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We propose a linear asymptotic theory to describe the propagation of planar detonation
fronts through heterogeneous mixtures of reactive gases consisting of random fluctua-
tions in the fuel mass fraction. The analysis starts with the derivation of the transfer
functions that relate the upstream fuel-mass-fraction inhomogeneities with the burnt-
gas perturbations via normal mode analysis. These results are then used in a Fourier
analysis of a detonation wave interacting with two- and three-dimensional isotropic
heterogeneous fields. This yields integral formulae for the turbulent kinetic energy, sonic
energy and averaged vorticity and entropy production rates. Second-order corrections
for the turbulent Rankine-Hugoniot conditions are also obtained, along with analytical
expressions for the deviation of the detonation velocity with respect to that of the
equivalent homogeneous mixture. Upstream inhomogeneities are found to speed up the
detonation front in the vast majority of scenarios studied, with a velocity amplification
factor that depends on the properties of the fuel-air mixture, particularly on the variation
of the density and the heat release with the fuel mass fraction.

1. Introduction

Detonation waves have been explored extensively for propulsion applications given
their theoretical advantage over deflagrative pre-mixed combustion. For instance, rotating
detonation engines, which do not operate under the Brayton Cycle, benefit from the
additional work extraction from the cycle and a decrease in the physical size of the
combustor (Huff et al. 2019). Premixing of fuel and air may be necessary due to finite
ignition delay times compared to the residence time of the fluid particles in the combus-
tion chamber. Consequently, it is of paramount importance to understand how standing
detonation waves may be affected by the inhomogeneities of the reactive gas mixture
to design efficient supersonic combustors (Pratt et al. 1991; Urzay 2018; Frolov et al.
2019). However, many challenges must be surmounted before detonation-based engines
could be presented as a competitive alternative. Some hurdles include the incomplete
fuel-air mixing at the molecular level, the stability of the detonation, and the strong
noise generated by the system even in highly idealized configurations (Kailasanath 2000,
2003). Non-idealized configurations representative of more realistic systems may include
additional complexities, such as detonation-wall interaction, confinement, turbulence,
multi-phase flow and non-perfect mixing, in addition to the complexities that arise in
the modelling of chemical kinetics and transport properties (Meng et al. 2018).

When the burning process in the premixed environment occurs at high Mach numbers,
acoustics play a dominant role in the reactive flow dynamics, as is the case of detonations.
Unlike deflagrations, the thickness of the hydrodynamic region affecting the detonation
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front only compares to the detonation thickness because there is no possibility for a
preheat layer. Moreover, diffusive effects become subdominant given that the residence
time of the reactive mixture in the induction-burning layer is considerably reduced
compare with the characteristic diffusion time. Radicals formation and recombination
affect the detonation thickness and dynamics, but they do not influence the propagation
speed, at least at the first order. When the planar detonation exhibits an unstable
propagation pattern (Short & Quirk 1997; Kasimov & Stewart 2004; Radulescu et al.
2007; Shepherd 2009; Clavin & Williams 2012; Kabanov & Kasimov 2018; Han et al.
2019; Huete & Vera 2019), the disturbances generated downstream affect the averaged
Rankine-Hugoniot (RH) relationships, since the energy employed in the generation of
vorticity, entropy and sonic perturbations comes from the only source available in self-
sustained detonations: the heat release by combustion. It has been found that upstream
heterogeneities play a pivotal role in the detonation dynamics (Williams 1961; Veyssiere
& Khasainov 1995; Kessler et al. 2012; Ettner et al. 2013; Prakash et al. 2019b,a; Prakash
& Raman 2019). Enhancement of the propagation speed has been observed in gaseous
mixtures as a result of the turbulence induced by the detonation front wrinkling (Mi et al.
2017a,b; Prakash & Raman 2019; Meadows & Subramanian 2019). When moving through
fuel-air sprays with large droplets, detonations exhibit a deficit in the propagation velocity
compared to the gas-phase velocity (Kailasanath 2006). Similar effects have been observed
in detonations moving through gaseous reactive media with water clouds (Watanabe
et al. 2019, 2020). However, a clear correlation between the upstream properties of the
heterogeneous mixture and the detonation propagation velocity has not been presented
to date. This work aims to shed further light, from a theoretical framework, on the
hydrodynamical aspects that contribute to the modification of detonation velocity when
the detonation wave propagates through a non-uniform mixture of reactive gases. The
linear-interaction analysis predicts a second-order propagation velocity augmentation for
weakly overdriven detonations independently of the type of perturbations generated by
the equivalence ratio fluctuations, i.e., positive or negative perturbations in the upstream
density and/or heat of combustion fields. For strongly overdriven detonations, a weak
deficit in the propagation speed is found only when upstream perturbations in the
equivalence ratio are dominated by heat release perturbations.

Earlier work on the interaction of small-amplitude perturbations with detonation waves
can be found in Massa et al. (2011); Massa & Lu (2011); Jin et al. (2016); Hussein
(2018); Jackson et al. (1990, 1993); Huete et al. (2013, 2014); Griffond (2005); Huete
et al. (2017). When the problem is addressed numerically, chemical kinetic models can be
implemented (Massa et al. 2011; Massa & Lu 2011; Jin et al. 2016; Hussein 2018), which
allows the description of the detonation unstable modes. Numerical studies by Massa
et al. (2011); Massa & Lu (2011) demonstrate enhanced interactions between turbulence
and detonations when sizes of the inhomogeneities and the unperturbed reaction zones
are comparable. For certain values of the activation energy, small scales of the post-
shock perturbation modes increase unbounded owing to acoustic resonance. In different
conditions, however, turbulence may cushion the detonation self-induced oscillations by
forcing the reaction wave to adapt to the ever-changing upstream conditions. Under
this stable condition, the present theory and that employed in Jackson et al. (1990,
1993); Huete et al. (2013, 2014, 2017) may be applied. Employing the fast-reaction
limit allows the detonation wave to be treated as a single discontinuity front, and the
chemical process exclusively enters through the non-adiabatic RH curve. The motivation
was to improve descriptions of the influences of compressible turbulence on detonation
propagation and, in particular, to determine how passage of a planar detonation modifies
the turbulence. This work complements these fundamental studies, particularly the work
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Huete et al. (2013) on the interaction of detonation with density perturbations, by
placing the focus on the mixture imperfections that add another type of convective
perturbation (Griffond 2005; Farag et al. 2019), i.e., the local heat of combustion of the
mixture. Results presented below demonstrate that the combination of the two sources of
entropic perturbations derived from fuel-mass-fraction heterogeneities—i.e., perturbation
of density and heat-release—may lead to order-of-magnitude differences in the turbulence
generation rate when scaled with the fuel mass fraction variations. In addition, the
acoustic energy, which typically exhibits a low-impact role in canonical shock-turbulence
interactions, is of great importance here for weakly overdriven detonations.

The analysis makes use of the same mathematical description as that employed in the
pioneering works of Ribner (1954a,b, 1987) for shock waves and the posterior analyses
in reactive shocks of Jackson et al. (1990, 1993), who assumed the ideal gas equation
of state with constant specific heats and employed the fast-reaction limit to treat the
detonation as a reactive shock. In addition to considering the effect of heat-release changes
induced by the non-uniform upstream mixture, this work computes modified turbulent
RH equations. It distinguishes a heterogeneous mixture from the corresponding uniform
mixture with the same averaged upstream values (Lele 1992). As a result of the presence
of heterogeneities in the fresh mixture, the averaged propagation speed of the detonation
wave is modified, which also occurs with inert shocks (Hazak et al. 1998; Velikovich et al.
2012; Tian et al. 2020). Indeed, changes in the propagation speed have also been reported
for detonations (Li et al. 2015; Mi et al. 2017a,b; Prakash & Raman 2019). The present
work provides closed form analytical expressions in terms of the detonation properties
and based on the burnt-gas dynamics to predict the averaged propagation speed.

The paper begins in Sec. 2 with the problem formulation for both base and linearly
perturbed flow in the thin-detonation limit. Fourier analysis for two-dimensional and
three-dimensional isotropic turbulent fields is employed to provide integral formulae for
the amplification of the kinetic energy, vorticity, and density fluctuations in Sec. 3. The
near-field acoustic energy and the effect of the detonation passage in the turbulence
scales are also analysed. The modification of the averaged RH conditions is obtained in
Sec. 4 as well as the variation of the detonation propagation speed as a result of the
upstream mixture heterogeneities. Final conclusions are presented in Sec. 5. The normal
mode analysis, which is employed to describe the interaction of the planar detonation
with a monochromatic pattern in the fuel mass fraction, is provided in appendix A.

2. Problem description

2.1. Upstream heterogeneous mixture

The presence of non-equilibrium perturbations in the upstream gas coming from
fuel mass fraction fluctuations must be accompanied with velocity perturbations to
consistently satisfy the conservation equations. Similarly, pressure perturbations may be
present in the heterogeneous mixture ahead of the shock. When the rotational, acoustic,
entropic and composition perturbations result from the same physical mechanism, the
corresponding spectra associated with the different types of perturbations are very
similar. In particular, for stationary compressible isotropic turbulence (Holzer & Siggia
1994; Miller 2000), the scalar energy spectra for the fuel mass fraction disturbances peak
at the same wave number as the kinetic-energy dissipation spectrum, thereby suggesting
the use of a similar spectrum form.

The relative influence of the different upstream perturbations on the downstream
evolution of the flow depends on the initial perturbation amplitudes and the propagation
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Figure 1: Sketch of the corrugated detonation front through a heterogeneous gaseous
mixture, where the variation of the local fuel mass fraction satisfies |δYu| = |Yu−〈Yu〉| �
1 in order to apply linear theory. The detonation length ` is assumed to be considerably
reduced than the characteristic upstream length k−1o .

Mach number. The latter dependence can be investigated using the linearized RH
jump conditions, which show that the amplification factor affecting the mass fraction
perturbations as they cross the front (with the corresponding changes in density and heat
release) remains finite in the limit of large propagation Mach numbersMu � 1, whereas
the corresponding amplification factors for the pressure and vorticity perturbations
become proportional toM−2u andM−1u , respectively. As result, in the strong shock limits,
the upstream perturbations of vorticity and pressure play a secondary role with regards
to the downstream flow. When dealing multi-component mixtures, the local specific-heat
ratio γ is also affected by mixture proportions, but this effect can be also neglected in the
first approximation. Variations in γ are expected to range between 1.1 and 1.4 between
mixture compounds for light hydrocarbon fuels. Thus, order-of-unity variations in the fuel
mass fraction provoke weak changes that are one order of magnitude smaller in the local
value of γ. In addition, even admitting same-order variations in γ, these perturbations
can be neglected for the same reason that velocity and pressure perturbations are not
considered, namely they become proportional to M−2u in the strong shock limit.

In this work, a planar detonation front is considered to propagate through a heteroge-
neous gaseous mixture that is static and isobaric, so that the variations of the fuel mass
fraction are only associated with perturbations in density and heat release, as sketched
in Fig. 1. It is assumed that the deviation of the local fuel mass fraction Yu with respect
to its average value 〈Yu〉 ∼ 1 is sufficiently small for the linear theory to be applicable,
|δYu| = |Yu− 〈Yu〉| � 1. For sufficiently weak perturbations, the isotropic heterogeneous
mixture can be approximated by the linear superposition of independent modes, each
one being characterized by a wavenumber ~k, so that

δYu(~k, ~xu) = ε(~k)ei
~k·~xu , (2.1)

where ~xu is the vector defining the position in a reference frame at rest with respect
to the upstream flow, and ε(~k) is the amplitude of the fuel mass fraction perturbations

corresponding to a given wavenumber vector ~k.
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Figure 2: Variation of density (a) and heat release (b) with the fuel mass fraction for
representative fuel-air mixtures. The dashed line represents the stoichiometric condition
given by Yu = Yst (φ = 1). Computations are given for hydrogen, methane, acetylene
and propane at 300 K and 105 Pa in fresh conditions. The associated stoichiometric fuel
mass fractions are Yst = 0.0285, 0.0552, 0.0705 and 0.0603, respectively.

Assuming that there is no privileged direction in the upstream flow, the spectrum of
the fuel mass fraction perturbations is considered spatially homogeneous and isotropic.
Thus, the wave-number vector ~k is uniformly distributed over the unit sphere (or around
the unit semicircle in two dimensions). Therefore, the analysis consists of a superposition
of linear perturbations whose amplitudes are exclusively functions of the wave-number
amplitude k = |~k|. In such cases, the mean square of the fuel mass fraction perturbations
in two-dimensional and three-dimensional geometries are

〈δY 2
u 〉2D = π

∫ ∞
0

ε(k)2k dk and 〈δY 2
u 〉3D = 4π

∫ ∞
0

ε(k)2k2 dk, (2.2)

respectively, where ε(k) represents the spectrum of the fuel mass fraction. When fuel mass
fraction perturbations are related to turbulent velocity fluctuations (Holzer & Siggia 1994;
Miller 2000), a plausible but arbitrary choice for the isotropic spectrum may be ε(k)2 ∼
(k/ko)

2/[1 + (k/ko)
2]17/6, where ko is the most representative wavenumber associated to

the upstream turbulent flow (Batchelor 1953; Lee et al. 1993; Sagaut & Cambon 2008;
Livescu 2020). Compared to the detonation front, the fast–reaction model assumes that
the detonation thickness is considerably smaller relative to the characteristic wavelength
∼ k−1o in the unimodal probability density distributions such that ko` � 1 as displayed
in Fig. 1. The two length scales are independent of each other. The characteristic scale
of the spectrum depends on the type of mixing and turbulence upstream,whereas the
detonation thickness mainly depends on the detonation properties through the reaction
kinetics and temperature conditions. Although order-of-magnitude differences can be
observed between different mixture properties, a rough estimate is 0.01-1 centimetres as
a characteristic scale for `, albeit upstream temperature and detonation overdrive can
significantly change this value.

For a generic fuel-air mixture, if the fuel is heavier than air, positive values of δYu are
associated with positive upstream density perturbations, δρu > 0, and vice-versa. The
sign of the perturbations of heat release can also be anticipated by taking into account
the fact that heat release typically peaks under slightly rich conditions. Thus, positive
values of δYu lead to negative perturbations of heat release, δqu < 0, in sufficiently rich
environments, while the opposite occurs for lean mixtures.
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Fuel Slopes
Equivalence ratio φ

0.25 0.5 0.75 1 1.25 1.5 1.75 2

H2
W -12.14 -11.17 -10.35 -9.65 -9.05 -8.53 -8.07 -7.66

H 136.94 60.22 32.71 15.08 5.88 3.58 2.45 1.66

CH4
W -0.79 -0.78 -0.77 -0.77 -0.76 -0.75 -0.74 -0.74

H 69.07 33.40 18.44 6.70 -3.02 -6.59 -7.85 -8.88

C2H2
W -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11

H 52.91 23.21 9.36 4.77 2.50 1.08 -0.03 -0.8

C3H8
W 0.35 0.35 0.35 0.35 0.36 0.36 0.36 0.36

H 62.88 30.29 15.91 5.79 -1.89 -5.76 -7.08 -8.02

Table 1: Dimensionless slopes of the density and heat release curves, W and H, for H2,
CH4, C2H2, and C3H8. The orange and blue background colours are applied for positive
and negative values of the relation H/W , respectively.

The small parameter δYu will be employed below to write the perturbed density and
heat release fields as follows:

ρu = 〈ρu〉+ δρu = 〈ρu〉(1 + δYuW ), (2.3)

qu = 〈qu〉+ δqu = 〈qu〉(1 + δYuH), (2.4)

where the parameters W = ρ−1u (dρu/dYu) and H = q−1u (dqu/dYu) relate to the local
slopes of the ρu(Yu) and qu(Yu) curves, respectively. For a “binary” fuel-air mixture with
fuel and air mass fractions being Yu and 1− Yu, the dependence of the mixture density
and the dimensionless function W with the fuel mass fraction is noted as follows:

ρu
ρa

=
1

1−
(

1− WA

WF

)
Yu

and W=
1

ρu

dρu
dYu

=
1− WA

WF

1−
(

1− WA

WF

)
Yu
, (2.5)

where ρa is the air density, and WA and WF refer to the air and fuel molecular weights,
respectively.

The variation of the heat release with the fuel mass fraction cannot be accurately
anticipated because it depends on the final composition of the burnt mixture. Detonations
induce a strong compression work—through the irreversible transformation made by the
shock—and a later expansion of the fluid, which makes the final temperature differ from
the adiabatic flame temperature of isobaric combustion. It is widely known however
that heat release peaks close to stoichiometric conditions for slightly rich mixtures, a
property that can be used to anticipate the sign of the slope of the heat release-fuel mass
fraction curve. Accurate values of qu can be obtained with either numerical codes or
experimental data. Figure 2 has been computed with an in-house thermochemical code
validated with NASA-CEA (Gordon & McBride 1994) and CANTERA (Goodwin et al.
2018), including Caltech’s Shock and Detonation Toolbox (Browne et al. 2008). Here,
the variation of density (a) and heat release (b) with the fuel mass fraction is shown for
different gases, including hydrogen (H2), methane (CH4), acetylene (C2H2) and propane
(C3H8), with stoichiometric fuel mass fractions Yst = 0.0285, 0.0552, 0.0705 and 0.0603,
respectively. Representative values of W and H obtained from these computations are
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given in Table 1 for these fuels and different equivalence ratios ranging from very lean to
moderately rich mixtures.

2.2. Homogeneous Rankine-Hugoniot equations

Neglecting the deviation from the mean values, the flow variables in the burnt gas are
obtained by integrating the conservation equations in the streamwise direction, yielding

ρuuu = ρdud, (2.6a)

pu + ρuu
2
u = pd + ρdu

2
d, (2.6b)

hu +
1

2
u2u = hd +

1

2
u2d, (2.6c)

for the mass, streamwise momentum, and energy conservation equations, respectively.
Here, the subscripts u and d refer to the upstream and downstream dimensional flow
properties, respectively, including the velocity u, density ρ (or specific volume V = ρ−1),
pressure p, and enthalpy h. The upstream flow comprises a mixture of gases, each of
which is modelled as a calorically perfect gas, i.e., the specific heats, and therefore the
adiabatic index γ are assumed to be constant throughout the shock compression and
combustion processes. Thus, the enthalpy variation is written as a function of a single
value of γ

hd − hu = qu +
γ

γ − 1

(
pd
ρd
− pu
ρu

)
, (2.7)

where qu represents the heat released in the reaction front per unit mass of mixture. In
realistic conditions, the value of γ depends on both mixture composition and temper-
ature, which experience significant changes across the detonation wave. In qualitative
terms, when the effect of temperature dominates the variation of γ by the excitation
of vibrational modes, the specific heat ratio is expected to monotonically decrease with
temperature. However, a change in the structure of the molecules exists as a result of
the combustion process, the total variation of γ must include information of the initial
and final composition of the mixture. However, since upstream thermal energy can be
neglected in the first approximation, the value used in the computations should be the
value associated with the burnt gas conditions to minimize the error when γ is constant.

Algebraic manipulation of (2.6a)-(2.7) provides the jump equations across the reaction
front, namely,

Rd =
ρd
ρu

=
(γ + 1)M2

u

γM2
u + 1− [(M2

u − 1)2 − 4QM2
u]

1/2
, (2.8)

Pd =
pd
pu

=
γM2

u + 1 + γ
[
(M2

u − 1)2 − 4QM2
u

]1/2
γ + 1

=
(γ + 1)Rd − γ + 1 + 4RdQγ/ (γ + 1)

γ + 1− (γ − 1)Rd

(2.9)

for density and pressure, respectively, while the Mach number of the burnt-gas flow is

Md =
ud
ad

=

{
γM2

u + 1−
[
(M2

u − 1)2 − 4QM2
u

]1/2
γM2

u + 1 + γ [(M2
u − 1)2 − 4QM2

u]
1/2

}1/2

, (2.10)
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where ad denotes the speed of sound and

Q =
(γ2 − 1)

2a2u
qu (2.11)

is the dimensionless heat release per unit mass.
The so-called Chapman-Jouguet (CJ) condition, which is given by (M2

u − 1)2 −
4QM2

u = 0, defines the minimum detonation strength. Thus, the maximum downstream
Mach number is associated with a given energy release as follows:

Mcj = (1 +Q)
1/2

+Q1/2. (2.12)

This value is related to the maximum flow expansion of the hot gases in the reaction
layer. Within this subsonic region behind the shock, the flow is expanded up to sonic
conditions, Md = 1, corresponding to the well-known Chapman-Jouguet condition
for detonation waves. As a result, the detonation wave decouples from downstream
influences, and its motion is self-sustained by the expansion of the products resulting
from the exothermic transformation.

2.3. Linear interaction analysis

As illustrated in Fig. 2 and Table 1, deviations in the fuel mass fraction are often
accompanied by perturbations in density and/or heat-release. Depending on the partic-
ular conditions, i.e., type of fuel and average equivalence ratio of the unburnt mixture,
the dimensionless slope H may reach values of order 10 or greater. It also occurs with
the function W in hydrogen-air mixtures (or any other fuel much heavier than air
not shown in the table). This finding suggests that δYu may not be a good reference
scale for the upstream perturbation field given that linear (small) variations in the fuel
mass fraction may be associated with non-linear (large) perturbations in ρu and/or qu.
For any flow condition, to ensure that small changes δYu do not lead to large input
perturbations into the system, the small parameter should simply be redefined in the
form ε(k) = ε(k)

√
W 2 +H2, and ε(k) � 1 is a requirement. Thus, even if W or H are

large compared to unity, the perturbations in the fuel mass fraction will be sufficiently
small for all flow perturbations to remain within the limits of linear theory. Similarly,
larger fuel mass fraction perturbations will be permitted for W ∼ H � 1.

When written in a reference frame moving with the detonation front, xl = uut, the
upstream density and heat-release perturbations can be written as follows:

ρ̂u =
δρu
〈ρu〉

= ε(k)
W√

W 2 +H2
ei (kxuut+kyy+kzz) (2.13)

and

q̂u =
δqu
〈qu〉

= ε(k)
H√

W 2 +H2
ei (kxuut+kyy+kzz), (2.14)

where use is composed of (2.1), (2.3) and (2.4) and the above definition of ε(k). The
pre-exponential factors W/

√
W 2 +H2 and H/

√
W 2 +H2 represent the relative effects

on density and heat-release fluctuations of a small change of the fuel mass fraction. A
closer inspection of the RH jump relationships shows that positive values of δρu and δqu
result in higher downstream pressures. In terms of fuel mass fraction perturbation δYu,
constructive effects are to be expected in lean heavy-fuel or rich light-fuel mixtures, while
destructive contributions will occur in lean light-fuel or rich heavy-fuel mixtures.

Using the modulus of the wavenumber vector k and its product with the speed
of sound in the burnt gas adk as characteristic spatial and temporal frequencies, the
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spatio-temporal variables can be written in non-dimensional form as (x̂, ŷ, ẑ) = k~x and
τ = adkt, where ~x is measured in the burnt gas reference frame. However, it is always
possible to simplify the formulation by rotating the reference frame around the direction
of propagation of the detonation such that only two spatial coordinates remain in the
problem: one in the axis of the detonation propagation, x̂, and the other perpendicular
to it at any arbitrary direction, ŷ.

The linear perturbations in the burnt gas are defined with functions of order unity
(denoted with hat symbol) and scaled with the small parameter ε, namely

p(x, y, τ) = ρda
2
d

[
γ−1 + ε p̂(x̂, ŷ, τ)

]
, (2.15a)

ρ(x, y, τ) = ρd [1 + ε ρ̂(x̂, ŷ, τ)] , (2.15b)

u(x, y, τ) = ad [Md(Rd − 1) + ε û(x̂, ŷ, τ)] , (2.15c)

v(x, y, τ) = adε v̂(x̂, ŷ, τ), (2.15d)

which are introduced in the Euler equations to give

∂ρ̂

∂τ
= −∂û

∂x̂
− ∂v̂

∂ŷ
, (2.16a)

∂û

∂τ
= −∂p̂

∂x̂
, (2.16b)

∂v̂

∂τ
= −∂p̂

∂ŷ
, (2.16c)

∂ρ̂

∂τ
=
∂p̂

∂τ
. (2.16d)

The system of linear equations must supplemented by the boundary conditions asso-
ciated to isolated detonation. As the burnt-gas flow field reduces to linear gas dynamics
within the domain contained between x̂ = −τ + ct (first left-traveling acoustic wave) and
x̂ = Mdτ + ct (detonation front position) in the x̂ − τ plane. The arbitrary constant
ct, which is defined with the temporal reference frame, does not play any role in the
long-time asymptotic analysis.

For the sake of simplicity, the isolated assumption is considered in this work, which
translates into the omission of front-traveling waves reaching the detonation wave from
behind. As a direct consequence, the detonation is only excited with the monochromatic
perturbation of the upstream flow, thereby resulting in a single oscillation frequency
ωd = (kx/k)(uu/ad) = κxRdMd, where κi = ki/k for i = {x, y, z} is the dimensionless
wave number component of the upstream flow. Linearized RH relationships, which
involve the perturbation of the detonation position with respect to its planar form
ξd = k [xl,s(t)− uut],

Rd − 1

Rd
dξd
dτ

=
1− Γ
2Md

p̂d −
Md (Rd − 2 +∆)W −Md (1−∆)H

2
√
W 2 +H2

e−iωdτeiκy ŷ, (2.17a)

ûd =
1 + Γ

2Md
p̂d −

Md (Rd −∆)W +Md (1−∆)H

2
√
W 2 +H2

e−iωdτeiκy ŷ, (2.17b)

ρ̂d =
Γ

M2
d

p̂d +
∆W − (1−∆)H√

W 2 +H2
e−iωdτeiκy ŷ, (2.17c)

v̂d = −Md (Rd − 1)
∂ξd
∂ŷ

, (2.17d)

are employed to calculate the amplitudes accompanying the factor e−iωdτeiκy ŷ in the
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non-dimensional perturbations. The quantity

Γ =
pd − pu
Vu − Vd

dV

dp

∣∣∣∣
d

=
γM2

u

R2
d

(
∂Pd
∂Rd

)−1
(2.18)

measures the slope of the RH curve relative to the Rayleigh-Mickelson line, and the term

∆ =

1 +QRd
(
γ − 1

γ + 1

)
1 +Q

< 1 (2.19)

accounts for the variation of the post-detonation state due to the upstream changes in
density and heat release.

Notice that the linear perturbation variables admit the breakdown in terms of potential
(acoustic) and entropic-rotational contributions (Kovasznay 1953; Chu & Kovásznay
1958). The former takes the form of traveling waves, while the latter remains steady in the
reference frame moving with the burnt-gas particles in absence of diffusive effects. This
property is exploited in the normal mode analysis performed in the appendix A, where
the transfer functions describing the amplitude of the burnt-gas perturbation modes as
a function of the detonation properties is described.

3. Detonation-induced turbulence

This section is devoted to the interaction of a planar detonation wave with a 2D/3D
isotropic 2D/3D field of fuel-mass-fraction fluctuation. In the previous section, it was

shown that the pre-shock field can be characterized by the wave number vector ~k =
(kx, ky) = k(cos θ, sin θ) in a reduced 2D geometry, i.e., a planar transverse wave with

wavenumber ~k that intersects a planar detonation wave with an incidence angle θ. In
two dimensions, isotropy translates into considering situations where k is uniformly
distributed in the range 0 6 θ 6 π. In three dimensions, it is assumed that k is
uniformly distributed over the unit sphere. Linear theory admits the computation of the
full spectrum by direct superposition of small perturbations, in which the amplitudes are
an exclusive function of k with the different modes being uncorrelated.

3.1. Turbulent kinetic energy

An important feature that deserves particular attention is the turbulence kinetic energy
(TKE) generated by the wrinkled detonation front. When scaled with the square of the
sound speed in the burnt gas, it can be expressed as

TKE2D =
1

2

〈δviδvi〉
a2d

=
1

2
〈û2 + v̂2〉2D

∫ ∞
0

ε(k)2k dk =
1

2
〈û2 + v̂2〉2D〈δY 2

u 〉2D (3.1)

with

〈û2 + v̂2〉2D =
2

π

∫ π/2

0

(
|û|2 + |v̂|2

)
dθ, (3.2)

provided 〈δY 2
u 〉2D is known from (2.2). Thanks to the isotropy condition of the pertur-

bation field, the influence of the shape of the spectrum enters as an integral contribution
that can be factored out. Equivalent three dimensional computations can be performed
by defining

〈û2 + v̂2〉3D =

∫ π/2

0

(
|û|2 + |v̂|2

)
sin θ dθ, (3.3)
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Figure 3: Acoustic (a-b) and rotational (c-d) contributions to the turbulent kinetic energy
in 2D (a and c) and 3D (b and d) geometries. Computations are shown as a function
of the overdrive parameter Mu/Mcj − 1 for γ = 1.2, Q = 1, and |W | � |H| ( ),
|H| � |W | ( ), W = H ( ) and W = −H ( ).

where û and v̂ are the streamwise and transverse velocity components. The normalization
criterion applied is that 〈û2+v̂2〉2D,3D must be equal to unity when the integrand function
is spatially uniform and equal to unity.

In the far-field asymptotic regime, the kinetic energy can be conveniently computed
by accounting for the separate contributions of the rotational and acoustic velocity fields
〈û2 + v̂2〉 = 〈û2r + v̂2r〉+ 〈û2a + v̂2a〉, to give

〈û2 + v̂2〉2D =
2

π

∫ π/2

0

(
U2
r +V2

r

)
dθ +

2

π

∫ θc

0

(
U2
a +V2

a

)
dθ,

〈û2 + v̂2〉3D =

∫ π/2

0

(
U2
r +V2

r

)
sin θ dθ +

∫ θc

0

(
U2
a +V2

a

)
sin θ dθ,

(3.4)

where the amplitudes Ur, Vr, Ua, and Va, provided in appendix A, are explicit functions
of θ = tan−1(ky/kx) and the remaining governing parameters: γ, Mu, Q, W , and H.
To compute the rotational contribution one must separate the high-frequency and low-
frequency amplitudes, as given in (A 29), which must be integrated over the two different

domains
∫ θc
0

(. . . ) dθ and
∫ π/2
θc

(. . . ) dθ, respectively.

Figure 3 shows the acoustic (a-b) and rotational (c-d) contributions to the total
kinetic energy in both two-dimensional (a and c) and three-dimensional (b and d)
isotropic configurations. The averages are plotted as a function of the overdrive parameter
Mu/Mcj − 1. The correlation between W and H has a strong impact on the generation
of turbulent kinetic energy. For example, heat-release variations, either for |H| � |W | or
H = −W , produce higher levels of acoustic energy when the overdrive is small, a finding
that can be anticipated with the normal mode analysis, as shown in Fig. 14 in appendix



12 A. Cuadra et al.

0

0,25

0,5

0,75

1

1,25

10�2 10�1 100 101 102

0

0,25

0,5

0,75

1

1,25

10�2 10�1 100 101 102

10�6

10�5

10�4

10�3

10�2

10�1

100

0

1

2

3

4

10�2 10�1 100 101 102
0

1

2

3

4

10�2 10�1 100 101 102

Figure 4: Longitudinal (a-b) and transverse (c-d) contributions to the turbulent kinetic
energy in 2D (a and c) and 3D (b and d) geometries. Computations are shown as a
function of the overdrive parameter Mu/Mcj − 1 for γ = 1.2, Q = 1, and |W | � |H|
( ), |H| � |W | ( ), W = H ( ) and W = −H ( ).

A. The unbounded growth of the acoustic perturbations in the CJ condition warns about
the limits of validity of the linear thin-detonation model, which gains in reliability as the
overdrive increases.

The cases selected for the calculations and the associated colour code will be main-
tained in the following figures. In all the plots, the black curves correspond to the reference
case where the upstream perturbation field is dominated by density changes, as in Huete
et al. (2013). In this case, the average fuel mass fraction is close to the peak of heat
release, which leads to a negligible contribution of heat-release variations with the fuel
mass fraction. As an opposite limit, the green curves represent cases where heat-release
variations dominate over density changes, which is applicable to mixtures of gases with
similar density and located far-off the heat release peak. The other two distinguished
cases refer to positive (orange) and negative (blue) correlations of density and heat
release perturbations. The former is applicable to light fuel-air mixtures (WF < WA)
in sufficiently rich conditions or heavy fuel-air mixtures (WF > WA) in sufficiently
lean conditions. On the other hand, negative correlations are applicable to light fuel-
air mixtures in sufficiently lean conditions or heavy fuel-air mixtures in sufficiently rich
conditions. Four examples are given in Table 1 where the orange and blue background
colours denote the mentioned positive and negative correlations, respectively.

Regarding the rotational contribution, the degree of overdrive does not modify the
hierarchy of effects associated to the correlation between H and W for one single
frequency, as displayed in Fig. 15 in appendix A. Notice that the case |H| � |W | (green
lines) uses its own log-log scale, which is shown between subplots (c) and (d), because it
would have been impossible to distinguish it from the horizontal axis otherwise. With this
consideration in mind, it is seen that the case with exclusively density perturbations yields
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the highest intensity of turbulence generation, and the effect of heat release is to cushion
the kinetic energy deposited in form of eddies behind the detonation wave. The results
also show that the rotational contribution dominates the generation of turbulent kinetic
energy over the acoustic field by one order of magnitude, except for weakly overdriven
detonations, when both become the same order. Some features in Fig. 3 are similar for
the acoustic and rotational contributions. For example, the qualitative picture of two-
dimensional and three-dimensional cases is very similar. In addition, density disturbances
dominate for finite to high degrees of overdrives. Thus, the turbulent kinetic energy
generated for |H| � |W | is much smaller and tends to zero with the overdrive, while the
cases H = −W and H = W render similar values for strongly overdriven detonations, an
asymptotic value that corresponds to the half of that obtained for |W | � |H|. The latter
is easily deduced from (2.13) since the relative amplitude of the density field squared,
W 2/(W 2+H2), is unity for |W | � |H| and 1/2 for H = ±W , while the relative amplitude
of the heat release field squared, H2/(W 2 +H2), vanishes for |W | � |H|.

The breakdown of longitudinal and transverse contributions of the kinetic energy can
be computed separately as

〈û2〉2D = 〈û2r〉2D + 〈û2a〉2D =
2

π

∫ π/2

0

U2
r dθ +

2

π

∫ θc

0

U2
a dθ,

〈û2〉3D = 〈û2r〉3D + 〈û2a〉3D =

∫ π/2

0

U2
r sin θ dθ +

∫ θc

0

U2
a sin θ dθ,

(3.5)

and

〈v̂2〉2D = 〈v̂2r〉2D + 〈v̂2a〉2D =
2

π

∫ π/2

0

V2
r dθ +

2

π

∫ θc

0

V2
a dθ,

〈v̂2〉3D = 〈v̂2r〉3D + 〈v̂2a〉3D =

∫ π/2

0

V2
r sin θ dθ +

∫ θc

0

V2
a sin θ dθ,

(3.6)

respectively, where 〈û2+v̂2〉2D,3D = 〈û2〉2D,3D+〈v̂2〉2D,3D for both rotational and acoustic
contributions, independently.

Figure 4 shows the average streamwise (a-b) and transverse (c-d) contributions to the
total kinetic energy in both two-dimensional (a and c) and three-dimensional (b and
d) isotropic flows. The averages are plotted as a function of the overdrive parameter
Mu/Mcj − 1. In consonance with Fig. 15, the lateral component is higher than the
longitudinal part. As expected, the strong-shock limit is governed by the density-induced
turbulence in both longitudinal and transverse contributions. In the case |H| � |W |,
shown on its own log-log scale, the turbulence generation is very weak over most of the
overdrive domain. For weakly overdriven detonations, however, the effect of heat-release
variations has a non-negligible impact in the generation of turbulence, which, as observed
in Fig. 3, is mainly derived from the acoustic contribution. In agreement with the previous
plot, for three-dimensional random isotropic fields, the generation of turbulence is more
intense for both lateral and streamwise components, and negative correlations render
higher levels of turbulence. Thus, when the fuel mass fraction is outside the heat-release
peak, turbulence generation is expected to be enhanced from the hydrodynamical point
of view in light fuel-air mixtures in sufficiently lean conditions or heavy fuel-air mixtures
in sufficiently rich conditions.



14 A. Cuadra et al.

10�6

10�5

10�4

10�3

10�2

10�1

100

10

20

30

40

50

60

10�2 10�1 100 101 102

10

20

30

40

50

60

10�2 10�1 100 101 102

0

0,1

0,2

0,3

0,4

0,5

0,6

10�2 10�1 100 101 102
0

0,1

0,2

0,3

0,4

0,5

0,6

10�2 10�1 100 101 102

Figure 5: Averaged square vorticity (a-b) and square entropic density (c-d) in 2D (a and
c) and 3D (b and d) geometries. Computations are shown as a function of the overdrive
parameter Mu/Mcj − 1 for γ = 1.2, Q = 1, and |W | � |H| ( ), |H| � |W | ( ),
W = H ( ) and W = −H ( ).

3.2. Enstrophy and averaged pressure and density fields

The average rotational motion behind the detonation can be measured by the so-called
enstrophy that takes the form

〈Ω2κ2y〉2D =
2

π

∫ π/2

0

O2 sin2 θ dθ, 〈Ω2κ2y〉3D =

∫ π/2

0

O2 sin3 θ dθ, (3.7)

where O must be evaluated from (A 25) in appendix A and κy = sin θ. By similar
arguments, the averaged values of the squared density perturbations are

〈ρ̂2〉2D = 〈ρ̂2e〉2D + 〈ρ̂2a〉2D =
2

π

∫ π/2

0

D2
e dθ +

2

π

∫ θc

0

D2
a dθ,

〈ρ̂2〉3D = 〈ρ̂2e〉3D + 〈ρ̂2a〉3D =

∫ π/2

0

D2
e sin θ dθ +

∫ θc

0

D2
a sin θ dθ,

(3.8)

where the far-field acoustic contribution satisfies D2
a = U2

a +V2
a = P2

a, and therefore

〈ρ̂2a〉2D = 〈û2a〉2D + 〈v̂2a〉2D = 〈p̂2〉2D =
2

π

∫ θc

0

P2
h dθ

〈ρ̂2a〉3D = 〈û2a〉3D + 〈v̂2a〉3D = 〈p̂2〉3D =

∫ θc

0

P2
h sin θ dθ.

(3.9)

The averaged vorticity generated by the detonation front is computed in Fig. 5 (a-
b) in both two-dimensional (a) and three-dimensional (c) configurations as a function
of the overdrive parameter Mu/Mcj − 1. The amplification of the entropic density
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fluctuations is shown in Fig. 5 (c-d). As noted for the turbulent kinetic energy, the
highest level of vorticity generation is given when heat release perturbations upstream
are negligible, i.e., when the mixture is in the heat-release peak. This case, which is in
black lines, is similar to that found in Huete et al. (2013). The opposite limit, which
occurs for same-density gases in sufficiently rich or lean conditions, shows a peak in the
enstrophy generation at finite degrees of overdriveMu/Mcj−1 ∼ 1 (see the green curve
with its own log-log scale). Expectedly, when heat release variations are comparable to
density perturbations, negative correlations provide higher amplitudes for the vorticity
perturbations downstream. It resembles the findings in Sinha (2012), where the baroclinic
torque due to a mean pressure gradient has an appreciable effect for non-zero entropic
fluctuations in the upstream flow. As shown in Fig. 3, the highly overdriven limit for
|W | � |H| doubles the value for |W | = |H|.

Regarding the change in the entropic heterogeneities due to the detonation passage
(in terms of the dimensionless variables measured with the bulk density), it is observed
that overdrive modifies the hierarchy of the dominant contributions in the generation of
entropy. For weak overdrives,Mu/Mcj−1� 1, negative correlations render the highest
levels of entropy, while positive correlations yield the lowest. For Mu/Mcj � 1, these
contributions merge to the same asymptotic value, yielding half of that for |W | � |H|.
The highest and lowest levels of entropy are obtained for |W | � |H| and |H| � |W |,
respectively, in the highly overdriven limit.

The results shown in Figs. 3-5 are qualitatively similar to those obtained previously
for the interaction of detonations with random vorticity perturbations (Jackson et al.
1993; Massa et al. 2011; Massa & Lu 2011; Huete et al. 2017). However, a detailed
comparison requires taking into account the diverse criteria used for normalization in
different investigations. For isotropic vorticity fields, the upstream perturbed velocity
field was scaled in Jackson et al. (1993); Huete et al. (2017) with the speed of sound
downstream from the detonation, which always increases with the detonation intensity.
If it had been scaled with the upstream sound speed, the results would have shown how
the downstream perturbations decay with the overdrive to become negligibly small for
strongly overdriven detonations. In strong-shock conditions, upstream perturbations in
density and heat-release will dominate the turbulence generation across the detonation
wave. In this particular case, the turbulence amplification factors measure how much
turbulence is generated for any convective perturbation of the fuel mass fraction of order
ε/
√
W 2 +H2. When W and/or H are large, the allowed fuel mass fraction perturbations

must be much smaller than the corresponding density and/or heat-release perturbations.
This condition relaxes when W and H are of order unity or less. According to Table 1,
the value of W is of order unity for light hydrocarbons and reasonably small for acetylene,
while the value of H is very sensitive to mixture conditions, being of order unity or less
only in the vicinity of the heat release peak.

3.3. Turbulence scales characterization

Previous results refer to far-field mean values, which are independent of the shape
of energy spectrum, on condition that it is isotropic. The analysis is valid at a distance
sufficiently far from the detonation wave, where the vanishing contribution of the acoustic
energy can be neglected. Close to the detonation wave, however, the decaying pressure
contribution should be taken into account as described in (A 18) in the appendix for
monochromatic perturbations.

Near-field contributions are studied in detailed in Sinha (2012); Quadros et al. (2016);
Sethuraman et al. (2018) for inert-shocks in canonical turbulent flows. To illustrate
this effect, the emphasis is placed here on the near-field acoustic energy, which can
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Figure 6: Three-dimensional total acoustic energy 〈p̂2〉total/〈p̂2〉totalxs=0 as a function of the
scaled distance koxs. Computations are given for γ = 1.2, Q = 1, weakly overdriven
detonations Mu = 1.001Mcj (a), and strongly overdriven detonations Mu = 5Mcj (b).
The distinguished cases include |W | � |H| ( ), |H| � |W | ( ), W = H ( ) and
W = −H ( ). The function 〈p̂2〉total is shown in the insets for the same conditions.

be expressed as the sum of the non-vanishing and the vanishing contributions, namely
〈p̂2〉total(xs) = 〈p̂2〉non−van + 〈p̂2〉van(xs), where xs = udt− x measures the distance from
the detonation pointing backwards. The former, which is associated with high-frequency
perturbations, is explicitly given in (3.9), while the decaying contribution is given by
low-frequency disturbances in the following form:

〈p̂2〉van(xs) =

∫∞
0

[∫ π/2
θc

(
P2
l1 + P2

l2

)
e−2σ(θ)m koxs sin θdθ

]
ε(m)2m2 dm∫∞

0
ε(m)2m2 dm

(3.10)

for a three dimensional isotropic spectrum ε(m) that is written in terms of the reduced
wavenumber amplitude m = k/ko. The function σ(θ), given in (A 19), defines the spatial
decay rate along the dimensionless spatial coordinate koxs. The decay rate depends on
the form of the energy spectrum, which ultimately shapes the contribution of the different
mode angles θ.

The reduced acoustic energy 〈p̂2〉total/〈p̂2〉totalxs=0 is shown in Fig. 6 as a function of the
scaled distance koxs. The functions are computed for |W | � |H| (black lines), |H| � |W |
(green lines), W = H (orange lines) and W = −H (blue lines). Weakly overdriven
detonations are displayed in panel (a) for Mu = 1.001Mcj and strongly overdriven
detonations are shown in panel (b) for Mu = 5Mcj. Except for the case |H| � |W |
in Fig. 6(b), which has been amplified by a factor of 100 in the inset, the decay rate
is not significantly affected by the type of perturbation upstream. It takes a distance
xs ∼ k−1o for the acoustic energy to reach the asymptotic plateau corresponding to the
far-field contribution. For weakly overdriven detonations, negative correlations exhibit
the highest value of acoustic energy in the near-field, in contrast to the far-field solution
where perturbations of the type |H| � |W | render slightly higher values. On the other
hand, upstream flows dominated by density perturbations |W | � |H| produce the highest
acoustic energy in the whole spatial domain. In general, the vanishing contribution 〈p̂2〉van
has a relatively low influence on the total pressure field for koxs & 1. Notice that near-field
profiles are computed for purely inviscid flows. Depending on the particular conditions,
there may exist another contribution coming from viscous dissipation that may not be
neglected, as noted in Quadros et al. (2016); Sethuraman et al. (2018).
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Figure 7: One-dimensional power spectra of the pressure (a), density (c) and longitudinal
and transverse velocity components (b and d, respectively). Computations are shown as
a function of the wavenumber kx for γ = 1.2, Mu = 1.2Mcj, Q = 1, and |W | � |H|
( ), |H| � |W | ( ), W = H ( ) and W = −H ( ).

To gain further insight into the properties of the turbulent flow that emerges far
downstream the detonation wave, the one-dimensional power spectra of the different
variables can be evaluated through the integral functions

Φp(kx) = Nk−5/3x

∫ π/2

0

P2(θ)
sin3 θ

cos5 θ
(
k−2x + 1 + tan2 θ

)17/6 dθ, (3.11)

Φu(kx) = Nk−5/3x

∫ π/2

0

U2(θ)
sin3 θ

cos5 θ
(
k−2x + 1 + tan2 θ

)17/6 dθ, (3.12)

Φv(kx) = Nk−5/3x

∫ π/2

0

V2(θ)
sin3 θ

cos5 θ
(
k−2x + 1 + tan2 θ

)17/6 dθ, (3.13)

Φρ(kx) = Nk−5/3x

∫ π/2

0

D2(θ)
sin3 θ

cos5 θ
(
k−2x + 1 + tan2 θ

)17/6 dθ, (3.14)

provided that the three-dimensional von Kármán model is applicable, as in Ribner (1987);
Jackson et al. (1993), which translates into considering turbulence spectra of the form
ε(kx, ky)2 ∼ k2y/(1 + k2x + k2y)17/6. The normalization parameter is chosen to satisfy

N−1 =

∫ ∞
−∞

∫ ∞
0

k2y(
1 + k2x + k2y

)17/6 ky dkydkx. (3.15)

Previous investigations on the interaction of turbulence with adiabatic shocks have
reported that large-scale turbulence is amplified to a greater extent than small-scale
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motions (Andreopoulos et al. 2000). A similar behaviour is observed with detonations
when they travel in isotropic vorticity flows (Jackson et al. 1993) or isotropic entropic-
density flows, as the example considered here for |W | � |H|. This phenomenon is readily
observed in the black curves plotted in Fig. 7, where the power spectra Φp, Φu, Φv
and Φρ are represented as a function of the longitudinal wavenumber kx for γ = 1.2,
Mu = 1.2Mcj, Q = 1, and for |W | � |H| (black lines), |H| � |W | (green lines),
W = H (orange lines) and W = −H (blue lines). In the presence of upstream density
perturbations W with values of H that are either negligible or of the same order, the
curves exhibit a similar pattern, and the case |W | � |H| results in the highest values
along with the negatively correlated cases W = −H. As a result of the destructive
interference, positive correlations yield lower values in most of the domains for each
spectrum. The case |H| � |W | results in the lowest intensity for the two velocity spectra
in all the domains and for the pressure spectrum for small wave numbers only. Regarding
this large-scale limit, it is noticeable that curves of Φu approach a plateau as kx decreases
except for the case |H| � |W |, where the spectrum decreases as k−1x . Curves for Φv
decrease as kx is reduced in all cases ; however, the isochoric case shows a higher slope k−2x .
Regarding Φp and Φρ, they reach plateaus in the large-scale limit for any combination
of W and H. With respect to the small-scale regime, all contributions obey the von

Kármán decay law k
−5/3
x . Although these conclusions apply forMu = 1.2Mcj, they can

be extrapolated to higher overdrives. On the other hand, the weakly overdriven limit
should be discussed separately, as the acoustic part may change the ranking of the most
important contributions.

Aside from the fact that viscosity and molecular diffusion are not accounted for in
the model—in which case the spectra would become time-dependent functions after the
passage of the detonation (Sinha 2012; Sethuraman & Sinha 2020)—, the small-scale
regime must be taken with caution as the thin-detonation hypothesis may not be fulfilled.
Therefore, the properties of the turbulent flow behind the detonation front predicted by
the linear interaction theory should be further extended to include the effects of finite
reaction lengths, as noted in Massa et al. (2011); Massa & Lu (2011), and non-linear
contributions, as noted in Larsson & Lele (2009); Prakash & Raman (2019); Livescu
(2020); Tian et al. (2020). The latter is unavoidable if multi-phase environments are under
consideration (Watanabe et al. 2019, 2020). However, there are some aspects predicted
by the model that deserve particular attention. When a detonation wave or a reactive
shock is considered, the possibility of having different heat releases across the detonation
wave due to non-perfect mixing should not be neglected. This effect plays a leading role
in the turbulence generation process of acoustic type in the CJ condition. As a result,
the turbulent flow downstream cannot be assumed to be isobaric, as reasonably done for
inert shocks. For detonations, the dilatational part of the velocity gradient tensor cannot
be neglected when the correlations between the corresponding invariants are employed
to characterize the topology of the turbulent flow.

4. Corrections to Rankine-Hugoniot equations and propagation speed

The analysis presented above demonstrates how a non-uniform fresh mixture that
exhibits weak fuel mass fraction deviations perturbs the detonation front surface, thereby
creating additional disturbances in the burnt gas. The deposition of rotational/acoustic
velocity perturbations in the downstream flow along with the amplification of the entropic
fluctuations comes with a price in the overall RH relations. In particular, changes are
expected in the jump conditions given the averaged downstream magnitudes with respect
to the case of uniform mixtures with the same averaged upstream properties (Lele 1992).
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As a direct consequence, the averaged propagation speed of the detonation wave will
also be affected, as previously noted for inert shocks (Hazak et al. 1998; Velikovich et al.
2012).

The goal of this section is to predict these changes and to provide analytical expressions,
which are similar to those reported in Velikovich et al. (2012) in terms of the parameters
characterizing the detonation front. Then, the non-uniformity parameter

ε̄ =

√
1− 〈Yu〉

2

〈Y 2
u 〉

(4.1)

is introduced to characterize the average fuel mass fraction fluctuations. Although it
may vary from 0 to 1, the upper limit corresponding to infinite density gradients as those
present in multi-phase flow, the use of the linear model previously presented forces it to
be much smaller than unity and therefore equal to

√
〈δY 2

u 〉 in (2.2).

4.1. Averaged turbulent Rankine-Hugoniot jump equations

The changes in the RH relations are given by second-order corrections in the form

〈ρd〉
〈ρu〉

= Rd
(
1 + ε̄2δR

)
,
〈pd〉
pu

= Pd
(
1 + ε̄2δP

)
,
〈ud〉
uu

=
1

Rd
(
1 + ε̄2δU

)
, (4.2)

provided that the flow perturbations can be written as the breakdown of averaged and
local deviation contributions, e.g., ρd = 〈ρd〉 (1 + ε̄ρ̂) for the burnt-gas density field. To
illustrate this, Fig. 8 (left) sketches the effect of the second-order corrections to the post-
detonation RH values. Hollow circles represent the initial conditions, which may also be
different if second-order average values are non-zero. The blue and orange filled circles
indicate the one-dimensional and turbulent post-detonation conditions, respectively. The
vector (δV, δP), with δV = −δR standing for the correction to the specific volume,
is defined to characterize the relative deviations of the post-detonation RH state on
the (V/Vu, p/pu)-plane. The right panel shows the vector (δV, δP) as computed from
the theory presented below for the same conditions given in Fig. 9, namely, γ = 1.2,
Mu = 1.2Mcj and Q = 1. In this case, both pressure and density corrections are negative
in the whole domain, yet the values differ significantly depending on the particular values
of W and H. Note also that in agreement with the results of Section 3, perturbations
weaken for |H| �W and intensify for |H| �W .

Corrections to the RH jump conditions due to weak turbulence are derived from
the lowest non-vanishing order, i.e., the non-linear second-order terms describing the
interaction between the different perturbation modes and their self-interactions. The
natures of rotational and entropic modes are similar as they are both carried along
with the fluid. Thus, they correlate and provide rotational-entropic and rotational-
rotational second-order corrections. By contrast, acoustic waves are uncorrelated with
the entropic and rotational perturbations. As a consequence, second-order corrections
can be decomposed into entropic-rotational and acoustic-acoustic terms, separately.

The entropic-rotational correlations enter only as second-order corrections as the first
order of the random-phase oscillating terms vanishes. Conversely, acoustic perturbations
play a two-fold role in the global contribution. The first role, which is akin to entropic-
rotational modes, is given by second-order corrections to the mass, momentum and energy
fluxes across the detonation front. The second role stems from the fact that acoustic
waves shift the average values of the flow variables in the second-order of the sound
amplitude. Further details of the analytical derivation of the distinguished contributions
can be withdrawn from Velikovich et al. (2012) and references therein, particularly the
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Figure 8: Left: Sketch for the Rankine-Hugoniot curves. In blue the one-dimensional
curve and in orange the second-order-averaged curve. Right: Computations for γ = 1.2,
Mu = 1.2Mcj, Q = 1, H = [−1 : 1] and W = [−1 : 1].

supplemental material, as well as in Westervelt (1950); Blackstock (1962); Ostrovskii
(1968).

As a result of the second-order corrections to the mass, momentum and energy fluxes
across the detonation wave, the downstream pressure, density and streamwise velocity
suffer the corresponding corrections δPf , δRf and δUf , where the subscript f is used
to denote changes due to flux corrections. These corrections can be obtained from the
averaged turbulent conservation equations, namely

〈ρuuu〉 = 〈ρdud〉, (4.3a)

〈pu + ρuu
2
u〉 = 〈pd + ρdu

2
d〉, (4.3b)〈 γ

γ − 1
puuu +

1

2
ρuu

3
u + ρuuuqu

〉
=
〈 γ

γ − 1
pdud +

1

2
ρdud

(
u2d + v2d

) 〉
, (4.3c)

which provide, with use made of (4.2) and knowing that first-order entropic and rotational
corrections give null average contributions, the following second-order relationships:

δRf + δUf +M−1d 〈lf〉 = 0, (4.4a)

δPf + γM2
d (δRf + 2δUf) + γ〈mf〉 = 0, (4.4b)

M2
dδRf +

(
3M2

d +
2

γ − 1

)
δUf +

2

γ − 1
δPf +

2

(γ − 1)Md
〈nf〉 = qwh, (4.4c)

where the factor

qwh =
4QM2

dR2
d

(γ2 − 1)M2
u

〈ρ̂uq̂u〉 =
4QRd

(γ2 − 1)Pd
WH

W 2 +H2
(4.5)

appears due to the existence of two non-vanishing second-order sources of perturba-
tions upstream. The factor qwh vanishes for flows with uniform density or constant
heat-release given that first-order averages of entropic disturbances do not provide net
contributions. The terms 〈lf〉, 〈mf〉, and 〈nf〉 represent the dimensionless second-order
turbulent corrections to the mass, streamwise momentum, and energy fluxes, respectively.
As mentioned above, the terms split into entropic-rotational (subscript er) and acoustic-



Effect of equivalence ratio fluctuations on planar detonation discontinuities 21

acoustic (subscript aa) contributions to yield the following:

〈lf〉 = 〈ler〉+ 〈laa〉 = 〈ρ̂eûr〉 −
γ + 1

4
Md〈p̂2〉, (4.6a)

〈mf〉 = 〈mer〉+ 〈maa〉 = 2Md〈ρ̂eûr〉+ 〈û2r〉 −
(γ − 1)M2

d + 3− γ
4

〈p̂2〉+ 〈û2a〉, (4.6b)

〈nf〉 = 〈ner〉+ 〈naa〉 =
Md(γ − 1)

2

[
3〈û2r〉+ 〈v̂2r〉+ 3Md〈ρ̃eũr〉

]
−

− (γ + 1)Md

8

[
(γ − 1)M2

d + 2(2− γ)
]
〈p̂2〉+ (γ − 1)Md〈û2a〉 − (γ − 1)〈p̂ûa〉,

(4.6c)

where 〈û2r〉, 〈û2a〉, 〈v̂2r〉, and 〈p̂2〉 have been previously defined in (3.5), (3.6) and (3.9).
The averages 〈ρ̃eũr〉 and 〈p̂ûa〉 = 〈ρ̂aûa〉 are second-order contributions that have not
been previously introduced. As noted in (3.5), (3.6) and (3.9), these parameters can
be written in terms of integral expressions for two-dimensional and three-dimensional
upstream isotropic spectra, namely

〈ρ̂eûr〉2D = − 2

π

∫ θc

0

De,hUr,h dθ − 2

π

∫ π/2

θc

[De,l1Ur,l1 +De,l2Ur,l2] dθ,

〈ρ̂eûr〉3D = −
∫ θc

0

De,hUr,h sin θ dθ −
∫ π/2

θc

[De,l1Ur,l1 +De,l2Ur,l2] sin θ dθ,

(4.7)

and

〈p̂ûa〉2D =
2

π

∫ θc

0

PhUa dθ, 〈p̂ûa〉3D =

∫ θc

0

PhUa sin θ dθ (4.8)

for the entropic-rotational contribution to the mass flux and the projected acoustic
contribution to the energy flux, respectively. The amplitudes of the entropic density
and the rotational streamwise velocity are given in (A 22) and (A 29), respectively, and
the negative sign arises from the opposite direction between the flow and the orientation
of the detonation front. Finally, the amplitude of the pressure perturbations Ph together
with Ua = Phκa/ωa is given in (A 9). It is readily observed that 〈ρ̂eûr〉 is directly
associated to the far-field convective energy flux, which is studied in detailed in Quadros
et al. (2016); Sethuraman et al. (2018) for different types of spectra in canonical shock-
turbulence scenarios.

The post-shock density, pressure, and streamwise velocity component exhibit second-
order changes due to the presence of the acoustic wave field. The dual temporal-spatial
averaging that is conveniently applied to this problem is similar to time averaging
performed in the reference frame with the gas at rest. The averaging must be computed
in the Eulerian reference system at a fixed position relative to the detonation front.
Therefore, as a direct consequence of the shift in the acoustic waves, there exists an
additional contribution in the burnt-gas properties, namely

δRb = −γ + 1

4
〈p̂2〉, δPb = −γ(3− γ)

4
〈p̂2〉, δUb =

1

Md
〈p̂ûa〉, (4.9)

where the subscript b denotes changes in the background downstream properties due
to random-phase acoustic perturbations. The ultimate corrections to the RH jump
conditions are given by the sum of the contributions due to the turbulent fluxes (subscript
f) and background corrections induced by the acoustic field (subscript b). With use made
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Figure 9: Three-dimensional second-order correction to the RH jump conditions (a) δR,
(b) δU , (c) δP, and (d) δM as a function of the overdrive parameter Mu/Mcj − 1.
Computations correspond to γ = 1.2, Q = 1, and |W | � |H| ( ), |H| � |W | ( ),
W = H ( ) and W = −H ( ).

of (4.4), (4.6) and (4.9), the turbulent corrections to the RH conditions read as follows:

δR = δRf + δRb =
1

1−M2
d

[
M2

d(γ + 3)− 2

2Md
〈lf〉 − γ〈mf〉+

1

Md
〈nf〉 −

γ − 1

2
qwh

]
− γ + 1

4
〈p̂2〉, (4.10)

δP = δPf + δPb =
γ

1−M2
d

[
Md

[
M2

d(γ − 1) + 2
]

2
〈lf〉 −

[
M2

d(γ − 1) + 1
]
〈mf〉

+Md〈nf〉 −
M2

d(γ − 1)

2
qwh

]
− γ(3− γ)

4
〈p̂2〉, (4.11)

δU = δUf + δUb =
−1

1−M2
d

[
Md(γ + 1)

2
〈lf〉 − γ〈mf〉+

1

Md
〈nf〉 −

γ − 1

2
qwh

]
+

1

Md
〈p̂ûa〉. (4.12)

Associated to the turbulence-induced changes in the RH jump conditions, the Mach
number of the burnt gas fluid particles is also modified according to

δM =
Mu√
RdPd

(
δU +

1

2
δR− 1

2
δP
)
. (4.13)

Computations of δR, δP, δU and δM are represented in Fig. 9 as a function of the
overdrive parameterMu/Mcj−1 for three-dimensional isotropic perturbations with γ =
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1.2, and Q = 1. The four distinguished cases include |W | � |H| (black lines), |H| � |W |
(green lines), W = H (orange lines) and W = −H (blue lines). Density and pressure
corrections, δR and δP, are always negative, and the amplitude of the second-order
corrections weakens with the overdrive and approaches an asymptotic constant value
that is null only when W = 0, which is consistent with previous turbulence generation
functions. A qualitative representation of the combined effect of δP and δR is shown
in Fig. 8 (right) in terms of the vector (δV, δP), with δV = −δR. Curves of the post-
detonation velocity and corresponding Mach number go in the opposite direction because
δU and δM exhibit positive values in all cases. For the conditions chosen in Fig. 9,
perturbations involving only density changes result in the strongest corrections, while
those involving only variations in heat-release yield the weakest corrections far from the
CJ condition. Positive and negative correlations, on the other hand, yield intermediate
values for the second-order corrections.

4.2. Detonation propagation speed

The averaged turbulent properties of the post-detonation state differ from those
of the unperturbed, i.e., one-dimensional case. Second-order corrections for density,
pressure and velocity must be accounted for to properly describe the burnt-gas state.
In real conditions, depending on the experimental setup, boundary conditions may
impose different restrictions to the burnt-gas flow. For example, a highly overdriven
detonation formed by a piston-driven shock traveling into the reactive mixture forces
the velocity of the burnt gas particles to be equal to the piston velocity, up = uu − ud,
in steady state. Then, along with the velocity variation of the expelled burnt gas δU , a
detonation propagation speed correction must occur to satisfy the boundary condition,
i.e., δ〈up〉 = 0 = δuu − ε̄2udδU , which yields

δS|δ〈up〉=0 =
1

ε̄2
δuu
uu

∣∣∣∣
δ〈up〉=0

=
1

Rd
δU , (4.14)

where δS is an order-of-unity function that characterize the correction of the detonation
propagation speed. According to the results shown in Fig. 9, where δU is positive,
the accommodated velocity of the detonation is therefore increased. Except for weakly
overdriven detonations, where negative correlated perturbations W = −H render the
strongest correction, the case corresponding to dominant density perturbations W � H
is the case where the detonation would move faster compared to the homogeneous case.

Another canonical possibility is that total pressure (including corrections) must remain
invariant. For this to be true, δ〈pd〉 = 0 = pdε̄

2δP + (dpd)/(duu)δuu and the detonation
propagation speed must be adapted according to

δS|δ〈pd〉=0 =
1

ε̄2
δuu
uu

∣∣∣∣
δ〈pd〉=0

= − Pd
Mu

(
dPd

dMu

)−1
δP, (4.15)

where (dPd)/(dMu) > 0 and δP < 0, according to Fig. 9. Then, the constant-pressure
boundary condition also predicts a positive second-order correction to the propagation
speed, which aligns with the previous boundary condition. These considerations oppose
the initially imposed isolated-wave boundary condition. For (4.14) and (4.15) to be
true along with the isolated condition, the influence of the coupling surface must be
sufficiently far away from the detonation for the asymptotic oscillating regime to be
achieved before the reflections come into play. Certainly, more complex scenarios may
require non-canonical boundary conditions to be imposed. For example, for a detonation
moving along a tube with the back extreme being open, the boundary condition should
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Figure 10: Three-dimensional second-order correction of the detonation propagation
velocity δS, according to (4.16), as a function of the overdrive parameter Mu/Mcj − 1.

Computations are provided for γ = 1.2, Q̃ = 1 (a) and Q̃ = 10 (b) evaluated for
|W | � |H| ( ), |H| � |W | ( ), W = H ( ) and W = −H ( ).

be given by the corresponding matching of the far-field non-reflective condition with the
acoustics inside the channel because both velocity and pressure variations are non-zero
δ〈up〉 6= δ〈pd〉 6= 0 downstream.

Regarding detonations traveling close to the CJ velocity, 1 −Md � 1, the closure
is given by imposing δ〈Md〉 = 0, i.e., not admitting variations in the post-detonation
Mach number as the reacting gas expands up to its maximum value Md = 1. Since the
corresponding second-order correction to the RH conditions predicts variations in the
flow velocity ud and in the speed of sound ad, the detonation propagation velocity must
provide δ〈Md〉 = 0 = ε̄2δM+ (dMd)/(duu)δuu, and then

δS|δ〈Md〉=0 =
1

ε̄2
δuu
uu

∣∣∣∣
δ〈Md〉=0

= − 1√
RdPd

(
dMd

dMu

)−1(
δU +

1

2
δR− 1

2
δP
)
. (4.16)

The variation of the propagation speed is studied through the order-of-unity factor δS
as a function of the overdrive Mu/Mcj − 1, reduced heat release Q̃, and specific heat
ratio γ in Figs. 10, 11, and 12, respectively. To properly isolate the effects, heat release
is conveniently redefined with the thermal enthalpy upstream Q̃ = qu/(cpuTu), which

relates to Q = Q̃(γ + 1)/2 in the former definition.
Figure 10 shows the variation of the detonation propagation velocity given by (4.16)

as a function of Mu/Mcj − 1 for three-dimensional isotropic perturbations, γ = 1.2,

Q̃ = 1 (a) and Q̃ = 10 (b). The four distinguished cases include |W | � |H| (black lines),
|H| � |W | (green lines), W = H (orange lines) and W = −H (blue lines). For strongly
overdriven detonations, dominant density perturbations induce the highest amplification
to the propagation velocity. For iso-density mixtures, |H| � |W | the correction of
the propagation speed becomes negative for sufficiently overdriven detonations, thereby
resulting in a slower propagation speed. However, this effect can be effectively neglected
in view of its amplitude. Increasing the value of Q̃ results in higher values of δS for
weakly overdriven detonations, except for |W | � |H|. Weakly overdriven detonations
are dominated by heat-release perturbations, where the case |H| � |W | predicts the
highest amplification.

The effect of heat release is better analysed in Fig. 11, where the function δS is
computed as a function of Q̃ for weakly overdriven (a) and strongly overdriven (b)
detonations. The panel on the left shows that weakly overdriven detonations in het-
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Figure 11: Three-dimensional second-order correction of the detonation propagation
velocity δS, according to (4.16), as a function of the dimensionless heat release Q̃.
Computations are shown for γ = 1.2, weak-overdrives as Mu = 1.001Mcj (a) and
strong-overdrives asMu = 5Mcj (b). |W | � |H| ( ), |H| � |W | ( ), W = H ( )
and W = −H ( ).
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Figure 12: Three-dimensional second-order correction of the detonation propagation
velocity δS, according to (4.16), as a function of the adiabatic constant as γ − 1.
Computations are given for Q̃ = 1, weak-overdrives as Mu = 1.001Mcj (a) and strong-
overdrives as Mu = 5Mcj (b). Computations are evaluated for |W | � |H| ( ),
|H| � |W | ( ), W = H ( ) and W = −H ( ).

erogeneous mixture tend to move faster for any value of Q̃. Regarding the type of
mixture, higher heat release is associated with smaller amplification for |W | � |H|,
while the opposite is found for |H| � |W |. Intermediate mixture properties W = H and
W = −H present in-between values. For strongly overdriven detonations (b), the effect
of heat release is to amplify the propagation speed when density perturbations are not
negligible. However, a negative correction is found for iso-density mixtures dominated
by heat-release perturbations |H| � |W |; however, the order of magnitude, which is
significantly smaller, predicts a negligible correction to the propagation speed.

The effect of the specific heats ratio γ is displayed in Fig. 12, where the factor δS
is computed as a function of γ − 1 for weakly overdriven (a) and strongly overdriven
(b) detonations. The former, in agreement with previous figures, shows an always-
positive velocity correction. When density perturbations dominate the upstream flow, the
reduction of γ results in a higher propagation speed, but this trend reverses when heat
release perturbations are included. Overdriven detonations, on the other hand, exhibit a
less intuitive picture. For values of γ between 1.1 and 1.4, the cases of utmost interest,
results are qualitatively similar to those obtained previously for γ = 1.2, where the case
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|H| � |W | predicts minor negative corrections to the propagation speed, and the cases
|W | � |H| and |W | = |H| predict positive order-of-unity values of δS.

Based on the analysis performed in previous section, where the relative weight of the
different type of perturbations in the burnt gas has been computed, it can be concluded
that CJ-detonations moving in heterogeneous mixtures are governed by acoustic-type
turbulent fluctuations in the burnt gas when net heat release is not negligible. Conse-
quently, these factors are highly influenced by the heat-release variations derived from
the upstream heterogeneities with the correlation with density perturbations playing
a dominant role in the formation of turbulent structures downstream. These results
are in qualitative agreement with previous numerical simulations (Mi et al. 2017a,b);
however, the numerical setup is not completely compatible with the assumptions made
in this theoretical model. Spatial inhomogeneities are introduced by collecting the energy
sources into discretized reactive layers and into reactive square-based prisms, both of
which are spatially separated by inert regions (ε̄ ∼ 1). They found that the average
wave propagation velocity is greater, up to 10%, than the CJ velocity of the equivalent
homogeneous medium when the characteristic scale of the perturbations is greater than
the inherent reaction zone length. The wave in CJ conditions speeds up when the specific
heat ratio decreases. In agreement with linear theory, when the amplitude of the upstream
heterogeneity increases the propagation speed also increases.

5. Conclusions

An analytical description of the linear interaction of a planar thin detonation front
with a heterogeneous mixture of gases has been presented. The weak deviation of
the fuel mass fraction with respect to the homogeneous case provides two sources of
perturbations to the reactive Rankine-Hugoniot equations: the density relative changes
associated to the different density of the upstream gas mixture W and the relative heat-
release changes induced by the dependence of the heat release with the fuel mass fraction
H. The combination of the two has a strong impact in the detonation response, and
major differences in the perturbations are generated in the burnt gas associated to the
corresponding relation between the two types of perturbations. This notion suggests
that heat-release changes across the detonation cannot be neglected when modelling the
interaction with non-perfect reactive mixtures, which places the equivalence ratio as a
pivotal parameter in the analysis.

The results presented for all quantities of interest can be particularly useful in analysing
the linear response of detonations to weak disturbances for conditions that render the
basic planar solution stable provided that the characteristic sizes of the disturbances are
much larger than the detonation thickness. For the interaction with a single-frequency
perturbation field, the long-time amplitude of the perturbations can be written in terms
of the characteristic oscillation frequency of the detonation front. Neutral conditions
associated with the absence of pressure perturbations at the oscillating detonation or fully
planar propagating detonations occur for distinguished conditions of reactive mixture
associated to the density and heat release variations, W and H, respectively.

Fourier superposition for two- and three-dimensional isotropic fields is used to obtain
integral formulae for the amplification of the kinetic energy, enstrophy, and density
fluctuations in the burnt gas. The effects of the propagation Mach number, overdrive, and
mixture properties through W and H are identified, and the later plays a key role in the
intensity of the turbulence generation. Regarding the type of upstream mixture, density
perturbations dominate the turbulence generation for moderate-to-high overdrives, while
heat release variations become relevant for weak overdrives. As a direct result, heat-
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release variations make the acoustic contribution the same order as the rotational and
entropic perturbations. Therefore, linear interaction analysis suggests that the turbulent
flow downstream cannot be assumed to be isobaric, and the dilatational part of the
velocity gradient tensor cannot be neglected in CJ conditions. This conclusion deserves
further analysis by means of high-accuracy numerical simulations.

Turbulence generation provides second-order corrections to the averaged Rankine-
Hugoniot jump conditions. While the pressure and density ratios are lower in the whole
range of the parametric space, the post-detonation Mach number is amplified. As a
direct implication, the propagation of the detonation front traveling in heterogeneous
mixtures differs from that in homogeneous mixtures with the same averaged upstream
properties. How intense this deviation is depends on the effective boundary condition
in the burnt-gas flow. However, regardless of the closure expression (externally-imposed
pressure, velocity or Mach number), the propagation speed is higher than that in the
equivalent homogeneous case in the vast majority of cases, which agrees with previous
results obtained numerically (Li et al. 2015; Mi et al. 2017a,b; Prakash & Raman 2019).
The second-order correction to the propagation speed is determined by the type of
turbulence generated downstream. For overdriven detonations, the downstream acoustic
contribution plays a subdominant role in favour of rotational-entropic disturbances, while
the contrary applies for weakly overdriven detonations, for which the effect of upstream
heat-release variations is of utmost importance.

Acknowledgements

Work produced with the support of a 2019 Leonardo Grant for Researchers and
Cultural Creators, BBVA Foundation and project PID2019-108592RB-C41 (MICINN/
FEDER, UE). The authors are grateful to Dr. Martinez-Ruiz for the fruitful discussions.

Appendix A. Normal mode analysis

Computations of the turbulence kinetic energy, along with the second-order corrections
to the Rankine-Hugoniot jump conditions and detonation propagation speed, call for
the amplitudes of the flow variables in the burnt gas. These amplitudes, provided by
the corresponding transfer functions across the detonation front for a given upstream
perturbation, can be analytically derived by means of the Laplace Transform functions,
as shown in Huete et al. (2013, 2017). However, as the interest is placed in the long-
time dynamics, normal mode analysis offers a simpler form to obtain the asymptotic
amplitudes of the burnt-gas perturbations. Thus, assuming that upstream perturbations
are described by functions (2.13) and (2.14), the asymptotic far-field amplitudes for the
pressure, density and velocity functions can be written as follows:

p̂(x̂, ŷ, τ) = Pae
i(κax̂−ωaτ)eiκy ŷ, (A 1a)

ρ̂ = ρ̂a(x̂, ŷ, τ) + ρ̂e(x̂, ŷ) =
[
Dae

i(κax̂−ωaτ) +Dee
iκex̂

]
eiκy ŷ, (A 1b)

û = ûa(x̂, ŷ, τ) + ûr(x̂, ŷ) =
[
Uae

i(κax̂−ωaτ) +Ure
iκrx̂

]
eiκy ŷ, (A 1c)

v̂ = v̂a(x̂, ŷ, τ) + v̂r(x̂, ŷ) =
[
Vae

i(κax̂−ωaτ) +Vre
iκrx̂

]
eiκy ŷ, (A 1d)

where the acoustic (subscript a), entropic (subscript e) and rotational (subscript r)
contributions are easily recognized. The spatial and temporal acoustic frequencies are κa
and ωa, respectively, and the rotational/entropic spatial frequency is κr = κe = Rdκx.
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While the value of the amplitudes must be solved with the aid of the linearized RH
equations given in (2.17), the spatial and temporal frequencies are readily obtained by
introducing the normal mode functions in the linear Euler equations (2.16)

−ωaDa + κaUa + κyVa = 0, (A 2a)

−ωaUa + κaPa = 0, (A 2b)

−ωaVa + κyPa = 0, (A 2c)

Pa −Da = 0, (A 2d)

thereby yielding the adiabatic dispersion relationship, ω2
a = κ2a + κ2y, of the flow pertur-

bations in the burnt gas. As a result of the Doppler effect, the frequency seen by the
detonation front is ωd = ωa −Mdκa when there is a single excitation frequency in the
upstream heterogeneous flow (isolated and stable detonation assumption). This is used
to give

κa =
ωdMd −

√
ω2
d − κ2y (1−M2

d)

1−M2
d

, (A 3)

ωa =
ωd −Md

√
ω2
d − κ2y (1−M2

d)

1−M2
d

, (A 4)

as the characteristic spatial and temporal frequencies of the downstream acoustic field.
When these parameters are real, the frequency ωa is always positive, while the

wavenumber κa can be either positive or negative depending on whether the frequency
of oscillation ωd is smaller or larger than κy. Thus, from (A 1) it is observed that κa > 0
corresponds to right-traveling waves, while left-traveling waves prevail for κa < 0. In a
laboratory frame where the upstream flow remains static, the latter condition refers to
the case where the sound waves escaping from the detonation front surmount the velocity
of the burnt-gas fluid particles and propagate downstream. The other distinguished case
occurs when the values of κa and ωa become imaginary, thereby yielding an exponential
decay of the acoustic disturbances behind the front, a non-radiating condition that holds
whenever ωd < κy(1−M2

d)
1/2. In the opposite case, the detonation is said to be in the

radiation regime, a condition that is hard to meet when there is no external excitation,
as shown in Huete & Vera (2019).

Direct combination of the linearized RH equations with the inviscid-inert Euler equa-
tions in the burnt-gas state gives the dispersion relation[

ω2
a (σb +Md)− κaωa

(
M2

d + 2Mdσb + 1
)

+ κ2aMd (Mdσb + 1)− κ2y
(
1−M2

d

)
σc
]
Pa

= α
[
ω2
d − κ2y

(
1−M2

d

)
σd
]

(A 5)

for the pressure fluctuations at the detonation front, where

σb =
1 + Γ

2Md
, σc =

M2
dRd

1−M2
d

1− Γ
2Md

, σd =
M2

dRd
1−M2

d

(Rd +∆− 2)W − (1−∆)H

(Rd −∆)W + (1−∆)H
, (A 6)

and the function

α =
Md [(Rd −∆)W + (1−∆)H]

2
√
W 2 +H2

(A 7)

accounts for the effective amplitude of the upstream excitation.
By employing normal mode analysis, the long-time dynamics of the pressure pertur-

bation can be written as a piece-wise function of the high-frequency (sub-index h) and
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low-frequency (sub-indices l1 and l2) contributions

p̂d(τ � 1) = Phe
−iωdτ+iκy ŷ for ωd > κy(1−M2

d)
1/2,

p̂d(τ � 1) =
√
P2
l1

+ P2
l2
e−i(ωdτ+φa)+iκy ŷ for ωd 6 κy(1−M2

d)
1/2,

(A 8)

with the phase tanφa = Pl2/Pl1 and the corresponding amplitudes Ph, Pl1 , and Pl2
given by

Ph =
α
(
ζ2 − σd

)
ζ
√
ζ2 − 1 + σbζ2 − σc

, (A 9a)

Pl1
(σbζ2 − σc)

=
−Pl2

ζ
√

1− ζ2
=

α
(
ζ2 − σd

)
ζ2(1− ζ2) + (σbζ2 − σc)2

, (A 9b)

with use made of the normalized dimensionless frequency

ζ =
ωd

κy
√

1−M2
d

=
RdMd√
1−M2

d

1

tan θ
=
RdMd√
1−M2

d

κx
κy
. (A 10)

It is readily seen that the critical frequency ωd = κy(1−M2
d)

1/2 corresponds to ζ = 1
and to the critical angle

tan θc =
RdMd√
1−M2

d

. (A 11)

Inspection of the above equations provides conditions where the detonation travels
through the monochromatic heterogeneous mixture without generating any pressure
perturbations behind it, p̂d = 0. These conditions are obtained by analysing the right-
hand side of (A 5), which becomes identically zero when upstream heat-release and
density changes are correlated in the following form:

H

W

∣∣∣∣Pa=0

= −
(Rd −∆)ω2

d −M2
dRd (Rd +∆− 2)κ2y

(1−∆)
(
ω2
d +M2

dRdκ2y
) . (A 12)

When this condition is met, the detonation oscillates in mechanical equilibrium and no
pressure perturbations are generated, a situation often referred to as a neutral condition.
It is seen that H/W is not an exclusive property of the detonation, as it also depends on
the excitation frequency ωd/ky. This dependence is computed in Fig. 13 (a) as a function
of the incident wave angle θ. Very large values of |H/W | are representative of iso-density
gas mixtures, while values of |H/W | � 1 represent situations close to the peak in the
heat release-fuel mass fraction diagram, which is usually placed in slightly rich mixtures.
For slow-frequency oscillations, ωd/κy � 1 or θ ∼ 90◦, the detonation behaves neutrally
if

H

W

∣∣∣∣Pa=0

π/2−θ�1

=
Rd +∆− 2

1−∆
, (A 13)

which represents a positive correlation between the changes in density and heat release.
On the other hand, high-frequency perturbations ωd � κy can render a neutral state
only in negatively-correlated conditions, namely

H

W

∣∣∣∣Pa=0

θ�1

= −Rd −∆
1−∆

. (A 14)

Both limiting conditions tend to infinity in the strongly overdriven limit as ∆ ∼ 1 −
O(Md/Mcj).
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Figure 13: Iso-curves Pa = 0 (light-to-dark red as the incident Mach number increases)
and X = 0 (light-to-dark green as the incident Mach number increases) as a function of
the correlation factor H/W and the incident angle θ = tan−1(κy/κx) for γ = 1.2,Mu =
(1.2, 2, 5)×Mcj and Q = 1 (left) and Q = 10 (right).

Similarly, the amplitude of the perturbations of the detonation front is computed using
(2.17a) to yield

ξd(τ � 1) = Xhe
−iωdτ+iκy ŷ for ωd > κy(1−M2

d)
1/2,

ξd(τ � 1) =
√
X2
l1

+X2
l2
e−i(ωdτ+φξ)+iκy ŷ for ωd 6 κy(1−M2

d)
1/2,

(A 15)

where tanφξ = Xl2/Xl1 and the functions Xh, Xl1 and Xl2 can be explicitly written,
with the aid of (2.17a), as a function of the pressure function

Xh =
RdMd

ζ (Rd − 1)
√

1−M2
d

[
1− Γ
2M2

d

Ph −
(Rd +∆− 2)W − (1−∆)H

2
√
W 2 +H2

]
, (A 16a)

Xl1 =
RdMd

ζ (Rd − 1)
√

1−M2
d

[
1− Γ
2M2

d

Pl1 −
(Rd +∆− 2)W − (1−∆)H

2
√
W 2 +H2

]
, (A 16b)

Xl2 = − RdMd

ζ (Rd − 1)
√

1−Md

1− Γ
2Md

Pl2 . (A 16c)

The neutral condition for the wrinkled detonation front, X = 0, can also be computed,
and is shown in Fig. 13 in green colours. Asymptotic planar detonations occur in the high-
frequency regime, for θ < θcr, with the correlation value that predicts X = 0 approaching
the case for Pa = 0 when θ ∼ θcr; however, they cannot occur simultaneously. In the
high-frequency limit ωd � κy the correlation factor reaches an asymptotic value given
by

H

W

∣∣∣∣X=0

θ�1

=
(Rd − 1)(Md + Γ )

(1−∆)(1 +Md)
− 1, (A 17)

which, unlike the case for P = 0, is positive. Along the green curves, the detonation front
is negligibly distorted, while dimensionless pressure perturbations are of the order of ε.

As the detonation propagates through the heterogeneous mixture, various types of per-
turbations are generated downstream. As shown in (A 1), the terms can be decomposed
into acoustic, rotational and entropic fluctuations Kovasznay (1953); Chu & Kovásznay
(1958), with the former taking the form of adiabatic traveling waves. The values of κa
and ωa turn out to be imaginary for ωd 6 κy(1 − M2

d)
1/2, which translates into an
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effectively null acoustic contribution in the far-field burnt gas. This is readily seen in
a reference frame attached to the detonation front x̂s = Mdτ − x̂, which provides the
following pressure field

p̂(x̂s, ŷ, τ) =
√
P2
l1

+ P2
l2
e
−iωd

(
τ+x̂s

Md
1−M2

d

+φa

)
+iκy ŷ

e−σ(θ)x̂s (A 18)

for low-frequency oscillations, where

σ(θ) =

√
(1−M2

d) sin2 θ −R2
dM2

d cos2 θ

1−M2
d

(A 19)

defines the spatial decay rate that varies from 0 (for θ = θc) to 1/
√

1−M2
d (for θ = π/2).

It is observed that the maximum decay rate increases as the overdrive decreases. For
ωd > κy(1−M2

d)
1/2, the pressure field in the burnt gas is given by

p̂(x̂, ŷ, τ) = Phe
−i(ωaτ−κax̂)+iκy ŷ, (A 20)

where the amplitude corresponds to that at the detonation front, as in (A 8). The
isentropic density variations induced by the acoustic radiation are Da = Ph, as dictated
by (A 2d). Similarly, the associated velocity perturbations of the sonic wave emitted
by the detonation can be computed with the aid of (A 2b) and (A 2c), which gives
Ua = Phκa/ωa and Va = Phκy/ωa for the longitudinal and transverse contributions,
respectively.

The acoustic velocity perturbations, which reach the far field only for ζ > 1 (θ < θc),
are shown in Fig. 14 in the form of log-polar plots of |Ua| (left panels) and |Va tan θ|
(right panels) as functions of the incident wave angle θ. The results are computed for
γ = 1.2, Mu = 1.01Mcj (a-b), Mu = 1.2Mcj (c-d) and Mu = 2Mcj (e-f) and show
curves corresponding to |W | � |H| (black lines), |H| � |W | (green lines), W = H
(orange lines) and W = −H (blue lines).

Computations show that the radiated acoustic energy is very sensitive to the ratio
between W and H, specially for weak overdrives. For example, when density variations
are negligible, |H| � |W |, the acoustic perturbations are one order of magnitude smaller
for finite overdrives, but they are non-negligible for Mu = 1.01Mcj. It is also observed
that positive correlations W = H lead to more intense acoustic perturbations than
negative correlations W = −H, but with the increase of overdrive both tend to the same
value. In all cases, the maximum acoustic intensity is generated when θ ∼ θc. It is also
found that |Ua| and |Va tan θ| become null when P = 0, a condition met when (A 12) is
satisfied. The intermediate angle at which acoustic perturbations cancel out approaches
θc when the overdrive increases, as observed in Fig. 13.

Along with the acoustic field, the oscillating detonation front is a source of entropy
and vorticity disturbances. The former

ρ̂e(x̂� 1, ŷ) = De,he
iκex̂+iκy ŷ for ωd > κy(1−M2

d)
1/2,

ρ̂e(x̂� 1, ŷ) =
√
D2
e,l1

+D2
e,l2

ei(κex̂+φe)+iκy ŷ for ωd 6 κy(1−M2
d)

1/2,
(A 21)

where tanφe = De,l2/De,l1 and κe = Rdκx, is easily evaluated by subtracting the acoustic
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Figure 14: Log-polar plot for |Ua| (a, c and e) and |Va tan θ| (b, d and f) as functions of the
incident wave angle θ = tan−1(κy/κx) for γ = 1.2,Mu = 1.01Mcj (a-b), Mu = 1.2Mcj

(c-d), Mu = 2Mcj (e-f), Q = 1, and |W | � |H| ( ), |H| � |W | ( ), W = H ( )
and W = −H ( ).

contribution in the RH equation (2.17c). The corresponding amplitudes are

De,h =
Γ −M2

d

M2
d

Ph +
∆W − (1−∆)H√

W 2 +H2
, (A 22a)

De,l1 =
Γ −M2

d

M2
d

Pl1 +
∆W − (1−∆)H√

W 2 +H2
, (A 22b)

De,l2 =
Γ −M2

d

M2
d

Pl2 , (A 22c)

for the high frequency (short wavelength) and low frequency (long wavelength) regimes,
respectively.

The dimensionless vorticity function Ω(x̂, ŷ)κy = ∂v̂/∂x̂ − ∂û/∂ŷ is computed by
calculating the vorticity generated by the first-order perturbations on the corrugated
front, namely,

∂v̂

∂x̂
− ∂û

∂ŷ
= − (1− Γ ) (Rd − 1)

2Md

∂p̂d
∂ŷ

+
Md (Rd − 1)

2

(Rd +∆)W − (1−∆)H√
W 2 +H2

∂ δYu
∂ŷ

,

(A 23)
where the functions p̂d and δYu are evaluated at the detonation front τ = x̂/Md. The
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Figure 15: Log-polar plot for |Ur| (a,c and e) and |Vr tan θ| (b,d, and f) as functions of the
incident wave angle θ = tan−1(κy/κx) for γ = 1.2,Mu = 1.01Mcj (a-b), Mu = 1.2Mcj

(c-d), Mu = 2Mcj (e-f), Q = 1, and |W | � |H| ( ), |H| � |W | ( ), W = H ( )
and W = −H ( ).

vorticity generated remains constant in the absence of diffusive effects, thereby yielding

Ω(x̂� 1, ŷ) = Ohe
iκrx̂+iκy ŷ for ωd > κy(1−M2

d)
1/2,

Ω(x̂� 1, ŷ) =
√
O2
l1

+O2
l2
ei(κrx̂+φr)+iκy ŷ for ωd 6 κy(1−M2

d)
1/2,

(A 24)

for the far-field vorticity, where tanφr = Ol2/Ol1 and κr = κe = Rdκx. The correspond-
ing amplitudes of the associated short and long wavelengths are

Oh =
(1− Γ ) (Rd − 1)

2Md
Ph −

Md (Rd − 1)

2

(Rd +∆)W − (1−∆)H√
W 2 +H2

, (A 25a)

Ol1 =
(1− Γ ) (Rd − 1)

2Md
Pl1 −

Md (Rd − 1)

2

(Rd +∆)W − (1−∆)H√
W 2 +H2

, (A 25b)

Ol2 =
(1− Γ ) (Rd − 1)

2Md
Pl2 . (A 25c)

The related steady-rotational velocity perturbations, which are isobaric in the linear
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limit, are governed by

∂2ûr
∂x̂2

+
∂2ûr
∂ŷ2

= −∂Ω
∂ŷ

and
∂2v̂r
∂x̂2

+
∂2v̂r
∂ŷ2

= −∂Ω
∂x̂

, (A 26)

which provide the following far-field velocity functions for the longitudinal and transverse
contributions, respectively

ûr(x̂� 1, ŷ) = Ur,he
iκrx̂+iκy ŷ for ωd > κy(1−M2

d)
1/2,

ûr(x̂� 1, ŷ) =
√
U2
r,l1

+U2
r,l2
ei(κrx̂+φr)+iκy ŷ for ωd 6 κy(1−M2

d)
1/2,

(A 27)

and

v̂r(x̂� 1, ŷ) = Vr,he
iκrx̂+iκy ŷ for ωd > κy(1−M2

d)
1/2,

v̂r(x̂� 1, ŷ) =
√
V2
r,l1

+V2
r,l2
ei(κrx̂+φr)+iκy ŷ for ωd 6 κy(1−M2

d)
1/2,

(A 28)

with the corresponding amplitudes proportional to the vorticity amplitude Oj through

Ur,j =
Oj

1 + (κr/κy)2
=

OjM2
d

M2
d + ζ2(1−M2

d)
= Vr,j

κy
κr

= Vr,j
Md

ζ
√

1−M2
d

. (A 29)

The subscript j may refer to the sub-indices h or l1 and l2 for high frequency and low-
frequency contributions, respectively, as noted in previous equations.

The computed amplitudes of the rotational velocity perturbations are presented in
Fig. 15 as a function of the polar coordinate θ, with the left and right plots corresponding
to |Ur| and |Vr tan θ|, respectively. As in Fig. 14, the results are obtained for γ =
1.2, Mu = 1.01Mcj (a-b), Mu = 1.2Mcj (c-d) and Mu = 2Mcj (e-f) and show curves
corresponding to |W | � |H| (black lines), |H| � |W | (green lines), W = H (orange
lines) and W = −H (blue lines). It can be inferred that considering |W | > 0 amplifies the
rotational perturbations in most of the domain for all degrees of overdrive, a finding that
contrasts with the acoustic contribution. It is also observed that increasing the detonation
intensity (by increasing the overdrive, see lower panel) amplifies the transverse part
but barely changes the streamwise contribution. As expected, the maximum rotational
intensity is produced close to the critical angle θc where all amplitudes peak. Aside from
the trivial conditions determined by θ = 0◦ or 180◦, null rotational contribution, i.e.,
|Ur| = 0 and |Vr tan θ| = 0, are found to occur for transverse stratified gases, i.e. θ = 90◦,
with similar density and outside of the heat-release peak.

The above results provide the dependence of the post-detonation perturbation ampli-
tudes P(θ), D(θ), O(θ), U(θ) and V(θ) for the pressure, density, vorticity and velocity
variables, respectively, as a function of the incident angle θ = tan−1(κy/κx). They give
the amplitudes of the perturbations in the asymptotic far field when the oscillating deto-
nation reaches the constant-amplitude regime governed by the external single-frequency
excitation. This case is representative of scenarios where the upstream spectrum is
dominated by a single characteristic frequency k, something that is not expected to occur
in heterogeneous gaseous mixtures, but rather in multi-phase environments involving
water sprays (Watanabe et al. 2019, 2020) or fuel sprays (Williams 1961). The model
presented here cannot be directly applied to these conditions since in them density
gradients cannot be linearized, and non-linear terms cannot be neglected. In general,
specially in cases where the heterogeneities arise from the mixing of gaseous reactants
as is considered here, the perturbations in the resulting mixture show a wide range of
length scales. Then, the use of probability distribution functions is required to compute
the flow perturbation variables downstream, as noted in Section 3.
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