectors like Uf-RTP1p from U. fabae and AvrM 

from Melampsora lini thanks to the use of specific antibodies (Kemen et al., 2005; Rafiqi 

et al., 2010) or by fluorescently tagged effectors expressed by the pathogen like in the 

case of PWL2, BAS1 and AVR1-CO39 of M. oryzae (Khang et al., 2010; Ribot et al., 

2013). Deletion analysis of proteins indicates that signals in N-termini are responsible for 

translocation and that, as for RxLR proteins, the process can also be pathogen-independent 

(Rafiqi et al., 2010). As mentioned before, well conserved motifs are not apparent, but rather 

divergent RxLR-like motifs (i.e RRLQ RGFLR...) have been proposed. Structural analyses 

indicate that, when present, RxLR-like domains are structurally ordered regions which 

contrasts to the disordered structure of RxLR domains of oomycete effectors. This suggests 

that they might not be functionally equivalent and/or that both domains use different 

translocation mechanisms (Ve et al., 2013). Interestingly, in the case of AvrM (proposed as a 

RxLR-like protein), Nterminal regions necessary for host cell uptake do not bind PI3P (Gan 

et al., 2010; Ve et al., 2013) thus, it seems that cell uptake does not correlate with lipid 

binding for fungal effectors. 
 
Once inside the host cell, intracellular effectors can be addressed to neighbor non- infected 

cells. A cell to cell movement of intracellular effectors has been observed for the PWL2 

fungal effector (Khang et al., 2010). Plasmodesmata mediate the viral symplasmic movement 

(Tilsner et al., 2013) and is also suggested for blast fungal effectors and even the infectious 

hyphae itself (Kankanala et al., 2007). The trafficking of effectors to adjoining cells is 

thought to be part of a strategy aimed to prepare host cells for invasion. Various subcellular 

compartments and structures can be targeted by effectors. Chloroplasts, Golgi and tonoplast 

endomembranes are targeted by Type 3 effectors of bacteria (Jelenska et al., 2007; Nomura et 

al., 2011). In addition to these compartments, the plant nucleus is also targeted by 

intracellular effectors of bacteria, oomycetes (Canonne and Rivas, 2012; Caillaud et al., 2012; 

Stam et al., 2013b), as well as nematodes (Jaouannet et al., 2012) and fungi (Kemen et al., 

2005). These different localizations can be explained by the presence of intrinsic addressing 

peptide signals (i.e: mitochondrial, plasma membrane, Golgi…). One prominent predictable 

signal detected in effectors accumulating in plant nuclei is the Nuclear Localization Signal 
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(NLS), indicating they might co-opt the nuclear trafficking machinery of hosts to 

access nuclei. This has been actually verified for some since the silencing of plants α-

importins uncouples their nuclear accumulation (Kanneganti et al., 2007). The 

predictability of NLSs during systemic surveys of putative secreted effectors has rendered 

evident that a considerable number might target the host nucleus. For example, 14 putative 

effectors of U. maydis (Mueller et al., 2008) as well as 15 of the 265 putative effectors of 

Heterodera glycines nematode (Gao et al., 2003) contain NLSs and are, thus, likely to be 

translocated in nuclei of host cells after secretion. Hence, it seems that manipulation 

of nuclear functions might be a strategy benefiting pathogen infection.  
 

Function of effectors 
 

Molecular plant-microbe interactions can be seen as interacting networks of 

biochemical activities. This system biology concept proposed by Pritchard and Birch (2011) 

postulates that plant networks ensuring a cellular function (i.e, plant defense) are intricate 

relations of biochemical activities of plant components, each component accomplishing a 

function in the network. In this context, effectors target plant functions whose alterations lead 

to a different biochemical behaviour of host’s networks and to a beneficial outcome for the 

pathogen. In such networks, certain functions are important “nodes” or hubs determining the 

biochemical behaviour of the network. Therefore, it is expected that microbial manipulation 

strategies converge to the targeting of these hubs.  

The plant cell wall (PCW) is one of the first barriers encountered by any microbe tempting to 

enter plant tissues and represents a source of nutrients given its polysaccharidic nature. It 

needs to be broken down and/or softened by pathogens in order to establish them in host cells 

and to progress along host tissues (Cantu et al., 2008; Hématy et al., 2009). A first class of 

apoplastic effectors is cell-wall degrading enzymes (CWDEs) as pectinases, cellulases, 

arabinases… (Walton, 1994). Indeed, nematodes, fungi and oomycetes secrete CWDEs in 

the apoplasm whose activities have been shown to be required for complete virulence 

(Bohlmann and Sobczak, 2014; Feng et al., 2014; Fu et al., 2013). These enzymes have been 

shown to act early during fungal infection, accompanying the mechanical pressure exerted 

by appressoria at penetration sites (Cantu et al., 2008), and intervene also all along the 

colonization of plant tissues macerating PCW to allow further advance of infectious hyphae. 

Their importance in the migratory stage of juvenile nematodes in plant roots has also been 

established (Bohlmann and Sobczak, 2014). Oomycetes and fungi display a large diversity of 

CWDEs (King et al., 2011; O’Connell et al., 2012; Ospina-Giraldo et al., 2010). 
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Although CWDEs of oomycetes remain globally poorly functionally characterized compared 

to fungi CDWEs, their cataloguing and studies point to their requirement during infection 

(Mingora et al., 2014; Zerillo et al., 2013). Fungal CWDEs have been shown to present a 

chronologically coordinated in planta expression. Their activities correlate to the 

constitution of host cell walls (King et al., 2011; O’Connell et al., 2012), depicting a 

strategy of adaptation to a specific host plant. For instance, during late stages of infection, C. 

higginissianum (infecting Brassicaceae species) relies on the activity of pectinases while C. 

graminicola (infecting maize) relies on cellulases and hemicellulases. This is consistent with 

the cell wall composition of their hosts as dicotyledonous present more pectin than 

monocotyledonous (containing more hemicellulose) (O’Connell et al., 2012). In addition, the 

broad host range necrotrophic fungi Botritis cinerea, presents a particular endo-arabinase 

(BcAraA) necessary for its virulence in A. thaliana exhibiting a preferential expression in this 

host rather than in N. benthamiana (Nafisi et al., 2014). In the case of phytopathogenic 

bacteria, which penetrate plant tissues via natural opening (like stomata) or wounds, 

CWDEs (secreted via the T2SS) mediate the degradation of plant cell-wall carbohydrates and 

are thought to have, in a general way, a nutrient function (Nivaskumar and Francetic, 2014). 

 

PCW alterations caused by CWDEs and PAMPs, exposed during this close encounter, can be 

perceived by plants to activate defenses (Hématy et al., 2009). In this context another class of 

apoplastic effectors is devoted to the manipulation of plant defenses. Best characterized 

examples in fungi, oomycetes and nematodes, have revealed that manipulation of plant 

immunity can be based on avoidance or direct suppression of plant defenses (Hewezi and 

Baum, 2013; Mueller et al., 2013). For instance, avoidance and/or deregulation of plant 

defenses activated by chitin perception is accomplished by LysM effectors of various fungal 

species. These effectors are characterized by the presence of LysM carbohydrate-binding 

domains that bind directly chitin with high affinity, interfering with the binding of chitin 

to their cognate plant PRR receptors (Kombrink & Thomma, 2013). The LysM Ecp6 from 

C. fulvum masks free chitin-derived fragments preventing their perception by LysM-

containing PRR plant receptors. Others, like Avr4 (also from C. fulvum) and Mg1LysM 

from M. graminicola have been proposed to protect chitin from degradation by plant 

chitinases (Kombrink & Thomma, 2013). 

Direct suppression of plant defenses can also rely on the inhibition of plant defense factors 

present in the apoplasm and released upon infection. Several apoplastic effectors display 

protease inhibitory activities on host apoplastic proteases. For instance, the secreted 

effector Pit2 from U. maydis accumulates in the apoplasm where it interacts with different 
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host cysteine proteases inhibiting their activities (Mueller et al., 2013). Effectors Avr2 of the 

fungus Cladosporium fulvum and EPIC1 and EPIC2B from the oomycete P. infestans 

interact with and inhibit the cysteine protease Rcr3 of tomato (Song et al., 2009). This plant 

protease is also targeted by the nematode effector VAP1 from G. rostochiensis (Lozano-

Torres et al., 2012). Rcr3 is an example of a plant function targeted by different effectors of 

distinct pathogens protruding, therefore, as an important plant defense factor and illustrating 

the concept of hub proposed by Pritchard and Birch (2011). In addition to plant proteases 

other defense-related plant functions have been revealed as direct targets of effectors. 

The protein Pep1 of U. maydis has been demonstrated to inhibit the activity of the host 

peroxidase POX12 conducting to reduction of H2O2 levels, a strategy of crucial importance 

for U. maydis compatibility in maize (Hemetsberger et al., 2012). 
 
Another class of apoplastic effectors seems to contribute in a different manner by displaying 

a cytotoxic/cell- killing activity. The Nep1-like protein (NLPs) family is widely distributed 

in bacteria, fungi and particularly in oomycetes (absent in plants and animals). These proteins 

induce cell-death, ethylene production and wilting in plants (Gijzen and Nürnberger, 2006). 

Genetic approaches have demonstrated their contribution to virulence and gene 

expression studies have shown that in hemibiotrophic fungi and oomycetes their pic of 

expression coincides with necrotrophic infection stages (Feng and Li, 2013; Gijzen & 

Nürnberger, 2006). Because of this, they are proposed to be secreted toxins facilitating cell-

death required for the necrotrophic infection states. Still, their exact biochemical activities 

and plant targets remain unknown. 
 
Regarding intracellular effectors, the identification and characterization of them in distinct 

microbial pathogens has shown that they can be addressed to diverse subcellular 

compartments. 

 

 

The plant nucleus as a common field for microbial effectors. 
 
 

The plant nucleus at the center of plant immunity. 
 

Plant immunity resides on the perception of microorganisms either at the surface 

of cells (i.e, through plasma membrane receptors) or in the cytosol (i.e, via R proteins) and 

conducts to the activation of a defense program. Upon pathogen perception, robust changes of 

gene expression occur (Maleck et al., 2000; Tao et al., 2003). The information necessary for 
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such transcriptional reprogramming needs to be transduced from the cytosol to the nucleus. 

The signaling convergence towards the nucleus is mediated by defense integrators/activators 

and nuclear components whose dynamics are required during microbial infection. 

A first aspect of these dynamics concerns the nuclear shuttling of activated R proteins and 

their signaling complexes, which is necessary for the proper induction of disease resistance 

(Qi and Innes, 2013). In the absence of pathogen, inactivated R proteins can be associated 

to the plasma membrane and endomembranes (like RPM1 and RPS4 of A. thaliana, 

respectively) or can display a nucleo-cytoplasmic distribution like the barley MLA10, the 

tobacco N protein and the Arabidopsis SNC1 protein (Caplan et al., 2008; Chang et al., 

2013). Following recognition of their corresponding cognate effectors, the  activated R 

protein pools can be detected in the nucleus. This has been seen for RPS4 upon activation by 

AvrRPS4 of P. syringae (Heidrich et al., 2011) and it has been shown that the nuclear levels 

of MLA10 R protein (recognizing Avr10 from the barley pathogen Blumeria graminis f. sp. 

horde) increase during infection (Chang et al., 2013) which is also the case for the tobacco N 

protein in the presence of the viral effector p50 (Caplan et al., 2008) and Pb1 from rice 

infected by M.oryzae (Inoue et al., 2013). The depletion of nuclear pools of activated R 

proteins by forced mislocalization to the cytoplasm uncouples full resistance. The nuclear 

exclusion of MLA10 conducts to the loss of growth arrest of B. graminis (Chang et al., 2013) 

and is also the case for Pb1mediating blast (M.oryzae) resistance (Inoue et al., 2013). 

Interestingly, it has been observed that the nuclear sequestration of activated RPS4 mediates 

bacterial growth inhibition without HR while its sequestration in cytosol impairs growth 

inhibition but not the HR (Heidrich et al., 2011). Because of these different outputs of 

defenses, it has been proposed that each pool of R proteins activate different signaling 

pathways and that the establishment of a nucleo-cytoplasmic distribution is imperative for the 

proper resistance (Qi and Innes, 2013).  

In addition to R proteins, other immune-regulators proteins require to shuttle between 

cytoplasm and nucleus. The general immune regulator of A. thaliana ENHANCED 

DISEASE SUSCEPTIBILITY 1 (EDS1) is one component of various R complexes, able to 

physically interact with R proteins such as RSP4 and with defense co-regulators 

PHYTOALEXIN DEFICIENT 4 (PAD4) or Senescence Associated Gene101 (SAG101) to 

form complexes that localize to the nucleus, necessary for the transcriptional 

reprogramming of genes and induction of TIR-NB-LRR mediated resistance (García et al., 

2010; Heidrich et al., 2011). Another crucial immune component, NPR1 (transcriptional 

regulator of SA immune signaling) is relocalized from the cytoplasm to the nucleus upon 

pathogen challenge, where it interacts with TFs of the TGA family (Shearer et al., 2012). 
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Another aspect of defense transcriptional programs is t he involvement of TFs. R proteins 

can directly bind TFs to mediate gene expression regulations. For instance, MLA10 interacts 

with TFs of the WARKY (WRK1 and WRK2) and MYB (MYB6) families. Both WRKs 

are repressors of defense genes while MYB6 was demonstrated to be a positive regulator 

(Chang et al., 2013). In addition, the rice Pb1 interacts with the WRK45, a positive 

defense regulator of the SA signaling (Inoue et al., 2013). Moreover, the nuclear-localized N 

protein of tobacco has recently been shown to directly interact with SPL6, a positive 

regulator of defense gene expression which has also been suggested to be involved in 

the nuclear RPS4-mediated defense response (Padmanabhan et al., 2013). As a last 

example, the TIR-NB-LRR, SNC1 protein delocalizes to the nucleus where it interacts with 

TPR1 (Zhu et al., 2010). The characterization of one particular R protein, RRS1, has 

indicated that R proteins may be directly involved in regulation of defense gene expression. 

RRS1, which participates in AvrRPS4-mediated resistance to P.syringae and other pathogens, 

presents TF properties as it displays, in addition to TIR-NB-LRR domains, a Cterminal 

WRK domain (Deslandes et al., 2002). 
 

Gene accessibility by the transcriptional machinery is also necessary for the proper induction 

of disease resistance. Chromatin configuration determines the accessibility of proteins to 

specific genomic loci. Post-translational modifications (acetylation, deacetylation, 

methylation ...) of DNA-associated histones proteins, by histone-modifying enzymes (i.e, 

histone acetyltransferases HAT, histone deacetylases HDA or histone methyltransferase 

HMT…), mediate chromatin dynamics and are associated to transcription regulation, DNA 

replication and DNA repair (Kouzarides, 2007). Their involvement in plant 

developmental processes like seed development and flowering are well documented (Ma 

et al., 2013) and their  implication in plant immunity is beginning to be reported (Berr et 

al., 2012). For example, the loss of activity of Arabidopsis HDA19 conducts to an increase 

of SA defense-related genes and enhanced resistance to P. syringae. HDA19 interacts with 

two TFs WRKs that act as transcriptional activators of negative immune-regulator genes. 

Thus, HDA19 is proposed to regulate negatively plant immunity by impeding the 

transcriptional activation of negative regulator genes by both WRKs (Berr et al., 2012). In 

addition, the Arabidopsis HAT, ELP2, influences the expression kinetics of immune 

regulators EDS1, PAD4, and defense gene PR1 (Wang et al., 2013). Moreover, the HMT 

SDG8 has been shown to be induced upon infection of necrotrophic fungi Botrytis cinerea 

and Alternaria brassicicola and sdg8 mutants display enhanced sensitivity to these pathogens 

which correlates with a decrease expression of hormones ET/JA –responsive genes (Berr et 
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al., 2012). 
 
Consistent with the importance of the nuclear-cytoplasmic shuttling of these complexes for 

the correct immune gene activation, components of the nuclear trafficking machinery 

mediating their nuclear entering and accumulation have been identified. The transport 

of macromolecules across the Nuclear Envelope (NE) is ensured by Nuclear Pore Complexes 

(NPCs). NPCs are selective molecular “gates” of the NE formed by nucleoporines proteins 

(Nups). The passage of cargo molecules is ensured by Nuclear Transport Receptors (NTRs) 

referred to as importins α/β and exportins. NTRs recognize transport signals present in cargo 

proteins and direct directionality of the transport: importins α/β recognize Nuclear 

Localization Signals (NLS) while exportins recognize Nuclear Export Signals (NES) 

(Wirthmueller et al., 2013). Mutation of the A. thaliana nucleoporin MOS7 (also known as 

Nup88) causes an impairment of immunity responses controlled by SNC1 and EDS1 

signaling complexes. EDS1 exhibits predicted NLS and NES sequences although their NTRs 

partners remain unknown. For SNC1 (carrying one predicted NLS and two predicted NES 

motifs) importin-α3 has been suggested as mediating its import since its loss impairs SNC1 

nuclear accumulation and mediated resistance (Wirthmueller et al., 2013). Thus, an 

orchestrated nucleo-cytoplasmic traffic accompanying signaling of immune integrators is 

required to the proper activation of immunity during pathogen infection. 

 

Nuclear localized effectors and their activities 
 

Microbial effectors that target nuclear components and associated processes have been 

identified. Sequence inspection of effector candidates identified via several approaches 

(transcriptomics, proteomic and genomics) indicates that an important number of effectors 

are potentially addressed to host nuclei as evidenced by the presence of predicted NLS 

sequences or nuclear-related putative functions. In the nematode M .incognita, 13.5% of 

the infection secretome (66 proteins over 486 ) exhibits NLS and putative DNA/RNA 

binding domains (Bellafiore et al., 2008) and 10% of CSEPs of B. graminis are putative 

ribonuclease-like proteins (Pedersen et al., 2012). In addition, 14 NLS containing proteins 

(over 441 putative secreted effectors) of U. maydis display similarities to domains typical of 

transcription factors (Mueller et al., 2008). 

Nuclear-associated functions and their dynamics during infection are important to support   

the plant immunity on set. Owing this, it is likely that nuclear functions related to plant 

defense or to other physiological processes (cell-growth, nutrition...) controlled in the 
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nucleus, may be subverted by effectors to allow the proper infection and development of 

pathogens. The biochemical activities of nuclear effectors and their relevance for virulence is 

better understood for bacterial effectors (for review refer to Bhattacharjee et al., 2013; Rivas 

and Deslandes, 2013) and are only beginning to be documented for nematodes, phytoplasma, 

fungi  and oomycetes. 

 
 
Bacterial effectors 
 

Bacterial proteins often present a modular organization in which each module/domain 

carries a biochemical activity and a function within the whole protein. The execution in 

planta of each activity promotes the virulence function of the effector and can implicate 

different host targets. Despite that little is known about the spatio-temporal execution of such 

activities during infection, the fragmentary information gained through studies has evidenced 

major host processes that bacteria nuclear effectors are able to manipulate. Among these 

are host transcription, host mRNA metabolism and host proteasome machinery whose 

modulation can imply different physiological outcomes for the host. 

 

Direct manipulation of host gene transcription is best exemplified by the Transcription 

Activator-Like Effectors (TALEs) of Xanthomas spp and Ralstonia spp. This family of Type 

3 secreted effectors can account for up to 28 effectors in one single strain (Scholze and 

Boch, 2011). TALEs are capable to bind promoters of host genes and to activate their 

transcription. They present a modular architecture comprising a DNA-binding domain (DBD) 

of 34/35 amino acids repeats (the number of repeats varying), a NLS, and an acidic activation 

domain at their C-terminus. Direct binding to host DNA is mediated through their DBD 

domain and the specificity of the targeted DNA sequence is governed by a DBD amino 

acid/nucleotide code. While DBD specifically binds DNA, the activation domain at the 

Cterminus acts as an eukaryotic TF recruiting host transcriptional machinery (Scholze & 

Boch, 2011). AvrBs3 from Xanthomonas vesicatoria pv. vesicatoria was the first TALE 

identified and is the best characterized. In susceptible pepper it induces the expression of 

UPA20 gene which codes for a TF that is a key regulator of cell enlargement, leading to 

hypertrophy of mesophyll cells when expressed in N. benthamiana, symptomes that are 

observed during infection (Kay et al., 2007). The identification of other targeted genes 

indicates that TALEs manipulate directly the sugar metabolism of hosts. Indeed, in rice, the 

TALE PthXo1 of Xanthomonas oryzae pv oryza activates the transcription of the rice gene 
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osSWEET11/Xa13 which encodes a plasma membrane sugar transporter. Oncoming results 

indicate that osSWEET genes are common TALE targets; hence, it is thought that TALEs 

manipulate plant sugar metabolism and cell growth by inducing the release of sugars as well 

as larger space niches needed for bacteria growth, proliferation and dispersal (Chen et al., 

2010). In addition to the direct binding to promoters, TALEs have also been shown to 

interact with regulators of RNA polymerase II and III. Such plant regulators control the 

activities of these RNA polymerases and restrict the assembly of factors implicated in the 

expression of the targeted gene. Therefore, the interaction of TALEs to these regulators 

perturbs the synthesis small RNAs, tRNA and the ribosome biogenesis. For instance, the 

TALE PhtA4 is able to interact with the citrus protein MAF1 (a negative regulator of RNA 

pol III). The presence of PthA4 in plant cells coincides with the reduction of MAF1 levels 

and the development of cell hypertrophy and hyperplasia, symptoms typical of canker disease 

caused by this bacterium (Soprano et al., 2013). 

Besides direct DNA-binding, bacteria effectors control host transcription via direct 

interaction with host TFs and histones. It is the case of XopD, a modular Type 3 effector of 

Xanthomonas campestris pv vesicatoria shown to repress gene transcription, perturbing the 

onset of defenses and cell-death. XopD presents an N-terminal DNA-binding domain (DBD) 

characterized by helix-loop-helix motif, two repeated EAR motifs involved in the 

transcriptional repression, a C-terminal cysteine protease domain involved in the release of 

SUMO (small ubiquitin-like modifier) and a NLS motif. Consistent with is modularity, XopD 

presents various activities in plants. First, XopD interacts through its helix-loop-helix domain 

with AtMYB30, a positive T F  regulator of plant defenses to suppress plant immunity and 

to promote bacteria growth (Canonne et al., 2011). In addition, its SUMO protease Cterminal 

domain targets sumoylated proteins of plants to deconjugate SUMO from their substrates 

(Hotson et al., 2003). Because SUMO substrates include histone-modifying enzymes and 

histone tails, XopD has been suggested to target chromatin regulators via its SUMO protease 

activity. One particular observation is that XopD displays a “pointed” localization in host 

nuclei (said to be related to the targeting of nuclear bodies) and its presence is 

accompanied by the reorganization of DNA material (Canonne et al., 2011). The capacity to 

interact with host histones has also been proposed for PoP2 effector from Ralstonia 

solanacearum, based on its acetyltransferase activity in plant nucleus (Tasset et al., 2010). 

Another strategy resides on the manipulation of host mRNA status. In this context, the 

Type 3 secreted HopU1 from P.syringae interacts with different host RNA- binding proteins 

(RBPs). RBPs participate in RNA metabolism (ie, splicing, degradation, translation, 

export…) by directly binding mRNAs via their RNA recognition motifs (RRM) (Keene, 
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2007). Among HopU1 targets, the RBP GRP7 was reported to be necessary for PTI activation 

upon perception of PAMPs flg22 (flagellin) and elf18 (elongation factor) (Fu et al., 2007; 

Nicaise et al., 2013). GRP7 interacts with FLS2 transcripts and HopU1 interaction with 

GRP7 correlates with a reduction of FLS2 and EFR protein levels. Hence, by manipulating 

host RNA metabolism of PRR, HopU1 impedes the accumulation of PAMP receptors 

proteins necessary for the correct PTI input (Nicaise et al., 2013). 

Subversion of host ubiquitin-26S proteasome degradation system (UPS) is another virulence 

strategy of bacteria. Plant UPS is a multisubunit protein complex present in cytoplasm and in 

the nucleus that selectively degrades proteins conjugated with ubiquitin (Ub). This process 

regulates several aspects of plant biology including hormone signaling, and immunity 

(Vierstra, 2009). Addition of Ub to targeted proteins is performed by three enzymes among, 

which E3-ligase, ensures target specificity of Ub tails. Different type 3 effectors localizing in 

host cytoplasm exhibit E3-ligase activities leading to the degradation of virulence targets and 

suppression of plant defense; for review refere to Duplan and Rivas, 2014. A particular 

polypeptide secreted by P. syringae, SyringolinA, necessary for virulence, localizes both in 

the nucleus and cytoplasm of host cells inhibiting the activity of the proteasome (Kolodziejek 

et al., 2011). 

 
 

Nematode effectors 
 

Endoparasitic root-knot nemadotes (RKNs) and cyst nematodes (CNs) are obligate 

biotroph parasites that enter plant roots and migrate intracellularly to reach host vascular 

tissues were they become sedentary. In there, they induce tremendous physiological and 

morphological changes on host root cells that conduct to the formation of feeding cells (FCs): 

giant cells in the case of RKNs and syncytia in the case of CNs. In both cases, these FCs are 

physiologically hyperactive as seen by the proliferation of subcellular organelles and 

secondary vacuoles. FC differentiation and maintenance are triggered by gland-secreted 

effectors, implying the manipulation of cellular processes like plasma membrane and cell-

wall formation (Mitchum et al., 2013). Significant changes occur in host nuclei suggesting 

important events of plant nuclear biology likely to be triggered by nematodes effectors. 

These include repeated karyogenesis with aborted cell divisions and successive 

endoreduplication of DNA material that lead to biogenesis of a multitude of nuclei that can 

enclose several nucleoli (a sign of intensive transcriptional activity) (Mitchum et al., 2013). 

Several NLS-containing effectors (66 in RKNs and in 15 CNs) and/or presenting nuclear-



39 
 

related activities (i.e: DNA/RNA binding, chromatin binding and histone domains) have 

been predicted (Bellafiore et al., 2008; Elling et al., 2007; Gao et al., 2003) and represent 

candidate effectors possibly controlling directly host-nuclear biology during infection. 

Important transcriptional changes have been documented to occur in host cells upon 

nematode infection and have been long time predicted to be controlled by effectors (Hewezi 

and Baum, 2013) but the exact effector and targeted genes remain unknown.  

A recent report has begun to bring light on this, as a nuclear-localized effector 7H08 of M. 

ingonita was demonstrated to carry a transcriptional activity in plants (Zhang et al., 2014). 

Two secreted proteins identified via EST mining on the RKNs infecting tomato Meloidogyne 

incognita (Mi) and Meloidogyne javanica (Mj) have been demonstrated to be produced in 

oesophageal cells, secreted and localized in giant cell nuclei during infection (Jaouannet et 

al., 2012; Lin et al., 2013). MiEFF1 presents a functional NLS and lacks any similarity to 

other known proteins. Its accumulation outside the nematode is seen in giant cell during the 

sedentary phase of infection where it accumulates in nuclei (nucleolus excluded). Like 

MiEFF1, the Mj-NULG1 harbors a NLS, lacks similarity to other proteins and is nuclear- 

localized in giant feeding cells of roots cells. Mj-NULG1 is required for complete virulence. 

Consistent with this, its overexpression in plants increases plant susceptibility to Mj (Lin 

et al., 2013). MiEFF1 and Mj-NULG1 effector proteins appear as RKN-specific as they are 

absent in free-living and animal nematodes and homologues are found in various 

Meloidogyne spp. It is suggested that they manipulate a host nuclear function specifically 

leading to giant cells formation. How exactly both proteins participate in this is still unknown 

as their biochemical activities and host targets remain to be characterized. 

16D10 effector of Meloidogyne incognita has been shown to stimulate host root proliferation. 

Although showed to function in the cytoplasm, it manipulates a nuclear-associated function 

since it interacts with two SCARECROW-like (SCL) transcription factors (Huang et al., 

2006) which are known to mediate cell fate in Arabidopsis and are members of the GRAS 

superfamily of TFs largely involved in plant development (Cui et al., 2014; Hirsch and 

Oldroyd, 2009). 

In the case of CNs, in planta transient overexpression of several proteins has revealed 

that specific subnuclear compartments like nucleoli can be targeted as it is the case for 6E07 

from Heteroderea glycines (Elling et al., 2007) and Hs-UBI1 from Heterodera schachtii 

(Tytgat et al., 2004). 6E07 lacks similarity to known proteins. In contrast, the Nterminal 

moity of HS- UBI1 identifies to UBiquitin Extension C-terminal Proteins (UBCEPs) while its 

Cterminal remains particular to this protein. In eukaryotes UBCEPs are hybrid proteins 

constituted by an N-terminal monomer of ubiquitin followed by a carboxyl-terminal 
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extension domain. Both are released separately after translational cleavage. Carboxyl-

terminal Extension Proteins (CEPs) are constituents of ribosomes and necessary for their 

biogenesis in the nucleolus and the ubiquitin counterpart acts as a chaperone to mediate this 

ribosome- related activity (Finley et al., 1989). In the case of plant pathogenic CNs, such type 

of proteins define a particular class because they are secreted and because their Cterminal do 

not relate to CEPs (Gao et al., 2003; Tytgat et al., 2004). Because of this latter observation, 

Hs-UBI1 could intervene in other cellular processes that are regulated in the nucleolus as the 

cell cycle control (Boisvert et al., 2007). Another ubiquitin extension protein UBCEP12 from 

the CN Globodera rostochiensis has been shown to be cleaved in plant cells; its C-terminal 

domain is nuclear-cytoplasmic localized and acts as a suppressor of cell-death related to ETI 

(Chronis et al., 2013). 
 
 
Phytoplasma effectors 
 

Phytoplasma are obligate phytopathogens bacteria transmitted by insects. In contrast to 

other phytopathogen bacteria, they present the particularity of colonizing animals (insects 

from Hemiptera family) and plants. In plant cells, they develop inside the host cytoplasm. 

About 56 effector candidates have been identified through genome surveys and gene 

expression profiling indicates they are differentially expressed on hosts, with specific or 

common repertoires expressed in plants and/or insects (Sugio and Hogenhout, 2012). SAP54 

and SAP11 from the Aster Yellow Witches Broom phytoplasma are upregulated during plant 

infection and are the best functionally characterized. Both effectors display the same 

mechanism of action by binding to host TFs and triggering their degradation. 
 
SAP11 is a small protein of 90 aa that localizes in nuclei; interacts with and destabilizes 

class II TCP transcription factors activities. This results in an altered leaf morphogenesis and 

reduction of hormone levels (Sugio et al., 2014). TCPs are a family of TFs regulating 

developmental processes including leaf morphogenesis and JA synthesis through the 

regulation of biosynthetic genes as LOX2. Interestingly, TCPs pop out as common targets of 

different microbial effectors: the extensive work of Mukhtar and collegues (2011) identified 

them as direct targets of RxLR oomycete and bacterial type 3 effectors as well (Mukhtar et 

al., 2011) and further studies on CRNs (see CRN section) confirm the idea that these TFs 

are important plant hubs whose corruption determines the outcome is important for host 

infection.  

SAP54 targets several MFTs (MAD-domains transcription factors). Its degradation is 
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mediated by SAP54's capability to interact with RAD23, a proteasome component that 

mediates polyubiquitination of plant proteins. Thus, SAP54 induces MTFs degradation via 

the exploitation of host proteasome. In plants, MTFs are involved in flower determination 

and development and, consistent with their function, ectopic overexpression of SAP54 leads 

to leaf-like vegetative flowers which is a common symptom of phytoplasma-infected plants. 

Such plants were shown to be more attractive to insects, suggesting that SAP54 may 

contribute to dispersal of phytoplasm by increasing chances of transmission via its insect host 

(MacLean et al., 2011). 
 
 
Fungal effectors 
 

Despite the evidence of nuclear localized fungal effectors provided by in silico 

prediction of NLS in putative effectors from different fungal species or by their similarity to 

nuclear-related functions (i.e: ribonuclease-like effectors of B. graminis (Pedersen et al., 

2012), very few effectors have been functionally characterized. 

The best known nuclear effector is Uf-RTP1 from the obligate biotrophic fungi 

Uromyces faba, which belongs to a family of cysteine protease inhibitors widely present 

in related species (Pretsch et al., 2013). Uf-RTP1 is specifically expressed in haustoria and 

was the first effector protein shown to be translocated inside host cell nuclei during 

infection (Kemen et al., 2005). Electron microscopy has revealed that, secreted to the extra-

hautorial matrix, Uf- RTP1 localizes in protuberances that emerge inside host cells to finally 

distribute in cytoplasm and nucleoplasm of the invaded cell. Its accumulation inside host 

cells correlates with the blocking of nucleus and chloroplast cyclosis (Kemen et al., 2013), 

thus, Uf-RTP1 triggers a steady state in infected host cells. It has been proposed that this 

could inhibit several physiological responses among which the cell-death involving 

particularly chloroplasts. Moreover, recombinant Uf-RTP1 proteins showed inhibition of 

proteolytic activity in Pichia pastoris, an activity that might serve as protection from 

secreted host proteases during and after its translocation into host cells. How this activity 

contributes exactly to virulence is still not known but RTP1 proteins protrude so far as fungal 

effectors stabilizing host cells during infection. 
 
In addition to effectors from pathogenic fungi, two proteins of symbiotic fungi have been 

identified as nuclear-addressed in hosts. The secreted MiSSP7 from the ectomycorrhizal 

fungus Laccaria bicolor corresponds to a small protein of 68 aa with no homology to known 

proteins. Its gene is the most highly induced during early infection of roots of the tree 
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Populus trichocarpa and is crucial for the establishment of symbiosis. Binding phopholipid 

assays indicated that MiSSP7 interacts with PI3P requiring a RxLR-like motif (RALG) 

present within the protein sequence. Moreover, this motif was also necessary for cell entry. 

Thus it seems that host cell entry mechanisms of MiSSP7 falls into the model proposed by 

Kale and associates (2010). Its biochemical activity is still unknown, but transcriptome 

analyses showed that its presence in nuclei modulates expression of 225 host genes 

involved in root architecture (auxin- response genes, CLE genes) and cell wall remodelling 

(Plett et al., 2011).  

SP7 is a protein of 270 aa secreted by the arbuscular mycorrhizal (AM) fungus Rhizophagus 

irregularis. Consistent with the presence of a NLS sequence, the protein enters plant cells 

and accumulates in nuclei where it interacts with the TF ER19. ER19 is a member of a TF 

family known to lead to resistance to pathogen attack that correlates with expression of 

defense- related genes. In M .truncatula gene induction of ER19 and defense-related gene 

was shown to be highly reduced upon expression of SP7. In addition, an enhancement of 

symbiosis was observed in M. truncatula roots over expressing SP7 and by the silencing of 

root ER19. Results indicate that SP7 contributes to the establishment of symbiosis by 

attenuating plant defenses, a common infection strategy of pathogen microbes (Kloppholz et 

al., 2011). 

 
 

Oomycete effectors 
 
RxLR effectors 
 

RxLR proteins represent one of the two largest families of intracellular protein effectors 

of oomycetes together with CRNs. 563 RxLR genes have been identified in P. infestans 

(Haas et al., 2009), 396 in P. sojae, 374 in P. ramorum and 134 genes in the obligate 

pathogen H. parasitica (Hpa) (Baxter et al., 2010). RxLR are modular proteins, comprising 

conserved Nterminal domains harbouring a “RxLR” amino acid motif and divergent 

Cterminal domains. It has been generally accepted that, while Ntermini ensure protein 

translocation inside host cells (Whisson et al., 2007; Kale et al., 2010), Ctermini carry the 

virulence activity. As reported previously, this functional dichotomy between both domains 

seems now blurred as recent data indicate that Ctermini might contribute also to the 

translocation (Yaeno and Shirasu, 2013). 

Transcriptional profiles indicate that RxLRs are mostly expressed during early stages 
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corresponding to biotrophic phases and decrease during the terminal necrotrophic phases of 

infection (Pais et al., 2013). Functional high-throughputs of RxLR repertoires based on 

their in planta ectopic transient expression point out for defense-suppressive or susceptibility-

inducing activities in plants (Fabro et al., 2011; Wang et al., 2011). The exact molecular 

mechanisms behind these defense-suppressive functions are beginning to be unraveled for 

studied RxLRs, although, given their number in species RxLR functions and mode of action 

remain largely elusive. 

A substantial number of RxLRs are targeted to the nucleus. Indeed, expression of 49 

HpaRxLR effectors in N. benthamiana showed that 66% localized in plant nuclei (33% were 

exclusively nuclear and 33% displayed both cytolasmic and nuclear localization). Among 

those exclusively accumulating in nuclei, the majority (68%) were nucleolar localized while 

others presented particular patterns in the nucleoplasm (i.e: fibre-like structures) (Caillaud 

et al., 2012). Consistent with their localization, the identification of host interactors of 

HpaRxLR via Y2H screens revealed an overrepresentation of host proteins related to 

transcriptional regulation (Caillaud et al., 2012). For most of RxLRs studied so far a defense 

suppression activity has been reported, reason why they stand as a large family of defense 

suppressor proteins. A recent report on the nuclear localized HpaRxLR44 showed that, by 

interacting with the nuclear host MED19 protein (a positive regulator of plant immunity) 

HpaRxLR44 induces MED19 degradation in a proteasome-dependent manner. MED19 

regulates negatively JA/ET signaling and its degradation by HpaRxLR44 promotes induction 

of genes associated with JA/ET signaling pathway (Caillaud et al., 2013). Therefore, Hpa 

attenuates SA-related defense by triggering the antagonistic JA/ET pathway. HpaRxLR44 is 

an example of RxLR capability to manipulate plant hormone signaling related to defense. 

In P.infestans, RxLRs that have been studied display other mechanisms of action. 

Avr3a is a nucleo-cytoplasmic localized effector necessary for virulence and capable to 

suppress cell death triggered by PAMPs like INF1 in susceptible plants by interacting with 

the host protein CMPG1 (Bos et al., 2006, 2010). CMPG1 is a E3 ubiquitin ligase whose 

degradation via the 26S  proteasomal  complex  positively  regulates  cell-death  activated  by  

the  perception  of PAMPs (Gilroy et al., 2011). Avr3a suppress cell-death by stabilizing 

CMPG1 which is no longer degraded and as a consequence accumulates in the nucleolus 

(Bos et al., 2010) Transcriptional induction of Avr3a during infection correlates with 

CMPG1’s at early stages of infection, indicating that Avr3a suppression of PTI via by 

CMPG1 is important for the proper establishment of biotrophy. 

SNE1 RxLR effector also suppresses immune responses but, in contrast to Avr3a, 

SNE1 suppresses cell-death activated by Avr/R recognition of different pathosystems as well 



44 
 

as cell-death induced by necrosis inducing effectors such as (Nep1)-like proteins toxin-like of 

P.infestans and P.sojae associated with necrotrophy (Kelley et al., 2010). Thus, SNE1 seems 

to suppress a different cell-death pathway than that of Avr3a, but the mechanistics behind 

this suppressive activity are not known. 

PITG_03192 (Pi03192) which is essential for virulence of P.infestans has been demonstrated 

to bind two host NAC transcription factors (NTP1 and NTP2). Both NACs are ER membrane 

bound and are released from ER endomembrane to become nuclear localized upon pathogen 

perception. PITG_03192 (Pi03192) impedes their nuclear addressing by interacting 

directly with them (McLellan et al., 2013). 

As a last example, a recent in planta functional screen on various RxLR proteins, evidenced 

SFI1 as a suppressor of immunity activated by the PAMP flagellin. SFI1 was shown to 

contribute to P. infestans and to localize in plant nucleus with prevalence for the nucleolus 

(Zheng et al., 2014). 

 

CRN effectors. 
 

In oomycetes, a second family of intracellular effectors are Crinklers and Necrosis, 

CRNs, proteins which protrude as a vast nuclear localized effector class and are the object of 

this PhD study. 

 
 
Discovery and distribution 

 

CRN proteins were first identified through a large screen of cDNAs of P. infestans 

obtained during infection and coding for secreted proteins (Torto et al., 2003). The study 

aimed to identify pathogen-secreted proteins potentially implicated in the manipulation of 

host processes and, thus, presenting an effect in plants. For this purpose, cDNAs were 

expressed in N. benthamiana and tomato leaves to assess any perturbation of host 

physiology. Two cDNAs induced Crinkling and Necrosis of leaf tissues and defense gene 

expression and were named proteins CRN1 and CRN2, upon the obtained macroscopic 

phenotype. Sequence comparison between them and to others sequences available at the 

time, including EST databases of Phytophthora spp (only type of oomycete genomic 

resources available at the time) revealed that these proteins corresponded to an ample gene 

family (Torto et al., 2003). It also evidenced the lack of similarity to any other protein, and 

so, the impossibility to assign a putative function. As full genome data of various 

oomycetes have been and are currently being obtained, it has been possible to undertake 



Species Gene 
number 

First 
Nterminal 

motif 

Infectious life 
style Reference 

A. euteiches 160 
 LQLYLAL
K 

Hemibiotroph 
Gaulin et al ., in 

preparation 

P. infestans 196 LxLFLAK Hemibiotroph Haas et al., 2009 

P. capsici 84 LxLFLAK Hemibiotroph Stam et al.,2013 

P.sojae 100 LxLFLAK Hemibiotroph  Tyler et al., 2006 

P. ramorum 19 LxLFLAK Hemibiotroph  Tyler et al.,2006 

H. arabidopsidis 20   Obligate biotroph Baxter et al.,2010 

P.ultimum 26 
LxLYLAR /

K 
Necrotroph 

Lévesque et al., 
2010 

A.candida 6 LYLAK Obligate biotroph Links et al.,2011 

A.laibachii 3 ND Obligate biotroph  Kemen et al.,2011 

B.dendrobatidis 84 divergent * - Sun et al., 2011 

R. irregularis 42 LFLAK Mutualistic Lin et al., 2014 

Table 3. CRN gene number and consensus CRN Nterminal motifs of 
oomycetes and true fungi. 

* Consensus motif for a subset of CRN-like sequences : FYIQYLxNQPV and/orLVAA 
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analyses to identify CRN repertoires and distribution among oomycete species. 

CRN genes in oomycetes stand as plant pathogen–specific as they have been 

identified in all phytopathogens sequenced so far and are missing in zoopathogens species 

Saprolegnia parasitica and  Pythium insidiosum (Jiang et al., 2013; Krajaejun et al., 2011). 

Their number varies between species, ranging from 196 in P .infestans, 100 in P. sojae, 84 in 

P. capsici to 26 in P. ultimum and only 3 in Albugo laibachii (table 3). In our research 

group, an EST mining of cDNA libraries evidenced the presence of CRN sequences in A. 

euteiches (Gaulin et al., 2008) and, currently, its genome annotation has revealed 160 CRN 

gene models (Gaulin et al., in preparation). Since A. euteiches is an early divergent species 

among “crown oomycetes”, CRN genes protrude as ancient genes acquired early in the 

oomycete phytopathogen lineage (Schornack et al., 2010). 

Outside the oomycete lineage, CRN-like sequences have been observed in the fungal 

pathogen Batrachochytrium dendrobatidis (Bd) and in the fungal symbiont Rhizophagus 

irregularis (Ri) (Sun et al., 2011; Lin et al., 2014). Bd causes chitridiomycosis in a large 

array of amphibian species and is responsible for the declines of amphibian population 

worldwide (Fisher et al., 2012). It can infect over 350 amphibian species and has led to the 

decline of 200 of them with a mortality reaching 100% for some species (Fisher et al., 2009). 

It has been estimated that 34.5% of all amphibian species are directly threatened by Bd 

(Kilpatrick et al., 2010) reason why it has been catalogued as an emerging global ecological 

threat. The pathogen infects and proliferates in keratinized amphibian skin causing its 

hyperplasia and hyperkeratosis. Its development on skin tissues (which in amphibians is an 

important organ regulating water uptake, osmotic balance and respiration) leads to the 

impairment of neurological functions and heart arrest. Little is known about the genetic base 

of Bd pathogenesis, but in view of its dangerousness, efforts are being made to understand it. 

Genome of strains JAM81 and JEL423 have been sequenced and surveyed to propose 

putative virulence factors (Joneson et al., 2011; Sun et al., 2011). Surprisingly, 84 CRN-like 

sequences presenting up to 46.5 % of similarity to CRNs of P. infestans were identified, 

exhibiting also a modular architecture, a LxFLAK-derived signal and Ctermini resembling 

oomycete Cterminal organization. Interestingly, these CRN-like are absent in Bd closest 

relative, the non-pathogen Homolaphlyctis polyrhiza. In Bd they appear under positive 

selection and are transcriptionally induced when the pathogen is cultured on amphibian skin 

substrate, observations that sustain the idea of their plausible role in virulence (Sun et 

al., 2011; Rosenblum et al., 2012). In the case of the arbuscular endomycorrhizal (AM) 

fungus R. irregularis, 42 genes models were predicted with high sequence similarity and 

canonical amino acid motifs of CRNs (Lin et al., 2014). These latest findings pivot CRN 



N-terminus C-terminus 

sigP 

Figure 8 . Sequence and functional architecture of CRN proteins. The typical 
organization of CRN pre-protein comprises conserved Ntermini were a secretion 
signal (sigP) is followed the conserved subdomains “LFLAK”, “DI” and “DWL” 
harboring the conserved amino acid motifs LxFLAK, GAWL and HVVVIVP, 
respectively. Ntermini mediate secretion and delivery of CRNs to the cytoplasm of 
host cells. The motif LxFLAK has been shown to be required for this function. 
Ctermini are responsible for nuclear localization and effects in plant cells. These 
domains are variable and are composed of the combination of different types of 
subdomains for which a family categorization has been proposed (figure 8). 

LxFLAK GAWL HVVVIVP 
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conception, which no longer stand as oomycetes-specific proteins nor specific to pathogenic 

microorganisms. 

 
 
Protein architecture 
 

At the level of the primary protein sequence, CRN display a modular architecture. 

A first degree of modularity is reflected by the contrasting degree of conservation between 

Nterminal and Cterminal moieties. While Nterminal domains are highly conserved among 

CRN proteins, Cterminal domains are very variable. Both domains are constituted by 

subdomains characterized by the presence of motifs, defining thus, a second degree of 

modularity within the protein. In Phytophthora CRNs, the conserved Ntermini (< 130aa) 

comprise the canonical LxFLAK motif (within the first 60aa). Although classical signal 

peptides (SP) can be predicted in the immature protein sequence, within the first 30 amino 

acids, around 40% of CRNs do not present a predictable SP for secretion (Haas et al., 

2009). The “LxLFLAK” subdomain is followed by a called “DI” domain marked by the 

presence of conserved GAWL amino acids residues and followed itself by a “DWL” 

subdomain with a typical HVVVIVP motif denoting the end of the Nterminal moiety (figure 

8). Some Ntermini can lack the DI in which case the LxFLAK subdomain is directly 

followed by the DWL subdomain. The LxFLAK motif (defined for Phytophtora spp) can 

diverge in other species as seen for P .ultimum and A. euteiches (i,e, LxLALR/K, 

LQLYLALK respectively) (table 3). 

Cterminal domains consist on the juxtaposition of subdomains as well. Their characterization 

in P. infestans by sequence comparison led to propose 36 different conserved subdomains 

(figure 9) that can assemble in different combinations defining Cterminal subfamilies (Haas 

et al., 2009). In view of this organization, it has been proposed that the variability of 

Cterminal domains is the result of recombination events between subdomains. Very 

recently it was shown that 30 of these subfamilies are present in CRNs of P.capsici while 7 

new subfamilies (formed by 6 new Cterminal subdomains) appear specific to this species 

(Stam et al., 2013a). Concerning A. euteiches, 160 CRN gene models have been 

described, among which 12 Cterminal domains are novel subdomains. Hence, A. euteiches 

harbors specific CRN proteins. The presence of CRN specific to certain phythopathogenic 

oomycete species hints they might manipulate physiological processes/targets specific to 

hosts and therefore they could define a set of CRNs at the basis of host adaptation. As 

different Aphanomyces species presenting different lifestyles have been sequenced in our 

research team, other CRN repertoires will be soon available (ANR JCJC APHANO-Effect 



Figure 9. Schemes representing the modular protein architecture of CRNs and 
Cterminal combinations identified in CRNs of P. infestans, A. euteiches and B. 
dendrobatidis. 
Scheme representation of CRNs of P. infestans (A) and A. euteiches (B) and B. 
dendrobatidis (C). Ntermini are highly conserved between both species with light 
variation of the conserved motifs. A. In P. infestans, 32 different Cterminal 
subdomains are present in 36 combinations defining 36 families (Haas et al., 2009) 
B. In A. euteiches, 27 subdomains have been identified so far, whose combinations 
define 17 families (Gaulin et al., in preparation). Specific domains to this species are 
indicated by an asterisk  C. CRNs of B. dendrobatidis present divergent Ntermini 
compared to oomycete CRNs. Major similarity to oomycete CRNs is displayed in 
their Ctermini which fall into already identified oomycete CRN families: 12 
subdomains ascribing to 8 families (Sun et al., 2010).  
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2012-2015) and will permit to address CRN occurrence, diversity, evolution-and relevance to 

lifestyles of Saprolegniale species. 

Concerning CRN-like proteins of Bd, their Nterminal domains diverge from the typical 

Nterminal domains of oomycete CRN. Some present a FLAK motif while others 

display more divergent (FYIQYLxNQPV or LVAA) motifs (Sun et al., 2011). Actually, 

major similarities to oomycetes CRNs reside on Ctermini which identify to 8 subfamilies 

(of the 36 subfamilies of CRN proposed for P. infestans) (Figure 9). CRN-like proteins of 

R.irregularis display also the canonical LFLAK motif and identify to 22 Cterminal 

CRN domains of P. infestans (Lin et al., 2014). 

 
Translocation into plant cells 
 

The overall sequence modularity of CRN is a featured shared with RxLR proteins and 

suggested that amino terminal regions in of CRN proteins could act as translocation signal. 

This hypothesis was tested via an infection-translocation assay (Schornack et al., 2010), 

summarized in figure 10. 

The system was used to fuse full CRN Ntermini of P. infestans (CRN16, CRN2 and CRN8) 

and A. euteiches (AeCRN5) to Avr3a Cterminal domain. As chimera proteins induced 

depletion of P. capsici infection, it was concluded that CRN are cytoplasmic effectors whose 

Ntermini allow secretion and translocation of CRN proteins into host cells. In addition, 

mutation of conserved LxFLAK and LQLYLAK showed that, whithin Ntermini, these motifs 

are signals necessary for translocation function. Importantly, because AeCRN5 and 

CRN16 lack a predicted signal peptide in the first 30 amino acids, these results demonstrate 

that a discrete and still unpredictable secretion signal is present in this region and ensure 

secretion of CRNs in oomycetes (Schornack et al., 2010). Nevertheless, the mechanistics 

behind the translocation process are not known. 

 

CRN subcellular localization 
 

The use of fluorescent proteins to tag CRNs, followed by microscopy approaches have 

enabled to study their subcellular localization when ectopically overexpressed in plants, 

mostly in N. benthamiana leaves. Their heterologous expression in this system has shown 

that all CRN accumulate in nuclei of plant cells (Schornack et al., Stam et al., 2013b). 

While first localization studies of P.infestans CRNs revealed a homogenous nucleoplasm 

distribution of CRNs that excluded the nucleolus, very recently, CRNs of P. capsici were 



Figure 10. Principle of the Nterminal translocation assay.  
The test is based on the recognition of the Cterminal domain of the RxLR Avr3a by 
the resistance protein R3a which takes place in the cytosol of plant cells and leads 
to ETI and full depletion of infection. A. P. capsici expressing PiAvr3a is 
inoculated on N. benthamiana leaves expressing R3a. Absence of infection 
indicates that PiAvr3a has been recognized by R3a in the cytosol and so that 
PiAvr3a has entered plant cells. B. A Nterminal CRN domain is fused to the 
Cterminus of Avr3a and expressed in P. capsici. After inoculation, the absence or 
presence of infection determines whether the chimera protein has been  translocated 
into plant cytosol. For Nterminal CRN domains tested, P.capsici did not develop on 
leaves, indicating that there was ETI activation and so that the chimera protein was 
translocated inside plant cells. Mutation of  LFLAK and LQLYLALK residues 
resulted in infection concluding that this motif is necessary for the translocation 
function of CRN Ntermini (Schornack et al., 2010). sigP: signal peptide 
 

A 

B 

Figure 11. Diverse nuclear 
localization patterns of three 
Cterminal domains of CRN of P. 
capsici in epidermal cells of N. 
benthamiana.  
Confocal imaging performed on 
epidermal cells of N. benthamiana 
expressing Cterminal domains of 
CRN 20_624 (DN17), 79_188 
(D2) and 83_152 (DXZ) fused to 
GFP. GFP alone (empty vector) 
and CRN localizations are shown 
in the upper panels and are 
correlated to DNA by dapi 
staining (blue) and to the 
nucleolar marker fibrillin protein 
(red), in middle and lower pannel.  
Adapted from Stam et al., 2013a/b 
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seen also in the nucleolus as well as in yet undetermined regions of nuclei. These 

localizations are denoted by a constricted fluorescence accumulation in areas of the nucleus 

depicting particular pattern of fluorescence (i,e filament-like, patchy...) that have, in addition, 

been suggested to be accompanied of a rearrangement of DNA material (Stam et al., 

2013a),(figure 11). 

Expression of the full matured protein (lacking the signal peptide) or only the Cterminal 

domain of CRN of P. capsici (CRN20_624, categorized in the DN17 family) results in the 

accumulation of both protein versions in nuclei, indicating that the nuclear localization is 

ensured by Ctermini and that Ntermini only mediate translocation inside host cells 

(Schornack et al., 2010; Stam et al., 2013b). For some CRN proteins, their nuclear 

localization correlates with the presence of predictable NLS in the primary sequence of 

carboxyl termini. For this CRN-containing NLS, silencing of α-importin in N. benthamiana 

caused a decrease of CRN accumulation in nuclei (Schornack et al., 2010) proving that, by 

the presence of NLS, CRNs might exploit host routes of nuclear import. 
 
 
CRN activities 
 

P. infestans CRN are among the highly expressed genes during plant infection with 50% 

of CRNs corresponding to 10% of the most highly expressed genes (Haas et al., 2009). CRNs 

of P. capsici show differential expressions in tomato leaves and have been assigned into two 

classes. First class consists of very early up-regulated genes that are down regulated during 

biotrophic development and finally increasingly expressed during last stages of infection. A 

second class comprises CRNs whose expression is less variable showing a progressive 

increase as infection takes place (Stam et al., 2013a). The expression pattern of the first class 

suggests that CRNs may be required in very different, almost opposite, infection stages 

(biotrophic and necrotrophic stages) of P. capscici infection. Either CRN function is 

required on both phases or the same CRN could present more than one activity during 

infection. As mentioned above, most CRN proteins outstand by their scarcity of similarity to 

known proteins making difficult to assign putative functions. 

Upon overexpression on leaves, some CRNs induce necrosis of epidermal cells while 

others do not. It is important to emphasize that the necrotic effect is not attributable to a 

specific subfamily of proteins as in planta expression of two CRNs of the same category 

can conduct or not to necrotic lesions. P. sojae PsCRN115 and PsCRN63 differ only by 4 

amino acids on their carboxyl terminal domains. While PsCRN63 induces cell-death 

symptoms in N. benthamiana, PsCRN115 does not. In fact, PsCRN115 is able to suppress the 
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necrosis induced by PsCRN6 itself and by the cell-death inducer PsojNIP (Nep1-like 

protein). Therefore, these opposite activities are very fine tuned at the protein level. A protein 

deletion approach allowed to determine that the minimum peptide carrying such activities is 

contained in Ctermini and that the lack of the Nterminal domains does not abolish them (Liu 

et al., 2011). An immunity suppressive activity has also been reported for PsCRN70 (Rajput 

et al., 2014). Because it is able to suppress cell-death elicited by different cell-death 

pathogen-derived molecules as well as different defense responses as the induction of ROS, 

expression of PR genes and hormone signaling, PsCRN70 stands as a broad defense 

suppressor effector. 

The only biochemical activity predicted is a phostransferase/kinase activity, based on the 

presence of serine/threonine kinases (RD kinases) sites for CRNs containing DBF, SN8 

and D2 Cterminal domains. CRN8 (D2), from P. infestans, displays an autophosphorylation 

activity in vitro and is phophorylated in planta, which has been shown as necessary to its cell-

death activity, thus, relevant for its function (van Damme et al., 2012). 

Finally, the transcription factor TCP14 of tomato has been proposed to be targeted by the P. 

capsici CRN12_997 containing Cterminal domains DHB-DXX-DHA (Stam Remco, 

personal communication). CRN12_997 promotes the degradation of TCP14 preventing its 

binding to DNA. TCP14 is a member of the TCP family of plant TFs found to be 

constituents of a plant hub network targeted by bacterial and oomycete effectors (Mukhtar et 

al., 2011). Because TCP14 seems to be a positive regulator of defenses, CRN12_997 is 

proposed to contribute to virulence as a suppressor of host gene defense output. 
 
 
 
 
 
Scope of the thesis 
 
 

Until today, functional studies have been addressed only on CRNs of Phytophthora spp 

for which elucidation of their function is beginning to be provided. Before the initiation of 

my PhD work, cDNA libraries of A. euteiches, generated in our group, provided first insights 

into the genetic basis of A. euteiches pathogenicity (Gaulin et al., 2008). Mining of ESTs 

corresponding to 8,000 unigenes from infected and uninfected conditions outlined the 

absence of RxLR proteins and the presence of CRNs, the first CRN proteins in an oomycete 

distinct from Phytophthora spp. The analysis of AeCRNs ESTs evidenced two major 

families of AeCRNs with similarities to P. infestans CRN13 and CRN5 known at the 

time (therefore, named AeCRN13 and AeCRN5) and physically represented by full 

length cDNA clones Ae_9AL5664 and Ae_1AL4462, respectively (Gaulin et al., 2008). 
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Before the beginning of my work, in September 2010, CRNs were supposed to be 

intracellular effectors. This was confirmed as the Nterminal domain of AeCRN5 and other 

Phythophthora CRNs were demonstrated to ensure secretion and translocation of these 

proteins inside plant cells (Schornack et al., 2010). In this context, my work aimed to 

functionally characterize AeCRN13 and AeCRN5 of the root pathogen A. euteiches. During 

my work, CRN-like proteins were evidenced in the fungal pathogen B. dendrobatidis, 

inferring possible functional commonalities to oomycetal CRNs. This encouraged us to 

undertake a comparative functional study of AeCRN13 and its putative ortholog BdCRN13, 

extending CRN functional characterization beyong oomycetes. 

The functional study was mainly based on a heterologous ectopic expression of CRNs in 

order to phenotype the effects and localization of Ctermini expressed directly in host cells. 

We show that AeCRN5 and AeCRN13 and its ortholog from Bd are host nuclear-localized 

and cell-death inducing effectors. We demonstrate that AeCRNs target host nucleic acids 

to perturb host physiology, describing a new mode of action for eukaryotic effectors. 
 
The first chapter of the manuscript presents the characterization of Cterminal activities of 

AeCRN13 and its ortholog BdCRN13, while the second chapter concerns AeCRN5 

characterization. 
 
In the last part of the manuscript, I discuss results that were obtained and contextualize them 

among latest related findings. 
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Chapter 1: Functional characterization of AeCRN13 of A. 
euteiches and its ortholog BdCRN13 of B. dendrobatidis.  

 
 

Since the initial identification of CRN proteins by Torto and associates (2003), 

CRN cataloguing has greatly been favoured by the arrival of several complete genome 

sequences of Peronosporales (P. infestans, P. ramorum, P. sojae...) and Saprolegniales (S. 

parasitica, Jiang et al., 2013 and A. euteiches, Gaulin et al., unpublished). In oomycetes, 

CRNs protrude as phytopathogen specific outstanding as a large and diversified protein 

family with more than 150 genes in one species and a total of 43 different subfamilies. All 

oomycete CRNs studied so far target host nuclei, but their biochemical activities remain 

poorly characterized. Today, CRN-like proteins have been described in the unrelated 

mycorrizal fungus Rhizophagus irregularis (Lin et al., 2014) and the chytrid pathogen fungus 

B. dendrobatidis (Bd) for which experimental evidence suggests they might contribute to its 

interaction with amphibians (Sun et al., 2011). Still, no functional studies have been 

addressed for these CRN-like proteins. Intriguingly, these repertoires harbor Cterminal 

families also present in oomycetes, suggesting common activities in their respective hosts. 

Given the different nature of interactions and hosts (symbiotic vs pathogenic and animal vs 

plant) it is urgent to understand their mode of action and, by this, their contribution to each 

type of interaction. The work presented in this chapter ascribes to this problematic by 

addressing the functional study of AeCRN13 and BdCRN13, two CRN homologs of A. 

euteiches and B. dendrobatidis, respectively. 

AeCRN13 (Ae_9AL5664) sequence represents one of the two CRN cDNA families 

identified through a transcriptomic approach on A. euteiches during infection of roots ( M. 

truncatula) performed in the group (Gaulin et al 2008). Inspection of its protein sequence by 

comparison to other Phytophthora CRNs showed the presence of a canonical Nterminal 

domain with a LQLYLALK motif and a HLVVVP motif marking its end. Notably, no 

signal peptide in this region could be predicted, an observation that is consistent with 

observations made for other CRNs for which secretion and translocation has been shown 

(Schornack et al., 2010). The Nterminal of AeCRN13 is similar to the tested translocation 

signal of AeCRN5, suggesting its functionality. We assumed, then, that AeCRN13 may be 

translocated during the interaction and is a intracellular/cytoplasmic effector. In this 

context, we focused our work on the Cterminal region of AeCRN13. Since the in silico 

identification of AeCRN13, a protein family classification was proposed for the variable 

Cterminal domains of CRN of P. infestans by Haas and associates (2009). As a first part 
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of the functional characterization of AeCRN13 Cterminal domain, we compared it to other 

Ctermini of CRNs and found that it comprises a DFA domain followed by a DDC domain. 

Thus, AeCRN13 falls into the DFA-DCC CRN family. 

AeCRN13 gene expression and protein accumulation during infection of M. truncatula 

roots (ecotype F83005.5) was studied by qRT-PCR and by the use of anti-AeCRN13 

antibodies raised in rabbits against a recombinant Cterminal AeCRN13 protein produced in 

E. coli. We found that AeCRN13 gene is expressed during all times of infection tested 

(between 3, 6 and 9 days after root inoculation, dpi) (figure 1). Western blot analyses 

confirmed the presence and accumulation of AeCRN13 protein in infected roots (figure 1 

C). Altogether, expression data revealed  that  AeCRN13  is  expressed  specifically  during  

infection,  that  the  protein  is processed and possibly submitted to post-translational 

modifications. It remains to be elucidated whether these modifications are intrinsic to 

AeCRN13 regulation (controlled by the pathogen) or an artefact resulting from the action of 

plant proteases encountering AeCRN13. Nevertheless, because no supplementary products of 

degradation, we would tend to privilege the possibility of a processing linked to its function. 

We tested the contribution of AeCRN13 to virulence. Because genetic transformation 

of A. euteiches is not possible, we made use of a foliar infection assay combined with 

agroinfiltration of AeCRN13 in N. benthamiana, an assay commonly used for the study 

of Phytophthora CRNs (van Damme et al., 2012; Stam et al., 2013a). For this, 24 hours after 

agroinfiltration of AeCRN13 in leaves, P. capsici zoospores were deposited on 

agroinfiltration zones and infection lesions were measured 3 an 4 days after inoculation.. 

These lesions were compared to infection lesions on zones agroinfiltrated with GFP. Results 

revealed greater size lesions for AeCRN13 zones, indicative of the greater colonization of 

tissues by P. capsisci, and led to conclude that AeCRN13 contributes positively to virulence. 

CRN-like proteins were identified in B. dendrobatidis. We searched for AeCRN13 

ortholog (strain JEL423) and found a closest AeCRN13 homolog gene, named 

BdCRN13 (identified as BDGEG_03200.1) presenting 67 % similarity to AeCRN13. 

Further sequence inspection of both AeCRN13 and BdCRN13 showed a lack of predictable 

subcellular localization motifs (including NLS) as well as any similarity to functionally 

known proteins. Nevertheless, Pfam analysis on one particular region shared between both 

proteins at the end of the DFA domain, indicated the presence of a HNH-like motif, which is 

well represented in bacterial  endonucleases  and  DNA  binding/cutting  factors.  Despite 

the low significance detection via Pfam, we transferred its prediction within the DFA 

subdomain and hypothesized a possible DNA binding and cutting activities for AeCRN13 

and BdCRN13. These putative shared activities encouraged us to undertake a comparative 
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functional study on both proteins. 

The functional characterization of AeCRN13 and BdCRN13 was conducted via the 

use of heterologous expression systems either on plants (N. benthamiana and M. 

truncatula) and/or amphibian (Xenopus laevis). To express both proteins in amphibian cells, 

we used an embryo gene expression system,  benefiting of the expertise of the team of Dr. 

Moreau (Centre d e   Biologie  du  Developpment,  Toulouse). Both Ctermini were 

expressed fused to the GFP protein at their Nterminal moity. In plants, both proteins 

localized in nuclei and inhibited root development of M. truncatula and induced necrotic 

lesions in leaves of N. benthamiana (figure 2 and figure 3). In amphibian cells, AeCRN13 

and BdCRN13 conducted to bigger cells possively caused by the disruption of cell cycle 

leading to the absence of cell division and to an abnormal development of embryos (figure 4). 

In plant and amphibian cells, while GFP:AeCRN13Cter presented an accumulation 

exclusively in the nucleus, GFP:BdCRN13Cter was nucleo-cytoplasmic localized. 

Mislocalization of GFP:AeCRN13Cter and GFP:BdCRN13Cter from nuclei was 

accompanied of  the absence of cell-death, demonstrating that the nuclear accumulation of 

both proteins is necessary to the establishment of necrosis (figure 3). To further dissect  the  

activities  of  CRN13  Cterminal  subdomains  DFA  and  DDC,  we generated deleted 

version of AeCRN13 in N. benthamiana and tested their activities and localization (figure 5). 

Results indicated that the integrity of the protein is required for the activities characterized 

(cell-death and nuclear accumulation) and infer a synergistic implication of all domains. 

The necessity of a nuclear presence to exert a necrotic activity, together with the 

presence a predicted HNH-like motif, led us to test whether AeCRN13 and BdCRN13 

interact with nucleic acids.  Because we observed that AeCRN13 and BdCRN13 recombinant 

proteins were able to bind in vitro dsDNA (figure 6), we developed a robust in vivo 

assay to test DNA binding activity based on FRET-FLIM technique in N. benthamiana 

epidermal cells. By this means, we demonstrated that AeCRN13 and BdCRN13 Ctermini 

bind DNA in vivo (table 1). Since the recombinant ΔHNH protein was unable to bind 

dsDNA in vitro, we revealed that this motif is functional in mediating DNA binding (figure 

6). 

As HNH bacterial endonucleases are known to bind and cleave DNA, we hypothesized that 

AeCRN13 and BdCRN13 might harbor a DNA cutting activity. We indirectly confirmed a 

DNA cutting activity for AeCRN13Cter and BdCRN13Cter by showing the accumulation 

of ᵧH2AX (a marker of DNA damage) on epidermal cells of N. benthamiana by western 

blotting (figure 7). Moreover, we also observed the accumulation of ᵧH2AX in roots of 
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M.truncatula infected by A. euteiches, which also correlates with the expression of plant 

DNA damage markers. 

These results correspond to the first functional analysis of a CRN protein of B. 

dendrobatidis and of the saprolegniale A. euteiches. AeCRN13 and BdCRN13 proteins 

stand as the first eukaryotic effectors directly targeting host DNA. We showed that both 

CRN13s (DFA-DDC family) bind DNA and induce its damage, leading to host cell 

disruption (plant and animal cells). The work shows that sequence similarities support 

similar activities of homologs CRN proteins, sustaining the idea of shared functions of CRNs 

in distantly related organisms, and pointing the idea of the targeting of universal cellular 

functions as likely present in plant and animal cells. 
 
 
 
 

This manuscript was submitted to Plos Pathogens the 10th march 2014. Reviewer's 

comments were received the 8th may 2014. These concerned (1) the secretion of AeCRN13 

during infection: the Nterminal domain of AeCRN13 does not contain a predictable signal 

peptide for secretion and its function for host-delivery was not tested via the Nterminal 

translocation domain. Thus, reviewers argued that this most be proven in order for the protein 

to be considered as an effector and as playing a role during infection  (2) the nuclease 

activity: we hypothesized a nuclease activity that we indirectly showed as happening in 

planta via the evidence of the phosphorylation of H2AX. Reviewers ask to provide the 

demonstration of a direct cutting activity on DNA.  To provide answers to these aspects, at 

the end of the article manuscript, I present preliminary results concerning the 

immunolocalization of AeCRN13 in infected roots and results of the  in vitro nuclease activity 

on DNA.   
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Abstract 78 

 79 

Filamentous plant pathogens deliver effectors proteins inside host cells to facilitate host 80 

colonization, but the molecular mechanisms by which eukaryotic effectors promote such 81 

effect remain largely unknown. One class of secreted oomycetes effectors comprises the 82 

modular CRN (Crinkling and Necrosis) large family of proteins that contain a conserved N-83 

terminal domain specifying translocation into host cells and diverse C-terminal regions 84 

harboring effector functions. CRNs were thought to be oomycete-specific until recently 85 

identified in the genome of the fungus Batrachochytrium dendrobaditis (Bd), one of the major 86 

contributors to the global amphibian decline. The presence of CRNs genes in phylogenetically 87 

distant and unrelated eukaryotic pathogens suggested that eukaryotic effectors might display a 88 

conserved mode of action during host infection. In the present study, we functionally 89 

characterized the CRN13 from the oomycete pathogen of legume roots Aphanomyces 90 

euteiches (Ae) and its ortholog from the chytrid pathogen Bd. By using model systems in a 91 

cross-kingdom approach we detected that both proteins localize in nuclei of plant and 92 

amphibian cells triggering cell-death and aberrant cell development. We identify by serial 93 

deletion analysis, a conserved HNH-like motif initially found in bacterial endonucleases as 94 

essential for this activity. By combining DNA-binding in vitro assays with Förster Resonance 95 

Energy Transfer (FRET) experiments in tobacco cells we show that both CRN13s interact 96 

with DNA. Overexpression of CRN13s induces a phosphorylation of histone H2AX 97 

(γH2AX), a marker of DNA double-strand breaks. Accordingly, we show that infection of M. 98 

truncatula roots by A. euteiches induced host DNA damage responses. Overall our results 99 

demonstrate for the first time that microbial eukaryotic effectors from phylogenetically distant 100 

pathogens, alter host cell physiology through by targeting and cliving DNA.  101 
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Author Summary 102 

 103 

During infection of their host, microbial pathogens deliver effectors proteins that act on plant 104 

or animal cells to promote infection. Some of these effectors are translocated inside host cells 105 

where they interact with molecular targets to modify host cell physiology to the benefit of the 106 

parasite. Genomic surveys point out the existence of a large repertoire of hundreds of effector 107 

genes in oomycetes, which are fungal-like microorganisms comprising devastating plant 108 

pathogens. Here we focus on the CRN effector family which was firstly reported in 109 

phytopathogenic oomycetes and recently identified in the pathogenic fungus of amphibians 110 

Batrachochytrium dendrobatidis. We show that a CRN effector from both Aphanomyces 111 

euteiches, an oomycete infecting plants and from Bd act inside the nucleus of either plant or 112 

animal cells where they trigger abnormal cell development. We show that these CRN are able 113 

to bind host DNA inducing DNA damage responses. This work shows that oomycete and 114 

fungal pathogens infecting plant or animals are able to produce similar translocated effectors 115 

which induce DNA damage responses in the host cells.  116 

  117 
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Introduction 118 

 119 

 In the pursuit of fungi and fungi-like oomycetes eradication, novels tools are in 120 

constant demand due to the emergence of new diseases and resistant-parasites or to the lack of 121 

effective molecules [1].  Deciphering the dialog between the host and the parasite at the 122 

molecular level is a valid approach to provide reliable knowledge. It is well established that 123 

upon microbe perception, thanks to the detection of specific molecular patterns exhibited by 124 

the microorganism, plants like animals induce innate immune responses to provide a first type 125 

of barrier against the intruder [2]. Adapted filamentous eukaryotic pathogens therefore secrete 126 

effectors molecules that modulate host physiology to benefit the microorganism [3]. Upon the 127 

last few years ongoing sequencing of fungal and oomycetes genomes enable bioinformatic 128 

prediction of whole effector repertoires of pathogens in ever-increasing numbers [4-8] 129 

Intriguingly recent cellular studies show that a significant number of effector proteins from 130 

prokaryote and eukaryote microorganisms are targeted to the nucleus of host cells [9]. 131 

Whereas is has been suggested that effectors may affect nuclear functions through for 132 

example a direct activation of host transcription as reported for TAL-bacterial effector [10], 133 

the mechanism by which intracellular effectors from filamentous eukaryotic microorganisms 134 

interfere with host remains a largely open question.    135 

In the field of phytopathology, eukaryotic intracellular effectors were firstly reported 136 

in oomycetes. Oomycetes are fungal-like microorganisms, members of the Stramenopiles and 137 

closely related to aquatic organisms such as diatoms and brown algae [11,12]. These 138 

filamentous microorganisms are responsible for multi-billion dollar damages in agriculture 139 

(e,g late blight of potato, Phytophthora infestans), in forestry (e,g sudden oak death, 140 

Phytophthora ramorum) and aquaculture (e,g crayfish plague, Aphanomyces astaci) [13,14]. 141 

Two important groups of candidate host-translocated effectors proteins, RxLR and CRN (for 142 

crinkling and necrosis) have been revealed by analysis of oomycetes genome sequences. Both 143 
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RxLR and CRN effectors proteins present a modular architecture and include conserved N-144 

termini functioning in host delivery and highly diverse C-terminal domains directing the 145 

effector activity.  While some P. sojae RxLRs are able to suppress cell-death triggered by 146 

necrosis inducing factors [15], the precise mechanism behind this is still unknown. Similarly, 147 

most of the RxLRs from Hyaloperonospora arabidopsidis enhance the growth of 148 

Pseudomonas by suppressing Arabidopsis innate immune responses [16]. Subcellular 149 

localization of 49 intracellular effectors candidates from H. arabidopsidis revealed that one-150 

third is localized strictly to the host nuclei [17]. Among them, the HaRxL44 interact with 151 

MED19a, a subunit of the Arabidopsis Mediator complex [18]. Although the mechanism by 152 

which HaRxLR44 induces the degradation of MED19 to promote host susceptibility is still 153 

unclear, these data strongly support the concept that nuclear host components manipulation 154 

may be an effector mode of action.  155 

The RxLRs family of effector is predicted for phytopathogenic species including 156 

Phytophthora (> 350 genes) [4,19] and Hyaloperonospora species (>130 genes) [20], whereas 157 

it is absent in Pythium [21] and Aphanomyces [22]. As one main function of the RxLR 158 

effector is to suppress host defense responses [23,24], the lack of RxLR effectors in these 159 

latter species indicates that modulation of host physiology may rely on other effector types. 160 

The CRN family is ubiquitous in plant pathogenic oomycetes including Aphanomyces species 161 

and their number ranges from 45 genes for Pythium sp. [21] to 200 genes for P. infestans [4]. 162 

All CRNs display a conserved LFLAK N-terminal motif, altered as LYLAK in Albugo sp. 163 

[25], LxLYLAR/K in Pythium sp. [21] and LYLALK in A. euteiches [22]. The Phytophthora 164 

and Aphanomyces N-terminal motif has been shown to act as a delivery signal into the 165 

cytoplasm of plant cells [26]. Initially reported from P. infestans genome mining [4], the CRN 166 

C-terminal region is highly diverse and fall into 36 families comprising numerous paralogues. 167 

Few new CRNs families have been reported upon complete genome analysis of distinct 168 

oomycete species (ie, Phytophthora capsici, Pythium sp., Aphanomyces euteiches) [4,27,28] 169 
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suggesting that CRNs belong to an ancient effector family that arose early in oomycete 170 

evolution [26]. To shed light on the function of CRNs, transient expression assays on plant 171 

leaves using C-termini revealed that not all CRN cause cell death suggesting that the 172 

perturbation of host processes may rely on different activities [4,26,27,29-31]. Indeed, 173 

PsCRN63 and PsCRN115 from P. sojae sharing 95% identity at the amino acid  level, display 174 

contrasted activities since PsCRN63 triggers cell death in planta while PsCRN115 is able to 175 

suppress this phenotype [30]. Although the subcellular localization of CRNs from P. sojae 176 

was not investigated, it was proposed that both PsCRNs share the same plant targets required 177 

for cell-death response and that their distinct activities depend on their subcellular localization 178 

[32]. Subcellular localization studies of unrelated CRN C-termini from two divergent species 179 

(CRN15, CRN8, CRN2 from P. infestans and CRN5 from A. euteiches) revealed the plant 180 

nuclear accumulation of CRNs [31,33]. Similarly, CRN localization studies revealed that P. 181 

capsici CRN C-termini target the plant nucleus and accumulate in specific sub-nuclear 182 

compartments [27,29]. Little is known regarding the precise function of CRN, except that the 183 

cell-death inducing CRN8 from P. infestans displays a functional S/T RD kinase domain at its 184 

C-terminus [34] . 185 

Up to recently, CRN proteins were reported exclusively in phytopathogenic 186 

oomycetes. By looking for putative effectors in the arbuscular endomycorrhizal fungus 187 

Rhizophagus irregularis genome, 42 LFLAK-containing proteins with P. infestans CRNs C-188 

termini similarity have been recently predicted [35], Thus, it is tempting to speculate that such 189 

effectors play important roles in the AM symbiosis. The recent completion of the genome 190 

sequence of the pathogenic chytrid Batrachochytrium dendrobatidis (Bd) led also to the 191 

identification of a set of 84 CRN genes showing similarity with P. infestans CRNs [7,36]. Bd 192 

is responsible of the recent emergence of an infectious disease on amphibians that is causing 193 

the declines of hundreds of species worldwide, threatening the amphibian biodiversity 194 

[1,37,38]. Bd CRNs presented an increased expression when the fungus is grown on host frog 195 
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tissues [36,39] and are absent in non-pathogenic chytrids suggesting a role in pathogenicity 196 

[36]. Nevertheless, the role of CRNs in Bd pathogenicity is still unknown, but their presence 197 

in the Bd genome is certainly intriguing raising the question of their origin and their role in 198 

the emergence of chytridiomycosis.  199 

In this study we report on the functional characterization of a CRN family detected in 200 

oomycetes and in the fungus Bd. We focused our work on the CRN13s, from the root legume 201 

pathogen Aphanomyces euteiches and its ortholog in Bd. We demonstrate that both effectors 202 

target nuclei of plant and amphibian cells where they exert cytotoxic effect on plant and 203 

animal tissue development. We show that both CRN13s target plant nuclear DNA thanks to 204 

the presence of an HNH-like domain found in bacterial endonucleases. We combine in vitro 205 

assays using recombinant proteins with an in vivo FRET-FLIM approach on tobacco cells 206 

transiently expressing AeCRN13 or BdCNR13 to demonstrate that both CRN13s are able to 207 

bind DNA. We finally show that both CRN13 induce plant DNA-damage responses that are 208 

also observed in roots of legumes during infection by A. euteiches.  209 

   210 
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Figure 1. AeCRN13 is expressed during infection of M. truncatula 
roots. (A-B) Graphs show expression level of AeCRN13 (A) and A. 
euteiches α-tubulin (B) measured by qRT-PCR at 3, 6 and 9 days post-
inoculation (dpi) in M. truncatula roots. S: mycelium grown as saprobe. 
Error bars are standard deviation errors. Asterisk indicate that the values 
are significantly different (p-value<0.05, t-test). (C) Immunoblot using 
anti-CRN13 antibodies showing the proteolytic cleavage of AeCRN13 
(42.2 kDa, 36.6 kDa) from 3 to 9 dpi and the presence of non-processed 
form (48 kDa)of AeCRN13 at 9 dpi. NI: non-infected.  
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Results 211 

 212 

AeCRN13 is expressed and proteolytically processed during infection of Medicago 213 

truncatula roots 214 

To investigate the expression of CRN13 from Aphanomyces euteiches (AeCRN13) 215 

during host infection, we performed qRT-PCR analyses on total RNA extracted from growing 216 

saprobe hyphae and infected-Medicago truncatula roots. AeCRN13 gene expression was 217 

detected during saprophytic development and its expression was induced during infection. Its 218 

expression level in roots was similar at early stages of the infection (3 to 6 dpi), whereas an 219 

induction was detected from  6 to 9 days post infection (dpi) (Fig. 1A). Induction of 220 

AeCRN13at 9 dpi corresponds to an infection stage where the entire root cortex is colonized 221 

by an actively growing mycelium [40,41] as observed by the expression of α-tubulin (Fig. 1B) 222 

at 9 dpi. 223 

To detect protein accumulation during root infection, specific AeCRN13 antibodies were 224 

raised against the C-terminal domain of AeCRN13 (AeCRN13Cter) tagged with MBP 225 

(maltose-binding protein) and expressed in Escherichia coli. The serum was purified by 226 

negative adsorption using an unrelated MBP-tagged protein to remove anti-MBP antibodies. 227 

At 3 dpi a 42 kDa band was detected while the predicted size of AeCRN13 is 50.1 kDa (Fig. 228 

1C), suggesting a putative cleavage of a 8kDa fragment. At later stages (6 and 9 dpi) a 229 

supplementary band of 36.6 kDa corresponding to the predicted size of the C-terminal domain 230 

of AeCRN13 was observed, while a 48 kDa form corresponding to the predicted size of 231 

AeCRN13 was detected at 9 dpi. These experiments revealed the existence of a putative two-232 

stage proteolytic processing of AeCRN13 during M. truncatula infection. 233 

 234 
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Figure 2. AeCRN13 accumulates in host cell nuclei where it triggers cell 
size growth and inhibits root development.  
(A) M. truncatula plantlets were transformed with A. rhizogenes to express in 
roots GFP and GFP:AeCRN13Cter constructs under the control of the 
cauliflower mosaic virus 35S promoter. At 13 days after A. rhizogenes 
transformation, epifluorescence large-field imaging of transformed roots (Left 
panel, scale bar: 100µm) and confocal images (Right panel, scale bar: 15 µm) 
reveal the preferential localization of AeCRN13Cter in host nuclei. (B). 
Micrographs of M. truncatula longitudinal cuts of 13 day-old transformed roots 
indicate that AeCRN13Cter causes a disorganization of root cells and the 
formation over-sized cells pointed by white arrows (Left panels, Scale bars: 
20µm) as compared to GFP expressing roots. Entire 30 day-old composite 
plants expressing AeCRN13Cter presented a reduction in root and aerial 
development (Right panels, Scale bar: 1 cm)  (C) Proteins extracts prepared 
from 30 day-old roots and used for immunoblot (anti-GFP antibody) showed the 
presence of the GFP (lane 1) and the GFP:AeCRN13Cter (lane 2) proteins as 
expected size (D-E) Box plot graphics depicting the decrease in the average 
number of roots per plant (D) and lengths of root systems (E) of 30 day-old 
composite plants expressing the GFP:AeCRN13Cter construct. 59 GFP-plants 
(1) and 29 GFP:AeCRN13Cter plants (2) were used for measurements and 
statistics (* p-value<0.05, t-test).  
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Nuclear localization of AeCRN13 worries legume and tobacco cells  237 

To substantiate a role for AeCRN13 during host infection we transformed M. 238 

truncatula roots with the C-terminal domain of the protein consisting of amino acid residues 239 

from 106 to 423. Agrobacterium rhizogenes was used to express a GFP-tagged 240 

35S:AeCRN13Cter construct into M. truncatula roots. Confocal imaging revealed dots of GFP 241 

fluorescence in AeCRN13 expressing roots 13 days after transformation, while a 242 

homogeneous fluorescence along the root tip was detected in the GFP-control samples (Fig. 243 

2A). A higher magnification revealed that the AeCRN13Cter protein localized into the nuclei 244 

of M. truncatula root cells as compared to the GFP-transformed roots in which fluorescence 245 

was detected equally in cytoplasm and nuclei. Within two weeks, enlargement of M. 246 

truncatula cell size was observed upon expression of AeCRN13 (Fig. 2B, left  panel) and a 247 

large number of the plantlets collapsed without generating new roots, in contrast to control 248 

plants. Within three weeks, we noticed a reduction of the development of aerial and root 249 

systems (Fig. 2B, right panel). The production of AeCRN13Cter in transformed roots was 250 

confirmed by immunoblot and a ~69 kDa band was observed corresponding to the predicted 251 

size of the GFP:AeCRN13Cter fusion protein (Fig. 2B). Quantification of the number and 252 

length of new generated roots showed that about 10 roots were generated 30 days post-253 

transformation by control plants with a mean length of 2 cm (n=59), whereas less than 1 root 254 

with a length lower than 1 cm is statistically observed in 35S:GFP-AeCRN13Cter composite 255 

plants (n=29) (Fig. 2C). Collectively, these results indicate that the C-terminal region of 256 

AeCRN13, although devoid of a predicted Nuclear Localization Signal (NLS), is addressed to 257 

the nuclei of Medicago root cells where it has an inhibitory effect on roots development. 258 

When expressed in leaf tissues of N. benthamiana, AeCRN13 induced necrosis at 5 259 

days post inoculation (Fig. 3A). Confocal imaging of infiltrated area at 24 hpi, revealed an 260 

exclusive nuclear localization of GFP:AeCRN13Cter. The observed nuclear localization of the 261 

protein contrasted with the GFP control, which was detected equally in the cytosol and the 262 
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Figure 3. AeCRN13 and BdCRN13 have a cell-death nuclear-dependent 
activity in N. benthamiana  
(A). Cell death symptoms are observed 5 days after Agrobacterium-transient 
expression of AeCRN13Cter in N. benthamiana leaves. Confocal imaging 24h 
after treatment show a nuclear-localization of AeCRN13Cter. The abolishment of 
necrosis was obtained by the addition of a Nuclear-Export Signal (NES) to the 
GFP:AeCRN13Cter construct and is correlated to the preferential localization of 
the fusion protein in the cytoplasm. Necrotic symptoms and nuclear localization 
of AeCRN13Cter were restored when a non-functional mutated version of NES 
(mNES) was used. Upper panels, scale bars: 0.5 cm. Lower panels, scale bars: 
5µm. (B) Cell death symptoms are also observed 5 days after Agrobacterium-
transient expression of BdCRN13Cter in N. benthamiana. Subcellular 
localization of the fusion protein at 24h by confocal imaging reveals a 
preferential nuclear localization of the effector. Macroscopic symptoms on 
tobacco leaves are abolished when the fusion protein is preferentially addressed 
to the cytoplasm thanks to the addition of a NES sequence. The 
GFP:mNES:BdCRN13Cter protein harboring a non-functional NES sequence, is 
preferentially located in the nucleus and trigger necrotic symptoms on leaves. 
Upper panels, scale bar: 0.5 cm. Lower panels, scale bar: 5µm.  
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nucleus (Fig. 3A). To go further and to estimate the importance of nuclear localization in 263 

triggering necrosis, we fused the full C-terminal domain of AeCRN13 to a nuclear export 264 

signal (NES) or its mutated (mNES) counterpart. The constructs were agroinfiltrated in N. 265 

benthamiana leaves. No symptoms were observed on treated leaves even at longer time (>10 266 

days) when a NES was fused to the construct. Confocal imaging revealed the enhancement of 267 

nuclear export of AeCRN13Cter protein since the GFP signal was recovered mostly in the 268 

cytoplasm (Fig. 3A). Immunoblot analysis confirmed the accumulation and stability of the 269 

corresponding proteins from 1 to 3 days post inoculation (Fig. S1A). By contrast the addition 270 

of a mutated (inactive) NES domain restored the nuclear accumulation of the C-terminus of 271 

AeCRN13, as inferred by confocal observations, as well as its cell death effect. Taken 272 

together, these results show that nuclear localization is required for AeCRN13 to trigger 273 

necrosis in N. benthamiana.  274 

 275 

BdCRN13 is nuclear-localized and induces necrosis in tobacco cells 276 

Orthologous genes to AeCRN13 were recently reported in the amphibian pathogen B. 277 

dendrobatidis raising the intriguing question of the origin of these sequences in a distantly 278 

related fungus and their role in animal pathogenesis [7]. A BdCRN13 sequence was amplified 279 

from the Bd genome (strain JEL 423) and transiently expressed as a GFP fusion protein in N. 280 

benthamiana. As observed with AeCRN13Cter, cell-death was detected 5 days after 281 

agroinfiltration (Fig. 3B), indicating that cell-death inducing activity is conserved among 282 

oomycete and chytrid CRN13 C-terminal domains. Subcellular localization assay shows that 283 

GFP fluorescence of BdCRN13 is mostly detected in the nuclei of epidermal cells (Fig. 3B). 284 

To correlate this preferential nuclear localization with BdCRN13 activity, we fused the full C-285 

terminal domain of the effector to a nuclear export signal (NES) or its mutated counterpart 286 

(mNES). No symptoms were observed on agroinfiltrated leaves even at longer times (>10 287 

days) with the NES construct, in contrast to areas treated with the mNES construct (Fig. 3B). 288 
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Figure 4. BdCRN13Cter and AeCRN13Cter are nuclear localized in Xenopus 
laevis and affect embryos development.  
(A) Confocal images of hemisections of embryos fixed at stage 7 and stained with 
SytoxOrange, show nuclear localization of GFP:BdCRN13Cter and 
GFP:AeCRN13Cter fusion proteins. Upper panel: overlay of bright field and 
SytoxOrange fluorescence, middle panel: GFP fluorescence, lower panel: merged 
signals. Scale bar: 100µm. (B) Bright field images of stage 7 embryos. Delay in cell 
division evidenced by larger cell size (arrows) is observed in embryos injected with 
GFP:BdCRN13Cter or GFP:AeCRN13Cter mRNA. Scale bars: 500µm. (C) 
Immunoblot performed with anti-GFP antibodies show the stability of the different 
fusion proteins in Xenopus embryos. (D) Measurements of the cell surface of stage 7 
embryo (n=30 embryos/condition). Statistical analyses reveal the larger size of the 
animal blastomeres from embryos injected with GFP:BdCRN13Cter or 
GFP:AeCRN13Cter mRNAs (* indicates a statistical difference between cell surface 
means of Non injected and GFP injected controls and either AeCRN13Cter or 
BdCRN13Cter injected embryos; p-value<0.05 ).  1: non injected, 2: GFP, 3: 
GFP:BdCRN13Cter, 4: GFP:AeCRN13Cter.  
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Immunoblots confirmed the accumulation of the corresponding fusion protein (Fig. S1B). 289 

This suggests that necrotic activity of BdCRN13 is induced by its presence in the plant 290 

nucleus, despite not having the same nuclear accumulation pattern as AeCRN13. Together 291 

these data strongly support the view that C-termini domain of CRN13s from plant and animal 292 

pathogens display a conserved mode of action. 293 

 294 

Expression of BdCRN13 and AeCRN13 in Xenopus laevis embryo triggers aberrant 295 

development  296 

Based on the conserved effect of the C-ter domain of Ae and Bd CRN13 in plants, we 297 

tested whether they both have the same activity in amphibian cells. We benefited from the 298 

African clawed frog Xenopus laevis embryos expression assay. Xenopus embryos undergo 299 

time-regulated synchronized cell divisions during the first 3 hours of development and 300 

therefore are a useful in vivo model system for studying cell division. GFP:BdCRN13Cter and 301 

GFP:AeCRN13Cter constructs were cloned into the pCS2 vector and in vitro transcribed. 302 

GFP control mRNA was obtained from pCS2-GFP vector. To test the function of both CRNs, 303 

one cell of a 2-cell stage embryos were microinjected with either GFP, GFP:BdCRN13Cter or 304 

GFP:AeCRN13Cter mRNAs and effect on cell divisions observed at blastula stages. 305 

Subcellular localization of the GFP-tagged proteins was conducted on hemisections of 306 

injected embryos after staining of nucleic material with Sytox-Orange dye. Cells expressing 307 

the GFP alone displayed fluorescence preferentially in the cytoplasm, whereas a green 308 

fluorescent signal was also found to co-localized with the red fluorescence of Sytox-Orange 309 

for the GFP:BdCRN13Cter or GFP:AeCRN13Cter constructs (Fig. 4A), showing that both 310 

proteins were nuclear localized in Xenopus embryos. The pattern of cell division of GFP-311 

injected embryos behaved similarly to the uninjected embryos pattern, where blastomeres 312 

dividing normally gave smaller blastomeres at each round of division, leading to a typical 313 

stage 7 blastula (4 h post fertilization) as described in the normal table of Xenopus laevis [42] 314 
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with DFA and DDC subdomains.  
(A) Schematic representation of GFP-tagged C-terminal deletions of AeCRN13 under the 
control of 35S promoter expressed with A. tumefaciens in N. benthamiana leaves. (B) A 
typical infiltrated leave observed at 5 days post inoculation shows cell-death symptom only 
in the area treated with the full length version of AeCRN13Cter. (C) Western blot analysis 
using anti-GFP antibody reveals the accumulation of GFP:AeCRN13Cter (69,5kDa, lane 
1), GFP:AeCRN13Cter∆DFA (39,3kDa, lane 2),GFP:AeCRN13Cter∆DDC (46,7 kDa, lane 
3) and GFP:AeCRN13Cter∆HNH (57,7kDa, lane4) fusion proteins 24 hours after 
agroinfiltration. (D) Confocal images of epidermal cells showing the exclusive nuclear 
localization of the full length version of AeCRN13Cter, while the DDC-mutated version 
presented a nucleocytoplasmic localization and the DFA-affected versions are preferentially 
detected in the cytoplasm (i,e deletion of DFA subdomain or deletion of the HNH-like 
motif). 1: AeCRN13Cter full length, 2: GFP:AeCRN13CterΔDFA, 3: 
GFP:AeCRN13CterΔDDC, 4: GFP:AeCRN13CterΔHNH. Upper panels: GFP fluorescence 
in several cells of a leaf zone. Scale bars: 20µm. Lower panels: focus on one representative 
cell. Scale bars: 5µm.  

AeCRN13 

ΔDFA 

ΔHNH 

ΔDDC 

GFP 

AeCRN13 ΔDFA ΔHNH ΔDDC GFP 

AeCRN13 ΔDFA ΔHNH ΔDDC GFP 



68 
 

(Fig. 4B). In contrast, a cell division delay was observed in GFP:BdCRN13Cter or 315 

GFP:AeCRN13Cter mRNA-injected embryos leading at stage 7 to an accumulation of 316 

abnormally large blastomeres (Fig. 4B, lower panel). On later stages, most of these abnormal 317 

blastomeres kept developmental delay where cell divisions were not achieved, leading to 318 

larger or giant cells (Fig. S2). Evaluation of the average cell surface in injected embryos 319 

(n=30 embryos) showed that for GFP:BdCRN13Cter or GFP:AeCRN13Cter mRNA-injected 320 

embryos, cells were statistically larger than the non-injected or GFP-injected embryo cells 321 

(Fig. 4D). This result suggests that CRN13 accumulation interfere with cell divisions leading 322 

to a progressive accumulation of undivided and larger blastomeres.  323 

 324 

A conserved HNH-like motif is required for nuclear localization of AeCRN13 325 

A functional domain search on C-ter of BdCRN13 and AeCRN13using the PFAM 326 

database revealed a weak match with a HNH motif (PF13391), hereafter designed as HNH-327 

like motif. Initially found in bacterial proteins, this motif corresponds to a small nucleic acid 328 

binding and cleavage module widespread in metal finger endonucleases in all life kingdoms 329 

[43]. In CRN13s from A. euteiches, Phytophthora sp. and Bd the HNH-like motif is localized 330 

in a highly conserved region at the C-ter of the DFA subdomain (Fig. S3). In order to define 331 

whether this motif plays a role in CRN13 function, DFA, DDC and HNH-like deletion 332 

mutants of AeCRN13Cter were generated (Fig. 5A) and tested by transient expression in N. 333 

benthamiana leaves. None of the mutants were able to trigger cell death (10 dpi, Fig. 5B). 334 

Specific bands corresponding to the expected protein sizes were detected in all samples 335 

indicating the stability of the different fusion proteins, although we noticed a weaker 336 

accumulation of the DFA deleted version of AeCRN13Cter (Fig. 5C, lane 2). Removal of the 337 

DFA domain encompassing the HNH-like motif led to a GFP signal detected exclusively in 338 

the cytoplasm indicating that nuclear import and retention of the protein in the nucleus was 339 

impaired. In contrast GFP:AeCRN13Cter∆DDC fusion protein , displayed a nucleo-340 



Donor Acceptor τ (a) sem (b) N (c) E (d) 

(e) p-
value 

GFP - 2.246 0.036 20 - - 

GFP 
Sytox 

Orange 2.210 0.044 18 1.6 0,52 
GFP-H2B - 2.465 0,017 40 - - 

GFP-H2B 
Sytox 

Orange 1.852 0.047 43 24.8 2,31E-19 
GFP-AeCRN13Cter - 2.154 0.024 36 - - 

GFP-AeCRN13Cter 
Sytox 

Orange 1.655 0.048 35 23 9,58E-14 

GFP-AeCRN13Cter 

Sytox 
Orange    
(RNase 

treatment
) 

1.749 0.033 32 19 8,25E-15 

GFP-BdCRN13Cter - 2.196 0.048 37 - - 

GFP-BdCRN13Cter 
Sytox 

Orange 1.915 0.037 30 12.8 3,26E-05 

GFP-BdCRN13Cter 

Sytox 
Orange 
(RNase 

treatment
) 

1.963 0.041 32 10.6 5,50E-04 

 t : mean lifetime in nanoseconds (ns). For each nucleus, average fluorescence decay 
profiles were plotted and lifetimes were estimated by fitting data with exponential 
function using a non-linear least-squares estimation procedure. (b) s.e.m.: standard error 
of the mean. (c) N: total number of measured nuclei. (d) E: FRET efficiency in % : E=1-
(tDA/tD). (e) p-value (Student’s t test) of the difference between the donor lifetimes in 
the presence or absence of acceptor. 

Table 1. FRET-FLIM measurements showing that AeCRN13Cter and BdCRN13Cter 
interact with nuclear DNA in planta 
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cytoplasmic localization similar to the GFP control (Fig. 5D) thus, DFA full domain enters the 341 

nucleus but does not maintained in it. The GFP-AeCRN13Cter∆HNH was also localized 342 

exclusively in the cytoplasm. These results suggest that the HNH-like motif and the DDC 343 

domain are likely required for AeCRN13 nuclear localization.   344 

 345 

AeCRN13 and BdCRN13 bind DNA in vitro and in planta 346 

The identification of the HNH-like motif and the requirement of this sequence for 347 

CRN13s nuclear localization prompted us to check whether these proteins could interact with 348 

DNA. Protein variants were produced in E. coli and purified to perform in vitro double-strand 349 

DNA binding assays. The C-ter domains of AeCRN13 and BdCRN13, but not AeCRN13 350 

deleted of the HNH-like motif, bound to dsDNA-beads (Fig. 6). To confirm that interaction 351 

between CRN13 C-ter and dsDNA occurs in vivo, we set up a fluorescence resonance energy 352 

transfer (FRET) assay coupled with fluorescence lifetime imaging microscopy (FLIM) in N. 353 

benthamiana cells. GFP-tagged Cter domains of both CRN13s were transiently expressed in 354 

N. benthamiana epidermal cells by agroinfiltration and plant nucleic acids were stained with 355 

SytoxOrange. SytoxOrange in combination with GFP is suitable for FRET-FLIM due to 356 

considerable overlap of the acceptor absorption and donor emission spectra [44]. The 357 

occurrence of FRET, causing the fluorescence lifetime of the donor GFP to decrease in these 358 

conditions, would only be due to the proximity (less than 10 nm) of GFP to SytoxOrange. 359 

Energy transfer was detected by fluorescence lifetime imaging microscopy (FLIM). As a 360 

positive DNA-binding and FRET control between GFP and Sytox Orange we used N. 361 

benthamiana leaves expressing a GFP-tagged histone H2B (GFP-H2B) construct. As shown 362 

in table 1 the average fluorescence lifetime of GFP and SytoxOrange was 2.20 nsec. In the 363 

absence of SytoxOrange the lifetime of GFP:H2B is 2.4651± 0.017 nsec whereas its lifetime 364 

decreased to 1.852± 0.047 4 nsec in the presence of the dye, indicating that FRET occurred as 365 

expected from the binding of the histone H2B to nucleic acid. Regarding AeCRN13Cter 366 
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Figure 6. AeCRN13Cter and BdCRN13Cter bind DNA in vitro thanks to a 
HNH-like motif. Approximately 35 ng of purified recombinant proteins (1: 
MBP:AeCRN13Cter; 2: MBP:BdCRN13Cter, 3: MBP:AeCRN13CterDHNH) 
were incubated 20 minutes at room temperature with beads coupled to double 
strand DNA (dsDNA) before centrifugation. Immunoblot using anti-MBP 
antibodies showed the presence of AeCRN13Cter and BdCRN13Cter in the 
fraction in association with dsDNA. In the absence of the HNH-like motif, 
AeCRN13Cter does not bind to dsDNA. I: input protein fraction, UB: unbound, 
DNA protein fraction. B: bound-DNA protein fraction.  

Figure 7. H2AX histone (gH2AX) phosphorylation is induced by 
AeCRN13Cter and during infection 
(A) Tobacco leaves were agroinfiltrated with GFP (1) GFP:AeCRN13Cter (2) 
GFP:BdCRN13Cter (3) GFP:AeCRN13CterΔDDC (4) constructs and status of 
histone H2AX phosphorylation was compared using western blotting. 
Pronounced phosphorylation was observed in leaves cells expressing 
AeCRN13Cter or BdCRN13Cter two days after treatment with an emphasis at 
three days, while the deleted DDC version of AeCRN13Cter and the GFP 
control failed to induce phosphorylation modification. Bleomycin was used to 
induce DNA damage as a control and cells challenged with the chemical agent 
display H2AX phosphorylation within 2 hours after treatment. (B) H2AX 
phosphorylation is detected by western-blot in roots of M. truncatula infected 
by A. euteiches from 3 to 6 days post infection (dpi).   
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construct, the lifetime of GFP:AeCRN13Cter was 2.1542 ±0.024 nsec in the absence of 367 

SytoxOrange and decreased significantly to 1.655 ± 0.048 nsec in presence of the dye, a value 368 

similar to the one observed with the GFP:H2B positive control. A similar decrease was 369 

observed in the GFP life-time in samples expressing the BdCRN13Cter construct. These 370 

results indicated an energy transfer and therefore the binding of CRN13s to nucleic acids. 371 

While the Sytox Orange dye is not specific for either DNA or RNA [44,45] leaf samples were 372 

treated with RNase A to digest RNA before performing the experiment. After RNase 373 

treatment the lifetime of CRN13s GFP-tagged proteins remained unchanged as compared to 374 

the GFP-H2B control (Table 1). Hence the decrease of the fluorescence lifetime of CRNs-375 

GFP-tagged proteins in the presence of SytoxOrange was only DNA-dependent and indicates 376 

that both CRN13s bind nuclear DNA in vivo. 377 

 378 

CRN13s induce nuclear DNA damage  379 

Because of the observed phenotype on plant and animal cells upon CRN13 Cterminus 380 

expression and DNA-binding capacity through a HNH-like motif, the putative DNA-damage 381 

inducing activity of CRN13s was tested. A typical marker to examine DNA damage upon 382 

genotoxic stress is the phosphorylation of the histone H2AX, namely γH2AX [46]. Using a 383 

monoclonal antibody specific for γH2AX, we detected H2AX phosphorylation in 384 

agroinfiltrated N. benthamiana leaves expressing AeCRN13Cter or BdCNR13Cter 24h after 385 

treatment meaning before the apparition of cell-death symptoms (Fig. 7A). In contrast the 386 

deleted version of AeCRN13 corresponding to the DFA subdomain and the GFP control are 387 

not able to induce H2AX phosphorylation, suggesting that the full length of the C-terminus of 388 

AeCRN13is required. When control leaves were treated with the DNA-damaging agent 389 

bleomycin (BLM) a strong and early H2AX phosphorylation was detected. Since these results 390 

suggest that A. euteiches can produce DNA damaging effectors during pathogenesis, the 391 

phosphorylation status of H2AX was checked during infection of M. truncatula roots upon A. 392 



71 
 

euteiches infection. As shown by western-blot analysis H2AX phosphorylation is observed at 393 

the early stage of M. truncatula roots infection (Fig. 7B) strongly suggesting that A. euteiches 394 

triggers DNA damage during host colonization.  395 

 396 

 397 

 398 

 399 

 400 

  401 
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Discussion 402 

 403 

In this study we concentrated on discovering the mode of action of eukaryotic 404 

effectors by working on CRN13 intracellular effector from two unrelated filamentous 405 

pathogenic microorganisms. Up to now, CRN13s were only predicted in the phytopathogenic 406 

oomycetes Phytophthora sp. and A. euteiches and in the genome of the pathogen of 407 

amphibians B. dendrobatidis (Bd). We show that AeCRN13 is expressed during infection of 408 

roots of legumes by A. euteiches. AeCRN13 C-ter domain and its ortholog from Bd triggered 409 

tobacco leaf cell death and restricted root development of M. truncatula. CRN13s cytotoxic 410 

activity in plant cells relied on the nuclear localization of the effectors. Animal cells 411 

expressing either AeCRN13 or BdCRN13 at the nuclear level from early Xenopus embryos 412 

showed aberrant development with an enhancement of cell size. A putative HNH-like motif 413 

reported in bacterial endonuclease was predicted in both effectors. This motif was required for 414 

AeCRN13 retention in the nucleus of tobacco cells. Both CRN13s exhibited dsDNA-binding 415 

affinity in vitro thanks to the HNH-like motif. The interaction of effectors with DNA was 416 

unambiguously confirmed by FRET/FLIM assays on tobacco cells. Both CRN13s induced 417 

phoshorylation of H2AX histone in tobacco leaves, indicating that the effectors trigger plant 418 

DNA damage. Infection of host legumes roots by A. euteiches was accompanied by 419 

phosphorylation of H2AX histone. Altogether these data reveal a new mode of action for 420 

intracellular eukaryotic effectors in which host nuclear DNA is the central target. Indeed we 421 

provide the first evidence that unrelated filamentous pathogens shared similar effector family 422 

able to bind DNA and trigger host DNA damage.  423 

Our first results showed that a CRN13 gene is expressed by A. euteiches during 424 

infection of M. truncatula roots and the use of CRN13 antibodies revealed a partial processing 425 

of the protein suggesting that the translocation signal of CRN is probably cleaved during the 426 

translocation process. This result is reminiscent with the proteolytic cleavage occurring during 427 
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the translocation of Plasmodium effectors. The N-terminus export element (PEXEL; 428 

RxLxE/Q/D) of effectors is cleaved at the parasite endoplasmic reticulum by protease 429 

plasmepsin V and is required for export V [47]. However, translocation mechanism mediated 430 

by the N-terminus targeting signal of CRN is still unknown. 431 

Despite the absence of a predicted Nuclear Localization Signals (NLS), AeCRN13 and 432 

BdCRN13 are addressed to the nucleus when heterogously expressed in plant or animal cells. 433 

This data indicates that CRN13s C-terminus drives nuclear localization and contains an 434 

atypical NLS not detected by available prediction programs, and/or are able to subvert 435 

conserved nuclear translocation machinery to promote the efficient import of the effector into 436 

nucleus. This result is consistent with previous analyses on CRNs from P. infestans and P. 437 

capsici showing that all CRNs are nuclear localized when expressed in N. benthamiana 438 

tissues, despite that only some CRNs harbor a predicted NLS [26,29]. The nuclear localization 439 

of NLS-containing CRNs required host importin-α factor [26], however its function in the 440 

transport of CRNs devoided of a NLS remains to be demonstrated. 441 

CRN13s from A. euteiches and Bd induced similar phenotypes in plant and animal 442 

tissues, and this activity is dependent of their nuclear localization. Overexpression of CRN13s 443 

led to an inhibition of root development in M. truncatula, to cell-death symptoms on tobacco 444 

leaves and to an enhancement of cell size due probably to an arrest of cell division in Xenopus 445 

embryos. These results corroborate observations made during roots infection of legumes by A. 446 

euteiches, where susceptible accessions harbor few days after infection a decrease of 447 

secondary root development and necrosis of roots [40]. Similarly recent studies show that Bd 448 

produced compounds that can impair amphibian lymphocyte proliferation to evade host 449 

immunity [48]. While some data suggests that these compounds are not proteins, it should be 450 

interesting to evaluate the contribution of BdCRNs in this process [48]. 451 

AeCRN13 and BdCRN13 show a divergent N-terminal targeting motif but conserved 452 

C-terminus organization consisting of two subdomains association (DFA-DDC). In silico 453 
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analysis lead us to predict a putative HNH motif (PF13391) in the DFA subdomain of both 454 

CRN13s. HNH stands for the three most conserved histidine and asparagine residues located 455 

within the catalytic site [43]. These residues are found in all the CRN13 sequences analyzed. 456 

Less common in eukaryotes, the motif allows DNA-binding and nuclease activities of a large 457 

array of prokaryotic enzymes like the colicin E7 toxin from E. coli and play important role in 458 

many cellular processes including immunity [49-51]. Deletion analysis shows that the HNH-459 

like motif in combination with the DDC domain contribute to CRNs nuclear localization in 460 

Nicotiana. Thus, CRN13s appear to have a modular organization in which specific 461 

subdomains are required for nuclear localization.  462 

We discovered that AeCRN13 and BdCRN13 bind dsDNA in vitro and that this 463 

capacity is linked to the presence of the HNH-like motif in the DFA subdomain. Although 464 

preliminary experiments with recombinant proteins did not allow the detection of a nuclease 465 

activity for CRN13 proteins in standard conditions, this possibility cannot be excluded. By 466 

setting FRET/FLIM measurements to evaluate protein/DNA interactions in leaves samples, 467 

we revealed DNA-binding capacity of CRN13s in vivo. These data show unambiguously for 468 

the first time that filamentous eukaryotic effectors interact with nuclear DNA. While it is 469 

known that the nucleus is a key cellular compartment for expression of immune responses and 470 

is a target of many microbial effectors [9] [52], up to now direct interaction between effector 471 

and host DNA has been reported only for transcriptional activator-like (TAL) bacterial 472 

effectors of Xanthomonas sp. and Ralstonia sp. [33,53]. Only protein/protein interactions at 473 

the nuclear level have been reported for eukaryotic filamentous organisms. In oomycetes, the 474 

RxLR Pi03192 effector from P. infestans interact with two NAC transcription factors to 475 

prevent them from being released from the ER to enter the nucleus where they limit disease 476 

progression [16]. The interaction and stabilization of the U-box E3ligase CMPG1, required 477 

for cell death, by Avr3a from P. infestans occurs in the nucleolus of plant cell [54]. In 478 

addition, the RxLR44 from H. arabidospis interact with the mediator complex RD19a to 479 
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enhance its degradation and Arabidopsis susceptibility [18]. Rust transferred protein 1 480 

(RTP1p) from the bean rust fungus Uromyces fabae is the only effector from a pathogenic 481 

fungus for which a nuclear localization has been described to date but its plant target is still 482 

unknown [55]. Here we propose that the CRN-DNA interaction occurs on unspecific nucleic 483 

sequences or highly conserved in plant and animals cells, since BdCRN13 binding is effective 484 

in N. benthamiana. Future work will aim to identify DNA regions targeted by both effectors.  485 

Although nuclease activity of recombinant CRN13s effectors was not detected in 486 

standard in vitro condition, the presence of a HNH-like motif leads us to hypothesize that 487 

binding of CRN13s to host DNA may trigger nucleic damage. This effect was studied by 488 

following  the phosphorylation of H2AX histone (γH2AX), which is recognized as a solid 489 

marker of double strand DNA break (DSB) in plant and animal cells [46]. In N. benthamiana 490 

cells expressing CRN13s and in Medicago roots infected with A. euteiches, γH2AX 491 

accumulation was observed revealing that CRN13s and A. euteiches infection induced DSB. 492 

While DNA damage have been well characterized with regard to bacterial toxins upon 493 

infection of animal tissues [56,57], this effect has not been reported in the case of plant 494 

pathogen interactions. In plants, DSB due to environmental stresses or chemicals agent, have 495 

extreme detrimental effects on plant growth with particularly severe effects on actively 496 

dividing cells [58,59]. In animal systems, bacterial genotoxins leads to cell cycle arrest and 497 

eventually apoptosis [60]. Due to the observed expansion of plant and Xenopus cells size and 498 

cell-death symptoms upon CRN13 expression, we propose that genotoxic activity of CRNs 499 

impacts host cell cycle. Therefore the presence of effectors capable of causing DNA damage 500 

may constitute a predisposing factor for host colonization.  501 

 502 

Taken together, this work provides first evidences that eukaryotic filamentous 503 

pathogens express similar DNA-binding proteins able to trigger host DNA damage. 504 

Additionally, our data show that unrelated plant and animal pathogens deployed a common 505 



76 
 

repertoire of effector with conserved mode of action. This raises the question of the origin and 506 

evolution of these genes and their implication on the emergence of new pathogenic species. 507 

 508 

Materials and Methods 509 

 510 

Plant material, microbial strains, and growth conditions  511 

M. truncatula F83005.5 seeds were scarified, sterilized and in vitro-cultured and transformed 512 

as previously described [40,61]. Roots infection using A. euteiches (ATCC 201684) zoospore 513 

inoculum was performed as [41]. N. benthamiana plants were grown from seeds in growth 514 

chambers at 70% of humidity with a 16h/8h dark at 24/ 20°C regime. All E.coli strains 515 

(DH5α, DB3.5 and BL21AI), A. tumefaciens (GV310::pMP90RK) and A. rhizogenes (ArquaI) 516 

strains were grown on LB medium with the appropriate antibiotics.  517 

 518 

RNA extraction and qRT-PCR  519 

Samples were ground on liquid nitrogen and total RNA extracted using the RNAeasy kit 520 

(Qiagen). Reverse transcription was performed on 1µg of total RNA using the 521 

AppliedBiosystems kit (Life Technologies-Invitrogen). cDNAs were diluted 50- fold for 522 

qPCR reaction. Each qPCR reaction was performed on a final volume of 10µl corresponding 523 

to 8 µl of PCR mix (0.5µM of each primer and 5µl SYBRGreen, Applied Biosystems) and 524 

2µl of the diluted cDNA and was conducted on a ABI Prims SDS 7900 HT (Applied 525 

Biosystems, Foster City, CA, USA) device using the following conditions: 5min at 95°C, 526 

followed by 45 cycles of 15 s at 95°C and 1min at 60°C. Dissociation curves were obtained by 527 

applying a 15s 95°C, 15s 95°C and 15s 95°C cycle. Each reaction was conducted on 528 

triplicates for cDNAs of four biological replicates. Primers F: 5’-529 

TTATTGCTGTGCCAAATCAG-3’ and R: 5’- GATATTGTATCTTGCGGTGAC-3’ were 530 

used for the detection of AeCRN13 (Ae_9AL5664,  http://www.polebio.scsv.ups-531 
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tlse.fr/aphano/, [62]). Primers F: 5’-TGTCGACCCACTCCTTGTTG-3’ and R: 5’-532 

TCGTGAGGGACGAGATGACT-3’ were used to assess the expression of A. euteiches’s α-533 

tubulin coding gene (Ae_22AL7226) and normalize AeCRN13 expression. The histone 3-like 534 

of M. truncatula, previously described [63], was used to normalize microorganism abundance 535 

during infection. Relative expression of AeCRN13 and α-tubulin genes were calculated using 536 

the 2-∆∆Cq method described in  [64]. 537 

 538 

Construction of plasmid vectors and Agrobacterium-mediated transformation  539 

All primers used for the generation of the CRN constructs are listed in Supplementary Tab. 540 

T1. BdCRN13Cter was generated by PCR from genomic DNA of B. dendrobatidis JAM81 541 

(kindly provided by Jason Stajich, University of California, Riverside, USA) using primers 542 

attB1_BdCRN13-F and attB2_BdCRN13-R. Unless noticed otherwise, cDNA clone 543 

corresponding to the unigene Ae_9AL5664 (vector pSport_AeCRN13 [62]) was used as 544 

template for the generation of C-terminal domain versions of AeCRN13. Gateway technology 545 

in combination with pDONR-Zeo (Invitrogen) and pK7WGF2 vectors 546 

(http://gateway.psb.ugent.be/) were used for cloning steps. AeCRN13Cter carrying Gateway 547 

adaptators was generated by PCR using primers attB1_AeCRN13-F and attB2_AeCRN13-R. 548 

AeCRN13CterΔDDC and AeCRN13CterΔDFA carrying the Gateway sequences were 549 

amplified with primers set attB1_AeCRN13-F and attB2_DFAend-R and with primers set 550 

attB1_AeCRN13_DDC-F and AttB2_AeCRN13-R, respectively. A three-step PCR strategy 551 

was used to generate the GFP:AeCRN13CterΔHNH construct. Briefly, the amplicon 552 

corresponding to the DFA subdomain deleted of the HNH-like motif (106aa-281aa) was 553 

mixed with the amplicon corresponding to the DDC subdomain (338aa-423aa) and used as a 554 

template for PCR with attB1_AeCRN13-F and attB2_AeCRN13-R primers. Amplicons were 555 

BP recombined (Invitrogen) into pDONR-Zeo vector. NES sequence (LQLPPLERLTL) and 556 

non-functional mutated NES sequence (mNES: LQAPPAERATL) were added to the 557 
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Nterminal moiety of AeCRN13Cter and BdCRN13Cter by PCR [26]. Amplicons were 558 

introduced in pENTR/ D-TOPO vector by means of TOPO cloning (Invitrogen) and then 559 

transferred to pK7GWF2 vector. Vector pBI121:H2B:YFP [65] was used as template to 560 

amplify the histone2B from A.thaliana and the amplicon was clone into pENTR/ D-TOPO 561 

vector and transferred into pK7WGF2 to obtain GFP:H2B fusion construct. Generation of M. 562 

truncatula composite plants was performed as described by [61] using ARQUA-1 A. 563 

rhizogenes strain. For leaves infiltration, GV3101 A. tumefaciens transformed strains were 564 

syringe-infiltrated at OD600 = 0.3 on 3-4 week-old N. benthamiana as described by [66]. 565 

 566 

MBP-tagged CRN recombinant proteins 567 

AeCRN13Cter, AeCRN13Cter ∆HNH and BdCRN13Cter inserts cloned in pDONR-Zeo 568 

entry vector were transferred in pHMWGA [67] expression vector by LR recombination 569 

(Invitrogen).   570 

Constructs carrying the MBP:AeCRN13Cter, MBP:AeCRN13Cter∆HNH and  fusions were 571 

introduced in E.coli BL21-AI (Invitrogen) for protein production as recommended by the 572 

provider. Purification of the proteins was performed by affinity chromatography using 573 

amylose resin (BioLabs England). 574 

 575 

Anti-AeCRN13 antibodies generation and purification 576 

Polyclonal antibodies against the C-terminal domain of AeCRN13 were raised in rabbits 577 

(ProteoGenix, France) by injecting the purified recombinant protein MBP:AeCRN13Cter. 578 

Sera were purified by negative adsorption against recombinant MBP:AeCRN5Cter protein 579 

(Gaulin, data unpublished)  adsorbed onto an amylose column  resin and used at a dilution of 580 

1:1000 relative to initial sera for western-blots.  581 

 582 

 583 
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Immunoblot analysis  584 

Infected M. truncatula roots or roots from M. truncatula composite plants were frozen in 585 

liquid nitrogen and ground in 50mM NaP, 0.1% (v/v) triton, 10mM β-mercaptoethanol and 1x 586 

complete protease inhibitor cocktail (Roche). Supernatants were separated by SDS-PAGE and 587 

electroblotted to nitrocellulose membranes (Amersham BioSciences). AeCRN13 was detected 588 

using anti-AeCRN13 purified antibodies and anti-rabbit secondary antibodies coupled to 589 

alkaline phosphatase (Sigma-Aldrich) and revealed using CDPstar chemioluminescence kit 590 

(Roche).  N. benthamiana protein analyses were performed as described by 6 using a primary 591 

rabbit anti-GFP polyclonal antibodies (1:2000, Clontech).  592 

For γH2AX experiments, N.benthamiana agroinfiltrated leaves and M. truncatula infected 593 

roots were harvested at different time in liquid nitrogen and grounded in modified Rippa 594 

buffer v/v (TrisHCl 50mM, NP-40 1%, NaCl  250mM, SDS 0.1%, EDTA 2mM, DOC 1%, 595 

Protease inhibitors 1X (Complete Protease Inhibitors, Roche), orthovanadate 10mM, PMSF 596 

1mM (Sigma-aldrich) using 23G needles (0.6mm diameter). Samples were then treated with 597 

1µl of Benzonase (Sigma-aldrich, 250U/µl) for 30 min on ice, centrifuged for 20 min at 13000 598 

rpm at 4 °C and supernatants were dosed and used for western blot. Approximately 30 µg of 599 

total protein extracts were loaded on 12% polyacrylamide gels, transferred on nitrocellulose 600 

membrane, blocked in TBS Tween 0.1% BSA 2% for 2 hours and incubated overnight at 4°C 601 

with monoclonal antibody γH2AX (ser139) (Cell Signaling Technology) diluted at 1/1000 in 602 

TBS-T-BSA2%. After washing steps in TBS Tween 0.05%, blots were incubated with anti-603 

rabbit secondary antibodies coupled to alkaline phosphatase (Sigma-Aldrich) diluted in TBS-604 

T-BSA2% at 1/2000 for 1 hour, washed and then revealed with NBT/BCIP substrate.  605 

 606 

In vitro DNA-binding assays 607 

Beads coupled to calf thymus double-stranded (ds) DNA (Sigma-Aldrich) were suspended in 608 

KHN buffer [68] (whose pH was modified and fixed at 7). 35ng of MBP:AeCRN13Cter, 609 
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MBP:AeCRN13Cter∆HNH and MBP:BdCRN13Cter recombinant proteins  were incubated in 610 

400µL of dsDNA beads for 20 min at room temperature (23°C-25°C) under moderate 611 

rotation. Beads were centrifuged at 10000xg during 10 min. The first supernatant was retained 612 

as the not bound fraction. This fraction (≈ 400µL) was concentrated using Vivaspin 500 613 

column (cut-off 10kDa) for analysis. Beads were washed 4 times with 800µL of KHN buffer. 614 

Proteins bound to DNA were eluted by adding 50µl of 2X Laemmli buffer and heating at 615 

95°C for 10 min. Proteins were analysed by immunoblotting using monoclonal anti-MBP 616 

antibodies. 617 

 618 

Preparation of N. benthamiana epidermal leaves for FRET / FLIM experiments  619 

Discs of agroinfiltrated N. benthamiana leaves were fixed 24 hours after treatment by vacuum 620 

infiltrating a TBS (TRIS 25mM, NaCl 140 mM, KCl 3 mM) 4 % (w/v) paraformaldehyde 621 

solution before incubation 20 min at 4°C. Samples were permeabilize 10 min at 37°C using a 622 

TBS buffer supplemented with 20µg/ml of proteinase K (Invitrogen). Nucleic acid staining 623 

was performed by vaccum-infiltrating a 5µM of Sytox Orange (Invitrogen) solution and 624 

before incubating samples 30 min at room temperature. When RNAse treatment was 625 

performed, foliar discs were incubated 15 min at room temperature with 0.5µg/ml of RNAse 626 

A (Roche) before nucleic acid staining. Foliar discs were washed with and mounted on TBS 627 

before observations on an inverted microscope (Eclipse TE2000E, Nikon, Japan).  628 

 629 

Confocal microscopy 630 

Scanning was performed on a Leica TCS SP2 DMRXA2 confocal microscope. Excitation 631 

wavelengths were 488 nm (GFP) and 543nm (SytoxOrange). Images were acquired with a 632 

40x water immersion lens, or a 20x water immersion lens for embryo X. laevis hemisections, 633 

and correspond to Z projections of scanned tissues. All confocal images were analyzed and 634 

treated using the Image J software.  635 
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 636 

Cytological observations of transformed roots 637 

Roots of composite plants expressing transgene constructs were sampled 30 days after 638 

transformation and fixed in 2% (v/v) paraformaldehyde in 50mM sodium cacodylate buffer, 639 

pH 7. Fixed roots were dehydrated in a graded ethanol series and embedded in LRW resin 640 

(London Resin Company Limited) also in a graded manner. Polymerisation was performed 641 

over-night at 60°C. Longitudinal sections (1µm) were performed with an Ultracut microtom 642 

(Reichert-Jung), placed on multi-well slide and stained with 0.05% (w/v) toluidine bleu in 643 

2.5% (w/v) CaCO3 buffer, pH 11, during 2 minutes at 60°C  followed by a water wash. 644 

 645 

FRET / FLIM measurements  646 

Fluorescence lifetime measurements were performed in time domain using a streak camera 647 

[69]. The light source is a mode-locked Ti:sapphire laser (Tsunami, model 3941, Spectra-648 

Physics, USA) pumped by a 10W diode laser (Millennia Pro, Spectra-Physics) and delivering 649 

ultrafast femtosecond pulses of light with a fundamental frequency of 80MHz. A pulse picker 650 

(model 3980, Spectra-Physics) is used to reduce the repetition rate to 2MHz to satisfy the 651 

requirements of the triggering unit (working at 2MHz). The experiments were carried out at λ 652 

= 820 nm (multiphoton excitation mode). All images were acquired with a 60x oil immersion 653 

lens (plan APO 1.4 N.A., IR) mounted on an inverted microscope (Eclipse TE2000E, Nikon, 654 

Japan). The fluorescence emission is directed back into the detection unit through a short pass 655 

filter λ<750 nm) and a band pass filter (515/30 nm). The detector is a streak camera 656 

(Streakscope C4334, Hamamatsu Photonics, Japan) coupled to a fast and high-sensitivity 657 

CCD camera (model C8800-53C, Hamamatsu). For each nucleus, average fluorescence decay 658 

profiles were plotted and lifetimes were estimated by fitting data with exponential function 659 

using a non-linear least-squares estimation procedure. Fluorescence lifetime of the donor 660 

(GFP) was experimentally measured in the presence and absence of the acceptor (Sytox 661 
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Orange). FRET efficiency (E) was calculated by comparing the lifetime of the donor in the 662 

presence (τDA) or absence (τD) of the acceptor: E=1-(τDA) / (τD). Statistical comparisons 663 

between control (donor) and assay (donor + acceptor) lifetime values were performed by 664 

Student t-test. For each experiment, four leaf discs removed from two agroinfiltrated leaves 665 

were used to collect data. 666 

 667 

Vector constructions and Xenopus laevis embryos microinjection 668 

All primers used for cloning are listed in Supplementary Tab. S1. Briefly, GFP C-ter 669 

constructs cloned into pK7WGF2 were subcloned into pGEMT (Promega) and inserted into 670 

BamHI and XbaI restrictions site of pCS2+ plasmid [70]. In vitro transcription was performed 671 

using SP6 mMessage mMachine kit (Ambion). Two-stage embryos were obtained by in vitro 672 

fertilization [71] and 20 nl of transcripts (6 ng) were pressure-injected in one blastomere at the 673 

animal pole in order to target the animal micromeres at later stages.  Embryos were allowed to 674 

develop at 22 °C and followed by live macro-imaging (Axiozoom). Embryos were fixed in 675 

MEMFA buffer (100mM MOPS, pH7.4, 2mM EGTA, 1mM MgSO4, 3.7%(v/v) 676 

formaldehyde). Injections and assessment of development was performed on 3 independent 677 

experiments where at least 20 embryos were used for each condition. Total proteins of 5 678 

nitrogen frozen embryos were extracted in lysis buffer (50mM Tris pH 7.5, 150mM NaCl, 679 

1mM EDTA, 1% NP40, 1x complete protease inhibitors (Roche) and analysed by immunoblot 680 

using anti-GFP antibodies.  681 
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Supplemental Figure S1 
Detection of AeCRN13Cter and BdCNR13Cter proteins in N. 
benthamiana leaves upon transient-expression assay. (A) Immunoblot of 
GFP:AeCRN13Cter, GFP:NES:AeCRN13Cter and 
GFP:mNES:AeCRN13Cter showing the accumulation of the fusion 
proteins in agroinfiltrated leaves 1, 2 and 3 days after treatment when 
probed with a GFP antibody. (B)  Immunoblot using a GFP-antibody shows 
the accumulation of BdCRN13Cter fusion protein and its derivatives in 
Nicotiana leaves from 1 to 3 days post inoculation.  
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Supplemental Figure S2  
AeCRN13 and BdCRN13 cause delay in cell division and aberrant phenotype in 
Xenopus laevis. Embryos injected with GFP:AeCRN13Cter or GFP:BdCRN13Cter 
mRNA presented delay in cell division leading to larger blastomeres (white square). 
Giant blastomeres (white arrows) are sometimes observed with both CRN13Cter 
constructs at stage 9 (7 hours post fertilization). Scale bar : 500µm. 



HNH motif 

BDEG_05578.1  260 MGKAESCHLISDSHCRNY---PSYEKYDKDPNNRLAMSMDLHGWFINLSTEIPLFYLKIV 
BDEG_03863    260 MGKAESCHLISDSHCRNY---PSYEKYDKDPNNRLAMSMDLHGWFINLSTEIPLFYLKIV 
BDEG_3200.1   258 MGKAESCHLISASHCRNY---PSYEKYDKNPNNRLAMSRDLHGWFDDLSTEIPLFYLKIV 
BDEG_07221    236 MGKAESCHLISASHCRNY---SFYSQYDKNPNNRLAMSMDLHGWFINLSTEIPLFYLKIV 
BDEG_03197    236 MGKAESCHLISASHCRNY---SFYSQYDKDPNNRLAMSMDLHGWFINLSTEIPLFYLKIV 
Ps_143535T0   274 VGKAQSCHVMSREHCLKY---PSYKKYDNDPSNRLALSAEMHEWFDARSYAVPTIKISVE 
PPTG_05866T0  280 YGKAESCHLVSRKQ--SRDHKREFAKYDRDPNNRLALSRDMHGWYDGMSIEFPIVNMLPG 
PPTG_08911T0  279 YGKAESCHLVSRKQ--SRDHKREFAKYDRDSNNRLALSRDMHGWFDGMSIEVPIVNMLPG 
Ps_159015T0   301 YGKAESCHLVSRKQ--SRDHKREFAKYDRDSNNRLALSREMHGWFDGMSIEVPIVNMLPG 
Ps_137003T0   300 YGKAESCHLVSRKQ--SRDHKREFAKYDRDSNNRLALSREMHGWFDGMSIEVPIVNMLPG 
Ps_158998T0   300 YGKAESCHLVSRKQ--SRDHKREFAKYDRDSNNRLALSREMHGWFDGMSIEVPIVNMLPG 
Ps_144118T0   301 YGKAESCHLVSRKQ--SRDHKREFAKYDRDSNNRLALSREMHGWFDGMSIEVPIVNMLPG 
Ps_159147T0   302 YGKAESCHLVSRKQ--SRDHKREFAKYDRDSNNRLALSREMHGWFDGMSIEVPIVNMLPG 
Ps_141914T0   305 YGKAESCHLVSRKQ--SRDHKREFAKYDRDSNNRLALSREMHGWFDGMSIEVPIVNMLPG 
Ps_139425T0   307 YGKAESCHLVSRKQ--SRDHKREFAKYDRDSNNRLALSREMHGWFDGMSIEVPIVNMLPG 
Ps_142770T0   308 YGKAESCHLVSRKQ--SRDHKREFAKYDRDSNNRLALSREMHGWFDGMSIEVPIVNMLPG 
Ps_134584T0   312 YGKAESCHLVSRKQ--SRDHKREFAKYDRDSNNRLAFSRDMHGWFDGMSIEVPIVNMLPG 
Ps_132308T0   313 YGKAESCHLVSRKQ--SRDHKREFAKYDRDSNNRLALSREMHGWFDGMSIEVPIVNMLPG 
Ae_9AL5664_1  279 YGKAESCHLISRKE--SRDHKREFAKYDRDPNNRLALSREMHGYYDGLSYEVPIVNMIPG 
PPTG_14697T0  244 YGNAESCHLVSRKQ--SRDHKREFAKYDRDTNNRLALSREMHGFYDALSYDVPIVNMVPV 
PITG_12609T0  320 YGKAESCHLVSKKKCTDRDFKREFAKYDRDANNRLALSREMHGFYDGLSMEVPIVNMFPG 
PITG_18826T0  319 YGKAESCHLVSKKKCTDRDFKREFAKYDRDANNRLALSREMHGFYDGLSMEVPIVNMFPG 

* * * 

Supplemental Figure S3  
The DFA subdomain of CRN13 proteins contains a HNH-like motif. The C-terminal 
part of AeCRN13 (Ae_9AL5664-1) amino acid sequence was used to BlastP 
Phytophthora infestans (PITG), Phytophthora sojae (Ps), Phytophthora parasitica 
(PPTG) and Batrachochytrium dendrobatidis (BGEG) using the corresponding 
databases at the Broad Institute. Box shade analysis was done with amino acid 
region encompassing the HNH-like motif and located at the C-terminus of the DFA 
subdomain. This motif first identified in bacterial endonucleases is the second most 
common motif in Type II restriction endonucleases, and is distributed in all life 
kingdoms. Asterisks indicated the three most conserved (histidine and asparagine) 
residues standing for the HNH motif (PFAM: PF13391). 
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Chapter 1: Complementary results 



A B 

Complementary figure 1. AeCRN13 presence in plant cells enhances P. capsici growth 
A. Photograph showing necrotic lesions  caused by P. capsici 3 days post-inoculation (dpi) 
on  N. benthamiana leaves in zones agroinfiltrated with GFP (left side) and GFP:AeCRN13 
(right side) constructs. B. Graphic showing the average of lesion size (cm2) measured on 
GFP and AeCRN13 agroinfiltrated zones 3 and 4 dpi.  
  

Complentary figure 2. Secretion and 
localization of AeCRN13 during 
infection of roots of M. truncatula . 
Micrographs acquired by confocal 
microscopy on root sections  (1µm 
thick) of M. truncatula infected by A. 
euteiches at 1 and 3 days post-infection 
(dpi). Anti-AeCRN13 rabbit antibodies 
were incubated and AeCRN13 signal 
revealed with anti-rabbit antibodies 
coupled to FITC (green) while A. 
eutiches’s mycelium was labelled with 
WGA-Alexa633 (red signal). Roots 
were treated with DAPI (bleu) to stain 
nuclei. Images show each signal 
separately (DAPI, FITC, Alexa633) 
and merged.  
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Complementary results 
 

In view of the major points commented by reviewers, we performed complementary 

experiments to provide answers regarding AeCRN13 contribution to virulence, secretion and 

localization during infection and nuclease activity.  

 
 
AeCRN13 enhances P. capsici in planta growth  
 
 

To test the contribution of AeCRN13 to virulence we performed a virulence assay 

using P. capsici. For this, GFP protein alone and GFP:AeCRN13Cter were transiently 

expressed side by side on N. benthamiana by means of agroinfiltration and detached leaves 

were challenged on the agroinfiltrated zones by P.capsici zoospores 1 day after 

agroinfiltration. Progression of P. capsici on both agroinfiltrated zones was monitored 

during time and established by the size of necrotic lesions. As shown in complementary 

figure 1A, 3 days after zoospore inoculation, necrotic lesions were visible on both GFP and 

AeCRN13Cter agroinfiltrated zones leaves, indicative of P. capsici development. Size lesion 

measures (complementary figure 1B) indicated that lesions were greater for AeCRN13Cter 

than for GFP zones at 3 dpi and this differential was greater 4 days after. As lesion size 

depicts P.capsici’s growth on epidermal tissues, we conclude that the presence of 

AeCRN13Cer in plant cells contributes positively to the pathogen virulence.  

 
AeCRN13 is secreted during infection into root tissues and addressed to host nuclei. 
 

During our work, we developed anti-AeCRN13 rabbit antibodies raised against the 

recombinant fusion protein MBP:AeCRN13Cter  produced in E.coli. We used these 

antibodies to address the localization of AeCRN13 in roots of M. truncatula during infection. 

Longitudinal sections of infected roots, corresponding to 1 and 3 days of infection were 

incubated with purified AeCRN13 antibodies and were revealed with secondary anti-rabbit 

antibodies coupled to FITC. In addition,  A. euteiches mycelium (cell wall) was labelled using 

WGA lectin coupled to Alexa 633 fluorochrome and nuclei were stained with DAPI. Same 

treatments were performed on unifected roots and used as a biological negative control.  

Internal negative controls (sections not incubated with ACRN13 and/or secondary anti-rabbit 

antibodies) were used to parameter confocal settings and ensure signal specificity during 

imaging acquisition. As shown in complementary figure 2, neither FITC nor Alexa 633 

signals were detected on uninfected root sections. In infected roots at 1 dpi,   A. euteiches was 
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Complementary figure 3. AeCRN13Cter displays a double-
stranded nuclease activity in vitro 
Plasmid DNA (vector pJIT53+) was incubated alone (first lane) during 
180 minutes at 37°C with the nicking enzyme Nb.dsrDr, the double 
stranded cutting enzyme BamHI, with 1µg of recombinant proteins 
MBP:AeCRN13 and MBP:GUS. The picture corresponds to the 
electrophoretic analysis of pJIT53+ at the final point reaction (180 min) 
for the vector alone and controls Nb.bsrDR, BamHI and MBP:GUS and 
at different time point for MBP:AeCRN13Cter. The different 
conformations of pJIT53+ DNA molecule are indicated in the left side. 
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detected intercellularly around root cells. A strong AeCRN13 signal was detected outside A. 

euteiches in circled structures, vesicle-liked, on the apoplasm, and next to host cell nuclei. A 

faint AeCRN13 signal was detected also inside nuclei. At 3 dpi, these vesicles were still 

visible and the signal corresponding to A. euteiches cell-wall became more apparent 

confirming with its development in host roots. From these observations, we conclude that 

AeCRN13 is indeed secreted in roots during infection regardless the presence of a predicted 

classical signal peptide which suggests that a yet unknwon secretion leader might ensure this 

function. We evidenced that the release of extracellular vesicles might be at the basis of 

AeCRN13 secretion. We postulate that AeCRN13 might be released from vesicles 

neighboring host nuclei as weak signal was recovered also inside nuclei and we explain 

explained this weak signal as a consequence of AeCRN13 protein diffusion.  

While specificity of AeCRN13 antibodies on whole infected root proteins extracts is still 

under verification, the signal specificity of imaging acquisition revealed for the first time that 

an oomycetal effector is secreted and addressed into host cells during infection. 

 

AeCRN13Cter displays a double-stranded nuclease activity in vitro 
 
 

AeCRN13 harbors a HNH-like motif withing the end of its DFA Cterminal domain. 

Because HNH motifs ooccur commonly in proteins with endonuclease activity we 

hypothesized that AeCRN13 might display such enzymatic activity. We showed that 

AeCRN13 binds dsDNA in vitro and that it induces double-stranded DNA damage in vivo. To 

further sustain is nuclease activity, we set up an in vitro assay using the purified recombinant 

protein MBP:AeCRN13Cter. For this 1 µg of  MBP:AeCRN13 were incubated in presence of  

1mM of MgCl  as a metal  ion co-factor and  1µg of pJIT53+ plasmid DNA. The reaction was 

performed during three hours at 37°C. As a negative control we used the fusion protein 

MBP:GUS produced and purified using the same conditions as MBP:AeCRN13Cter. To 

further characterize the different forms of pJIT53+ and a possible activity of AeCRN13Cter 

on DNA, pJIT53+ was also incubated with commercial enzymes Nb.bsrDr and BamHI, which 

display a nicking and double stranded cutting activities on DNA, respectively.  

As shown in complementary figure 3, pJIT53+ DNA was predominantly in a supercoiled and 

nicked circular form, presenting low amounts of the linear form before reactions.  As 

expected, control reactions with Nb.bsrDr and BamHI led to the appearance of nicked and 

linear conformations respectively. Incubation with MBP:AeCRN13Cter resulted in the  

progressive decrease of the supercoiled form and the increase of the linear form. In latter 

times (90 min-180 min), a faint smear could be detected, indicative of a total DNA 
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degradation.  No changes of conformation were detected with MBP:GUS protein. Thus, 

AeCRN13Cter displays a double-stranded nuclease activity on DNA in vitro. These results 

demonstrates that the DNA damage induced in planta by agroinfiltration of 

GFP:AeCRN13Cter is indeed a result of AeCRN13Cter activity on plant DNA.  

Having set up this in vitro assay, our future experiments will be focused on characterizing 

AeCRN13 domains implicated in this nuclease activity, notably, the implication of the HNH 

motif by working with Cterminal deleted versions and point mutated version of the HNH 

domain. 

 

 

Materials and methods of complementary experiments. 
 
 
P. capsici growth assays 
 
 
GFP:AeCRN13 fusion protein and GFP protein alone were expressed in N. benthamiana 

leaves by agroinfiltration. One day after infiltration, infiltrated leaves were ddetached, placed  

on plastic dishes and agroinfiltrated zones were drop-inoculated with 5 µL of P. capsici 

(strain LT312) zoospore solution corresponding to 100 zoospores. P. capsici growth was 

monitored over time. Photographs and leave lesions were assessed 3 and 4 days after 

inoculation. Lesion areas were measured using Image J software. 
 
Antibody purification. 
 
 

Polyclonal antibodies against the C-terminal domain of AeCRN13Cter were purified by 

negative adsorption against proteins from uninfected roots. For this, proteins extracted from 

uninfected roots of M.truncatula were spotted on 25x25 mm nitrocellulose  membranes 

(Protan BA83, GE Healthcare Life Sciences), stained with Ponceau S and washed 3 times 

with PBS, 0.01% (v/v) Tween20 (PBS-T). Membranes were blocked with PBS-T, 1% (v/v) 

BSA during 2h at room temperature and incubated with diluted (1:10) sera overnight at 4°C. 

The obtained sera were used for cytological immunolocalization studies. 
 
Preparation of roots sections and labeling of AeCRN13 and A.euteiches cell wall. 
 
 

Infected and non-infected roots were sampled at 1, 3 and 6 days post inoculation and 

fixed with 2% (v/v) paraformaldehyde in 50mM of sodium cacodylate buffer, pH 7. 

Fixed roots were dehydrated in a graded ethanol series and embedded gradually in LR white 

(LRW) resin (London Resin Company Limited). Resin polymerisation was performed over-
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night at 60°C. Roots were sectioned (1µm thick) using an Ultracut microtom (Reichert-

Jung) and placed on multi-well slides for immunostaining steps. For this, sections were 

blocked for 2h30min in PBS, 2 % (v/v) Tween 20, 2 % (w/v) BSA buffer. Sections 

were then coincubated with purified anti-AeCRN13 rabbit antibodies and with the WGA 

lectin (Wheat Germ Agglutinin, W21404 Life technologies) conjugated to Alexa633 in 

blocking solution overnight at 4°C. Slides were washed 3x15 min with PBS, 2% (v/v) 

Tween 20 and incubated with goat anti-rabbit antibodies conjugated to fluorescein 

isothiocyanate (FITC) for 2h at room temperature. Slices were then rinsed and stained with 

3µg/ml 4’,6-diamidino-2-phenylindole (DAPI) for 5 min and rinsed again before confocal 

microscopy observation. 

 

Confocal microscopy  

Root sections were mounted on oil and scanned with a SP2 AOBS confocal 

microscope with the following excitation wavelengths: 405nm (DAPI), 488nm (FITC) and 

688nm (Alexa688). To avoid signal interference, scanning was performed in a sequential 

mode. Parameters were set by analyzing all conditions and were the same for all images 

shown, which were treated using the Image J software. 

 
Nuclease in vitro assay activity 
 

1µg of purified proteins MBP: AeCRN13Cter or MBP: GUS (negative control) and 

restriction enzymes Nb.bsrDI and BamHI (10 units) were incubated in presence of 1µg of 

plasmid DNA pJIT53+, MgCl2 (10 mM) in a MES (10mM), pH 7 buffer,  at 37°C during 

180 minutes. The state of DNA was monitored during time by sampling 10µl (≈100 ng) of 

reaction suspension and adding EDTA (0.2mM) to stop reactions, followed by 

electrophoresis analysis on an agarose gel (1%) and ethium bromide staining. 
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Chapter 2: Functional characterization of AeCRN5 of A. euteiches 
 
 

Manipulation of plant nuclear biology is emerging as a crucial infection strategy deployed 

by prokaryotic and eukaryotic microbial pathogens through the secretion of intracellular 

effectors that target the host nucleus and/or nuclear-related processes (Bhattacharjee et al., 

2013). Bacteria nuclear effectors have been shown to suppress plant defenses and manipulate 

host cellular metabolism by interacting with nuclear host proteins like histones, transcription 

factors, mRNA regulators as well as host nucleic acids (DNA) (Deslandes & Rivas, 2012). 

While host-delivery mechanisms, targets and nuclear activities are well characterized for 

nuclear effectors of bacteria, eukaryotic pathogen effectors are far less characterized. 
 

The study presented in this chapter  concerns the characterization of the Cterminal 

domain of AeCRN5 from the soil borne pathogen A. euteiches. AeCRN5 (379 aa) presents 

Nterminal harboring a LQLYALK (50-55aa) motif ended by a HVVVIVPEVPL (123-130aa) 

(figure 1 a) that ensures secretion and translocation into plant cells and presents a Cterminus of 

the DN17 oomycete subfamily containing a nuclear localization signal NLS (149-176aa). Its 

Cterminus was previously shown to trigger necrosis and to localize in nuclei of epidermal cells 

of N. benthamiana (Schornack et al., 2010). As CRN DN17-like subfamilies have been 

predicted in fungi B. dendrobatidis and R. irregularis (Sun et al., 2011; Li et al., 2014), we 

searched for homolog proteins on proteomes of oomycetes and both fungal species. BlastP 

resulted on the identification of   homolog oomycete CRN ascribed to the DN17 subfamily 

with which it shares less than 38% identity (supplementary figure 1). The closest CRN 

sequence was identified in B. dendrobatidis with up to 48% identity, while the sequence found 

in R. irregularis only displayed 20% identity. 

AeCRN5 was identified in a cDNA library generated from A. euteiches grown in close 

proximity to roots of M. truncatula. (Gaulin et al., 2008). The studied of AeCRN5 gene 

expression during infection showed  that AeCRN5 is induced upon interaction with host root 

with a sustained expression during invasion of cortical root tissues (3-6 dpi) by A. euteiches 

(figure 1b/c ). This suggests that AeCRN5 protein is implicated during infection and, thus, 

likely to be translocated to root cells. To address AeCRN5 effects in M. truncatula root cells, 

we expressed AeCRN5 in roots via Agrobacterium rhizogenes -transformation. Composite 

plants displayed modified root systems with reduced root length and an increased number of 

roots 
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(figure 2). Hence, AeCRN5 affects host root architecture, likely by inhibiting root elongation 

and stimulating root formation. 

To rapidly dissect AeCRN5 activity in plant cells, we opted to use N. benthamiana ectopic 

expression system. Exclusion of AeCRN5 from the nucleus prevented its cytotoxic activity 

(figure 3), indicating that AeCRN5 activity is the result of a perturbation of a plant nuclear- 

related process. 

Localization studies performed on CRNs of P. capsici have evidenced distinct nuclear 

localizations, and since CRN20_624 from P. capsici, the only CRN DN17 protein studied so 

far, was shown to present a punctuated pattern of nuclear localization 2 days after its 

accumulation  in  plant  cells  (Stam  et  al.,  2013),  we  followed  GFP:AeCRN5  nuclear 

localization  over  time.  We evidenced that AeCRN5 shuttled from the nucleoplasm to 

unknown nuclear bodies characterized by the absence of DNA material (figure 4). The 

dynamism of AeCRN5 localization pattern and the absence of DNA led us to hypothesize the 

possibility of AeCRN5 to be addressed to Speckles, which are highly dynamic nuclear 

molecular complexes that participate in RNA metabolism and harbor protein factors associated  

with  RNA splicing, RNA capping...  . We hypothesize, then, that AeCRN5 could be associated 

or in close vicinity to  RNA. 

To first test this, we treated N. benthamiana leaves with RNAse and assessed AeCRN5 

localization. The treatment resulted in the depletion of the localization to nuclear bodies 

(figure 4). By FRET-FLIM in vivo assay on N. benthamiana, we showed that AeCRN5 

interacts or is in close vicinity to plant nuclear RNA. 

 

Through this work, we demonstrated that AeCRN5 (DN17) effector interferes with host root 

development. We showed that it targets plant RNA in the nucleus where it exhibits a dynamic 

subnuclear localization that depends on RNA. To our knowledge, AeCRN5 is the first 

eukaryotic effector shown to target RNA. The work provides new insights into the mode of 

action of eukaryotic effector where the targeting of host RNA seems central. 

 
 
The corresponding results will be submitted on Molecular Plant Pathology. 
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SUMMARY 38 
 39 
 40 
 41 

The Crincklers (or CRN) are a class of translocated effectors produced by oomycete 42 

phytopathogens and little is known about their function. Here we report on the function 43 

of AeCRN5 from the legume root pathogen Aphanomyces euteiches, belonging to a CRN 44 

family which is ubiquitous in oomycetes and display orthologs in fungi. AeCRN5 is 45 

a modular protein of the CRN effector family containing a functional translocation signal 46 

at its N- terminus and a cell-death inducing nuclear C-terminus DN17 domain. The effector 47 

expression is induced during colonization of the host root cortex of the legume Medicago 48 

truncatula. Stable expression of AeCRN5 in M. truncatula trigger death of the root 49 

system or restricts it drastically. Addition of a nuclear export signal abolished AeCRN5 50 

cell-death inducing activity in N. benthamiana leaves. Confocal imaging show that 51 

AeCRN5 shuttles in a RNA-dependent manner from plant nuclei to unknown nuclear 52 

bodies. FRET-FLIM measurements on N. benthamiana leaves demonstrate the close 53 

vicinity of AeCRN5 and plant RNA at the nuclear level. These results, combined with the 54 

first demonstration that an eukaryotic effector targets plant RNA, reveals a new mode of 55 

action of effector where nucleic acid from the host is a central target. 56 
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INTRODUCTION 57 
 58 
 59 
 60 

Plant-associated  microorganisms  rely  on  the  secretion  of  a  particular  class  61 

of molecules, termed “effectors” to successfully establish infection. These molecules 62 

interact with plant targets to modify plant defense responses and to reprogram host 63 

physiology, contributing in rendering host niche profitable to sustain growth and spreading 64 

of pathogens (Okmen and Doehlemann, 2014). Effectors can be secreted to the apoplastic 65 

interfaces (apoplastic effectors) or can be delivered into host cells (intracellular effectors) 66 

where they are addressed to different subcellular compartments. A substantial number of 67 

microbial effectors are addressed to plant nuclei and their function, assessed mainly through 68 

the identification of their plant target, are best characterized in bacteria (Rivas and Genin, 69 

2011). These effectors target different nature of host nuclear factors including proteins, 70 

RNA and DNA to perturb plant physiology by, for example, reprogramming host 71 

transcription (Deslandes and Rivas, 2012; Bhattacharjee et al., 2013; Canonne and Rivas, 72 

2012). In contrast, the mode of action of nuclear targeted eukaryotic effectors is still elusive. 73 

Oomycetes (Stramenopiles) are eukaryotic filamentous microorganisms comprising 74 

several of the most devastating plant pathogens with tremendous impacts on natural and 75 

agricultural ecosystems (Thines and Kamoun, 2010). In oomycetes, two main classes of 76 

intracellular effectors have been described: the RXLR effectors and Crinklers (CRN), 77 

harboring distinct translocation signals. Crinklers (Crinkling and Necrosis, CRN), firstly 78 

reported on the potato late blight agent Phytophthora infestans (Torto et al., 2003; Haas et 79 

al., 2009), are ubiquitous in plant pathogenic oomycetes, with numbers ranging from 45 80 

genes in Pythium sp  (Lévesque et al., 2010)  to 200 genes in P. infestans (Haas et al., 81 

2009). All CRNs display a conserved LFLAK N-terminal motif, altered as LYLAK in 82 

Albugo sp  (Kemen et al., 2011), LxLYLAR/K in Pythium sp  (Lévesque et al., 2010) and 83 

LYLALK  in A. euteiches ) (Gaulin et al., 2008) . Phytophthora and Aphanomyces N-84 



99 
 

terminal motifs have been shown to act as host cytoplasm-delivery signals (Schornack et al., 85 

2010). Not all CRNs harbor a predicted signal peptide, although detected by mass 86 

spectrometry in culture medium of P. infestans (Meijer et al., 2014). CRN Ctermini diversity 87 

contrasts to the conservation of Ntermini and is thought be the result of recombinations of 88 

different subdomains occurring after a HVLVXXP Nterminal motif that occurs prior to the 89 

C-terminus. First reported through a genome mining in P. infestans, these subdomains 90 

associate, in different combination that define 27 CRN families (Haas et al., 2009), and do 91 

not display any significant similarity to known functional domains, except few cases (ie, 92 

serine/threonine kinase D2 domain of PiCRN8,  (van  Damme  et  al.,  2012).  Few  new  93 

CRNs  families  have  been  reported  upon complete genome analysis of distinct oomycete 94 

species (ie, Phytophthora capsici, Pythium sp., A. euteiches) suggesting that CRNs belong 95 

to an ancient effector family that arose early in oomycete evolution. CRN-like sequences 96 

presenting similarities to Phytophthora Ctermini were recently evidenced in the genome of 97 

the amphibian pathogen fungus Batrachochytrium dendrobatidis and the arbuscular 98 

mycorrhizal fungus Rhizophagus irregularis (Sun et al., 2011; Lin et al., 2014). 99 

Oomycetal CRNs Ctermini localize in plant nuclei where they display distinct 100 

subcellular localisations including nuclei, nucleoli and unidentified nuclear bodies (Stam 101 

et al., 2013a), depicting different nuclear activities and targets. Although initially 102 

reported as necrosis-inducing proteins when expressed in planta, it has been shown that this 103 

is only the case for few CRN as a large number do not cause cell-death (Haas et al., 104 

2009; Shen et al., 2013). Phytophthora CRNs have distinct pattern of expression during 105 

various life stages and colonization of host plants (Stam et al., 2013c). Several Phytophthora 106 

CRN can suppress cell death triggered by cell-death inducers or other CRNs (Liu et al., 107 

2011b; Shen et al., 2013), reduce plant defense gene expression or accumulation of reactive 108 

oxygen species (ROS) in N. benthamiana (Rajput et al., 2014) sustaining the view that CRN 109 

might act as suppressors of plant immunity, although not all promote infection (Stam et al., 110 



100 
 

2013c). Up to now the precise function of CRN is still elusive, only biochemical activity 111 

identified is a kinase activity of CRN8 of P. infestans (van Damme et al., 2012). 112 

This work gives first insights into a new mode of action of an eukaryotic effector by 113 

deciphering a nuclear activity of AeCRN5 C-terminal region of A. euteiches. The soil 114 

born pathogen Aphanomyces euteiches causes root rot disease on various legumes including 115 

alfalfa, clover, snap bean and stands as the most notorious disease agent of pea causing 20 to 116 

100% yield losses and infects the model legume M. truncatula (Gaulin et al., 2007). 117 

AeCRN5 was firstly identified in a cDNA library from M. truncatula roots in contact 118 

with A. euteiches (Gaulin et al., 2008). It presents a modular architecture with a N-terminal 119 

functional LYLALK ensuring host delivery ( Schornack et al., 2010) and a DN17 family 120 

domain at its Cterminus that triggers cell-death in planta. Here we showed that AeCRN5 is 121 

induced during the cortex colonization  of  Medicago  truncatula  roots  and  that  its  122 

overexpression  in  host  affects drastically M. truncatula root development. Confocal 123 

studies on N. benthamiana leaves showed that the cell-death inducing activity of AeCRN5 124 

required its nuclear localization. Moreover the observed dynamic relocalization of 125 

AeCRN5 from nucleoplasm to unknown nuclear bodies required plant RNA. Finally 126 

FRET-FLIM measurements revealed the close vicinity of AeCRN5 Cterminus and RNA at 127 

the plant nuclear level. These results indicate that CRN DN17 family function by targeting 128 

host plant nucleic acid. 129 

 130 

RESULTS 131 

AeCRN5 is a CRN DN17 family protein and is expressed during M. truncatula 132 

roots infection 133 

 134 

Oomycete CRNs proteins display a modular architecture, with conserved N-terminal 135 

translocation regions (containing highly conserved LFLAK and HVLVXXP motifs) 136 
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Fig 1. AeCRN5 from the oomycete Aphanomyces euteiches is a CRN DN17 
effector family expressed during infection of Medicago truncatula roots. (a)  
Schematic representation depicting AeCRN5 protein architecture from the 
root rot pathogen of legumes A. euteiches. At the Nterminus a translocation 
domain characterized by a LYLALK and HVVVIVP conserved sequence that 
preceeds the putative DN17_like effector domain (Cterminus) in which a 
NLS is predicted. Number indicates amino acid positions (b) Graphs show 
expression level of AeCRN5 (left) and A. euteiches α-tubulin (right) 
measured by qRT-PCR at 3, 6 and 9 days post-inoculation (dpi) in M. 
truncatula roots. S: free-living mycelium. Values are the mean of three 
independant biological replicates. Error bars are standard deviation errors. 
Asterisk indicate that the values are significantly different (p-value<0.05, t-
test). 
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followed by variable C-terminal regions organized in subdomain combinations that specify 137 

effector function (Haas et al., 2009). The AeCRN5 (Ae_1AL4462, 138 

http://www.polebio.scsv.ups- tlse.fr/aphano/) Nterminus (1-132aa) is characterized by a 139 

LQLYALK (50-55aa) motif and a HVVVIVPEVPL (123-130aa) motif marking its end 140 

(Figure 1a). Although it lacks a predicted signal peptide, the AeCRN5 Nterminus is a 141 

functional secretion domain mediating translocation of oomycetal effectors to plant cell 142 

(Schornack et al.2010). The Cterminal region shows a sequence identity of 38% with the 143 

CRN DN17 family domain of P. infestans (Haas et al.2010) and harbors a nuclear 144 

localisation signal (NLS 149-176aa) consistent with its plant nuclear localization when 145 

expressed in Nicotiana benthamiana leaves (Schornack et al., 2010). CRN- like sequences 146 

including DN17 family have been recently reported in the fungus Batrachochytrium 147 

dendrobatidis (Bd), a pathogen of amphibians, and the arbuscular mycorrhizal fungus 148 

Rhizophagus irregularis (Ri) (Sun et al., 2011; Lin et al., 2014). The homology of CRN 149 

proteins from the DN17 subfamily is most obvious in the C-terminal region. Sequence 150 

comparison showed that AeCRN5 is closest to the Bd homolog (45% identity) than to 151 

oomycetes CRN (less than 38% identity) (Supplemental Figure 1). The DN17 homolog in R. 152 

irregularis displayed less than 20% identity with AeCRN5 at its Cterminal region and 153 

harbored an extension of about 20 amino acid residues, suggesting distinct function and/or 154 

localization for this candidate effector. 155 

AeCRN5 was firstly identified in a cDNA library from A. euteiches mycelium grown 156 

in close vicinity of Medicago trunctaula roots (Gaulin et al., 2007). To characterize its 157 

expression during infection, we conducted qRT-PCR analyses on saprophytic mycelium and 158 

on infected roots of M. truncatula. AeCRN5 is expressed in saprophytic mycelium and 159 

induced at the early stage of the infection of M. trunctaula (3-6 dpi) (Figure 1b). This 160 

expression is correlated to a sustained development of the infectious mycelium as shown by 161 

A. euteiches quantification in roots (Figure 1c) and corresponds to an infection stage where 162 

http://www.polebio.scsv.ups-/
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Fig 2. AeCRN5 modifies host root architecture. M. truncatula plantlets were 
transformed with A. rhizogenes to express GFP (control) and GFP-tagged 
AeCRN5 Cterminal domain (AeCRN5) constructs. (a) Photographs of 30 day-
old composite plants showing representative phenotypes of composite plants 
and their effects on overall development and on root system architecture. Scale 
bars: 1 cm. (b) Box-plot graphics presenting the average of length and root 
number per root system. Measures and statistical analyses were performed on 
n=60 (GFP), n=145 (AeCRN5). * (t- test, p-value<0.05).  
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most of the cortical root tissues are colonized (Djébali et al., 2009). 163 

 164 

AeCRN5 perturbs root architecture of the host plant M. truncatula 165 

 166 

AeCRN5 Ctermini (DN17) induces cell death symptoms when overexpress in 167 

Nicotiana benthamiana leaves (Schornack et al. 2010). To characterize AeCRN5 activity 168 

in host cells, we transformed M. truncatula roots with a GFP-tagged AeCRN5 Ctermini 169 

(130-370) using Agrobacterium rhizogenes-mediated transformatiom system (Boisson-170 

Dernier et al., 2001). Within two weeks after transformation, a large number of  the  171 

plantlets  collapsed  without  generating  new  roots,  in  contrast  to  control  plants 172 

suggesting a cytotoxic activity for AeCRN5 in M. truncatula. Within three weeks, plants 173 

that developed presented a reduction of development of aerial and root systems (Figure 2a). 174 

Quantification of root length and number (Figure 2b) indicated that AeCRN5 175 

transformed roots presented a decrease of root length and a higher number of roots as 176 

compare to GFP- control plants.  These observations indicate that AeCRN5 worries the 177 

root architecture of the host plant M. truncatula by an unknown mechanism. 178 

 179 

AeCRN5 cell-death inducing activity requires nuclear localization 180 

 181 

To go further we assessed whether the observed cytoxic effect of AeCRN5 182 

Cterminus on Nicotiana and Medicago plants is the result of a nuclear-related localization. 183 

For this purpose a Nuclear Export Signal (NES) or its mutated (mNES) counterpart was 184 

fused Nterminally AeCRN5 Cterminus. The resultant fusion proteins were Nterm GFP 185 

tagged and the constructs were expressed in N. benthamiana leaves by agroinfiltration. 186 

Necrotic lesions were observed within 5 days with AeCRN5 construct, whereas no 187 

symptoms were detected on leaves treated with NES:AeCRN5, even at longer times (>8 188 
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Fig 3. AeCRN5 nuclear localization is required for cell-death inducing activity. 
(a) Representative  symptoms on N. benthamiana leaves expressing the 
indicated constructs (scale bar: 1 cm). Photographs were taken 5 days after 
agroinfection. (b) Micrographs of epidermal cells acquired 24h after 
agroifiltration by confocal imaging. Upper panels shown the localization of 
GFP and GFP-tagged fusion proteins in N. benthamiana while middle panels 
show merged channels in which chloroplasts’s autofluorescence appears in red 
while yellow lines indicate sections measured for GFP signal intensity whoan in 
lower panels (Scale bars : 5 µm). (c) Western-blot analysis of expression of the 
indicated GFP-tagged fusion proteins in leaves of N. benthamiana 24, 48, and 
72 hours post-agroinfiltration (hpa). Blots were probed with GFP antibodies. 
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days) (Figure 3a). The addition of a mNES, restored the cytotoxic activity of AeCRN5. 189 

Confocal microscopy imaging carried 24h after agroinfiltration confirmed that GFP-190 

AeCRN5 fusion protein was restricted to the nucleus (Figure 3b). An enhancement of 191 

nuclear export of AeCRN5 protein was detected with NES:AeCRN5 construct, since the 192 

GFP signal was recovered also in the cytoplasm. Fluoresence intensity, measured in cells, 193 

corroborated NES:AeCRN5 partial mislocalization from the nucleus (Figure 3b, lower 194 

panels). A reestablishment of green fluorescence at the nuclear level was obtained for the 195 

mNES:AeCRN5 construct. Immunoblot analysis confirmed the accumulation  of  the  fusion  196 

proteins  from  1  to  3  days  after  agroinfection  (Figure  3c).  Altogether the results 197 

showed that the cell death phenotype requires AeCRN5 to localize and accumulate in the 198 

nucleus.  199 

 200 

AeCRN5 accumulates in subnuclear structures and does not co-localize with nuclear 201 

DNA 202 

 203 

Recent evidences on P. caspsici CRNs suggested a link between N. benthamiana 204 

subnuclear localization and PcCRN activity (Stam et al., 2013b). We thus precised GFP- 205 

AeCRN5 Cterminus localization using agrobacterium-mediated transient expression assay 206 

on N. benthamiana leaves. Two distinct subnuclear localizations of AeCRN5 were 207 

observed (Figure 4a-b). As reported above, the fluorescence was either dispersed 208 

throughout the nucleoplasm with the exception of the nucleolus or sequestered in patches in 209 

unknown nuclear bodies (Figure 4a-c). Both distributions were observed during time. This 210 

dynamics and localization pattern in unknown nuclear bodies evokes ‘nuclear speckles pattern. 211 

Nuclear speckles are small subnuclear membraneless organelles which appear as irregular and 212 

transient punctuate structures at the microscopic level located in interchromatin regions of the 213 

nucleoplasm (Lorković et al., 2008; Spector and Lamond, 2011). Speckles act as a reservoir of 214 

factors that participate in transcription and pre-mRNA processing. Thereby we evaluated 215 
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Fig 4. AeCRN5 shuttle from nucleoplasm to unknown nuclear bodies in a RNA-
dependent manner  Confocal images of N. benthamiana leaves expressing GFP-
tagged AeCRN5 effector at 1 day post-agroinfiltration. (a-c) Representative 
micrographs of AeCRN5 subnuclear localisation in which close-up images 
revealed either an homogeneous (a) or a ‘patched’ (b) distribution of fluorescence. 
This pattern is reminiscent with ‘nuclear speckle pattern’ (white arrows) (Scale bar 
5µm). (d) Confocal micrographs depicting AeCRN5 subnuclear localisation after 
RNAse treatment on cells, where the fluorescence is recovered only in the 
nucleoplasm with the exception of the nucleolus. (e)  Representative images of a 
“patched” AeCRN5 localization where AeCRN5 distribution (white arrows) is 
shown in the GFP channel and chromatin distribution is revealed by DAPI 
labelling (DAPI). Merged signal indicates and absence of DNA material in zones 
where AeCRN5 localizes (Scale bar 5µm). 
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whether subcellular localization of AeCRN5 is a RNA-dependent mechanims. As shown 216 

on Figure 4d, RNAse treatment on N. benthamiana epidermal cells expressing 217 

GFP:AeCRN5 abolished the ‘speckle pattern’ of AeCRN5. Moreover a counterstaining 218 

with the nucleic acid stain 4',6-diamidino-2- phenylindole  (DAPI),  revealed  an  absence  of  219 

complementary  fluorescence  pattern  in  which nuclear  DNA and  GFP fluorescence  do  not  220 

colocalized  (Figure  4e).  These  data  suggest  a dynamic RNA-dependent process for 221 

AeCRN5 nuclear localization and therefore activity, where plant DNA might not be a 222 

central player. 223 

 224 

AeCRN5 targets nuclear RNA in planta 225 

 226 

We  reasoned  that  AeCRN5  perturbs  a  plant  nuclear-related  process  leading  227 

to cytotoxic activity, probably by targeting plant nuclear components. We firstly assessed 228 

the possibility that AeCRN5, like numerous nuclear-targeting bacterial effectors, may be 229 

able to bind plant nucleic acids. We thus set up a fluorescence resonance energy 230 

transfer (FRET) assay coupled with fluorescence lifetime imaging microscopy (FLIM) 231 

in N. benthamiana cells. GFP:AeCRN5 and GFP alone were expressed in N. 232 

benthamiana epidermal cells by agroinfiltration and plant nucleic acids were stained with 233 

SytoxOrange. In these conditions, the occurrence of FRET, causing the fluorescence 234 

lifetime of the donor GFP to decrease, would only be due to the proximity (less than 10 235 

nm) of GFP to SytoxOrange. Energy transfer was detected by fluorescence lifetime 236 

imaging microscopy (FLIM). Additionally to GFP alone, we used cells expressing the 237 

DNA-binding protein H2B in fusion to GFP (GFP:H2B). 238 

As reported in Table 1, in presence of Sytox Orange, GFP presented a mean life-time of 239 

2.210 +/- 0.041 ns. Coupled to H2B, its life-time was reduced to 1.852 +/-0.047 nsec 240 

attesting that, by interacting to DNA, H2B places GFP close to the a protein energy 241 

acceptor. In the case of AeCRN5 construct, the lifetime of GFP:AeCRN5 was 2.128+/-242 



Donor  Acceptor      τ  (a)             s.e.m (b) N (c ) E (d) p-value (e ) 

GFP 
- 2.246 0.036 20 - - 

Sytox 
Orange 

2.210 0.0417 18 1.6 0.52  

GFP:H2B 
- 2.465 0,0167 40 - - 

Sytox 
Orange 

1.852 0,0472 43 24.8 2.31E-19  

GFP:AeCRN5 

- 2.128 0,0692 27 - - 
Sytox 

Orange 
1.899 0,0698 10 10.7 5.56E-07  

Sytox 
Orange 
(RNAse 

treatment) 

2.228 0,1057 17 0 0.55  

Table 1. Summary of FRET-FLIM conditions and values obtained on foliar discs 
of N. benthamiana expressing the different fluorescent donor proteins. 

t  : mean GFP lifetime in nanoseconds (ns). For each nucleus, average fluorescence 
decay profiles were plotted and lifetimes were estimated by fitting data with 
exponential function using a non-linear least-squares estimation procedure. (b) 
s.e.m.: standard error of the mean. (c) N: total number of measured nuclei. (d) E: 
FRET efficiency in % : E=1- t(DA/ t D). (e) p-value (Student’s t test) of the 
difference between the donor lifetimes in the presence or absence of acceptor 
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0.069 nsec in the absence of SytoxOrange and decreased significantly to 1.899 +/-0.069 243 

nsec in presence of the dye, indicating an energy transfer and thereby the binding of DN17 244 

domain to nucleic acids. To go further, and since Sytox Orange dye is not specific for 245 

either DNA or RNA, samples were treated  with  RNase  A  to  digest  RNA  before  246 

performing  the  experiment.  After  RNase treatment, the 2.228 +/-0.105 nsec lifetime of 247 

GFP:AeCRN5 was similar than those observed without Sytox Orange (2.128 2.228 +/-0.069 248 

nsec) (Table 1). Hence in these conditions FRET phenomenon was only RNA-dependent 249 

and indicated that DN17 domain of AeCRN5 targets nuclear RNA in vivo. 250 

 251 

 252 

DISCUSSION  253 

 254 

To favor the establishment of disease, microorganisms have gained the ability 255 

to deliver effector molecules inside host cells. The important number of effectors targeting 256 

host nuclei places this organelle, and functions related to it, as important hubs whose 257 

perturbations might be of crucial importance for the outcome of infection (Bhattacharjee et 258 

al., 2013; Deslandes & Rivas, 2012). CRNs proteins are ubiquitous in plant pathogenic 259 

oomycetes and are reported as a wide class of translocated effectors (Schornack et al., 260 

2010). Previously, we showed that the cell-death inducing AeCRN5 effector from the root 261 

rot pathogen A. euteiches is a plant nuclear localized effector with a functional Nterminus 262 

translocation signal (Schornack et al., 2010). In this work we showed that AeCRN5 263 

perturbs  root development of the host plant Medicago truncatula and targets plant RNA at 264 

the nuclear level. 265 

Oomycetal CRN proteins present a modular architecture and include a conserved 266 

Ntermini functioning in plant delivery and diverse Cterminal domains thought to direct 267 

the activity (Haas  et  al.,  2009).  AeCRN5  is  a  modular  CRN  DN17  protein  family  268 
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with orthologous sequences in Phytophthora sp. and true fungal species including the 269 

chytrid B. dendrobatidis and the ectomycorrhiza R. irregularis. The functional translocation 270 

signal of AeCRN5 is characterized by a LYLALK and a HVVVIP motifs and the absence of 271 

an obvious signal peptide (Schornack et al., 2010, Gaulin et al., 2007). The C-terminus 272 

corresponds to a CRN DN17 domain family with a NLS (Haas et al., 2009, Schornack et al., 273 

2010) which have no significant similarity to functional domain. The closest ortholog of 274 

AeCRN5 is found in the Bd  fungus  rather  than  Phytophthora  species,  suggesting  a  275 

conserved  function  for  this ortholgous gene. In contrast the sequences features of DN17 276 

from R. irregularis may indicate distinct cellular localization and function for this candidate 277 

effector. 278 

Phytophthora CRNs were originally identified as activators of plant cell death 279 

upon their in planta expression (Torto et al., 2003), although not all CRNs promote infection 280 

including the AeCRN5 ortholog from P. capsici (Stam et al., 2013b). CRN5 sequences 281 

from  A. euteiches were firstly reported in a cDNA libray from mycelium grown in close 282 

vicinity of M. truncatula roots (Gaulin et al., 2008) and the corresponding gene models are 283 

present in the complete genome sequence of ATTC201684 A. euteiches strain (Gaulin et 284 

al.,unpublished results). Here we showed by qRT-PCR analysis, that AeCRN5 is expressed 285 

during vegetative growth and expression goes up from 3-6 days after infection of roots, a 286 

stage where browning of roots is observed in combination to an entire colonization of the 287 

root cortex of M. truncatula, and the initiation of propagation to vascular tissues (Djébali et 288 

al., 2009). Recently two classes of P. capsici CRN expression were defined based on 289 

contrasted expression pattern during host leaves infection (Stam et al., 2013b) . P. capsici 290 

DN17 ortholog felt in class 2 with genes expressed in the latest stages of Solanum 291 

lypersicum infection, suggesting an important role of PcCRN5 at the later stages of 292 

colonization. However another similar study on P. phaseoli CRN showed that CRNs were 293 

mostly repressed in leaves of lima bean (Kunjeti et al., 2012). Thus for conclusive 294 
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statements, large gene expression studies of AeCRNs repertoire (> 100 genes models, 295 

Gaulin et al., unpublished) are required to precise the putative contribution of AeCRN5 and 296 

each AeCRN class during the different stages of M. truncatula infection. 297 

We further explored the function of AeCRN5 by using a GFP-DN17 tagged version 298 

of the domain. Overexpression of AeCRN5 in M. truncatula roots displayed a cytotoxic 299 

effect leading in few days to death of transformed plants. The surviving plants were dwarf 300 

and harbored reduced root systems with a higher  number of roots. These results corroborate 301 

observations made during M. truncatula roots infection, where susceptible accessions 302 

present, within few days after A. euteiches infection, a decrease of secondary root 303 

development and necrosis of roots (Djébali et al., 2009). 304 

Confocal studies on transiently transformed N. benthamiana leaves showed that DN17 305 

cytotoxic effect of AeCRN5 required a plant nuclear accumulation. It is in accordance 306 

with the observed reduction of cell death on N. benthamiana leaves, upon nuclear exclusion 307 

of CRN8 (D2 domain) from P. infestans (Schornack et al., 2010). We can therefore suggest 308 

that nuclear  localization  is  an  important  requirement  for  the  cell-death  inducing  309 

activity  of necrotic CRN effectors. Previous study on P. capsici DN17 CRN domain has 310 

shown its nucleoplasmic localization in N. benthamiana leaves upon its expression. 311 

Interestingly, we observed here that DN17 shuttles between nucleoplasm and unknown 312 

plant nuclear bodies where DNA is excluded.  This subnuclear relocation of AeCRN5 is  313 

RNA dependent.  In addition FRET-FLIM measurements revealed the close vicinity of 314 

DN17 with plant RNA at the nuclear level. The dynamics and punctuate localization of 315 

DN17 in combination with its proximity to plant RNA, strongly suggest a ‘nuclear speckled 316 

pattern’. Nuclear speckles are nuclear granules of variable size and irregular shape, which 317 

do not contain DNA and often observed close to highly active transcription site. Nuclear 318 

speckles are best known to accumulate spliceosome subunit, splicing factor and many 319 

factors involved in mRNA production (Spector and Lamond, 2011). Our results support the 320 
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idea that AeCRN5 might be recruited t o   speckles  and, thus, suggests that AeCRN5 321 

could affect  directly or indirectly splicing activities on RNA molecules  Future studies 322 

will aim to precise the subnuclear localization of AeCRN5 and its effect on host 323 

transcriptional activity. 324 

To our knowledge AeCRN5 is the first effector from eukaryotic plant pathogenic 325 

microbes known to interfere with nuclear RNA, probably leading to host cytotoxic effect. 326 

We are aware that M. truncatula root growth inhibition or cell-death inducing symptom s on 327 

N. benthamiana leaves may be the result of AeCRN5 overexpression. Nonetheless, 328 

perturbation of plant development caused by pathogens to facilitate microbial establishment 329 

through an undirect manipulation of host RNA machinery have been documented for 330 

prokaryotic effector. For instance, TAL effectors (ie, PthA4) from Xanthomonas citri target 331 

negative regulators of RNA Pol II and Pol III to coordinately increase the transcription 332 

activity of host cells thought to enhance bacterial installation (de Souza et al., 2012; Soprano 333 

et al., 2013).  Microbial manipulation of RNA machinery to subvert host immunity may be 334 

another mode of action of effector. Recently two RXLR nuclear-localized effectors from 335 

Phytophthora sojae were shown to inhibit the biogenesis of small RNA probably by 336 

targeting plant DICER-like protein or cofactors, to promote infection (Qiao et al., 2013). In 337 

fungi, 72 of the 492 candidate effectors of the fungus Blumeria graminis show structural 338 

similarity to ribonucleases (Pedersen et al., 2012a). Some of them contribute to infection 339 

(BEC1054) and their activity is supposed to be related to host RNA binding (Pliego et al., 340 

2013). Targeting of host RNA has also been proposed for effectors of the nematode M. 341 

incognita as they present putative RNA binding domains (Bellafiore et al., 2008). 342 

This study shows that the ancestral oomycete A. euteiches has evolved plant nuclear 343 

CRN effectors that interfere with plant RNA and gives first insights into a new mode of 344 

action of eukaryotic effectors. The nature of RNA targeted by DN17 domain as well as 345 

interactors that could be involved in such process will provide further understanding on 346 
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CRN function and further elucidation of mechanisms by which pathogens may manipulate 347 

host RNA machinery and related functions. 348 

 349 
 350 

EXPERIMENTAL PROCEDURES 351 

 352 

Plant material, microbial strains, and growth conditions 353 

 354 

M. truncatula F83005.5 seeds were scarified, sterilized, and cultured in vitro for root 355 

transformation of and infection as previously described (Boisson-Dernier et al.,2001; 356 

Djébali et al., 2009). Infection of roots with zoospores of A. euteiches (strain ATCC 357 

201684) was performed as Djébali et al., 2009. N. benthamiana plants were grown from 358 

seeds in growth chambers  at  70%  of  humidity  with  a  16h/8h  dark  at  24/  20°C  359 

temperature  regime.  A. euteiches (ATCC 201684) was grown on saprophytic conditions as 360 

previously reported (Badreddine et al., 2008).  All E.coli strains (DH5α, DB3.5, BL21AI). 361 

A. tumefaciens (GV3101:: pMP90RK) and A. rhizogenes (ArquaI) used were grown in LB 362 

medium with the appropriate antibiotics. 363 

 364 

Sequence analyses 365 

 366 

Oomycetal and fungal orthologs of AeCRN5 (Ae_1AL4462,   367 

http://www.polebio.scsv.ups- tlse.fr/aphano/) was retrieved by BlastP searches using Broad 368 

Institute Database Search tools (http://www.broadinstitute.org) on the corresponding P. 369 

sojae (Ps_132663) and P. ramorum (pRg882635),  P.  capsici  (Pc_CRN20_624)  and  370 

Batrachochytrium  dendrobatidis (BD_07009.1) genome database. The Rhizophagus 371 

irregularis ortholog sequence ((Ri, gm1.18625_g) was collected from (Lin et al., 2014); 372 

CRN DN17 consensus sequence was retrieved from supplementary data of Haas et al., 373 

2009. All sequences alignments were performed using ClustalW2. 374 

http://www.polebio.scsv.ups-/
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 375 

RNA extraction and qRT-PCR 376 

 377 

Samples were ground on liquid nitrogen and total RNA extracted using the RNAeasy kit 378 

(Qiagen). Reverse transcription was performed on 1µg of total RNA using the 379 

AppliedBiosystems  kit  (Life  Technologies-Invitrogen).  cDNAs  were  diluted  50-  fold  380 

for qPCR reaction. Each qPCR reaction was performed on a final volume of 10µl 381 

corresponding to 8 µl of PCR mix (0.5µM of each primer and 5µl SYBRGreen, Applied 382 

Biosystems) and 2µl  of  the  diluted  cDNA and  was  conducted  on  a ABI  Prims  SDS  383 

7900  HT  (AppliedBiosystems, Foster City, CA, USA) device using the following 384 

conditions: 5min at 95°C, followed by 45 cycles of 15 s at 95°C and 1min at 60°C. 385 

Dissociation curves were obtained by applying a 15s 95°C, 15s 95°C and 15s 95°C cycle. 386 

Each reaction was conducted on triplicates for cDNAs of four biological replicates. Primers 387 

F:5’- GAAATTCTGCAAGAACTCCA-3’ and R:5’- CAATAAAGATGTTGAGAGTGGC-388 

3’ were used for the detection of AeCRN5. Primers F: 5’-389 

TGTCGACCCACTCCTTGTTG-3’ and R: 5’-TCGTGAGGGACGAGATGACT-3’ were 390 

used to assess the expression of A. euteiches’s α-tubulin gene (Ae_22AL7226) and 391 

normalized AeCRN5 expression. Histone 3-like of M. truncatula, previously described 392 

(Rey et al., 2013) was used to normalize A. euteiches abundance during infection. Relative 393 

expression of AeCRN5 and α-tubulin genes were calculated using the 2-∆∆Cq method 394 

described by (Livak and Schmittgen, 2001). 395 

 396 

 397 

Construction of plasmid vectors 398 

 399 

Sequences and names of primers used in this study are listed in the supplementary Table 1. 400 

AeCRN5 Cterminal version carrying Gateway adaptors were generated by PCR on a 401 
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template corresponding to the unigene Ae_1AL4462 (vector pSport_Ae_1AL4462). Full 402 

length Cterminus AeCRN5 (132aa-370aa) was generated using primer AttB1AeCRN5-F 403 

and AttB2AeCRN5-R. Amplicon was BP recombined in pDONR-Zéo vector (Invitrogen) 404 

and subsequently introduced in vector pK7GWF2 by means of LR recombination 405 

(Invitrogen). GFP:NES:AeCRN5 and GFP:mNES:AeCRN5 constructs were generated by 406 

adding NES sequence (LQLPPLERLTL) and non-functional mutated NES sequence 407 

(mNES: LQAPPAERATL) to the Nterminal moiety of AeCRN5. Amplicons NES:AeCRN5 408 

and mNES:AeCRN5 were obtained using primers NESAeCRN5-F and AeCRN5_end-R 409 

and mNES_AeCRN5-F and AeCRN5_end-R respectively and introduced in pENTR/ D-410 

TOPO vector by means of TOPO cloning (Invitrogen) before insertion on vector   411 

pK7GWF2. Amplification of the histone 2B of A. thaliana was performed on vector 412 

pBI121:H2B:YFP REF with primers caccH2B-F and H2B-R. Amplicons were cloned in 413 

pENTR/ D-TOPO and subsequently introduced in vector pK7GWF2 to obtain GFP:H2B 414 

fusion construct. The obtained pK7GWF2 recombined vectors were introduced in 415 

Agrobacterium strains for N. benthamiana agroinfiltration assays and/or M. truncatula roots 416 

transformation. 417 

 418 

Immunoblot analyses 419 

 420 

Samples  corresponding  to  agroinfiltrated  N.  benthamiana  leaves  were  frozen  in  liquid 421 

nitrogen. Protein extraction was performed as previously reported (Schornack et al., 2010). 422 

Proteins  were  separated  by  SDS-PAGE  and  electroblotted  on  nitrocellulose  423 

membranes (Amersham BioSciences). AeCRN5 and the respective mutant versions were 424 

revealed using anti-GFP polyclonal antibodies1:2000, Clontech) and anti-rabbit secondary 425 

antibodies coupled to alkaline phosphatase (Sigma-Aldrich). 426 

 427 

 428 
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 429 

Agrobacterium-mediated transformation 430 

 431 

Generation of M. truncatula composite plants was performed as described by Boisson-432 

dernier et al, 2001 using ARQUA-1 (A. rhizogenes) strain. Leaf infiltration were 433 

performed with A. tumefaciens (GV3101:: pMP90RK) as previously reported (Schornack et 434 

al., 2010). 435 

 436 

Confocal microscopy 437 

 438 

Foliar discs (5-8 mm of diameter) of infiltrated leaves of N. benthamiana were sampled 439 

at different time points after agroinfiltration and fixed in a PBS, 4% (v/v) paraformaldehyde 440 

solution and then stained with DAPI (3µg/µL). Scans were performed on a Leica TCS 441 

SP2 AOBS device using wavelengths 488nm (GFP) and 350 nm (DAPI) and with a 40x 442 

water immersion lens. Acquisitions were done in a sequential mode to avoid overlapping 443 

fluorescence signals. Images were treated with Image J software and correspond to Z 444 

projections of scanned tissues. 445 

 446 

Preparation of N. benthamiana epidermal leaves for FRET / FLIM 447 

experiments 448 

 449 

Discs of agroinfiltrated N. benthamiana leaves were fixed 24 hours after treatment by 450 

vacuum infiltrating a TBS (TRIS 25mM, NaCl 140 mM, KCl 3 mM) 4 % (w/v) 451 

paraformaldehyde solution before incubation 20 min at 4°C. Samples were permeabilized 10 452 

min at 37°C using a TBS buffer supplemented with 20µg/ml of proteinase K (Invitrogen). 453 

Nucleic acid staining was performed by vacuum-infiltration of a 5µM of Sytox Orange 454 

(Invitrogen) solution, before incubation  of  the  samples  30  min  at  room  temperature.  455 

When  RNAse  treatment  was performed, foliar discs were incubated 15 min at room 456 
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temperature with 0.5µg/ml of RNAse A (Roche) before acid nucleic staining. Foliar discs 457 

were washed with and mounted on TBS before observations on an inverted microscope 458 

(Eclipse TE2000E, Nikon, Japan). 459 

 460 

FRET/FLIM measurements 461 

 462 

Fluorescence lifetime measurements were performed in time domain using a streak 463 

camera REF53. The light source is a mode-locked Ti:sapphire laser (Tsunami, model 3941, 464 

Spectra- Physics, USA) pumped by a 10W diode laser (Millennia Pro, Spectra-Physics) and 465 

delivering ultrafast femtosecond pulses of light with a fundamental frequency of 80MHz. A 466 

pulse picker (model 3980, Spectra-Physics) is used to reduce the repetition rate to 2MHz to 467 

satisfy the requirements of the triggering unit (working at 2MHz). The experiments were 468 

carried out at λ= 820 nm (multiphoton excitation mode). All images were acquired with a 469 

60x oil immersion lens (plan APO 1.4 N.A., IR) mounted on an inverted microscope 470 

(Eclipse TE2000E, Nikon, Japan). The fluorescence emission is directed back into the 471 

detection unit through a short pass filter λ<750 nm) and a band pass filter (515/30 nm). The 472 

detector is a streak camera (Streakscope C4334, Hamamatsu Photonics, Japan) coupled 473 

to a fast and high-sensitivity CCD camera (model C8800-53C, Hamamatsu). For each 474 

nucleus, average fluorescence decay profiles were plotted and lifetimes were estimated by 475 

fitting data with exponential function using a non-linear least-squares estimation procedure. 476 

Fluorescence lifetime of the donor (GFP) was experimentally measured in the presence and 477 

absence of the acceptor (Sytox Orange). FRET efficiency (E) was calculated by comparing 478 

the lifetime of the donor in the presence (τDA) or absence (τD) of the acceptor: E=1-479 

(τDA) / (τD). Statistical comparisons between control (donor) and assay (donor + acceptor) 480 

lifetime values were performed by Student t-test. For each experiment, four leaf discs 481 

removed from two agroinfiltrated leaves were used to collect data. 482 

 483 
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Table 1. Summary of FRET-FLIM conditions and values obtained on foliar discs of N. benthamiana expressing 
the different fluorescent donor proteins. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Table 1. Primers used for the generation of the different constructs. 
 
 
 
 
 
 
 
 
 
 
 

t  : mean GFP lifetime in nanoseconds (ns). For each nucleus, average fluorescence 

decay profiles were plotted and lifetimes were estimated by fitting data with 

exponential function using a non-linear least-squares estimation procedure. (b) 

s.e.m.: standard error of the mean. (c) N: total number of measured nuclei. (d) E: 

FRET efficiency in % : E=1- t(DA/ t D). (e) p-value (Student’s t test) of the 

difference between the donor lifetimes in the presence or absence of acceptor 



Supplemental Fig 1: AeCRN5 is a CRN DN17 family. Alignment of 
Cterminus of AeCRN5 with the DN17 consensus sequence of P. infestans and 
its closest orthologs from P. ramorum (pRg882635), P. sojae (Ps_132663), P. 
capsici (Pc_CRN20_624), the chytrid fungus Batrachochitrium dendrobatidis 
(Bd) (BD_07009.1), the arbuscular mycorrhrizal fungus  Rhizophagus 
irregularis (Ri, gm1.18625_g) and the DN17 consensus sequence from P. 
infestans. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2: Complementary results 



Complementary Figure 1. Identification of a AeCRN5 Cterminal bioactive 
derivative (PepNLS) in N. benthamiana. A. Cartoons describe Cteminal AeCRN5 
derivatives assayed for cell death activity and nuclear localization on N. 
benthamiana leaves. B Photograph of a N. benthamiana leaf agroinfiltrated with 
constructs GFP, AeCRN5 and PepNLS showing representative necrotic symptoms 
observed 5 days after agroinfiltration and western blot results showing the 
accumulation of both proteins in plant cells 24, 48, and 72 hours after 
agroinfiltration. Blots were probed with GFP antibodies. C. Panels correspond to 
micrographs acquired by confocal imaging showing the localization of both GFP 
fusion proteins AeCRN5 and  PepNLS in epidermal cells at 24h-30h and after 30h 
after infiltration (Scale bars : 5 µm).  
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Complementary results 
 

Additional experiments were conducted attempting to precise the mechanisms of 

AeCRN5 nuclear activities. 

 
 
PepNLS defines a minimal peptide of AeCRN5 presenting necrosis-inducing  activity 
 
 

As previously reported, we showed that AeCRN5 Cterminus domain (DN17) is a cell-

death inducing domain which targets plant nuclear RNA with a dynamic localization within the 

plant nucleus. To identify the regions of DN17 required for these activities, we produced 

different Cterminal derivatives Nterminally fused to GFP, schematized in complementary figure 

1.  All constructs were agroinfiltrated in N. benthamiana leaves. Only the PepNLS version 

corresponding to the first 11 aa peptides coupled to the NLS (133aa-179aa) was stably expressed 

(complementary figure 1 C). Notably, PepNLS accumulation was greater than AeCRN5 and was 

accompanied of cell-death, similarly to the full DN17 domain (complementary figure 1 C). 

Confocal microscopy studies revealed a nuclear localization of the GFP:PepNLS fusion protein 

homogenously distributed in the nucleoplasm over time. Thus, in contrast to the full DN17, it 

did not display a shuttling to any obvious subnuclear bodies.  

 
 
PepNLS also displays a RNA binding capacity 
 
 

We tested whether PepNLS could target plant RNA by FRET-FLIM. Analyses were 

performed on three independent agroinfiltrations and on a minimum of 10 nuclei per construct 

and results were compared to GFP and GFP-H2B measurements.  For PepNLS, we registered a 

GFP life- time decrease from 1.995 +/-0.032 to 1.692+/-0.020 in presence of Sytox Orange, 

indicative of FRET phenomenon (complementary table 1). Since Sytox Orange labels DNA and 

RNA, to discriminate the nature of nucleic acid targeted by PepNLS, samples were treated with 

RNAse which resulted in the loss of FRET. Hence, PepNLS targets plant RNA. These 

preliminary results suggested that this first Nterminal region of DN17 domain may be a minimal 

peptide ensuring AeCRN RNA binding. Yet, it is not likely to contribute to AeCRN5 localization 

to nuclear bodies.  



Donor Acceptor t (a) sem (b) N (c) E (d) 

GFP - 2.246 0.036 20 - 

GFP Sytox 
Orange 2.210 0.044 18 1.6 

GFP-H2B - 2.465 0,017 40 - 

GFP-H2B Sytox 
Orange 1.852 0.047 43 24.8 

GFP-AeCRN5 - 2.128 0.069 27 - 

GFP-AeCRN5 Sytox 
Orange 1.899 0.069 10 10.5 

GFP-AeCRN5 

Sytox 
Orange + 
RNAse 

treatment 

2.228 0.105 17 0 

GFP-PepNLS - 1.995 0.032 23 - 

GFP-PepNLS Sytox  
Orange 1.692 0.020 32 15.2 

GFP-PepNLS 

Sytox 
Orange + 
RNAse 

treatment 

1.969 0.042 31 1.3 

Complementary Table 1. Summary of FRET-FLIM conditions and values 
obtained on foliar discs of N. benthamiana expressing the different fluorescent 
donor proteins. 

τ  : mean GFP lifetime in nanoseconds (ns). For each nucleus, average fluorescence 
decay profiles were plotted and lifetimes were estimated by fitting data with 
exponential function using a non-linear least-squares estimation procedure. (b) 
s.e.m.: standard error of the mean. (c) N: total number of measured nuclei. (d) E: 
FRET efficiency in % : E=1-(τ DA/ τ D). (e) p-value (Student’s t test) of the 
difference between the donor lifetimes in the presence or absence of acceptor 
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PepNLS worries host roots similarly to full AeCRN5 
 
 

We showed that AeCRN5 (complete DN17 domain) affects host root development when 

overexpressed in M. truncatula roots. We further tested whether PepNLS could present similar 

AeCRN5 in roots of M. truncatula. For this, we transiently expressed constructs GFP:PepNLS 

(PepNLS) and control GFP in roots via a A. rhizogenes-mediated transformation. Composite 

plants were let to develop over time and fluorescent roots were used to study GFP localization 

by confocal microscopy. GFP corresponding to PepNLS was detected exclusively on nuclei in 

constrast to GFP alone, which presented its typical nucleo-cytoplasmic localization 

(complementary figure 3 A). Plants transformed with PepNLS presented an overall size 

reduction with major changes in root morphology compared to plants transformed with GFP 

alone (complementary figure 3 B). Quantification of root length and number indicated that roots 

transformed with PepNLS presented a decrease of root length and a higher number of roots 

(complementary figure 3 C), similar to effects triggered by AeCRN5.  It is worth to note that 

PepNLS induced stronger effects on root architecture than AeCRN5 

 
As a first approach to further characterize DN17 domain we generated AeCRN5 Ctermical 

truncated peptide. Only the 11-aa amino terminal peptide coupled to the NLS was stable, 

accumulating over time in plant cells. This peptide localizes in nuclei, binds RNA, triggers a 

cell-death but does not transiently localize in nuclear bodies. These results suggest that, within 

AeCRN5 Cterminal domain, distinct subdomains ensure the nuclear-body localization and that 

induction of cell-death may be nuclear-body independent. Our preliminary analyses on PepNLS 

and full DN17 by putative orthologs sequence analysis and 2D modeling did not show any 

obvious sequence characteristic leading to a particular known activity. In the furure, similar 

experiments will be perform to generate viable Cterminal derivaties, mainly a DN17 version 

deleted of its first 11 amino acid  to validate the importance of this region for DN17 activities, 

notably nuclear-body addressing. 

In host roots, PepNLS accumulates in nuclei and leads to similarly effects on root morphology 

that AeCRN5. In contrast to AeCRN5, PepNLS fluorescence accumulated sufficiently to be 

visualized in host roots. This is consistent with a greater protein accumulation observed for 

PepNLS in foliar leaves (N. benthamiana), and might explain the stronger effects seen for this 

version compared to those triggered by AeCRN5. 



Complementary Figure 2. PepNLS modifies root morphology. M. truncatula 
plantlets were transformed with A. rhizogenes to express constructs GFP and 
PepNLS. A. Micrographs showing a nucleo-cytoplasmic localization of GFP 
and a nuclear accumulation of PepNLS. Fluorescent transformed roots  were  
studied by confocal microscopy (scale bar: 20µm ). B. Photographs of  30 day-
old composite plants depict the effects of PepNLS on plant development and 
on root system morphology (scale bars: 1 cm). C. Quantification of length and 
root number per composite plant is presented in box-plot graphics which 
represent the average of both parameters and further confirms the impact of  
PepNLS on root development. Measures and statistical analyses were 
performed on n=60 (GFP) and n=140 (PepNLS) plants. * (t- test, p-
value<0.05).  
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Overall, these preliminary results indicate that whithin the DN17 of AeCRN5 there could be a 

functional modularity that could explain AeCRN5 localization dynamism within the plant 

nucleus.  Insterstingly this dynamism does not seem to be required for cell-death activity. Why is 

AeCRN5 addressed to this constricted RNA-containing nuclear zones and how this contributes 

to its whole protein activity?  Whether this fontional modularity supposes different nature of 

RNA targets and/or interaction to other plant factors needs to be further investigated. 

Experiments to identify the nature of RNA targets sassociated to PepNLS (nucleocytoplasmic 

distributed) and to nuclear-bodies are in view to be performed on full DN17 and other protein 

versions that will be generated.  

 
Materials and methods of complementary experiments  
 

Construction of AeCRN5 Cterminal derivative vectors 
 
 
Sequences of primers used are listed in complementary table 1. PepNLS, version 2 version 3 and 

version 4 carrying Gateway adaptors were generated by PCR using the cDNA template 

Ae_1AL4462 (vector pSport_Ae_1AL4462). PepNLS (132aa-180aa) was amplified using 

primers AttB1_AeCRN5-F and AttB1_PepNLS-R, version 2 (143aa-370aa) using 

AttB1_NLSDN17-F and AttB2_AeCRN5-R, version 3 (132aa-272aa) using AttB1_AeCRN5-F 

and AttB1_DN17dis-R and version 4 (273aa-370aa) using AttB1_Minus-F and AttB1_AeCRN5-

R. Amplicons were BP recombined in pDONR-Zéo vector (Invitrogen) and subsequently 

introduced in vector pK7GWF2 by means of LR recombination (Invitrogen). The obtained 

pK7GWF2 vectors were introduced in Agrobacterium strains for N. benthamiana agroinfiltration 

assays and/or M. truncatula roots transformation. 
 

Name Sequence 5’-3’ 

attB1_AeCRN5-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCTTGAAGG
TGACCGCTCTAGAACCC 

attB2_AeCRN5-R GGGGACCACTTTGTACAAGAAAGCTGGGTGTTGTTATTC
AAAAAGTATGGCG 

AttB1_PepNLS-R GGGGACCACTTTGTACAAGAAAGCTGGGTGTTGTTATTT
CTTTGGCTTCTT GTT 

AttB1_NLSDN17-F GGGGACCACTTTGTACAAGAAAGCTGGGTGTTGTTATGC
CTTCACATATTTCCC 

AttB1_DN17dis-R GGGG AC CAC TTT GTA CAA GAA AGC TGG GTG TTG 
TTA  TGC CTT CAC ATA TTT CCC 

AttB1_Minus-F GGGG ACA AGT TTG TAC AAA AAA GCA GGC TTC AAT 
GGT CGT TTT GAA TTT GTA 
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General discussion and perspectives 
 

Throughout this work, we performed the functional analysis of two putative cytoplasmic 

effectors from the root rot pathogen A. euteiches, AeCRN5 and AeCRN13. Their corresponding 

genes were detected in a cDNA library generated from infected roots of M. truncatula, before 

my arrival in the research team. In this section I will discuss the main results obtained during my 

PhD work and the immediate perspectives of our findings. 

 

CRN proteins, more than just phytopathogenic oomycete proteins. 

 

In the oomycete lineage, CRNs are ancestral proteins described in all phytopathogenic 

species including the early divergent species A. euteiches and latest results of RNA sequencing 

data indicate that they might be also present in the zoopathogenic species like A. astaci (Gaulin 

et al., in preparation). One characteristic of the CRN protein family is its extensive expansion 

and diversity, typically found in Phytophthora species (P. infestans, P. ramorum, P. sojae…) 

and also in A. euteiches. In Phytophthora species, this gene number expansion and sequence 

variability is attributed to gene duplication events and fragment recombination mechanisms 

between CRN sequences (Haas et al., 2009; Shen et al., 2013) that are thought to give rise to 

novel CRN proteins and, by this, contribute to host adaption. In P. sojae almost 50% of CRNs 

have been found to issue from gene duplication and are under diversifying selection, denoting 

likely a neo-functionalization of the resultant CRNs.   

At the beginning of this project, CRN proteins were thought to be restricted to the oomycete 

lineage, but during my PhD work, CRN-like proteins were reported in the chytrid fungus species 

B. dendrobatidis, an amphibian pathogen and in the plant mycorrhizal fungus R. irregularis. 

Thus, CRN are no longer oomycetes specific nor linked to a pathogenic lifestyle but might also 

contribute to a mutualistic lifestyle. Because CRN-like proteins are limited only to these two 

fungal species, their occurrence in Bd and Ri is proposed to be the result of Horizontal Gene 

Transfer (HGT) events from oomycetes (Sun et al., 2011). HGT is very common between  

bacteria and from bacteria to eukaryotes (Gilbert and Cordaux, 2013) and is becoming evident 

also between plant parasitic nematodes, oomycetes and fungi for which  it has been proposed as 

a mechanism shaping parasitism (Gardiner, Kazan, & Manners, 2013; Haegeman, Jones, & 
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Danchin, 2011; Richards et al., 2011).  Fixation of new genes supposes then that novel functions 

somehow fit in functional networks already present in the receiver organism and that these 

functions add an advantage to the network (Richards et al., 2006). Therefore, the presence in 

fungi implies that CRN functions fit in the biochemical networks and confer a benefit to the  

biology of these two organisms.   

Several gene transfers have been evidenced between fungi and oomycetes (Richards et al., 

2011). 33 fungi-to-Phytophthora oomycete species genes have been identified accounting for up 

to 7.6% of the predicted secretome (P. ramorum). Among the transferred genes, some code for 

secreted proteins with functions in the degradation of cell wall structural polysaccharides 

specific to plants and therefore putatively involved in the degradation of plant cell wall for tissue 

colonization and/or nutrient acquisition. Notably, among transferred genes are LysM protein- 

coding genes which have been  demonstrated in phytopathogen fungi as effectors allowing plant 

defense suppression (Richards et al., 2011).  

B. dendrobatidis and R. irregularis share a repertoire of oomycete CRNs that include DFA-DDC, 

DN17, DXX, DX8 Cterminal families with up to 46.5 % of sequence similarity (Sun et al., 

2011; Lin et al., 2014). It is expected that fungal CRN could have undergone sequence 

divergence linked to a specialization and functional adaptation to the recipient’s biology since 

their actual transfer from oomycetes. Nevertheless, this shared core of CRNs could imply 

similar protein activities and likely similar functions. In the case of B. dendrobatidis, the 

observation that CRN proteins display signs of diversifying selection and are induced upon 

infection (Rosenblum et al., 2012) supports their possible involvement during host infection. 

The results obtained on AeCRN13 and BdCRN13 support the idea that sequence similarities 

can correlate to similar activities and open the question of the exact contribution of similar 

CRN activities in microorganisms that present different lifestyles and develop in different 

nature of hosts.  If this shared core of CRNs presents indeed similar activities, it would be logic 

to assume that such activities are necessary for common infectious processes. Then, it is likely 

that common CRNs target universal functions and/or processes present in both plants and 

animals. The elucidation of oomycetes and fungal CRN activities together with the 

identification of targeted processes is of current need to understand the CRN protein family. 
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AeCRN secretion and translocation  

 

The in silico characterization of CRN proteins in oomycetes and fungi has denoted the lack 

of predictable signal peptides (SPs) in their Nterminal moieties. In fact, 40% of CRNs of 

P.infestans do not contain a SP (Haas et al., 2009) and only 11% of Bd and 12%  of  Ri CRNs 

exhibit a SP (Sun et al., 2011; Lin et al., 2014) . The lack of SP is also the case for both AeCRN 

studied in this work. CRN  Ntermini lacking predictable SP, including AeCRN5, were shown to 

allow the secretion and host-delivery of proteins (Schornack et al., 2010). Hence, it is possible 

that some CRN possess particular unknown secretion leaders that cannot be accurately predicted 

by available algorithms (i.e SignalP).  Another possibility is that some CRN fall into the category 

of the so-called leaderless secretory proteins (LSPs) that undergo unconventional protein 

secretion. The latter idea is sustained by a recent study of P. infestans's in vivo proteome that 

evidenced the presence of proteins devoid of SP in the extracellular space, among which CRNs 

(Meijer et al., 2014). Unconventional secretion refers to secretion mechanisms other than the 

classical ER-Golgi trans-membrane route to which canonical SP-containing proteins are 

addressed, that allow secretion of SP-lacking proteins. Unconventional protein secretion has 

been described mainly in mammal and fungal systems and in plants (Ding et al., 2012; Oliveira 

et al., 2013) and its experimental evidence lies on the identification in the extracellular space of 

proteins that are typically intracellular (cytoplasmic/nuclear) and/or that lack SPs and on the 

observation that secretion of some proteins is Brefeldin A (BFA) independent. BFA is a potent 

inhibitor of membrane recruitment of factors that mediate the formation of coated vesicles from 

Golgi membrane to the plasma membrane. Models for unconventional secretion suppose the 

direct translocation of the protein across the plasma membrane or a vesicle-dependent secretion, 

but the exact factors controlling the biogenesis of such vesicles, the shedding and sorting of 

secreted proteins is not well understood (Nickel and Rabouille, 2009). Studies in various fungal 

systems, mainly carried in animal pathogenic species (like Crytococcus neoformans and 

Paracoccidioides brasiliensis) have described the release of vesicles to the extracellular space 

during infection. Isolation and analysis of extracellular vesicles or “exosomes” has denoted a 

variety of cargo molecules (lipids, proteins, polysaccharides…) that have been associated with 

virulence (Oliveira et al., 2013). 

The demonstration that effectors undergo differential secretion pathways has been recently 

brought thought studies on the phytopathogenic fungus Magnaporthe oryzae. Localization 

studies of effector proteins tagged with fluorescent proteins expressed in this fungus, have shown 
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that apoplastic effectors are found dispersed and retained in the EIHM compartment (a close-up 

apoplastic space delimited by the invasive hyphae and the plasma membrane of the invaded host 

cell) while intracellular effectors accumulate in the BIC (a plant derived structure developed 

adjacent to the infectious hyphae). Secretion of apoplastic effectors such as Bas4, Bas113and 

Slp1 was blocked by BFA, indicating that these effectors undergo an ER-to-Golgi secretion. In 

contrast BFA treatment did not affect the secretion of the intracellular effectors Pwl2, Bas1and 

Avr-Pita (Giraldo et al., 2013). 

 

 Our preliminary immunolocalization results on AeCRN13 during M. truncatula root 

infection provided, for the first time, the visualization of an oomycetal intracellular/cytoplasmic 

effector secretion and translocation during the natural infection conditions. AeCRN13 was 

detected in particular cup-shaped structures outside A. euteiches infectious mycelium that we 

denoted as “vesicle-like” or “exosomes”. This localization pattern contrasts to what has been 

observed in hautoria-forming fungi and oomycetes in which intracellular effectors have been  

seen to accumulate in located zones of haustoria and other particular biotrophic structures as the 

above mentioned BIC (Kemen et al., 2005, Whisson et al. 2007, Giraldo et al., 2013). In A. 

euteiches such structures have never been detected and AeCRN13 was not detected in any 

particular zone of the infectious hyphae.  

AeCRN13 signal was detected in vesicle-like structures near host nuclei and a faint AeCRN13 

signal was reported in nuclei. We postulate that once in the vicinity of host nuclei, AeCRN13 is 

released from these structures and addressed into nuclei to exert its function. Future work will be 

directed to precise the nature of these “vesicles”. Immuno-electron microscopy techniques will 

be used to precise their size, morphology and the exact localization of AeCRN13 within these 

structures. To further characterize their molecular composition, these vesicles will be isolated 

from infected tissues and analysed for protein and lipid composition. Different methods for 

isolation and analysis have been described in the literature based on ultracentrifugation, filtration 

and immunoaffinity (Witwer et al., 2013). This latter strategy could be contemplated by using 

AeCRN13 antibodies. Such studies will be also directed on AeCRN5 and other Phytophthora 

CRNs to see whether secretion is conserved in oomycetes (Saprolegniales and Peronosporales). 

In addition it will be interesting to direct similar approaches on CRN displaying canonical SP 

leaders in order to see whether CRN secretion and translocation differ between SP-

containing/lacking CRNs.  
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We followed AeCRN13 protein accumulation during M. truncatula infection with 

AeCRN13 antibodies. The results pointed out the possibility for AeCRN13 to be processed since 

different specific AeCRN13 signals were detected upon western blot analyses of infected roots. 

Our interpretation of AeCRN13 processing is based on predicted sizes and on speculations 

brought by other studies and we are aware of the necessity to sustain our hypotheses with mass 

spectrometry analyses of the products that were identified to be conclusive.  

Nterminal processing of intracellular effectors has been described. For instance, a mass 

spectrometry analysis of SIX2 (Avr2) protein of F. oxysporum isolated from infected tissues 

revealed that only its Cterminal domain is present in infected xylem tissues (Houtemann et al., 

2007: Ma et al., 2013). In addition, it has been demonstrated that the Ntermini of intracellular 

“Pexel” effectors of P. falciparum are processed during its transit on the ER (Osborne et al., 

2010) and it it also the case for the Nterminal domain of the RxLR effector Avr3a from P. 

infestans (Warva S, OMGN meeting July 2014).  

Post-translational modifications could also constitute a regulation of CRN proteins. So far, 

phosphorylation has been shown as one type of post-translational decoration of CRN proteins. 

The recent “phospho-proteome” study on P. infestans showed that Cterminal domains belonging 

to the DBF, DO, DXZ, DXX families are targets of phosphorylation (Resjö et al., 2014) and a  

previous study indicated that CRN8 (carrying a D2 Cterminal domain) is phosphorylated when 

expressed in planta, a modification necessary to its cell-death activity (van Damme et al., 2012). 

These observations point to a functionally relevant regulation of CRN at the post-translational 

level which is in agreement to latest finding on the fungal LysM (Slp1) effector of M. oryzae for 

which its N-glycosylation during its Golgi-dependent secretion is necessary for its chitin binding 

and virulence activity (Chen et al., 2014). 

 

Nuclear and subnuclear localization of AeCRNs 

 

Nuclear import of proteins larger than 40kDa is an active process mediated by protein 

complexes associated at the nuclear pores, that solicits import receptors (importins) recognizing 

NLS motifs in imported cargo proteins (Tamura and Hara-Nishimura, 2014). All CRN proteins 

studied so far localize in plant nuclei but their nuclear localization not always correlates to the 

presence of predicted NLS in their Cterminal domains. For instance, only 26% of P. capsici 

CRNs present NLS (Stam et al., 2013). AeCRN13, BdCRN13 and AeCRN5 exemplify this since 

only AeCRN5 contains a predictable NLS. Their presence in some CRNs infers that CRNs 
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subvert directly the nuclear transport machinery of host cells by interacting with α/β-importins. 

This was actually shown for Phytophthora NLS-containing CRNs and for AeCRN5 for which 

silencing of plant α-1- importin partially impairs their nuclear accumulation (Schornack et 

al.2010). The direct subversion of the host nuclear traffic machinery by bacteria and oomycetal 

effectors has also been reported (Deslandes and Rivas 2011; Caillaud et al., 2012). How exactly, 

non-containing NLS CRNs localize in nuclei is still not clear. A possible explanation is that 

these proteins may harbor discrete NLS, still not characterized, and therefore unpredicted with 

algorithms at disposition. Other possibility is that they could co-opt host factors that mediate 

direct interaction with importins as it has been shown for the Agrobacterium effector VirE2 that 

subverts the plant NLS-containing VIP1 protein to mediate its entry (Liu et al., 2010). 

AeCRN13 and AeCRN5 localize entirely to nuclei. Confocal imaging performed on GFP-tagged 

AeCRN5 over time revealed a dynamic subnuclear localization for this protein. AeCRN5, which 

is a DN17 CRN, first displays an even nucleoplasm distribution then exhibits a punctuated 

localization that results in its location to uncharacterized nuclear bodies characterized by the lack 

of DNA material. Another DN17 CRN protein, CRN12_624 (from P. capsici) exhibits similar 

punctuated concentrations of fluorescence all over the nucleus, but the possible dynamism of its 

localization was not examined.  

The dynamics of AeCRN5 localization together with the fact that nuclear bodies do not contain 

DNA material and required plant RNA integrity to form, suggest that AeCRN5 localization 

might be linked speckles. Among the different membrane-free nuclear compartments evidenced 

in plant and animal cells (ie Cajal bodies, nucleoli…), speckles are interchromatin molecular 

complexes that form throughout the nucleoplasm in regions containing little or no DNA and that 

exhibit a granular shape. Major components of speckles are proteins involved in pre-mRNA 

splicing (SR proteins, snRNP protein splicing factors) but transcription factors as well as 

subunits of RNA poly II and RNA have also been identified (Reddy et al., 2012; Spector and 

Lamond, 2011). The function of speckles is not clear, but because of their molecular composition 

together with the fact that their localization often correlates to active transcriptional sites, they 

have been proposed as splicing centres (spliceosomes) and as domains devoted to the storage and 

regulation of splicing factors. Speckles are highly dynamics structures, changing in size, shape 

and number with individual components able to shuttle in and out (Reddy et al., 2012). Future 

work on AeCNR5 will be devoted to further characterize its subnuclear localization by the use of 

protein markers of different nuclear compartments. 
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AeCRNs nuclear targets 

 

An increasing number of experimental data places the nucleus and/or nuclear-related 

functions as important hubs targeted by microbial effectors. While the nature of nuclear targets 

are best known for prokaryotic effectors, only few have been identified for eukaryotic effectors 

which have been shown to be proteins. These include transcription factors of the NAC family 

(NTP 1 and NTP2) and TCP (TCP14) targeted by RxLR of P. infestans and CRN of P. capsici, 

respectively, that have been proposed be positive regulators of plant defense. Other targeted 

plant defense regulators include the proteasomal protein CMPG1 and MED19 which are targeted 

by RxLRs (McLellan et al., 2013; Bos et al., 2010; Caillaud et al., 2013; Stam et al., personal 

communication). This study reveals, for the first time, that filamentous eukaryotic effectors can 

target nucleic acids. By setting FRET-FLIM measurements in planta, we demonstrate the close 

vicinity of AeCRN13 and AeCRN5 with plant DNA and RNA, respectively. In addition, by 

working with BdCRN13, we show that this targeting is a conserved CRN activity, suggesting 

that the targeting host nucleic acids may be a common infection strategy of eukaryotic 

pathogens. TAL effectors from bacteria illustrate the concept of plant physiology modulation 

through a direct interaction with nucleic acid. Their binding is DNA sequence specific and has a 

direct repercussion on host gene transcription.  

Next work will aim to decipher the interaction (direct or not) between AeCRNs and plant nucleic 

acid by developing cutting-edge technology including ChipSeq approach on M. truncatula. This 

approach will also provide answer to a possible specificity of the targeted nucleic sequence. 

Transcriptionnal modifications caused by CRNs in host plant will be also evaluated to precise 

their mode of action. Finally, Y2H on infected M. truncatula root is underway in the group in 

order to identify putative co-interactors of AeCRNs.  

 

 

Cell death activity and contribution to virulence  

 

At the beginning of the work, all Phytophthora CRNs studied were described as cell-death 

inducing proteins when expressed directly in plant tissues but works have shown that a large 

number do not carry a cytotoxic activity and/or can even supress cell-death induced by other 

CRNs and other microbial-derived cell-death inducers (Stam et al., 2013: Shen et al., 2013; Li et 

al., 2011). As Phythophthora species present hemibiotrophic lifestyles, it has been generally 
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assumed that CRNs with necrotic activities could be required during necrotrophic stages of 

infection. Nevertheless, gene expression profiles of CRN in Phythophthora species indicate that 

this might not be generally the case as some necrotic CRN are expressed during the biotrophic 

development of the pathogen (Stam et al., 2013; Li et al., 2011). In addition, CRN proteins of the 

obligate biotrophic oomycete Albugo candida have been shown to trigger cell-death which is in 

direct contradiction to its infection behaviour (Links et al., 2011). Thus, the cell-death activity 

observed for some CRNs in planta might not be the intrinsic virulence function but rather the 

consequence of their overexpression and thus “over-activity” in host tissues. Giving the high 

number of CRN genes, high-through put systems to assess the contribution to virulence of CRN 

have been based on pathogen challenging of plant tissues expressing ectopically the effectors and 

measure of pathogen spreading. These studies indicate that not all CRN display an obvious 

contribution and have suggested that some CRN may present more discrete virulence activities 

during infection (Stam et al., 2013). 

Our work shows that overexpression of both AeCRNs and BdCRN13 has important effects 

in plant and amphibian cells manifested by tissue necrotic symptoms or host developmental 

defects, all of which attest for the perturbation of host cellular processes by these AeCRNs. 

AeCRN13 contributes to P. capsici virulence, since AeCRN13 overexpression enhanced N. 

benthamiana leaves colonization. One way to better understand AeCRN13 contribution to 

infection is to contextualize their expression during infection in regards to the whole CRNs. A. 

euteiches genome contains 160 CRN gene models and currently their expression is being 

characterized by high-thought put qPCR system (Fluidigm Biomark) on various life stages of the 

pathogen.  

 

Nuclease activity and DNA damage 

 

During this work we provided first insights into the function of CRN13 by identifying a 

putative HNH-like endonuclease motif in the Cterminal DFA subdomains of Ae and Bd 

effectors. In vitro assays demonstrated the AeCRN13 binds and cleaves DNA. This is suspected 

to be mediated by the HNH-like motif. HNH motifs are phylogenetically wide spread functional 

protein domains associated to DNA-binding factors of prokaryotic and eukaryotic organisms and 

they occur commonly in homing endonucleases (HNH endonucleases) (Belfort and Roberts, 

1997). Studies of bacteria HNH endonucleases place this domain as an important structural 

domain necessary for the hydrolytic activity on DNA ensuring DNA and cutting activities 
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(Huang and Yuan, 2007; Shen et al., 2004). Interestingly, some bacterial HNH-containing 

proteins act like toxins and play ecological roles in bacteria populations.  For instance, bacterial 

colicins have been shown to be secreted and translocated inside other bacteria cells where their 

nuclease activity  leads to cell-death is and is HNH-dependent  (Hsia et al., 2004; Pommer et al., 

2001 ; Braun and Patzer, 2013) . Future studies will evaluate the functionality of the HNH-like 

motif of AeCRN13 and its requirement in the cell-death inducing phenotype. For this, different 

versions of the protein will be made (punctual mutation and HNH-deleted version…) and, for 

them, DNA-binding affinity as well as nuclease activity will be evaluated. 

Lastly, we reported the induction of plant DNA double-strand breaks (DSB) upon 

overexpression of AeCRN13 in N. benthamiana and interestingly during M. truncatula infection 

by A. euteiches, using phosphorylated-H2AX detection. This finding identifies CRN effector as 

inducer of DSB probably through its nuclease activity. Song and Bent (2014) recently 

demonstrated the occurrence of DSB in plants during infection by phytophatogens P. syringae 

and P. infestans. The authors speculate that DSB may be due to a direct effect of microbial 

effector, toxins or cytotoxic microbial molecules since it was observed only with pathogenic 

species and in the absence of ROS accumulation (Song and Bent, 2014). In animals and plants, 

DNA breakage initiates a phosphorylation mediated signal transduction cascade leading to cell 

cycle arrest, cell-death or repair of DSB. Orthologous genes of the A. thaliana or animal 

signaling cascade have been detected in the M. truncatula genomes (i,e . wee1, rad51, brca1…). 

Future work will aim to evaluate their involvement in the observed mechanism DNA damage. 

 

 

Concluding remarks 

 

During my PhD work I deciphered a new mode of action of an exciting class of nuclear 

effectors from the root pathogen A. euteiches. I have showed that CRN oomycetal effectors are 

translocated into the cytoplasm of the host plant during interaction. I identified host nucleic acids 

as a novel target of AeCRNs that impact plant physiology. Finally I’ve revealed that eukaryotic 

effectors induce host DNA damage during infection probably through the secretion of 

cytoplasmic effector like the CRN DFA-DCC family. Altogether this PhD opens intriguing 

avenues for future studies. 
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Summary: The oomycete Aphanomyces euteiches is an important pathogen infecting roots of 
legumes (pea, alfalfa...) and the model legume Medicago truncatula. Oomycetes and other 
microbial eukaryotic pathogens secrete and deliver effector molecules into host intracellular 
compartments (intracellular/cytoplasmic effectors) to manipulate plant functions and 
promote infection. CRN (Crinkling and Necrosis) proteins are a wide class of intracellular, 
nuclear-localized effectors commonly found in oomycetes and recently described in true 
fungi whose host targets, virulence roles, secretion and host-delivery mechanisms are poorly 
understood. We addressed the functional characterization of CRN proteins AeCRN5 and 
AeCRN13 of A. euteiches and AeCRN13’s homolog of the chytrid fungal pathogen of 
amphibians Batrachochytrium dendrobatidis, BdCRN13. Gene and protein expression 
studies showed that AeCRN5 and AeCRN13 are expressed during infection of M. 
truncatula’s roots. Preliminary immunolocalization studies on AeCRN13 in infected roots 
indicated that the protein is secreted and translocated into root cells, depicting for the first 
time CRN secretion and translocation into the host during infection. The heterologous 
ectopic expression of AeCRNs and BdCRN13 in plant and amphibian cells indicated that 
these proteins target host nuclei and lead to t h e  perturbation of host physiology. By 
developing an in vivo FRET-FLIM-based assay, we revealed that these CRNs target host 
nucleic acids: AeCRN5 targets plant RNA while AeCRN13 and BdCRN13 target DNA. Both 
CRN13 exhibit a HNH-like motif commonly found in endonucleases and we further 
demonstrated that both CRN13 display a nuclease activity in vivo inducing double-stranded 
DNA cleavage. This work reveals a new mode of action of intracellular eukaryotic effectors 
and brings new aspects for the comprehension of CRN’s activities not only in oomycetes but, 
for the first time, also in true fungi. 
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