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Abstract—In this work we implemented a hybrid fault-tolerant 

LEON3 soft-core processor in a low-end FPGA (Artix-7) and 
evaluated its error detection capabilities through neutron 
irradiation and fault injection in an incremental manner. The 
error mitigation approach combines the use of SEC/DED codes 
for memories, a hardware monitor to detect control-flow errors, 
software-based techniques to detect data errors and 
configuration memory scrubbing with repair to avoid error 
accumulation. The proposed solution can significantly improve  
fault tolerance and can be fully embedded in a low-end FPGA, 
with reduced overhead and low intrusiveness. 
 

Index Terms—Neutron cross-section, microprocessors, SEEs, 
soft errors, fault tolerance, hybrid fault-tolerance techniques 

I. INTRODUCTION 
PGAs are becoming increasingly attractive for a broad 
range of applications, including those that require a high 

reliability. In comparison with ASICs, they provide higher 
flexibility, lower cost, reduced time-to-market and even the 
capability of upgrading hardware functionality. Moreover, 
FPGAs are usually implemented in the latest available 
technologies and applications can take the benefits of them in 
a shorter time. Today, there is a wide offer of devices with 
several cost-performance tradeoffs [1], but even low-end 
devices have a huge amount of resources, enough to 
implement Systems-on-Chip (SoCs) with good performance at 
low cost. SoCs can use either hard-core processors [2] for 
higher performance or soft-core processors for higher 
flexibility [3], [4]. The former require specific FPGA devices 
that include hard-core processors, while the latter can be 
implemented in any FPGA.  

Embedded systems based on soft-core processors are 
becoming very popular, even though they cannot match the 
performance, area, and power of hard-core processors. Due to 
shrinking technology sizes, soft-cores have increased 
commercial use in networking and data centres. Soft-core 
processors are flexible and can be customized for a specific 
application with relative ease. Moreover, they can be re-
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targeted to any new technology as soon as it becomes 
available and therefore they are less prone to become obsolete.  

For critical applications, soft-core processors need to be 
made fault-tolerant. Unlike hard-core processors, soft-core 
processors can be modified to implement error mitigation, 
which is another advantage of soft-core processors. 
Conventional hardware error mitigation techniques, such as 
Triple Modular Redundancy (TMR) [5] can be used for this 
purpose. However, TMR usually involves large overheads and 
it is highly intrusive. In the case of FPGAs, although it is 
widely used, it requires a very careful design, because a single 
SEU affecting the configuration memory may originate 
multiple errors [37]. In addition, designers often have very 
limited access to the internal architecture of the soft-core 
processor. Alternatively, software or hybrid error mitigation 
techniques can be used. These techniques typically focus on 
error detection rather than correction to reduce the overheads 
[6-15]. 

Software-based techniques provide high flexibility, low 
development time and low cost, as they can be implemented 
without modifying the hardware. However, software-based 
techniques cannot achieve full system protection against soft 
errors [6] and may produce large overheads in processing time 
and storage needs, particularly when designed to protect the 
microprocessor against control-flow errors [7], [8].  

Hybrid nonintrusive techniques typically use a hardware 
module to monitor the execution of the instructions in the 
processor from an available interface, such as the memory bus 
[7]-[10] or the trace interface [11]-[15]. This approach does 
not require any modification of the processor, except for 
possibly adapting the monitoring interface. A hardware 
monitor can be designed to detect several types of errors. 
Generally, control-flow errors can be easily detected by 
checking the sequence of executed instructions, whereas data 
errors are more complex to check as it requires large amounts 
of data to compare with [15].  

Our goal in this work is to provide a solution that can be 
fully embedded in a low-end FPGA without the need of 
external hardware, with reduced overhead and with low 
intrusiveness. To achieve this goal, we combine a selection of 
techniques. Hardware changes are restricted to the hardening 
of memories and the use of the hardware monitor proposed in 
[14]. Memories are usually one of the most critical 
components [36] in an embedded system, but they can be 
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easily identified and protected using Error Detection And 
Correction (EDAC) codes. The hardware monitor compares 
the instruction flow captured upstream at the bus between the 
memory and the microprocessor with the instruction flow 
captured downstream at the trace interface after the instruction 
has been executed to detect control-flow errors. The major 
advantage of this approach is that it can detect all control-flow 
errors with no performance degradation and a small hardware 
overhead. Then, software-based error detection techniques are 
applied to detect data errors. Finally, scrubbing is used to 
avoid the accumulation of errors. To this purpose, we take 
advantage of the Soft Error Mitigation (SEM) Core from 
Xilinx [16] that is included in the latest FPGA families. 

A major advantage of the proposed approach is that the 
applied hardware techniques do not require a deep knowledge 
of the processor architecture or the FPGA architecture. As a 
matter of fact, the hardened memory blocks and the hardware 
monitor are implemented as soft IP (Intellectual Property) 
modules that can be reused for other systems.  

To demonstrate the benefits of the proposed approach, we 
implemented a hybrid fault-tolerant LEON3 soft-core 
processor [35] in an Artix-7 FPGA and experimentally 
evaluated the SEU sensitivity by neutron irradiation and fault 
injection. Because errors may be detected by more than one of 
the used techniques, the analysis is performed in an 
incremental manner to show the incremental benefits that can 
be obtained as additional techniques are applied.  

This paper is organized as follows. Section II summarizes 
the related work. Section III describes the proposed hybrid 
fault-tolerant approach. Section IV describes the experiments 
that have been performed to validate this approach and 
presents the experimental results. Finally, section VI 
summarizes the conclusions of this work. 

II. RELATED WORK 
Soft error mitigation for microprocessors has received much 

attention in the past years, as microprocessors play a very 
important role in many electronic systems that require a high 
reliability. In the literature [14], [17], [18], error mitigation in 
microprocessor-based systems can be divided into three main 
types of techniques: hardware techniques, software techniques 
and hybrid techniques. Most of these techniques can be 
applied to both hard-core and soft-core processors. However, 
the reliability of soft-core processors implemented in SRAM-
based FPGAs in the presence of SEUs is not well understood 
yet [19]. 

Software-based techniques are very attractive because only 
software is modified, which is generally simpler than 
modifying the hardware. In the case of soft-cores, designers 
often have very limited knowledge about the internal details of 
the core, so software-based techniques are preferred. 
However, this type of techniques usually involve significant 
code size enlargement and performance decrease.  

Software-based techniques can be divided into control-flow 
techniques and data-flow techniques. Control-flow techniques 
focus on errors regarding the program flow. Commonly, these 
techniques divide the program into basic blocks and use 

signatures [20] or assertions [21] to check for incorrect 
changes in the control flow. 

Basic blocks are blocks of code without branches (i.e., the 
instructions of a basic block are executed sequentially without 
taking decisions which affect the program flow). Signature 
techniques provide a signature for the basic blocks of a 
program at compilation time. When the program is executed, a 
run-time signature is computed and compared with the one 
generated at compilation time. Whenever both signatures 
differ, an error is detected. Assertion techniques modify the 
software to insert special instructions named assertions which 
assert the beginning and end of basic blocks. 

The most popular data-flow software techniques are based 
on duplication [15], [22], [31] or assertions [23]. Duplication 
techniques duplicate data and check the consistency of 
variables and their copies. To reduce code size and 
performance overheads, duplication and consistency checks 
can be made at different levels or with different grades of error 
coverage [18]. Regarding the granularity, duplication can be 
accomplished at instruction, procedure or program level. A 
coarser granularity may reduce the overheads but latency will 
increase. Regarding the coverage, variables can be selected to 
decide which of them should be protected or checked. For 
instance, in the Final Variables technique [24] only certain 
variables are checked to reduce code size and performance 
overheads.  

Data-flow assertion techniques use assertions to check data 
validity and correctness. The main drawbacks of these 
techniques are that they are usually application dependent and 
that error coverage depends on the ability to place the 
assertion in the most effective code location [23]. 

Hardware-based techniques modify the architecture or the 
hardware implementation. These techniques may be quite 
effective, but they are often expensive in terms of FPGA 
resource utilization and power consumption [5]. In addition, 
they are highly intrusive because they require a deep 
modification of the hardware and must be carefully applied.  

At first glance, hardware-based techniques may appear to be 
an attractive mitigation approach for soft-core processors. 
However, designers often lack enough knowledge about the 
internal architecture of the processor and the FPGA to make 
an effective hardening. Alternatively, general hardware 
solutions based on Triple Modular Redundancy (TMR) can be 
used, which can be implemented with the help of some tools, 
such as TMRTool from Xilinx [25]. These tools are generally 
intended for full mitigation and produce high overhead. For 
low error rates, partial mitigation can be used to reduce the 
overhead. However, partial mitigation techniques for FPGAs 
require a complex analysis [26], [27]. 

Hybrid techniques benefit from the best characteristics of 
both hardware and software techniques. They usually combine 
some level of redundancy in both software and hardware. In 
some cases, special hardware is introduced to accelerate the 
checking of redundant computations [28]. Alternatively, some 
error checking tasks are implemented through an external 
hardware module, sometimes known as a watchdog processor 
[7]-[15], [29]. The watchdog processor may be designed with 



different capabilities and complexities. It can be used to just 
verify signatures or assertions stored internally or produced by 
the processor, or it can even consist of a simplified processor 
that executes a program concurrently with the main processor. 
Hybrid approaches using an external hardware module reduce 
intrusiveness and can be applied to any processor as long as a 
suitable monitoring interface is available. This is not always 
possible for hard-core processors, because the most 
appropriate interfaces may not be accessible from external 
pins, but it is usually feasible for soft-core processors. 

III. HYBRID FAULT-FOLERANT APPROACH 
The proposed hybrid mitigation approach builds on several 

existing techniques to provide an effective solution for soft-
cores implemented in low-end FPGAs. Namely, it combines 
the use of hardened memories, a hardware monitor to detect 
control-flow errors [14], software-based techniques to detect 
data errors [9], [31] and configuration memory scrubbing. 
Each of these techniques is described in more detail in the 
following sections. 

A. Hardening of memories 
A microprocessor-based system typically includes several 

memories. In addition to RAM and ROM, which can be 
implemented on chip or off chip, caches are commonly used to 
speed up memory access. Caches should be implemented on 
chip for fast access. Finally, the register file can be 
implemented with flip-flops or with RAM blocks. In the case 
of the LEON3 processor, the register file is quite large because 
it uses register windows, so it is more efficiently implemented 
with RAM blocks.  

Memories are usually protected using EDAC codes. In 
addition, memory scrubbing is often employed to prevent a 
memory from accumulating errors in a single word, which 
could eventually defeat EDAC [30]. In our design, RAM, 
ROM and caches were hardened using an in-house 
implementation of Single Error Correction / Double Error 
Detection (SEC/DED) code with scrubbing. For memory 
scrubbing, we took advantage of the dual-port featured by 
FPGA BRAMs (Block RAMs). Thus, one port was used for 
regular operation while the other was used for continuous 
scrubbing. Scrubbing is continuously performed every clock 
cycle, so the scrubbing cycle time is 1 clock cycle times the 
memory size. Single errors were corrected without notice, 
while double errors were reported.  

The register file was implemented using BRAMs, but it 
makes use of dual ports. In this case, we just implemented a 
SED (Single Error Detection) approach using duplicated 
register files. This way we can have a report of the errors in 
the register file. Errors in the register file could be masked by 
using TMR, although the impact is moderate because the 
register file uses just a few BRAMs. 

B. Hardware monitor 
In [14] a general nonintrusive mitigation technique was 

proposed to harden microprocessors against control-flow 
errors for ASIC technologies. This approach adds a small 

hardware module, called Hardware Monitor (HM), to the 
microprocessor architecture that observes the instruction flow 
at the beginning and at the end of the microprocessor data 
path, namely, at the fetch stage, through the memory bus, and 
after execution, through the trace interface. From each of these 
observations points, the address of the instruction, given by 
the Program Counter (PC), and the instruction code (opcode 
and operands), are collected. Then, the HM compares the 
information collected from these observation points and raises 
an error signal if they do not match. 

In addition, the HM can predict the next PC value from the 
current instruction and the current PC value, which can be 
observed from the trace interface. PC prediction is based on 
the analysis of the instruction opcode. The PC must be 
incremented by the instruction size except for branch 
instructions. If the opcode corresponds with a branch 
instruction, the PC must be incremented either by the branch 
offset if the branch is taken or by the instruction size if the 
branch is not taken. Any change in the PC value that does not 
meet these requirements can be considered an error. To this 
purpose, the predicted PC value is then compared with that of 
the next executed instruction to detect abnormal changes in the 
control flow.  

Finally, exceptions and traps are also checked thanks to the 
information provided by the trace interface. Unexpected traps, 
such as those produced by invalid instructions or memory 
addresses, are considered errors. Otherwise, if a corrupted 
instruction executed without a trap, it will probably produce 
an error that will be caught later on through software 
checking. In addition, memory hardening protects data and 
instructions while in memory. A basic block diagram of the 
architecture of the hardware monitor is provided in Figure 1. 

 
 
Figure 1. Block diagram of the hardware monitor 

 
This technique has several advantages. First, it is a general 

nonintrusive technique that can be applied to any hard-core or 
soft-core processor, and particularly to pipelined processors 
with several pipeline stages. It is able to detect all control-flow 
errors and it uses a low amount of resources because it does 
not need to store information about the expected control flow. 
Finally, it does not reduce performance, because the processor 
is observed in a nonintrusive manner and it does not require 
any software support. 

C. Software-based fault tolerance 
Data errors are not covered by the hardware monitor and 
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software-based techniques must be used for this purpose. 
Many different software-based approaches can be found in the 
literature [18]. Among them, we have selected data-flow 
duplication techniques [31] and Inverted Branches technique 
[9] because they have been shown to be effective for data 
errors and are relatively easy to implement. 

Our approach focuses on maximizing the error coverage 
with the smallest error detection latency. Modifications are 
performed directly in high-level language (C code) instead of 
modifying assembly code as proposed in [9]. This approach 
provides a portable solution for any architecture. Compilation 
is made with the –O2 optimization option, which is able to 
optimize the code without breaking software redundancy. The 
applications used in this work are bare codes which do not use 
libraries and modifications were made manually, but they can 
easily be automated and embedded in a compiler. In the 
general case, software libraries should be hardened as well.  

To harden the software, we apply the following rules: 
1. All variables are duplicated. This rule applies to loop 

indices and procedure parameters as well. 
2. Variable copies are updated whenever a variable is 

modified. 
3. Consistency checks are performed whenever variables 

and copies are modified. They are performed just after 
variable modification to decrease error detection latency. 
This rule applies also to loop indices. 

4. Consistency checks of all procedure parameters are 
performed just after a procedure call. 

5. All conditional branches and loops are hardened with the 
Inverted Branches technique [9]. From the control-flow 
point of view, branches imply two possible correct paths. 
The choice depends on the evaluated condition. Each 
condition is evaluated twice to make sure that the choice 
made was right. When the branch is taken, the branch is 
repeated with an inverted condition. When the branch is 
not taken, the branch is simply repeated. In both cases, if 
the branch is taken the second time, an error has 
occurred. This technique was proposed for code 
modification in assembly. However, we have applied it 
directly in high-level code. 

Software hardening techniques do not cover certain specific 
architectural parts that cannot be accessed from software. In 
most processor architectures there are some internal or shadow 
registers which are not part of the programming model and 
therefore cannot be directly accessed by the software. An 
example of them is the internal pipeline registers. However, 
errors in the pipeline registers can be detected by the HM. 
This drawback is present in all software-based techniques and 
its effects depend mainly on the complexity of the utilized 
architecture. However, thanks to our hybrid approach we can 
achieve high error detection coverage by the combined use of 
software and hardware error mitigation techniques. 

D. Configuration memory scrubbing 
Modern SRAM-based FPGAs utilize a large amount of 

configuration memory (CRAM) which accounts for the vast 
majority of memory cells in a device. CRAM is highly critical 

as it can alter the function of the logic and the 
interconnections. Contrary to application memory cells, whose 
contents may be refreshed with new data during normal 
operation, errors in the CRAM remain until the device is 
reconfigured, so that errors may accumulate and eventually 
lead to multiple faults that can break the redundancy. 

A SEU correction mechanism becomes essential to avoid 
accumulation of latent faults and ensure correct operation of 
FPGA devices. CRAM scrubbing is a widely used solution to 
avoid error accumulation in the FPGA configuration memory. 
It consists in the periodic refresh of the configuration while 
the FPGA is operating, and it can be implemented either 
internally or externally to the device [32]. Because of the 
increasing demand of solutions to this problem, FPGA 
manufacturers provide support for CRAM scrubbing in the 
most recent FPGA families. In particular, Xilinx provides the 
SEM Controller IP starting from the 7 series. This module 
provides soft error detection and correction capabilities. 

The SEM Controller supports three different error 
correction modes [16]:  
 Repair: ECC (Error Correction Code) algorithm-based 

correction 
 Enhanced Repair: ECC and CRC (Cyclic Redundancy 

Check) algorithm-based correction 
 Replace: Data reload based correction 

In our case, we used the Enhanced Repair mode, because it 
provides higher error correction capabilities, namely 
correction of CRAM frames with single-bit errors or double-
bit adjacent errors. The Replace mode supports correction of 
CRAM frames with arbitrary errors, but requires partial 
reconfiguration of the FPGA. 

The SEM Controller features also a fault injection 
capability, which is very convenient to implement fault 
injection experiments. To this purpose, we included a fault 
injection controller that can be enabled through an external 
pin. This way we ensure the same design is used for radiation 
testing and fault injection. Fault injection is disabled when 
testing under the beam, but it can be enabled when testing in 
the lab. 

IV. EXPERIMENTAL RESULTS 
To test the benefits of the proposed hybrid approach with soft 
cores and low-end FPGAs, a neutron radiation experiment was 
performed at Los Alamos National Laboratory’s (LANL) Los 
Alamos Neutron Science Center (LANSCE) in December 
2015. LANSCE provides a white neutron source that emulates 
the energy spectrum of the atmospheric neutron flux. As the 
neutron radiation experiments require a long exposure time, 
fault injection was used to complement the analysis for several 
software benchmarks. In the following section the hardware 
and software setup is described. Then, the results of the tests 
are reported. 

A. Experimental setup 
The experiments were run on an Artix-7 XC7A100T FPGA 

from Xilinx, in which we implemented two instances of the 



fault-tolerant LEON3 design. These two instances are totally 
independent of each other and were implemented just to speed 
up the test. The selected configuration was a basic one, using 
data and instruction caches of 2kB each, 8 register windows 
for the register file, 128 kB of RAM and 4kB of ROM, all 
embedded in the FPGA. Table I shows the synthesis results for 
each LEON3 core, for each hardware monitor (HM) and for 
the SEM Controller, which is only instanced once. 

TABLE I. SYNTHESIS RESULTS 

 #LUTs #FFs BRAM36 
LEON3 4654 2013 47.5 
HM 522 431 0 
SEM  781 586 4.5 

 
The utilization of FPGA logic resources is relatively low 

(24% of slices). However, the implementation of RAM, ROM, 
cache memories and the register file used up to 74% of the 
available BRAMs. Therefore, we could not add more 
instances of the LEON3 soft core due to the memory 
limitations.  

The HM is not protected, because an error in the HM does 
not affect the computation. From this point of view, we can 
consider that the hardware monitor does not increase the cross 
section, which is due to the undetected errors. At most, the 
HM can detect some false positives (the HM signals an error 
but the computation is correct). False positives may trigger 
some unnecessary error recovery action. For low error rates, 
the impact of some sporadic error recovery action is 
negligible. Otherwise, the hardware monitor can be hardened 
to reduce the chance of false positives. 

In addition, we included the SEM core in Enhanced Repair 
mode. This core is able to correct errors that appear in the 
configuration memory of the FPGA. The SEM provides 
scrubbing capabilities without needing a scrubbing module 
outside the FPGA, so that the whole system, including error 
mitigation hardware, is embedded in the FPGA.  

Three different software benchmarks were tested: quicksort, 
matrix multiplication (MMULT) and AES (Advanced 
Encryption Standard) encryption. Quicksort consists in a 
recursive implementation of the quicksort algorithm with an 
array of 5000 integers. It specifically tests recursive calls and 
uses a significant amount of data memory. This benchmark 
was selected for compliance with current efforts towards a 
common set of benchmarks that can be used for comparison 
among different experiments [33]. The MMULT software 
benchmark implements a 5x5 matrix multiplication, mainly 
using loops and arithmetic operations. The AES benchmark 
implements the AES encryption algorithm with a key length of 
256 bits and 10 iterations. This last benchmark makes a more 
intensive use of logical operations and data memory to get 
encryption look-up table data.  

The selected software benchmarks also have very different 
execution times. Table II shows the maximum number of 
clock cycles required to execute each benchmark for the 
unhardened and hardened software versions, respectively. At 

the nominal clock frequency (50 MHz), the execution times 
vary between 0.14 ms for the MMULT benchmark and 47 ms 
for the hardened quicksort benchmark. The hardened software 
versions produce a large performance overhead because they 
check for errors after every operation in order to reduce the 
error detection latency. Generally, this overhead can be 
reduced by checking less frequently at the expense of larger 
error detection latency. 

TABLE II. CLOCK CYCLES FOR THE EXECUTION OF THE SOFTWARE 
BENCHMARKS 

SW 
Benchmark Unhardened Hardened Performance 

Overhead 
Quicksort 937,376 2,343,943 2.50x 
MMULT 7,022 19,948 2.84x 
AES 31,137 97,514 3.13x 

 
All tests were run with the same hardware and only differ in 

the software application stored in RAM. Thus, all results are 
referred to a common reference design. To properly relate 
fault injection results to neutron radiation results, this 
reference design includes RAM protection because errors in 
RAM cannot be tested with fault injection. Upon reset, the 
processor executes the boot program and then it repeatedly 
executes the application software in an infinite loop. The 
results are checked with respect to a golden, precomputed 
result after each execution. 

Our experimental setup stores the errors reported by the 
various checkers in a register. The error register is updated 
whenever an error appears and can only be cleared by 
reconfiguring the FPGA. A suitable timeout condition is set so 
that an error is also reported in the case the software execution 
does not finish within a short margin of the expected time. 
Note that the classification of errors is based on the means 
used to detect them. We do not know the location of the errors 
nor intend to draw conclusions about the sensitivity of the 
components of the system, but about the system as a whole. 
The contents of the error register are sent through a Serial 
Peripheral Interface (SPI) to a host in order to store all the 
errors and classify them. Every time an error is reported, the 
host reconfigures the FPGA. The error collection module and 
the SPI interface were tripled in order to reduce the impact of 
possible errors in these modules on the obtained measures.  

B. Neutron radiation test results 
For the neutron radiation test, the LEON3 processor was 

executing the quicksort algorithm, which is the benchmark 
with a longer execution time. Only the unhardened software 
version was tested due to the limited beam time. 

The experiment was run over several days with a total 
fluence of 4.71011 n/cm2. Table III shows a summary of the 
number of errors and the cross-section as we incrementally 
apply different techniques. To this purpose, we use the report 
of errors detected by each technique, and consider that these 
errors would be detected if the technique was applied, but 
would go undetected otherwise. Thus, the number of 
undetected errors and the cross-section decrease as more 



hardening is applied.  
The first row corresponds to the tested implementation and 

considers all errors observed. Note that in this case the register 
file is not protected, but the other memories are protected by 
single error correction and scrubbing. The size of the protected 
memory is 2.1Mbit, which according to the sensitivity data 
provided by the manufacturer [38], results in a cross-section of 
1.4210-8 cm2. This is much larger than the measured cross-
section and demonstrates that the hardening of memories is 
crucial to reduce it. On the other hand, it is necessary to 
exclude errors in the memories in order to properly relate 
neutron irradiation results to fault injection results, because 
memories cannot be fault injected with our approach. The 
second row shows the result when the register file (RF) is 
protected. The cross section of the register file according to 
manufacturer’s data is 1.110-10 cm2, which is in line with the 
obtained reduction taking into account that not all registers are 
used all the time. Finally, the last row shows the cross-section 
when the hardware monitor (HM) is used.  

The HM can additionally detect 44 (46%) of the observed 
errors. Excluding the errors in the register file and the 
memories, the HM can detect 66% of the remaining errors, 
which is in agreement with the results in [14]. Additional 
improvements can be obtained by using software-based error 
detection techniques, as we will show in the next section. 

TABLE III. RADIATION TEST RESULTS 

Hardening approach Undet. 
errors 

Cross-section 
(cm2) 

Relative
Imp. Memories RF HM 

SEC+ 
scrubbing No No 95 2.0210-10 

(1.610-10, 2.410-10)
1.00x 

SEC/DED + 
scrubbing SED No 67 1.4310-10 

(1.110-10, 1.810-10)
1.42x 

SEC/DED + 
scrubbing SED Yes 23 4.8910-11 

(2.910-11, 6.910-11)
4.13x 

C. Fault injection results 
Due to the long exposure times required by neutron 

irradiation experiments, it is not generally possible to test 
many different software benchmarks and software mitigation 
solutions. To this purpose, the neutron irradiation experiments 
were complemented by fault injection.  

Fault injection is commonly used to evaluate and validate 
the robustness of FPGA designs, although it is not as accurate 
as radiation testing due to several reasons [19], [27], [34]. First 
of all, access to internal FPGA resources is limited and it 
strongly depends on the interfaces provided by the 
manufacturer. Some internal resources cannot be fault injected 
as they are not accessible to the user. However, faults in the 
CRAM can be injected by changing the configuration 
bitstream. For simplicity, fault injection typically assumes that 
all configuration bits have the same susceptibility and that all 
faults produce a single bit-flip. However, results can be 
adjusted with measured statistics of SEU susceptibility, if 
available. Despite these drawbacks, FPGA fault injection is 
more flexible, makes large fault injection campaigns possible 

in order to obtain additional data and can provide a reasonable 
assessment of error mitigation approaches. 

For the implementation of fault injection, we used the SEM 
Controller IP. This module was included in the design in order 
to carry out continuous configuration memory scrubbing and 
repair. However, we also took advantage of its fault injection 
feature to implement our fault injection system. A scheme of 
the experimental setup is shown in Fig. 2. This setup was used 
for both neutron irradiation and fault injection. Fault injection 
was disabled for neutron irradiation. 

 

 
Figure 2. Common experimental setup for neutron irradiation and fault 
injection. Fault injection is disabled for neutron irradiation. 

The SEM Controller provides a fault injection interface and 
a monitor interface. To inject faults, we implemented a small 
fault injection controller connected to the fault injection 
interface, which was also embedded in the FPGA. The fault 
injection controller drives the interface to inject faults in 
random configuration memory positions at regular time 
intervals. The selected time interval was 147 ms, which is long 
enough to allow the SEM to correct an injected error, avoiding 
error accumulation, and to completely execute the longest 
benchmark at least three times before injecting a new fault. 
The maximum estimated error detection and correction latency 
for the tested FPGA is approximately 26 ms [16]. It is possible 
that a fault is corrected before causing an error, although it is 
unlikely. We count it as an error if it is observed before it is 
corrected. The fault injection controller was hardened by TMR 
in order to reduce the impact of errors in this module on the 
obtained measures.  

The monitor interface implements an RS-232 protocol 
compatible, full duplex serial port for exchange of commands 
and status. Although it can also be used to inject faults, the 
main use of this interface is to monitor the fault injection 
process from a host. This interface provides a report of every 
injected fault, including its CRAM address, the status of the 
controller and the correction actions that are taken. This report 
was continuously monitored and logged in the host. 

It must be noted that as the SEM Controller is embedded in 
the tested FPGA, it can also be affected by the injected faults. 
However, this situation can be detected through the monitor 
interface. When we observe that the SEM Controller stops 
injecting faults or shows an abnormal behaviour, the FPGA is 
fully reconfigured and the fault injection process is resumed. 

SEM
Fault injection

controller

Error collection
(SPI)

Fault Injection
Monitor (RS232)

Fault injection
enable/disable

Computer Board



These errors do not affect the results of the test because they 
have no effect on the error register collected through the SPI 
interface. 

The three software benchmarks in both the unhardened and 
hardened software versions were tested. The results of the 
fault injection campaigns are summarized in Table IV 
following the same incremental approach used for neutron 
experiments. For each benchmark, the table shows the number 
of injected faults, the total number of observed errors and the 
number of errors that were detected by any of the techniques 
along with the corresponding percentage and confidence 
interval. The last column shows the relative improvement with 
respect to the reference version (first row of Table III), which 
is computed as the ratio of undetected errors between the 
reference design and the fault-tolerant design. 

Fault injection was run as long as needed in order to achieve 
at least 1,000 observed errors. The number of injected faults is 
relatively high due to the low utilization of the FPGA. For 
completeness, we have included the results of fault injection 
on a plain design without any hardening and another design 
only with the HM. In these cases, more faults must be injected 
into the configuration memory to observe a similar amount of 
errors because the design is smaller. However, note that these 
results do not include memory errors, which cannot be 
injected by the SEM, and therefore they cannot be related to 
the neutron results shown in the previous section.  

TABLE IV. FAULT INJECTION RESULTS 

Benchmark Injected  
faults Errors Detected  

errors 
Rel.

Impr.
Plain Quicksort 126,743 1,021 0 (0%) - 

HM only Quicksort 95,766 1,002 638 (63.73.0%) - 

Unhardened 
SW 

Quicksort 81,099 1,028 778 (75.72.6%) 4.1x

MMULT 122,154 1,279 950 (74.32.4%) 3.9x

AES 83,479 1,363 831 (61.02.6%) 2.6x

Hardened  
SW 

Quicksort 77,775 1,004 947 (94.31.4%) 17.6x

MMULT 90,515 1,049 981 (93.51.5%) 15.4x

AES 77,827 1,140 1,098 (96.31.1%) 27.1x
 
For the unhardened software benchmarks, up to 75% of 

errors were detected by the memory checkers or by the HM. 
This percentage rises up to 96% when hardened software is 
used. The amount of detected errors is similar for the quicksort 
and MMULT benchmarks, but it goes lower in the case of the 
unhardened AES benchmark. This result can be explained by 
the fact that the AES benchmark is more data intensive and 
therefore more prone to data errors which are not detected by 
the HM. However, most of these data errors can be detected 
by hardening the software. As a matter of fact, the software-
hardened AES is the benchmark that achieves the highest error 
detection rate. 

The contribution of each hardening method is summarized 
in Table V for the hardened software versions. It must be 
noted that some errors may be detected by more than one 
technique. The columns of Table V show, from left to right, 

the percentage of errors that are detected by the memory 
checkers, the HM, the hardened software (SW), the memories 
plus some other technique, and finally by both the HM and the 
hardened software (HM+SW). The HM has the highest single 
contribution (57.1% on average) and it is about 1.6 times more 
effective than the software hardening (35.3% on average). The 
overlapping of the memory checking with the other techniques 
is small, but the overlapping between the HM and the 
hardened software is significant (14% on average).  

TABLE V. RELATIVE CONTRIBUTION OF THE HARDENING TECHNIQUES 

Benchmark Mem. HM SW Mem. + 
HM/SW HM+SW 

Quicksort 27.8% 52.8% 33.4% 7.2% 12.5%
MMULT 25.9% 64.0% 30.8% 5.6% 17.4%
AES 19.1% 54.4% 41.8% 6.9% 12.0%
Average 24.3% 57.1% 35.3% 6.6% 14.0%

 
Fig. 3 shows a graphical comparison of the cumulative 

results obtained by neutron irradiation and fault injection for 
the tested software versions. In this figure, different colors are 
used to illustrate the different types of detected errors. The 
lower part (in red) corresponds to errors detected in the 
memories, the intermediate part (in blue) corresponds to 
additional errors detected by the hardware monitor and the 
upper part (in green) corresponds to additional errors detected 
by software. The latter applies only to the software-hardened 
versions. The error bars at 95% confidence level for the total 
percentage of detected errors are also shown.  

It can be observed that the fault injection results match the 
neutron irradiation results quite well. Errors detected in the 
memories are slightly more relevant in the irradiation 
experiment, but the total percentage of detected errors 
obtained by fault injection is within the confidence interval of 
the neutron irradiation experiment. 

 
Figure 3. Comparison of error detection rates 

The three benchmarks show quite similar error detection 
rates, with the exception of the unhardened AES benchmark, 
which was discussed before. The HM shows the highest 
contribution to the error detection rate, particularly for the 
hardened software versions. The hardened software has a 
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different and more complex flow, because it includes the 
software checks, and there are more chances that a fault results 
in a control-flow error, which can be detected by the HM. 
Notwithstanding, software hardening is necessary to achieve 
an error detection rate in the order of 95%. In turn, this high 
error detection rate is needed to significantly improve the 
cross-section. An estimation of the relative cross-section 
improvement based on the fault injection results yields an 
average factor of 3.5x for the unhardened software versions, 
which is similar to the result of the neutron irradiation 
experiment, and 20x for the hardened software versions. 
Cross-sections can be estimated by dividing the reference 
cross-section (2.0210-10 cm2) by the corresponding 
improvement factor, considering the confidence intervals and 
assuming that the techniques used in the reference design are 
applied. 

V. CONCLUSIONS 
In this work we have implemented a hybrid fault-tolerant 

LEON3 soft-core processor in a low-end FPGA (Artix-7) and 
evaluated its error detection capabilities. The proposed 
solution combines the use of SEC/DED codes for memories, a 
hardware monitor to detect control-flow errors, software-based 
techniques to detect data errors and configuration memory 
scrubbing with repair to avoid error accumulation.  

The applied hardware techniques do not require a deep 
knowledge of the processor architecture or the FPGA 
architecture. As a matter of fact, the hardened memory blocks, 
the hardware monitor and the configuration memory scrubber 
can be implemented by soft IP modules that can be easily 
configured for other processors and FPGAs. Software-based 
error mitigation techniques are applied in high-level language 
(C code) and the resulting hardened code is portable. This 
solution can be fully embedded in a low-end FPGA without 
the need of external hardware, with reduced overhead and 
with low intrusiveness. The experimental results demonstrate 
that the proposed approach can substantially improve fault-
tolerance for practical applications. 
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