
This is a postprint version of the following published document:

Lindoso, A., Entrena, L., Garcia-Valderas, M. & Parra,
L. (2017). A Hybrid Fault-Tolerant LEON3 Soft Core
Processor Implemented in Low-End SRAM FPGA.
IEEE Transactions on Nuclear Science, 64(1), pp.
374–381.

DOI: 10.1109/tns.2016.2636574

 © 2017, IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

https://doi.org/10.1109/tns.2016.2636574


Abstract—In this work we implemented a hybrid fault-tolerant

LEON3 soft-core processor in a low-end FPGA (Artix-7) and
evaluated its error detection capabilities through neutron
irradiation and fault injection in an incremental manner. The
error mitigation approach combines the use of SEC/DED codes
for memories, a hardware monitor to detect control-flow errors,
software-based techniques to detect data errors and
configuration memory scrubbing with repair to avoid error
accumulation. The proposed solution can significantly improve
fault tolerance and can be fully embedded in a low-end FPGA,
with reduced overhead and low intrusiveness.

Index Terms—Neutron cross-section, microprocessors, SEEs,
soft errors, fault tolerance, hybrid fault-tolerance techniques

I. INTRODUCTION
PGAs are becoming increasingly attractive for a broad
range of applications, including those that require a high

reliability. In comparison with ASICs, they provide higher
flexibility, lower cost, reduced time-to-market and even the
capability of upgrading hardware functionality. Moreover,
FPGAs are usually implemented in the latest available
technologies and applications can take the benefits of them in
a shorter time. Today, there is a wide offer of devices with
several cost-performance tradeoffs [1], but even low-end
devices have a huge amount of resources, enough to
implement Systems-on-Chip (SoCs) with good performance at
low cost. SoCs can use either hard-core processors [2] for
higher performance or soft-core processors for higher
flexibility [3], [4]. The former require specific FPGA devices
that include hard-core processors, while the latter can be
implemented in any FPGA.

Embedded systems based on soft-core processors are
becoming very popular, even though they cannot match the
performance, area, and power of hard-core processors. Due to
shrinking technology sizes, soft-cores have increased
commercial use in networking and data centres. Soft-core
processors are flexible and can be customized for a specific
application with relative ease. Moreover, they can be re-

This work was supported in part by the Spanish Ministry of Economy and

Competitiveness under contract ESP2015-68245-C4-1-P.
A. Lindoso, L. Entrena, M. García-Valderas and L. Parra are with the

University Carlos III of Madrid, Electronic Technology Department, Avda.
Universidad, 30, Leganes (Madrid), Spain. (e-mails: alindoso@ing.uc3m.es,
entrena@ing.uc3m.es, mgvalder@ing.uc3m.es and lparra@pa.uc3m.es).

targeted to any new technology as soon as it becomes
available and therefore they are less prone to become obsolete.

For critical applications, soft-core processors need to be
made fault-tolerant. Unlike hard-core processors, soft-core
processors can be modified to implement error mitigation,
which is another advantage of soft-core processors.
Conventional hardware error mitigation techniques, such as
Triple Modular Redundancy (TMR) [5] can be used for this
purpose. However, TMR usually involves large overheads and
it is highly intrusive. In the case of FPGAs, although it is
widely used, it requires a very careful design, because a single
SEU affecting the configuration memory may originate
multiple errors [37]. In addition, designers often have very
limited access to the internal architecture of the soft-core
processor. Alternatively, software or hybrid error mitigation
techniques can be used. These techniques typically focus on
error detection rather than correction to reduce the overheads
[6-15].

Software-based techniques provide high flexibility, low
development time and low cost, as they can be implemented
without modifying the hardware. However, software-based
techniques cannot achieve full system protection against soft
errors [6] and may produce large overheads in processing time
and storage needs, particularly when designed to protect the
microprocessor against control-flow errors [7], [8].

Hybrid nonintrusive techniques typically use a hardware
module to monitor the execution of the instructions in the
processor from an available interface, such as the memory bus
[7]-[10] or the trace interface [11]-[15]. This approach does
not require any modification of the processor, except for
possibly adapting the monitoring interface. A hardware
monitor can be designed to detect several types of errors.
Generally, control-flow errors can be easily detected by
checking the sequence of executed instructions, whereas data
errors are more complex to check as it requires large amounts
of data to compare with [15].

Our goal in this work is to provide a solution that can be
fully embedded in a low-end FPGA without the need of
external hardware, with reduced overhead and with low
intrusiveness. To achieve this goal, we combine a selection of
techniques. Hardware changes are restricted to the hardening
of memories and the use of the hardware monitor proposed in
[14]. Memories are usually one of the most critical
components [36] in an embedded system, but they can be

A hybrid fault-tolerant LEON3 soft core
processor implemented in low-end SRAM

FPGA
A. Lindoso, L. Entrena, M. García-Valderas, L. Parra

F

easily identified and protected using Error Detection And
Correction (EDAC) codes. The hardware monitor compares
the instruction flow captured upstream at the bus between the
memory and the microprocessor with the instruction flow
captured downstream at the trace interface after the instruction
has been executed to detect control-flow errors. The major
advantage of this approach is that it can detect all control-flow
errors with no performance degradation and a small hardware
overhead. Then, software-based error detection techniques are
applied to detect data errors. Finally, scrubbing is used to
avoid the accumulation of errors. To this purpose, we take
advantage of the Soft Error Mitigation (SEM) Core from
Xilinx [16] that is included in the latest FPGA families.

A major advantage of the proposed approach is that the
applied hardware techniques do not require a deep knowledge
of the processor architecture or the FPGA architecture. As a
matter of fact, the hardened memory blocks and the hardware
monitor are implemented as soft IP (Intellectual Property)
modules that can be reused for other systems.

To demonstrate the benefits of the proposed approach, we
implemented a hybrid fault-tolerant LEON3 soft-core
processor [35] in an Artix-7 FPGA and experimentally
evaluated the SEU sensitivity by neutron irradiation and fault
injection. Because errors may be detected by more than one of
the used techniques, the analysis is performed in an
incremental manner to show the incremental benefits that can
be obtained as additional techniques are applied.

This paper is organized as follows. Section II summarizes
the related work. Section III describes the proposed hybrid
fault-tolerant approach. Section IV describes the experiments
that have been performed to validate this approach and
presents the experimental results. Finally, section VI
summarizes the conclusions of this work.

II. RELATED WORK
Soft error mitigation for microprocessors has received much

attention in the past years, as microprocessors play a very
important role in many electronic systems that require a high
reliability. In the literature [14], [17], [18], error mitigation in
microprocessor-based systems can be divided into three main
types of techniques: hardware techniques, software techniques
and hybrid techniques. Most of these techniques can be
applied to both hard-core and soft-core processors. However,
the reliability of soft-core processors implemented in SRAM-
based FPGAs in the presence of SEUs is not well understood
yet [19].

Software-based techniques are very attractive because only
software is modified, which is generally simpler than
modifying the hardware. In the case of soft-cores, designers
often have very limited knowledge about the internal details of
the core, so software-based techniques are preferred.
However, this type of techniques usually involve significant
code size enlargement and performance decrease.

Software-based techniques can be divided into control-flow
techniques and data-flow techniques. Control-flow techniques
focus on errors regarding the program flow. Commonly, these
techniques divide the program into basic blocks and use

signatures [20] or assertions [21] to check for incorrect
changes in the control flow.

Basic blocks are blocks of code without branches (i.e., the
instructions of a basic block are executed sequentially without
taking decisions which affect the program flow). Signature
techniques provide a signature for the basic blocks of a
program at compilation time. When the program is executed, a
run-time signature is computed and compared with the one
generated at compilation time. Whenever both signatures
differ, an error is detected. Assertion techniques modify the
software to insert special instructions named assertions which
assert the beginning and end of basic blocks.

The most popular data-flow software techniques are based
on duplication [15], [22], [31] or assertions [23]. Duplication
techniques duplicate data and check the consistency of
variables and their copies. To reduce code size and
performance overheads, duplication and consistency checks
can be made at different levels or with different grades of error
coverage [18]. Regarding the granularity, duplication can be
accomplished at instruction, procedure or program level. A
coarser granularity may reduce the overheads but latency will
increase. Regarding the coverage, variables can be selected to
decide which of them should be protected or checked. For
instance, in the Final Variables technique [24] only certain
variables are checked to reduce code size and performance
overheads.

Data-flow assertion techniques use assertions to check data
validity and correctness. The main drawbacks of these
techniques are that they are usually application dependent and
that error coverage depends on the ability to place the
assertion in the most effective code location [23].

Hardware-based techniques modify the architecture or the
hardware implementation. These techniques may be quite
effective, but they are often expensive in terms of FPGA
resource utilization and power consumption [5]. In addition,
they are highly intrusive because they require a deep
modification of the hardware and must be carefully applied.

At first glance, hardware-based techniques may appear to be
an attractive mitigation approach for soft-core processors.
However, designers often lack enough knowledge about the
internal architecture of the processor and the FPGA to make
an effective hardening. Alternatively, general hardware
solutions based on Triple Modular Redundancy (TMR) can be
used, which can be implemented with the help of some tools,
such as TMRTool from Xilinx [25]. These tools are generally
intended for full mitigation and produce high overhead. For
low error rates, partial mitigation can be used to reduce the
overhead. However, partial mitigation techniques for FPGAs
require a complex analysis [26], [27].

Hybrid techniques benefit from the best characteristics of
both hardware and software techniques. They usually combine
some level of redundancy in both software and hardware. In
some cases, special hardware is introduced to accelerate the
checking of redundant computations [28]. Alternatively, some
error checking tasks are implemented through an external
hardware module, sometimes known as a watchdog processor
[7]-[15], [29]. The watchdog processor may be designed with

different capabilities and complexities. It can be used to just
verify signatures or assertions stored internally or produced by
the processor, or it can even consist of a simplified processor
that executes a program concurrently with the main processor.
Hybrid approaches using an external hardware module reduce
intrusiveness and can be applied to any processor as long as a
suitable monitoring interface is available. This is not always
possible for hard-core processors, because the most
appropriate interfaces may not be accessible from external
pins, but it is usually feasible for soft-core processors.

III. HYBRID FAULT-FOLERANT APPROACH
The proposed hybrid mitigation approach builds on several

existing techniques to provide an effective solution for soft-
cores implemented in low-end FPGAs. Namely, it combines
the use of hardened memories, a hardware monitor to detect
control-flow errors [14], software-based techniques to detect
data errors [9], [31] and configuration memory scrubbing.
Each of these techniques is described in more detail in the
following sections.

A. Hardening of memories
A microprocessor-based system typically includes several

memories. In addition to RAM and ROM, which can be
implemented on chip or off chip, caches are commonly used to
speed up memory access. Caches should be implemented on
chip for fast access. Finally, the register file can be
implemented with flip-flops or with RAM blocks. In the case
of the LEON3 processor, the register file is quite large because
it uses register windows, so it is more efficiently implemented
with RAM blocks.

Memories are usually protected using EDAC codes. In
addition, memory scrubbing is often employed to prevent a
memory from accumulating errors in a single word, which
could eventually defeat EDAC [30]. In our design, RAM,
ROM and caches were hardened using an in-house
implementation of Single Error Correction / Double Error
Detection (SEC/DED) code with scrubbing. For memory
scrubbing, we took advantage of the dual-port featured by
FPGA BRAMs (Block RAMs). Thus, one port was used for
regular operation while the other was used for continuous
scrubbing. Scrubbing is continuously performed every clock
cycle, so the scrubbing cycle time is 1 clock cycle times the
memory size. Single errors were corrected without notice,
while double errors were reported.

The register file was implemented using BRAMs, but it
makes use of dual ports. In this case, we just implemented a
SED (Single Error Detection) approach using duplicated
register files. This way we can have a report of the errors in
the register file. Errors in the register file could be masked by
using TMR, although the impact is moderate because the
register file uses just a few BRAMs.

B. Hardware monitor
In [14] a general nonintrusive mitigation technique was

proposed to harden microprocessors against control-flow
errors for ASIC technologies. This approach adds a small

hardware module, called Hardware Monitor (HM), to the
microprocessor architecture that observes the instruction flow
at the beginning and at the end of the microprocessor data
path, namely, at the fetch stage, through the memory bus, and
after execution, through the trace interface. From each of these
observations points, the address of the instruction, given by
the Program Counter (PC), and the instruction code (opcode
and operands), are collected. Then, the HM compares the
information collected from these observation points and raises
an error signal if they do not match.

In addition, the HM can predict the next PC value from the
current instruction and the current PC value, which can be
observed from the trace interface. PC prediction is based on
the analysis of the instruction opcode. The PC must be
incremented by the instruction size except for branch
instructions. If the opcode corresponds with a branch
instruction, the PC must be incremented either by the branch
offset if the branch is taken or by the instruction size if the
branch is not taken. Any change in the PC value that does not
meet these requirements can be considered an error. To this
purpose, the predicted PC value is then compared with that of
the next executed instruction to detect abnormal changes in the
control flow.

Finally, exceptions and traps are also checked thanks to the
information provided by the trace interface. Unexpected traps,
such as those produced by invalid instructions or memory
addresses, are considered errors. Otherwise, if a corrupted
instruction executed without a trap, it will probably produce
an error that will be caught later on through software
checking. In addition, memory hardening protects data and
instructions while in memory. A basic block diagram of the
architecture of the hardware monitor is provided in Figure 1.

Figure 1. Block diagram of the hardware monitor

This technique has several advantages. First, it is a general

nonintrusive technique that can be applied to any hard-core or
soft-core processor, and particularly to pipelined processors
with several pipeline stages. It is able to detect all control-flow
errors and it uses a low amount of resources because it does
not need to store information about the expected control flow.
Finally, it does not reduce performance, because the processor
is observed in a nonintrusive manner and it does not require
any software support.

C. Software-based fault tolerance
Data errors are not covered by the hardware monitor and

Microprocessor

Instruction
Memory/cache

Hardware
Monitor

InstructionAddress

Trace
Interface

Input Buffer

Error

software-based techniques must be used for this purpose.
Many different software-based approaches can be found in the
literature [18]. Among them, we have selected data-flow
duplication techniques [31] and Inverted Branches technique
[9] because they have been shown to be effective for data
errors and are relatively easy to implement.

Our approach focuses on maximizing the error coverage
with the smallest error detection latency. Modifications are
performed directly in high-level language (C code) instead of
modifying assembly code as proposed in [9]. This approach
provides a portable solution for any architecture. Compilation
is made with the –O2 optimization option, which is able to
optimize the code without breaking software redundancy. The
applications used in this work are bare codes which do not use
libraries and modifications were made manually, but they can
easily be automated and embedded in a compiler. In the
general case, software libraries should be hardened as well.

To harden the software, we apply the following rules:
1. All variables are duplicated. This rule applies to loop

indices and procedure parameters as well.
2. Variable copies are updated whenever a variable is

modified.
3. Consistency checks are performed whenever variables

and copies are modified. They are performed just after
variable modification to decrease error detection latency.
This rule applies also to loop indices.

4. Consistency checks of all procedure parameters are
performed just after a procedure call.

5. All conditional branches and loops are hardened with the
Inverted Branches technique [9]. From the control-flow
point of view, branches imply two possible correct paths.
The choice depends on the evaluated condition. Each
condition is evaluated twice to make sure that the choice
made was right. When the branch is taken, the branch is
repeated with an inverted condition. When the branch is
not taken, the branch is simply repeated. In both cases, if
the branch is taken the second time, an error has
occurred. This technique was proposed for code
modification in assembly. However, we have applied it
directly in high-level code.

Software hardening techniques do not cover certain specific
architectural parts that cannot be accessed from software. In
most processor architectures there are some internal or shadow
registers which are not part of the programming model and
therefore cannot be directly accessed by the software. An
example of them is the internal pipeline registers. However,
errors in the pipeline registers can be detected by the HM.
This drawback is present in all software-based techniques and
its effects depend mainly on the complexity of the utilized
architecture. However, thanks to our hybrid approach we can
achieve high error detection coverage by the combined use of
software and hardware error mitigation techniques.

D. Configuration memory scrubbing
Modern SRAM-based FPGAs utilize a large amount of

configuration memory (CRAM) which accounts for the vast
majority of memory cells in a device. CRAM is highly critical

as it can alter the function of the logic and the
interconnections. Contrary to application memory cells, whose
contents may be refreshed with new data during normal
operation, errors in the CRAM remain until the device is
reconfigured, so that errors may accumulate and eventually
lead to multiple faults that can break the redundancy.

A SEU correction mechanism becomes essential to avoid
accumulation of latent faults and ensure correct operation of
FPGA devices. CRAM scrubbing is a widely used solution to
avoid error accumulation in the FPGA configuration memory.
It consists in the periodic refresh of the configuration while
the FPGA is operating, and it can be implemented either
internally or externally to the device [32]. Because of the
increasing demand of solutions to this problem, FPGA
manufacturers provide support for CRAM scrubbing in the
most recent FPGA families. In particular, Xilinx provides the
SEM Controller IP starting from the 7 series. This module
provides soft error detection and correction capabilities.

The SEM Controller supports three different error
correction modes [16]:
 Repair: ECC (Error Correction Code) algorithm-based

correction
 Enhanced Repair: ECC and CRC (Cyclic Redundancy

Check) algorithm-based correction
 Replace: Data reload based correction

In our case, we used the Enhanced Repair mode, because it
provides higher error correction capabilities, namely
correction of CRAM frames with single-bit errors or double-
bit adjacent errors. The Replace mode supports correction of
CRAM frames with arbitrary errors, but requires partial
reconfiguration of the FPGA.

The SEM Controller features also a fault injection
capability, which is very convenient to implement fault
injection experiments. To this purpose, we included a fault
injection controller that can be enabled through an external
pin. This way we ensure the same design is used for radiation
testing and fault injection. Fault injection is disabled when
testing under the beam, but it can be enabled when testing in
the lab.

IV. EXPERIMENTAL RESULTS
To test the benefits of the proposed hybrid approach with soft
cores and low-end FPGAs, a neutron radiation experiment was
performed at Los Alamos National Laboratory’s (LANL) Los
Alamos Neutron Science Center (LANSCE) in December
2015. LANSCE provides a white neutron source that emulates
the energy spectrum of the atmospheric neutron flux. As the
neutron radiation experiments require a long exposure time,
fault injection was used to complement the analysis for several
software benchmarks. In the following section the hardware
and software setup is described. Then, the results of the tests
are reported.

A. Experimental setup
The experiments were run on an Artix-7 XC7A100T FPGA

from Xilinx, in which we implemented two instances of the

fault-tolerant LEON3 design. These two instances are totally
independent of each other and were implemented just to speed
up the test. The selected configuration was a basic one, using
data and instruction caches of 2kB each, 8 register windows
for the register file, 128 kB of RAM and 4kB of ROM, all
embedded in the FPGA. Table I shows the synthesis results for
each LEON3 core, for each hardware monitor (HM) and for
the SEM Controller, which is only instanced once.

TABLE I. SYNTHESIS RESULTS

 #LUTs #FFs BRAM36
LEON3 4654 2013 47.5
HM 522 431 0
SEM 781 586 4.5

The utilization of FPGA logic resources is relatively low

(24% of slices). However, the implementation of RAM, ROM,
cache memories and the register file used up to 74% of the
available BRAMs. Therefore, we could not add more
instances of the LEON3 soft core due to the memory
limitations.

The HM is not protected, because an error in the HM does
not affect the computation. From this point of view, we can
consider that the hardware monitor does not increase the cross
section, which is due to the undetected errors. At most, the
HM can detect some false positives (the HM signals an error
but the computation is correct). False positives may trigger
some unnecessary error recovery action. For low error rates,
the impact of some sporadic error recovery action is
negligible. Otherwise, the hardware monitor can be hardened
to reduce the chance of false positives.

In addition, we included the SEM core in Enhanced Repair
mode. This core is able to correct errors that appear in the
configuration memory of the FPGA. The SEM provides
scrubbing capabilities without needing a scrubbing module
outside the FPGA, so that the whole system, including error
mitigation hardware, is embedded in the FPGA.

Three different software benchmarks were tested: quicksort,
matrix multiplication (MMULT) and AES (Advanced
Encryption Standard) encryption. Quicksort consists in a
recursive implementation of the quicksort algorithm with an
array of 5000 integers. It specifically tests recursive calls and
uses a significant amount of data memory. This benchmark
was selected for compliance with current efforts towards a
common set of benchmarks that can be used for comparison
among different experiments [33]. The MMULT software
benchmark implements a 5x5 matrix multiplication, mainly
using loops and arithmetic operations. The AES benchmark
implements the AES encryption algorithm with a key length of
256 bits and 10 iterations. This last benchmark makes a more
intensive use of logical operations and data memory to get
encryption look-up table data.

The selected software benchmarks also have very different
execution times. Table II shows the maximum number of
clock cycles required to execute each benchmark for the
unhardened and hardened software versions, respectively. At

the nominal clock frequency (50 MHz), the execution times
vary between 0.14 ms for the MMULT benchmark and 47 ms
for the hardened quicksort benchmark. The hardened software
versions produce a large performance overhead because they
check for errors after every operation in order to reduce the
error detection latency. Generally, this overhead can be
reduced by checking less frequently at the expense of larger
error detection latency.

TABLE II. CLOCK CYCLES FOR THE EXECUTION OF THE SOFTWARE
BENCHMARKS

SW
Benchmark Unhardened Hardened Performance

Overhead
Quicksort 937,376 2,343,943 2.50x
MMULT 7,022 19,948 2.84x
AES 31,137 97,514 3.13x

All tests were run with the same hardware and only differ in

the software application stored in RAM. Thus, all results are
referred to a common reference design. To properly relate
fault injection results to neutron radiation results, this
reference design includes RAM protection because errors in
RAM cannot be tested with fault injection. Upon reset, the
processor executes the boot program and then it repeatedly
executes the application software in an infinite loop. The
results are checked with respect to a golden, precomputed
result after each execution.

Our experimental setup stores the errors reported by the
various checkers in a register. The error register is updated
whenever an error appears and can only be cleared by
reconfiguring the FPGA. A suitable timeout condition is set so
that an error is also reported in the case the software execution
does not finish within a short margin of the expected time.
Note that the classification of errors is based on the means
used to detect them. We do not know the location of the errors
nor intend to draw conclusions about the sensitivity of the
components of the system, but about the system as a whole.
The contents of the error register are sent through a Serial
Peripheral Interface (SPI) to a host in order to store all the
errors and classify them. Every time an error is reported, the
host reconfigures the FPGA. The error collection module and
the SPI interface were tripled in order to reduce the impact of
possible errors in these modules on the obtained measures.

B. Neutron radiation test results
For the neutron radiation test, the LEON3 processor was

executing the quicksort algorithm, which is the benchmark
with a longer execution time. Only the unhardened software
version was tested due to the limited beam time.

The experiment was run over several days with a total
fluence of 4.71011 n/cm2. Table III shows a summary of the
number of errors and the cross-section as we incrementally
apply different techniques. To this purpose, we use the report
of errors detected by each technique, and consider that these
errors would be detected if the technique was applied, but
would go undetected otherwise. Thus, the number of
undetected errors and the cross-section decrease as more

hardening is applied.
The first row corresponds to the tested implementation and

considers all errors observed. Note that in this case the register
file is not protected, but the other memories are protected by
single error correction and scrubbing. The size of the protected
memory is 2.1Mbit, which according to the sensitivity data
provided by the manufacturer [38], results in a cross-section of
1.4210-8 cm2. This is much larger than the measured cross-
section and demonstrates that the hardening of memories is
crucial to reduce it. On the other hand, it is necessary to
exclude errors in the memories in order to properly relate
neutron irradiation results to fault injection results, because
memories cannot be fault injected with our approach. The
second row shows the result when the register file (RF) is
protected. The cross section of the register file according to
manufacturer’s data is 1.110-10 cm2, which is in line with the
obtained reduction taking into account that not all registers are
used all the time. Finally, the last row shows the cross-section
when the hardware monitor (HM) is used.

The HM can additionally detect 44 (46%) of the observed
errors. Excluding the errors in the register file and the
memories, the HM can detect 66% of the remaining errors,
which is in agreement with the results in [14]. Additional
improvements can be obtained by using software-based error
detection techniques, as we will show in the next section.

TABLE III. RADIATION TEST RESULTS

Hardening approach Undet.
errors

Cross-section
(cm2)

Relative
Imp. Memories RF HM

SEC+
scrubbing No No 95 2.0210-10

(1.610-10, 2.410-10)
1.00x

SEC/DED +
scrubbing SED No 67 1.4310-10

(1.110-10, 1.810-10)
1.42x

SEC/DED +
scrubbing SED Yes 23 4.8910-11

(2.910-11, 6.910-11)
4.13x

C. Fault injection results
Due to the long exposure times required by neutron

irradiation experiments, it is not generally possible to test
many different software benchmarks and software mitigation
solutions. To this purpose, the neutron irradiation experiments
were complemented by fault injection.

Fault injection is commonly used to evaluate and validate
the robustness of FPGA designs, although it is not as accurate
as radiation testing due to several reasons [19], [27], [34]. First
of all, access to internal FPGA resources is limited and it
strongly depends on the interfaces provided by the
manufacturer. Some internal resources cannot be fault injected
as they are not accessible to the user. However, faults in the
CRAM can be injected by changing the configuration
bitstream. For simplicity, fault injection typically assumes that
all configuration bits have the same susceptibility and that all
faults produce a single bit-flip. However, results can be
adjusted with measured statistics of SEU susceptibility, if
available. Despite these drawbacks, FPGA fault injection is
more flexible, makes large fault injection campaigns possible

in order to obtain additional data and can provide a reasonable
assessment of error mitigation approaches.

For the implementation of fault injection, we used the SEM
Controller IP. This module was included in the design in order
to carry out continuous configuration memory scrubbing and
repair. However, we also took advantage of its fault injection
feature to implement our fault injection system. A scheme of
the experimental setup is shown in Fig. 2. This setup was used
for both neutron irradiation and fault injection. Fault injection
was disabled for neutron irradiation.

Figure 2. Common experimental setup for neutron irradiation and fault
injection. Fault injection is disabled for neutron irradiation.

The SEM Controller provides a fault injection interface and
a monitor interface. To inject faults, we implemented a small
fault injection controller connected to the fault injection
interface, which was also embedded in the FPGA. The fault
injection controller drives the interface to inject faults in
random configuration memory positions at regular time
intervals. The selected time interval was 147 ms, which is long
enough to allow the SEM to correct an injected error, avoiding
error accumulation, and to completely execute the longest
benchmark at least three times before injecting a new fault.
The maximum estimated error detection and correction latency
for the tested FPGA is approximately 26 ms [16]. It is possible
that a fault is corrected before causing an error, although it is
unlikely. We count it as an error if it is observed before it is
corrected. The fault injection controller was hardened by TMR
in order to reduce the impact of errors in this module on the
obtained measures.

The monitor interface implements an RS-232 protocol
compatible, full duplex serial port for exchange of commands
and status. Although it can also be used to inject faults, the
main use of this interface is to monitor the fault injection
process from a host. This interface provides a report of every
injected fault, including its CRAM address, the status of the
controller and the correction actions that are taken. This report
was continuously monitored and logged in the host.

It must be noted that as the SEM Controller is embedded in
the tested FPGA, it can also be affected by the injected faults.
However, this situation can be detected through the monitor
interface. When we observe that the SEM Controller stops
injecting faults or shows an abnormal behaviour, the FPGA is
fully reconfigured and the fault injection process is resumed.

SEM
Fault injection

controller

Error collection
(SPI)

Fault Injection
Monitor (RS232)

Fault injection
enable/disable

Computer Board

These errors do not affect the results of the test because they
have no effect on the error register collected through the SPI
interface.

The three software benchmarks in both the unhardened and
hardened software versions were tested. The results of the
fault injection campaigns are summarized in Table IV
following the same incremental approach used for neutron
experiments. For each benchmark, the table shows the number
of injected faults, the total number of observed errors and the
number of errors that were detected by any of the techniques
along with the corresponding percentage and confidence
interval. The last column shows the relative improvement with
respect to the reference version (first row of Table III), which
is computed as the ratio of undetected errors between the
reference design and the fault-tolerant design.

Fault injection was run as long as needed in order to achieve
at least 1,000 observed errors. The number of injected faults is
relatively high due to the low utilization of the FPGA. For
completeness, we have included the results of fault injection
on a plain design without any hardening and another design
only with the HM. In these cases, more faults must be injected
into the configuration memory to observe a similar amount of
errors because the design is smaller. However, note that these
results do not include memory errors, which cannot be
injected by the SEM, and therefore they cannot be related to
the neutron results shown in the previous section.

TABLE IV. FAULT INJECTION RESULTS

Benchmark Injected
faults Errors Detected

errors
Rel.

Impr.
Plain Quicksort 126,743 1,021 0 (0%) -

HM only Quicksort 95,766 1,002 638 (63.73.0%) -

Unhardened
SW

Quicksort 81,099 1,028 778 (75.72.6%) 4.1x

MMULT 122,154 1,279 950 (74.32.4%) 3.9x

AES 83,479 1,363 831 (61.02.6%) 2.6x

Hardened
SW

Quicksort 77,775 1,004 947 (94.31.4%) 17.6x

MMULT 90,515 1,049 981 (93.51.5%) 15.4x

AES 77,827 1,140 1,098 (96.31.1%) 27.1x

For the unhardened software benchmarks, up to 75% of

errors were detected by the memory checkers or by the HM.
This percentage rises up to 96% when hardened software is
used. The amount of detected errors is similar for the quicksort
and MMULT benchmarks, but it goes lower in the case of the
unhardened AES benchmark. This result can be explained by
the fact that the AES benchmark is more data intensive and
therefore more prone to data errors which are not detected by
the HM. However, most of these data errors can be detected
by hardening the software. As a matter of fact, the software-
hardened AES is the benchmark that achieves the highest error
detection rate.

The contribution of each hardening method is summarized
in Table V for the hardened software versions. It must be
noted that some errors may be detected by more than one
technique. The columns of Table V show, from left to right,

the percentage of errors that are detected by the memory
checkers, the HM, the hardened software (SW), the memories
plus some other technique, and finally by both the HM and the
hardened software (HM+SW). The HM has the highest single
contribution (57.1% on average) and it is about 1.6 times more
effective than the software hardening (35.3% on average). The
overlapping of the memory checking with the other techniques
is small, but the overlapping between the HM and the
hardened software is significant (14% on average).

TABLE V. RELATIVE CONTRIBUTION OF THE HARDENING TECHNIQUES

Benchmark Mem. HM SW Mem. +
HM/SW HM+SW

Quicksort 27.8% 52.8% 33.4% 7.2% 12.5%
MMULT 25.9% 64.0% 30.8% 5.6% 17.4%
AES 19.1% 54.4% 41.8% 6.9% 12.0%
Average 24.3% 57.1% 35.3% 6.6% 14.0%

Fig. 3 shows a graphical comparison of the cumulative

results obtained by neutron irradiation and fault injection for
the tested software versions. In this figure, different colors are
used to illustrate the different types of detected errors. The
lower part (in red) corresponds to errors detected in the
memories, the intermediate part (in blue) corresponds to
additional errors detected by the hardware monitor and the
upper part (in green) corresponds to additional errors detected
by software. The latter applies only to the software-hardened
versions. The error bars at 95% confidence level for the total
percentage of detected errors are also shown.

It can be observed that the fault injection results match the
neutron irradiation results quite well. Errors detected in the
memories are slightly more relevant in the irradiation
experiment, but the total percentage of detected errors
obtained by fault injection is within the confidence interval of
the neutron irradiation experiment.

Figure 3. Comparison of error detection rates

The three benchmarks show quite similar error detection
rates, with the exception of the unhardened AES benchmark,
which was discussed before. The HM shows the highest
contribution to the error detection rate, particularly for the
hardened software versions. The hardened software has a

0%

20%

40%

60%

80%

100%

Quicksort Quicksort MMULT AES Quicksort MMULT AES

Radiation Unhardened SW Hardened SW

Mem HM SW

different and more complex flow, because it includes the
software checks, and there are more chances that a fault results
in a control-flow error, which can be detected by the HM.
Notwithstanding, software hardening is necessary to achieve
an error detection rate in the order of 95%. In turn, this high
error detection rate is needed to significantly improve the
cross-section. An estimation of the relative cross-section
improvement based on the fault injection results yields an
average factor of 3.5x for the unhardened software versions,
which is similar to the result of the neutron irradiation
experiment, and 20x for the hardened software versions.
Cross-sections can be estimated by dividing the reference
cross-section (2.0210-10 cm2) by the corresponding
improvement factor, considering the confidence intervals and
assuming that the techniques used in the reference design are
applied.

V. CONCLUSIONS
In this work we have implemented a hybrid fault-tolerant

LEON3 soft-core processor in a low-end FPGA (Artix-7) and
evaluated its error detection capabilities. The proposed
solution combines the use of SEC/DED codes for memories, a
hardware monitor to detect control-flow errors, software-based
techniques to detect data errors and configuration memory
scrubbing with repair to avoid error accumulation.

The applied hardware techniques do not require a deep
knowledge of the processor architecture or the FPGA
architecture. As a matter of fact, the hardened memory blocks,
the hardware monitor and the configuration memory scrubber
can be implemented by soft IP modules that can be easily
configured for other processors and FPGAs. Software-based
error mitigation techniques are applied in high-level language
(C code) and the resulting hardened code is portable. This
solution can be fully embedded in a low-end FPGA without
the need of external hardware, with reduced overhead and
with low intrusiveness. The experimental results demonstrate
that the proposed approach can substantially improve fault-
tolerance for practical applications.

ACKNOWLEDGMENT
The authors would like to acknowledge the support of Los

Alamos Neutron Science Center (LANSCE) to perform the
neutron irradiation experiment.

REFERENCES
[1] S.M. Trimberger, “Three Ages of FPGAs: A Retrospective on the First

Thirty Years of FPGA Technology”, Proceedings of the IEEE, vol. 103,
no. 3, pp. 318-331, Mar. 2015.

[2] “Zynq-7000 All Programmable SoC Overview”, Product Specification,
Xilinx Inc., DS190, Jan. 2016.

[3] V. Kale, “Using the MicroBlaze Processor to Accelerate Cost-Sensitive
Embedded System Development”, Xilinx Inc., WP469, June 2016.

[4] “Nios II Gen2 Processor Reference Guide”, Altera Corp., NII51001,
April 2015.

[5] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and M.
Wirthlin, “SEU-induced persistent error propagation in FPGAs,” IEEE
Trans. Nucl. Sci., vol. 52, no. 6, pp. 2438–2445, Dec. 2005.

[6] J. R. Azambuja, S. Pagliarini, L. Rosa, and F. L. Kastensmidt,
“Exploring the limitations of software-only techniques in SEE detection
coverage,” J. Electron. Test., vol. 27, no. 4, pp. 541–550, Aug. 2011.

[7] J. R. Azambuja, A. Lapolli, L. Rosa, and F. L. Kastensmidt, “Detecting
SEEs in microprocessors through a non-intrusive hybrid technique,”
IEEE Trans. Nucl. Sci., vol. 58, no. 3, pp. 993–1000, June 2011.

[8] J. R. Azambuja, M. Altieri, J. Becker, and F. L. Kastensmidt, “HETA:
Hybrid error-detection technique using assertions,” IEEE Trans. Nucl.
Sci., vol. 60, no. 4, pp. 2805–2812, Aug. 2013.

[9] J. R. Azambuja, S. Pagliarini, M. Altieri, F.L. Kastensmidt, M. Hubner,
J. Becker, G. Foucard, R. Velazco, “A Fault Tolerant Approach to
Detect Transient Faults in Microprocessors Based on a Non-Intrusive
Reconfigurable Hardware”, IEEE Trans. Nucl. Sci., vol. 59, no. 4, pp.
1117-1124, Aug. 2012.

[10] P. Bernardi, L. Sterpone, M. Violante, M. Portela-Garcia, "Hybrid Fault
Detection Technique: A Case Study on Virtex-II Pro's PowerPC 405",
IEEE Trans. Nucl. Sci., vol. 53, no. 6, pp. 3550-3557, Dec. 2006.

[11] M. Grosso, M. Sonza Reorda, M. Portela-Garcia, M. Garcia-Valderas,
C. Lopez-Ongil, L. Entrena, “An on-line fault detection technique based
on embedded debug features”, Proc. 16th IEEE On-Line Testing Symp.,
pp. 167-172, July 2010.

[12] M. Portela-Garcia, M. Grosso, M. Gallardo-Campos, M. Sonza Reorda,
L. Entrena M. Garcia-Valderas, C. Lopez-Ongil, “On the use of
embedded debug features for permanent and transient fault resilience in
microprocessors”. Microprocessors and Microsystems, vol. 36, no. 5, pp.
334-343, July 2012.

[13] L. Parra, A. Lindoso, M. Portela, L. Entrena, F. Restrepo-Calle, S.
Cuenca-Asensi, A. Martinez-Alvarez, “Efficient Mitigation of Data and
Control Flow Errors in Microprocessors”. IEEE Trans. Nucl. Sci., vol.
61, no. 4, pp. 1590-1596, Aug. 2014.

[14] L. Parra, A. Lindoso, M. Portela-Garcia, L. Entrena, B. Du, M. Sonza
Reorda, L. Sterpone, “A New Hybrid Nonintrusive Error-Detection
Technique Using Dual Control-Flow Monitoring”, IEEE Trans. Nucl.
Sci., vol. 61, no. 6, pp. 3236-3243, Dec. 2014.

[15] B. Du, M. Sonza Reorda, L. Sterpone, L. Parra, M. Portela-García, A.
Lindoso, L. Entrena, “On-line Test of Control Flow Errors: A new
Debug Interface-based approach”, IEEE Trans. on Computers, vol. 65,
no. 6, pp. 1846-1855, June 2016.

[16] “Soft Error Mitigation Controller v4.1”, Product Guide, Xilinx Inc.,
PG036, Nov. 2014.

[17] F. Kastensmidt, P. Rech, “FPGAs and Parallel Architectures for
Aerospace Applications. Soft Errors and Fault-Tolerant Design”,
Springer, 2016.

[18] M. Nicolaidis, “Soft errors in modern electronic systems”, Springer,
2011.

[19] N. A. Harward, M. R. Gardiner, L. W. Hsiao, M. J. Wirthlin,
“Estimating Soft Processor Soft Error Sensitivity Through Fault
Injection”. Proc. IEEE 23rd Annual Int. Symp. on Field-Programmable
Custom Computing Machines (FCCM), pp. 143-150, May 2015.

[20] R. Vemu, S. Gurumurthy, and J. A. Abraham, “ACCE: Automatic
correction of control-flow errors”, Proc. Int. Test Conf., paper no. 27.2,
Oct. 2007.

[21] Z. Alkhalifa, V. S.S. Nair, N. Krishnamurthy, J.A. Abraham, “Design
and evaluation of System-Level Checks for On-line Control Flow Error
Detection”, IEEE Trans. on Parallel and Distributed Systems, vol. 10,
no. 6, pp. 627–641, June 1999.

[22] O. Goloubeva, M. Rebaudengo, M.S.Reorda,and M.Violante, “Software-
Implemented Hardware Fault Tolerance”, Springer, 2006.

[23] M. Hiller. “Executable assertions for detecting data errors in embedded
control systems”, Proc. IEEE Int. Conf. on Dependable Systems and
Networks, pp. 24-33, June 2000.

[24] B. Nicolescu, R. Velazco, “Detecting soft errors by a purely software
approach: method, tools and experimental results”. Design, Automation
and Test in Europe Conf., pp. 57-62, 2003.

[25] “Xilinx TMRTool”, Product Brief, Xilinx Inc., 2009.
[26] A. Sanchez-Clemente, L. Entrena and M. Garcia-Valderas, "Partial TMR

in FPGAs Using Approximate Logic Circuits", IEEE Trans. Nucl. Sci.,
vol.63, no. 4, pp. 2233-2240, Aug. 2016.

[27] B. Pratt, M. Caffrey, P. Graham, E. Johnson, K. Morgan, and M.
Wirthlin. “Improving FPGA design robustness with partial TMR”. Proc.

IEEE Int. Rel. Phy. Symp. (IRPS), pp. 27-30, Mar. 2006.
[28] G. A. Reis, J. Chang, N. Vachharajani, S. S. Mukherjee, R. Rangan and

D. I. August. “Design and evaluation of hybrid fault-detection systems”.
Proc. 32nd Int. Symp. on Comp. Arch., pp. 148-159, June 2005.

[29] T. Michel, R. Leveugle, G. Saucier. “A New Approach to Control Flow
Checking Without Program Modification”, 21th Int. Symp. on Fault-
Tolerant Computing (FTCS-21), pp. 334-341, June 1991.

[30] Y. Li, B. Nelson, and M. Wirthlin. “Reliability Models for SEC/DED
Memory With Scrubbing in FPGA-Based Designs”. IEEE Trans. Nucl.
Sci., vol. 60, no. 4, pp. 2720-2727, Dec. 2013.

[31] M. Rebaudengo, M. S. Reorda, M. Torchiano, M. Violante. “Soft-error
detection through software fault-tolerance techniques”, Int. Symp. on
Defect and Fault Tolerance in VLSI Systems, pp. 210- 218, Nov. 1999.

[32] M. Berg et al. “Effectiveness of Internal Versus External SEU Scrubbing
Mitigation Strategies in a Xilinx FPGA: Design, Test, and Analysis”,
IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2259-2266, June 2008.

[33] H. Quinn et al. “Using Benchmarks for Radiation Testing of
Microprocessors and FPGAs”, IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp.
2547-2554, Dec. 2015.

[34] H. Quinn, M. Wirthlin. “Validation Techniques for Fault Emulation of
SRAM-based FPGAs”, IEEE Trans. Nucl. Sci., vol. 62, no. 4, pp. 1487-
1500, Aug. 2015.

[35] “GRLIB IP Core User’s Manual”, Version 1.1.0 - B4113, Aeroflex
Gaisler, Jan. 2012

[36] T. Heijmen, “Soft errors from space to ground: Historical overview,
empirical evidence, and future trends”, In Soft Errors in Modern
Electronic Systems, pp. 1-25, Springer, 2011.

[37] L. Sterpone, “A Novel Design Flow for Fault Tolerance SRAM-Based
FPGA Systems”, in Electronics System Design Techniques for Safety
Critical Applications, pp.85-99, Springer, 2009.

[38] “Device Reliability Report”, Xilinx Inc., UG116 (v10.3.1), Sept. 2015.

