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Analysis of SVD-Based Hybrid Schemes for

Massive MIMO with Phase Noise and Imperfect

Channel Estimation
Roberto Corvaja, Senior Member, IEEE, Ana Garcı́a Armada, Senior Member, IEEE

Abstract—In hybrid analog-digital schemes, proposed to re-
duce the number of RF chains especially at millimeter waves, the
precoding at the transmitter and the combining at the receiver
are split into digital and analog parts. We analyze the sensitivity
of hybrid schemes to phase noise and channel estimation errors
and we compare them to a full-digital approach. The scheme
adopted for the analog part employs fixed phase shifters, then
the digital part is optimized by a singular-value decomposition.
We derive analytical expressions for the interference and the
SNR degradation arising from the imperfect decomposition due
to phase noise and the channel estimation error, for typical
millimter-wave massive MIMO channels. In particular we show
that when the channel estimation is made in the beam-space,
this hybrid scheme is more robust to the phase noise and to the
channel estimation errors than a full-digital approach.

Index Terms—Massive MIMO, hybrid precoding and combin-
ing, millimeter-wave MIMO, phase noise.

I. INTRODUCTION

The use of millimeter waves (mmWave) for the deployment

of massive multiple input – multiple output (MIMO) systems

is pushed forward by the larger available bandwidth and the re-

duced size of the devices. However the shift towards mmWave

determines a major complexity and a serious increase of the

power consumption, especially of devices such as analog-

to-digital (ADC) and digital-to-analog (DAC) converters. In

particular all-digital architectures become very difficult due

to the extremely high sampling rate required, so that hybrid

analog-digital solutions become a need and are widely studied

[1]–[3]. Massive MIMO systems at mmWave may be deployed

at the backhaul/fronthaul and at the radio access, for different

types of networks, from HetNet [1] to wearable devices [4],

mainly at the base station, but also at the user equipment if the

reduction of the antenna size, facilitated by the migration to

mmW, is enough. In particular one of the first applications of

massive MIMO at mmWave is for Fixed Wireless Acess [5].

Many previous studies consider the environment with single-

antenna receivers [6], [7], which corresponds to a massive

antenna deployment only at the BS. However, here we consider

a more general scenario, where a large number of antennas

may be possible at both the transmitter and receiver. At

mmWave the frequency stability of oscillators becomes a
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challenging issue and the effect of phase noise (PN) must

be considered. Here we study the design of hybrid analog-

digital precoding and combining at transmitter and receiver,

and we analyze the degradation introduced by the PN of

the RF chains and by the channel estimation error. The

hybrid combination of the analog and digital precoding and

combining causes a reduction of the achievable rate compared

to the full-digital approach, unless complex joint optimization

procedures for the analog and digital part are adopted [3],

[8], [9]. Here a simplified approach is explored, by fixing the

analog part and optimizing the digital part, according to a

singular-value decomposition (SVD) approach. Although in

principle these schemes are sub-optimal and can achieve a

lower rate than a full-digital approach, it is shown that in

the presence of PN or channel estimation errors, they can

achieve rates close to a full-digital scheme. In particular we

consider a fixed analog matrix based on the Discrete Fourier

Transform (DFT), for which we derive a bound, based on

the singular values of the reduced-dimensionality equivalent

channel seen at the RF chains. Note that the choice of an

analog matrix based on the DFT is similar to solutions adopted

in codebook beamforming [10], [11] or in lens-based systems

[12], where the selection of the spatial frequencies is typically

done by switches. The performance metric analyzed here is

the achievable rate, which is strictly related to the signal to

interference plus noise ratio (SINR) per spatial data stream.

[13], [14] address the characterization of the SINR in a multi-

user scenario, where different links determine the large scale

SINR at the receiver input. Here, we consider the SINR

which includes the precoding and combining, in a point-to-

point link, with SVD-based precoding and combining [3] for

the massive MIMO scenario at mmWave, characterized by

its specific sparse channel. We derive the statistics of the

channel singular values, and we characterize the SINR, in

terms of probability density function, providing an analytical

expression of the SINR mean and variance. Moreover, we

show that the probability density function (PDF) of the SINR,

in a log-scale, fits perfectly a Gaussian distribution. The results

can be applied to both full-digital and hybrid analog-digital

schemes. In fact, in the latter, with the SVD-based scheme,

the optimization of the analog matrices corresponds to the

selection of the largest singular values for the transmission

spatial modes associated to the streams.

We extend the analysis of the SINR to the presence of PN,

with a degradation due to the fact that the actual channel

to which precoding and combining are applied differs from

the channel used in the SVD. A similar degradation arises
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by considering the effect of the channel estimation error.

The effects of an imperfect channel estimation (and PN) can

be considered as the result of channel aging [15]–[17], i.e.

the evolution of both the channel and the PN between the

instant of estimation and their actual effect on the detection

process. With respect to previous works, here we consider

spatial multiplexing of several streams for a single transmitter

to a single receiver both with multiple antennas, rather than

the downlink to multiple single-antenna users. We do not

address specifically the channel aging, since both the channel

estimation error and PN derive not only from the channel

aging, but also from the accuracy and the specific algorithms

for channel estimation and phase synchronization. Hence we

consider a general approach taking as parameters the PN

variance and the channel estimation MSE. Our objective is

to provide analytical expressions for the degradation due to

PN and channel estimation errors, comparing the sensitivity

of full-digital and hybrid schemes. In detail the main contri-

butions of this work are the following:

• The statistics of the SINR and the analytical expressions

of its mean and variance are derived from the channel

representation in the beam-space, by the joint PDF of the

largest singular values of the channel matrix. Together

with the Gaussian statistical model of the SINR, this

allows the theoretical evaluation of the achievable rate.

• In the presence of PN, we derive the analytical expression

of the interference arising from the non-perfect SVD.

From this result one can evaluate the SINR degradation

due to PN.

• Also in the presence of channel estimation errors, the

interference term and the SINR degradation is analytically

derived. Two estimation models are evaluated: the direct

estimation of the channel matrix and the estimation of

the beam-space parameters.

II. SYSTEM MODEL

We consider single-carrier spatial multiplexing of Ns parallel

data streams from a transmitter equipped with Nt antennas to a

receiver with Nr antennas. The data streams are pre-coded by

a baseband Lt ×Ns matrix FFFBB into Lt RF chains and are DAC

converted. Each RF chain at the transmitter comprises a DAC,

a mixer to RF where PN is introduced, and a filter/amplifier.

Then the signal is precoded by the analog Nt ×Lt matrix FFFRF

and sent by Nt transmit antennas. The hybrid analog-digital

and the full-digital schemes are shown in Fig. 1. We consider

a) b)

Ns FFF

DAC
⊗

e jθT,Nt

...
Nt

...

DAC
⊗

e jθT,1

RF chain

...
Ns

...

FFFBB

RF chain

RF chain

...
Lt

...

FFFRF

...
Nt

...

Fig. 1. Precoding schemes: a) full-digital and b) hybrid digital-analog.

a narrow-band flat fading channel represented by a Nr ×Nt

matrix HHH. In mmWave, the delay spread is small [18], due to

the effect of high directional beamforming with a large number

of antennas, which makes the channel become almost flat. The

flat channel is a common simplification that allows to do some

analysis that would be otherwise very difficult and is adopted

in several other studies on the evaluation of the SINR (see for

example [19]). Some considerations on the effect of the delay

spread of the channel can be found for example in [20].

The received signal by Nr antennas is combined by the

Lr ×Nr analog matrix WWW H
RF into Lr RF chains. After ADC

a baseband combining is performed by the Ns × Lr matrix

WWW H
BB back into Ns signal streams. In the hybrid analog-digital

architecture the number of RF chains is reduced with respect

to the number of antennas, Ns ≤ Lt ≤ Nt (Ns ≤ Lr ≤ Nr at

the receiver). In some solutions, proposed to further reduce

the complexity, the antennas are grouped into sub-arrays: only

some RF chains are connected to each sub-array, instead of

connecting all the RF chains to all the antennas [3], [21],

[22], [23]. In the absence of PN, the received vector yyy at the

detection point, is given by

yyy =WWW H HHH FFFsss+WWW H nnn (1)

where sss is the vector of zero-mean independent transmitted

symbols and the vector nnn denotes the AWGN contribution.

We define as HHHbb the effective Ns ×Ns channel between the

input and output streams. In the absence of PN it is

HHHbb =WWW H HHH FFF (2)

The precoding matrix is FFF = FFFRF FFFBB. At the receiver side,

similar considerations can be made for the combining matrix

WWW =WWW RF WWW BB.

A. mmWave Channel Model

In the mmWave frequency range, the channel shows high

directivity, with a sparse matrix of coefficients between the

transmit and receive antennas. This fact leads to a representa-

tion of the channel in the beam-space [9], [24] with a limited

number of scatterers. According to this model, a flat fading

channel is described by Np paths or scatterers associated to

their corresponding transmit and receive angles. A pictorial

representation of the mmWave channel model is given in

Fig. 2, for Np = 3 scatterers. The channel matrix in the beam-

Nt

•
h2

•
h1

•
h3

ϑT,1 ϑR,1ϑT,2 ϑR,2

ϑT,3 ϑR,3
Nr

Fig. 2. Millimeter-wave channel: example with Np = 3 scatterers.

space is expressed as

HHH =
Np

∑
p=1

αp aaaR (ϑR,p)aaaH
T (ϑT,p) , (3)
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where the vectors aaaR (ϑR,p) and aaaT (ϑT,p) denote the array

response to the angles ϑR,p and ϑT,p at the transmitter and

receiver, respectively. Thus, the channel is characterized by Np

triplets (ϑT,p,ϑR,p,αp) of transmit and receiver angles and the

corresponding complex gain. The response vector of a uniform

linear array (ULA) with spacing d, at the wavelength λ, is

aaaT (ϑ) =
[

1,e j2πφ,e j4πφ . . .e j2πφ(Nt−1)
]T

(4)

with φ = d
λ

sinϑ. The steering vectors corresponding to two

different angles ϑT,1 and ϑT,2 are not perfectly orthogonal.

The inner product between the vectors associated to ϑT,1 and

ϑT,2 is given by

aaaH
T (ϑ1)aaaT (ϑ2) =

e j2π λ
d (sinϑT,2−sinϑT,1)Nt − 1

e j2π λ
d (sinϑT,2−sinϑT,1)− 1

(5)

As a function of the separation angle ϑT,1 −ϑT,2, the inner

product (5) is sinc-shaped and clearly decreases as the angular

separation increases. Moreover, increasing the value of Nt , the

inner product diminishes with Nt and the main lobe of the

radiation pattern gets narrower. Therefore, in massive MIMO,

characterized by a very large number of antennas, the inner

product among steering vectors associated to different angles

becomes almost zero (almost orthogonal steering vectors), as

long as the two angles are different.

The channel coefficients αp are modeled by independent

Gaussian random variables with zero mean and variance

normalized to 1/Np [24], [25]. For the angular distribution of

the scatterers, the angles in (3) describing the relative position

of the scatterers with respect to the transmitter and receiver

are considered independent uniform random variables between

−π/2 and π/2, as in [25]. Other more sophisticated models for

mmWave channels [24], [26] consider the scatterers grouped in

clusters with independent fading among different clusters and

a spread of the angles within each cluster. In the following we

compare the results also with channel matrices obtained by

a well known software channel simulator [27] based on the

model of [26].

1) Spatially white Rayleigh channel: For comparison pur-

poses we present also the spatially white Rayleigh channel.

In this case the channel matrix elements are independent and

identically distributed (iid) Gaussian random variables, with

zero-mean and variance normalized to 1/Np.

B. Phase noise

The phase noise is modeled by two independent contribu-

tions at the transmitter and receiver. In hybrid architectures,

the effect is accounted for by a multiplicative term in the RF

chains, more precisely, by the multiplication of a diagonal

matrix, with entries corresponding to the phase shifts of PN.

At the transmitter we have the matrix PPPT , acting between FFFBB

and FFFRF

PPPT = diag
[

e jθT,1 , . . . ,e jθT,Lt

]

, (6)

where θT,m are zero-mean Gaussian random variables. Assum-

ing the classic Wiener PN model with independent increments,

the PN increment has variance σ2
θT

. Another contribution is

introduced at reception at the downconversion, with corre-

sponding diagonal matrix PPPR of size Lr × Lr and variance

of the increments σ2
θR

. The PN variance is related to the 3-

dB oscillator bandwidth Bθ and to the time elapsed from a

perfect phase synchronization Td (for example to account for

the channel aging) by σ2
θR

= 4πBθ Td .

Several combinations of PN could be considered depending

on the number of independent oscillators used to feed the RF

chains. In massive MIMO, even with a reduced number of

RF chains, it is almost impossible to drive all the RF chains

with a single local oscillator, due to losses in the distribution

circuits.

Several considerations on the number of oscillators have

been presented for different antenna configurations and up-

or down-link [21], [28], [29]. The paper [28] investigates

the high-SNR capacity of single-input multiple-output (SIMO)

and multiple-output single-input (MISO) phase-noise channels

whether the RF circuitries connected to each antenna are

driven by separate (independent) local oscillators (SLO) or

by a common local oscillator (CLO). For the SIMO case, the

SLO configuration provides a diversity gain, which for the case

of Wiener phase noise can be of at least 0.5ln(Nr), where Nr

is the number of receive antennas. For the MISO, the CLO

configuration can obtain a coherent-combining gain through

maximum ratio transmission (a.k.a. conjugate beamforming),

while this gain is unattainable with the SLO configuration.

The conclusion of [28] is that SLO is better for SIMO and

CLO is better for MISO. In our case we have MIMO, so both

effects are compensating one another and, as it is found also

in other papers [29], [30], we end up with the conclusion that

CLO is better due to the coherent combining.

In [29] a large-scale analysis is performed with the number

of antennas and users tending to infinity and considerations are

made on the number of oscillators, with the conclusion that a

single oscillator at the base station (BS) achieves the highest

signal-to-interference-plus-noise ratio (SINR). They observe

that as the number of oscillators increases, the SINR of the ZF

precoder degrades as the interference power increases, and the

desired signal power decreases. Hence, here we consider the

limiting case where each RF chain is driven by an independent

oscillator.

III. HYBRID PRECODING AND COMBINING

For the precoding and combining, together with the full-

digital scheme, we use a hybrid design where the analog stage

is implemented by fixed phase-shifters. Then the digital stage

is obtained by a SVD.

A. Full-digital approach

In the full-digital case, in order to maximize the achievable

rate [3], the matrices FFF and WWW are derived from the SVD of the

full Nr ×Nt channel matrix, namely HHH =UUU ΛΛΛVVV H , with square

matrices UUU and VVV , of size Nr ×Nr and Nt ×Nt , respectively.

The matrix ΛΛΛ has diagonal entries λi in position (i, i) and λi

are ordered in decreasing order λ1 ≥ λ2 ≥ λmin{Nr ,Nt}.

Then the matrices FFF and WWW are the first Ns columns of UUU

and VVV , FFF =VVV Nt×Ns , WWW =UUUNr×Ns .
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B. Hybrid solution

1) Analog precoding and combiner: For the analog stage,

we address the case in which the matrices FFFRF and WWW RF are

made of phase shifts. They can be designed in several ways [3]

and can affect differently the singular values of the equivalent

Lt ×Lr channel, seen at the RF chains stage.

To reduce the system design complexity, we consider fixed

analog matrices. In particular, in [21] we considered beam-

forming with equally spaced angles, random angles between

−π/2 and π/2, and Discrete Fourier Transform (DFT) matrix.

We showed that DFT analog matrices exhibit a better robust-

ness to PN [21]. Moreover, the DFT matrix has been proposed

in hybrid schemes with codebook beamforming [10], [11] and

it is also the result of using a lens for the analog stage [31].

The use of a lens is interesting since it achieves near-optimal

performance with low hardware cost and high power efficiency

and its use has been proposed also for channel estimation

[12]. Note that both give a projection of the channel matrix

into the domain of spatial frequencies. A lens-based system

often uses switches where after a selection process some of

the lens outputs are sent to the RF chains. The scheme that we

analyze here corresponds to a fixed reduced-size DFT analog

matrix followed by a SVD digital part, so that all the antennas

outputs are combined and the selection is left to the SVD. As

shown in the following results, this sub-optimal choice has

a degradation in terms of rate with respect to a full-digital

scheme that becomes noticeable only if the number of antennas

is much greater than the number of RF chains.

Then, the analog matrix FFFRF built on the DFT matrix, has

its j-th column equal to the column jNt/Lt of the DFT matrix

of size Nt ×Nt , for j = 0, . . . ,Lt − 1. The analog combiner

WWW RF is obtained in the same way, by the substitution of the

corresponding dimensions Lr and Nr.

2) Digital precoding and combiner: Once the analog ma-

trices are set, the equivalent Lr ×Lt channel HHHeq is obtained

by the cascade of the RF matrices and the actual channel,

HHHeq =WWW H
RF HHH FFFRF . (7)

Again, in order to maximize the achievable rate, the digital part

should be based on the SVD of HHHeq, that is, HHHeq =UUUeq ΛΛΛeq VVV H
eq,

where we assume that the elements of ΛΛΛeq = diag(µi) are

ordered in decreasing order. Again, the matrices FFFBB and

WWW BB are obtained by the first Ns columns of UUUeq and VVV eq

corresponding to the largest singular values.

FFFBB =VVV eq,Lt×Ns WWW BB =UUUeq,Lr×Ns . (8)

We remind that the full-digital case can be seen as a particular

hybrid scheme where the number of RF chains is equal to

the number of antennas and the analog matrices WWW RF , FFFRF

are identities. Then HHHeq = HHH, which means that the SVD is

performed directly on the channel HHH.

IV. PERFORMANCE INDICATORS

In the following sections a system performance measure

is the mean achievable sum-rate on the Ns streams, namely

R = ∑
Ns
i=1 E [Ri]. Considering Gaussian signalling and equal

power allocation for the data streams, without channel esti-

mation errors and without PN, the rate on the i-th stream is

Ri = log2 (1+ρΛi) , (9)

where ρ is the signal-to-noise ratio (SNR), ρ = E[|sss|2]

E[|nnn|2]
and Λi

is related to the i-th largest singular value of the matrix HHHeq,

seen by the RF chains. In particular: in the full-digital scheme

HHHeq = HHH and Λi = |λi|
2
, where λi are the singular values of HHH

in decreasing order. In the hybrid scheme HHHeq is the Lr ×Lt

matrix of (7), Λi = |µi|
2
, with µi the singular values of HHHeq,

again in decreasing order. In the absence of PN and channel

estimation errors, we define

SINRi = ρΛi , (10)

which we denote as signal-to-interference-plus-noise ratio

(SINR) although in the absence of PN and estimation errors the

contribution of interference in canceled by the SVD precoding

and combining. Note that SINRi is a random variable and its

value in decibels SINRi,dB = 10log10 SINRi has a relevance,

since the sum-rate over the Ns streams is related to the average

SINR in dB over the streams. In the following we derive the

mean and variance for SINRi,dB and we show that the average

SINRdB =
1

Ns

Ns

∑
i=1

(SINRi)dB , (11)

has Gaussian statistics. Note that in the limit case of a single

scatterer Np = 1 and a single stream Ns = 1, the statistical

description of (11) is given by a log-Rayleigh random variable

[32], considered in the following for comparison.

On the other hand, with PN or channel estimation errors,

the imperfect diagonalization gives rise to interference among

the streams, with a different SINR with respect to (10). Then

we employ the very commonly used approximations [33], [34]

for the rate and equivalent SNR, that are very tight for massive

MIMO. The mean rate Ri of stream i is given by

Ri = E[Ri]≈ log2

(

1+SINRi

)

, (12)

where the SINR on the i-th stream is

SINRi ≈
E
[

|HHHbb(i, i)|
2
]

1
ρ
+∑

Ns

j 6=i
E
[

|HHHbb(i, j)|2
] . (13)

where HHHbb is defined in (2).

V. CHANNEL SINGULAR VALUES CHARACTERIZATION

In order to obtain the joint statistics of the largest channel

singular values, we note that (3) gives a spectral decomposition

of the channel matrix HHH, if the steering vectors in (3) are

orthogonal to each other. Hence the values Λi are equal

to the squared channel coefficients, Λi = |αi|
2, considered

in decreasing order. This assumption is realistic in massive

MIMO, where the inner product between the steering vectors

(5) becomes negligible. Moreover, for mmWave channels,

the number of scatterers Np is low [26], [27]. Therefore,

it is negligible the probability that the angles of different

scatterers are close enough to determine a sensible overlap.

In conclusion, the beam-space representation (3) for massive
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MIMO mmWave channels provides a very good approximation

of an SVD. Thus, we can approximate the Ns largest values

Λi by the Ns largest channel squared fading coefficients |αi|
2,

which are exponential random variables (chi-squared with 2

degrees of freedom). Using the approach of [35], where it is

applied to a selection combining, or with the derivation of

Appendix A, the average value is

E[Λi] =
(Np − 1)!

(i− 1)!(Np − i)!

Np−i

∑
k=0

(

Np − i

k

)

(−1)k

(k+ i)2
(14)

For the case of the SINR, following a logarithmic transforma-

tion, it is detailed in Appendix A, leading to the results.

Result 1 The first moments of the random variables SINRi of

(11) on each stream are obtained in closed-form by expressing

(SINRi)dB = 10log10 ρ+ 10
ln(10)

yi, where the moments of yi are

myi
= E[yi] =

Np!

(i− 1)!(Np − i)!

Np−i

∑
n=0

(

Np − i

n

)

(−1)n

n+ 1

×

[

ln
1

β(n+ 1)
− γ

]

(15)

Myi
= E[y2

i ] =
Np!

(i− 1)!(Np − i)!

Np−i

∑
n=0

(

Np − i

n

)

(−1)n

i+ n+ 1

×

[

π2

6
+

(

ln
1

β(n+ 1)
− γ

)2
]

. (16)

where γ is the Euler-Mascheroni constant.

Result 2 The joint PDF of the singular values on the Ns

streams, and consequently of the SINRi, is given by

fΛΛΛ(a1, . . . ,aNs) =
Np!

(Np −Ns)!

(

1− e−aNs
)Np−Ns

Ns

∏
m=1

e−am .

(17)

for a1 ≥ a2 ≥ . . .≥ aNs .

From (15)–(16), one can obtain the mean and standard devi-

ation of SINRdB (11) assuming that SINRi are independent, or

within the limits of the numerical complexity one can obtain

them form the joint statistics of (17). The results are presented

in Section VIII and compared with simulations.

1) Spatially white Rayleigh channel: In the white Rayleigh

channel (Section II-A1), considered for comparison, the sin-

gular values are the eigenvalues of the Wishart matrix HHHHHHH .

Their joint PDF has been derived in [36] for the central case

and generalized to non-central and correlated cases in [37].

A. Singular values with hybrid analog-digital beamforming

The previous analysis on the equivalence between the

channel singular values and the coefficients of the model (3)

has been derived for the full-digital case. However, the results

apply also to more sophisticated hybrid analog-digital schemes

(e.g. [38]) in which the optimization of the analog stage

maintains the largest channel singular values of the channel

in the equivalent matrix seen by the RF chains.

In the case of using fixed matrices in the analog stage,

as considered in this work, the operation performed by these

matrices projects the channel on a subspace of size Lr ×Lt .

Due to the structure of the matrices WWW RF and FFFRF with

orthogonal columns obtained from the DFT matrix the opera-

tion (7) corresponds to a projection on an orthogonal quotient

of the channel matrix HHH for which a generalization of the

Cauchy interlacing theorem (see for example Corollary 24 of

[39]) provides a bound for the singular values µi of HHHeq with

reference to the singular values of HHH. Then, the values µi,

in decreasing order µ1 ≥ µ2 ≥ . . ., are related to the singular

values λ j of HHH by the following upper and lower bounds
{

µi ≤ λi i = 1, . . . ,r
µℓ+1−i ≥ λr+1−i i = 1, . . . , ℓ

. (18)

where r = rank(HHH) and ℓ= r−Lt −Lr. Then r ≤ min{Nt ,Nr}
and according to the channel model (3) we have r = Np.

According to the order statistic theory [40] described in Ap-

pendix A, we can obtain lower and upper bounds for the joint

PDF of µ j. The upper bound coincides with the full-digital

case. For the lower bound, we have to consider the ordered

(in decreasing order) values up to ℓ of (18). The analysis of

Appendix A gives the mean and variance of the SINR. In the

most general case one should have Np −Lt −Lr ≥ Ns.

Note, however, that in the case of symmetric configurations

such as Nr = Nt and Lr = Lt , the projection performed at the

transmitter is the same as the one at the receiver, in other

words ℓ= Np −Lt . Also, for many practical implementations,

one can have the situation in which Nr = Nt while Lt is a

multiple of Lr (or viceversa) then the columns of FFFRF are a

sub-set of columns of WWW RF and one can consider the projection

on min{Lt ,Lr}.

In most of the cases one should have a rather dense channel

matrix with a sufficiently large number of scatterers Np in

order to apply the lower bound (18).

A more useful and general lower bound can be obtained by

accounting for the effect of the DFT matrix as an equivalent

analog beam-steering on equally spaced angles. With the

steering vector response (4) and considering the overall DFT

matrix, the array gain of the RF matrix is a collection of Lt

(Lr) sinc-shaped gain patterns [41] at equally spaced angles.

The reduction of the singular values corresponds to the factors

µi ≥ FrFt λi i = 1, . . . ,Ns (19)

where Ft (Fr) is the attenuation introduced by the RF stage at

transmission (reception).

In order to obtain a bound one can approximate the ar-

ray pattern by a pessimistic, two-level pattern, with unitary

attenuation in the main lobes and a constant value between

two main lobes, corresponding to the lowest lobe of the sinc-

shaped pattern. The smallest lobe between two main lobes for

a uniform linear array gives a factor (at the transmitter)

Ft ≈







1 with probability Lt
Nt

F = 4

(2 Nt
2Lt

+1)2π2
with probability

(

1− Lt
Nt

)

(20)

Then one can apply the theory outlined in Appendix A for

the largest Ns values among Np, where the PDF of each is

now the convex combination of fyi
(ai) and 1

F
fyi

(

ai
F

)

with the

probabilities Lt
Nt

and
(

1− Lt
Nt

)

.
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VI. EFFECT OF PHASE NOISE

In the presence of PN, the precoding and combiner matrices

are derived from the SVD of a channel, but then applied to a

different channel, due to the evolution of the PN. In fact, FFF and

WWW are designed on the basis of the SVD of HHH, but then they are

applied to the actual channel corrupted by the PN matrices PPPT

and PPPR. The degradation due to PN is measured by the SNR

penalty, defined as the increase of SNR necessary to reach the

same achievable rate as in the absence of PN (at a reference

SNR). The overall effective channel, which determines the rate

on the Ns streams, is the matrix HHHbb, which, in the presence

of PN, is

HHHbb =
(

WWW H
BB PPPRWWW H

RF

)

HHH (FFFRF PPPT FFFBB) . (21)

The effect of the multiplication by the PN matrices in (21)

is shown schematically in Fig. 3 for the combiner (receiver

side). PN compromises the orthogonality between the rows

of WWW BB and the columns of UUU . The same effect is present

at the precoding side, with FFFBB and VVV H . In order to analyze

u∗
1,1 · · · u∗Lr ,1

u∗
1,Ns · · · u∗Lr ,Ns

Ns ×Lr

WWW BB =UUUH
eq,Ns×Lr

u1,1e jθR,1 uLr ,1e jθR,1

...
...

uLr ,1e jθR,Lr uLr,Lr e
jθR,Lr

Lr ×Lr

PPPRUUUeq

µ1

. . .

νLr

000

Lr ×Lr

ΛΛΛeq

(Lt −Lr)×Lr

Fig. 3. Effect of PN on the SVD-based combining matrix at the receiver.

the degradation induced by the PN, let us consider a random

variable Θ(aaa) given by a linear combination with coefficients

an of the PN contributions

Θ(aaa) =
N

∑
n=1

an e jθn , (22)

where the iid PN random variables θn represent either θT,n

(transmitter) or θR,n (receiver). From E[e jθi ] = e−
1
2 σ2

θ , we have

my = E[Θ(aaa)] = e−
1
2 σ2

θ

N

∑
n=1

an (23)

My = E[Θ(aaa)Θ∗(aaa)] =
N

∑
n=1

|an|
2 + e−σ2

θ

N

∑
n=1

N

∑
m6=n

ana∗m . (24)

We develop the derivation for the hybrid scheme, noting that

for the full-digital case it is sufficient to substitute Lt and Lr

with Nt , Nr and UUUeq, VVV eq with UUU , VVV . The multiplication by

the SVD-based matrices gives, at the transmitter, the Lt ×Ns

matrix ΨΨΨT =VVV H
eqPPPT FFFBB and at the receiver the Ns×Lr matrix

ΨΨΨR =WWW H
BBPPPRUUUeq. As in Fig. 3, the elements of ΨΨΨR are

ΨΨΨR,i,i=
Lr

∑
n=1

e jθR,n
∣

∣UUUeq,n,i

∣

∣

2
ΨΨΨR,i, j =

Lr

∑
n=1

e jθR,nUUU∗
eq,i,nUUUeq,n, j (25)

Note that without phase noise ΨΨΨR,i,i = 1 and ΨΨΨR,i, j = 0, since

the columns of UUU are orthonormal. The elements of ΨΨΨR can be

expressed as (22). In particular, for the diagonal elements we

have ΨΨΨR,i,i = Θ(aaa) with an =
∣

∣UUUeq,n,i

∣

∣

2
and off the diagonal

ΨΨΨR,i, j = Θ(aaa) with an = UUUH
eq,i,nUUUeq,n, j. The same applies to

ΨΨΨT at the transmitter, with VVV eq instead of UUU . By expanding

the final effective Ns ×Ns channel HHHbb as ΨΨΨRΛΛΛeqΨΨΨT one can

find that the diagonal entries are

HHHbb(i, i) = µiΨΨΨT,i,iΨΨΨR,i,i +
min(Lt ,Lr)

∑
n 6=i

µnΨΨΨR,i,nΨΨΨT,n,i (26)

and off the diagonal we have

HHHbb(i, j) =
min(Lt ,Lr)

∑
n 6=i, j

µnΨΨΨR,i,nΨΨΨT,n,i +µiΨΨΨR,i,iΨΨΨT,i, j +µ jΨΨΨR,i, jΨΨΨT, j, j

(27)

We should note that the elements of ΨΨΨT and ΨΨΨR are indepen-

dent, since the PN samples at the transmitter θT,n and receiver

θR,n are independent.

The approaches used in this paper to evaluate the effect of

PN on the terms of (13) are:

Method 1. The conditional values of (26)–(27) are evaluated

for each channel realization, then the average is numerically

evaluated over different channel realizations. In detail, for

each given channel, the matrices UUUeq and VVV eq and the values

µi of the SVD are known. Therefore, both the diagonal

terms |HHHbb(i, i)]|
2

in (26) and the interference contributions

|HHHbb(i, j)]|2 with i 6= j of (27) are a combination with given

values of variables of the type (22), for which the expression of

the moments (23), (24) allows the evaluation of the expectation

(with respect to the phase noise only).

Method 2. Another conditional approach is obtained by

modeling the columns of the unitary matrices UUUeq and VVV eq as

Gaussian vectors. In particular, it is assumed that each column

of VVV eq (UUUeq) is independent of the other columns, to reflect the

orthogonality among the columns, and the elements of each

column are iid Gaussian random variables with zero mean

and variance 1/Lt (1/Lr), to model unitary vectors. As shown

in the following this represents a quite good approximation.

The terms of (13) are evaluated for each channel realization,

i.e. it is assumed that the singular values µi (or λi in the

full-digital case) are known. From the independence of ΨΨΨT

and ΨΨΨR and noting that E[ΨΨΨT,i, jΨΨΨT,m,n] = E[ΨΨΨR,i, jΨΨΨR,m,n] = 0,

∀m 6= i,n 6= j one gets

E[|ΨΨΨR,i,i|
2] = e−σ2

θ
Lr − 1

Lr

+
3

L3
r

E[
∣

∣ΨΨΨR,i, j

∣

∣

2
] =

e−σ2
θ

Lr

(28)

and the same for ΨΨΨT,i, j (with Lt instead of Lr). Finally

E
[

|HHHbb(i, i)|
2
∣

∣

∣
ΛΛΛeq

]

≈ Λi

[

e−σ2
θ

Lr − 1

Lr

+
3

L3
r

]

×

[

e−σ2
θ

Lt − 1

Lt

+
3

L3
t

]

+
Ns

∑
n 6=i

Λn
e−2σ2

θ

LrLt

(29)

E
[

|HHHbb(i, j)|2
∣

∣

∣
ΛΛΛeq

]

≈
Ns

∑
n 6=i, j

Λn
e−2σ2

θ

LrLt

+Λi

[

e−σ2
θ

Lr − 1

Lr

+
3

L3
r

]

e−σ2
θ

Lt

+Λ j

[

e−σ2
θ

Lt − 1

Lt

+
3

L3
t

]

e−σ2
θ

Lr

(30)

where it is stressed that the values are conditioned on the

knowledge of the singular values of ΛΛΛeq.
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Method 3. A complete analytical approximation of the terms

in (13) is considered by putting together the results of Sec-

tion V on the characterization of the matrix singular values

with the approximation just outlined in Method 2. The terms

of (13) are given by (29)–(30) where the expectation is taken

over Λ j and E[Λ j] is given by (14).

VII. EFFECT OF CHANNEL ESTIMATION ERRORS

Another performance degradation is introduced by the esti-

mation error in the channel matrix HHH. Considering now only

the effect of the channel estimation (without PN), the estimated

channel matrix HHHe is

HHHe = HHH + δHHH , (31)

where δHHH accounts for the estimation error. Note that in the

hybrid schemes the estimation error can be considered on the

reduced size channel HHHeq. Then HHHbb turns out to be

HHHbb =
(

WWW H
BB,eWWW H

RF

)

HHH (FFFRF FFFBB,e) . (32)

where precoding and combining, WWW BB,e and FFFBB,e, are derived

on the basis of HHHe. The estimation process can be done either

directly on the channel matrix by means of pilots, or in a

reduced space, like the beam-space, where the channel matrix

is estimated from the arrival angles ϑp and the coefficients

αp. The first approach finds applications in TDD multi-

user scenarios for the uplink, especially when the number

of antennas of each user is small. Since both cases have a

practical interest, we examine both.

A. Direct estimation of the channel matrix

Assuming an additive noise model for the estimation error,

the elements of δHHH in (31) are i.i.d. Gaussian random variables

[42] with zero-mean and variance σ2
MSE equal to the mean

squared error (MSE). In other words, we can assume that the

estimation error is iid over all the channel matrix elements.

A perturbation analysis [43] provides the tools to evaluate the

degradation and in particular the derivation of the variation in

the SVD matrices is outlined in Appendix B. According to

this scheme, the contribution of interference is given by

Ns

∑
j 6=i

E
[

|HHHbb(i, j)|2
]

≈
3(Ns− 1)

LrLt

σ2
MSE , (33)

with Lt =Nt and Lr =Nr in the full-digital case. The goodness

of the theoretical expression in terms of SINR degradation is

shown in Fig. 14 of Section VIII.

B. Estimation of the beam-space matrix

The channel estimation can be done on a reduced space,

due to the channel sparsity in the mmWave range. When the

channel is estimated in the beam-space, the estimation error

affects directly the channel parameters αp and ϑp of (3). A

detailed statistical characterization of the estimation error is

out of the scope of this work and can depend on the specific

estimation algorithm. Here we model the estimation errors by

zero-mean Gaussian random variables with variance σ2
MSE,bs,

which is justified in the case of Gaussian distribution of each

angle of arrival [44]. To reduce the number of parameters in

the presentation of the results, we assume that the variance

of the error is the same on αp and ϑp: note however that

the errors on the angles are more detrimental, due to the

massive number of antennas, which provide high directivity

and a drop of the antenna gain at angles different form the

steering angle. In this case the estimation error affects directly

the singular values and the columns/rows of the SVD matrices,

as outlined in Appendix C. Then again we have interference

arising from estimation error, affecting the SINR (13). This

can be represented by terms as in (29)–(30) with

E[|ΨΨΨR,i,i|
2] = 1−

Lr

Nr

σ2
MSE,bs

π2

12
E[
∣

∣ΨΨΨR,i, j

∣

∣

2
] =

Lr

Nr

σ2
MSE,bs

π2

12
(34)

and the same for ΨΨΨR with Lt and Nt .

A comparison with the simulation results, in terms of

the SINR degradation, is shown in Fig. 15 of Section VIII,

showing the good precision of the theoretical expression (34).

VIII. NUMERICAL RESULTS AND DISCUSSION

A. Equivalence between singular values and channel coeffi-

cients

The equivalence between the coefficients of the beam-space

representation (3) and the singular values is confirmed by

Fig. 4, where the rates obtained with the actual SVD and the

coefficients αp of the beam-space channel representation are

compared. Clearly we can see two effects:
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Fig. 4. Comparison between the rates with Λi = |αi|
2| and with the actual

channel singular values, for Ns = 4 and different values Nt = Nr .

• When the number of antennas reaches the typical values

of massive MIMO systems, the difference between the

rates greatly reduces.

• Only when the number of scatterers increases, which

is not the case of sparse mmWave channels, a certain

difference appears between the rates.

B. SINR statistics

First we show that the statistics of the SINR (11) are almost

perfectly described by a Gaussian distribution. This is in ac-

cordance with similar results on the statistics of the dominant
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eigenvalue of a MIMO channel [45]. This is quantified by the

Kolmogorov-Smirnov (KS) test and the Kullback-Leibler (KL)

divergence between the SINR PDF and a Gaussian PDF with

the same mean and variance, which are presented in Table I

for some representative values of Ns and Np.

KS test KL divergence

Log-Rayleigh Ns = 4 Np = 10 7.4 ·10−2 1.3 ·10−1

Gaussian Ns = 4 Np = 10 5.7 ·10−3 2.4 ·10−3

Gaussian Ns = 4 Np = 20 2.1 ·10−2 7.9 ·10−3

Gaussian Ns = 8 Np = 20 2.2 ·10−2 1.0 ·10−2

TABLE I
VALUES OF KS TEST AND KL DIVERGENCE BETWEEN THE SINR PDF

AND LOG-RAYLEIGH OR GAUSSIAN PDF.

Given the accuracy of the Gaussian assumption for the

SINR, we compare in Fig. 5 the analytical and simulation

values of the mean and standard deviation as a function of

the number of scatterers Np of the channel. We can note

22

23

24

25

26

27

28

29

30

5 10 15 20 25 30 35 40

1

1.5

2

2.5

3

3.5

4

4.5

5

S
IN

R
m
ea
n
[d
B
]

S
IN

R
st
a
n
d
a
rd

d
ev
ia
ti
o
n
[d
B
]

Scatterers Np

mean simul.
mean (15)

mean urban ch.
mean (17)

std dev. simul.
std dev. urban ch.

std dev. (16)
std dev. (17)

Ns = 4 , full-digital Nt = Nr = 64, SNR= 30dB

Fig. 5. SINR mean and standard deviation for the full-digital case as a
function of the number of scatterers Np, for Nt = Nr = 64 and Nt = Nr = 128.

that the analytical model of (15)-(16) provides a very good

approximation, which increases when the number of antennas

is large, as the case addressed of massive MIMO. This is

expected since the orthogonality between the steering vectors

is higher for increasing values of Nt , Nr and the singular values

are well approximated by the squared gains αp. A slightly

better result is obtained by resorting to the integration of the

joint PDF (41). The decrease of the standard deviation with Np

is expected, since the largest Ns values tend to be closer to each

other increasing the size of the set. The decrease of the mean

value is due to the power normalization of the channel, with

coefficients αp having variance 1/Np. In the figure we present

also the comparison with the values obtained by a realistic

channel model [26] implemented by a software simulator [27].

It can be seen that the theoretical values are a very good

approximation, by considering the number of scatterers Np

of this model equal to the number of singular values of the

channel, i.e. the channel rank. If we increase the number of

streams Ns, more singular values contribute to the SINR. In

Fig. 6 we plot the SINR mean and standard deviation as a

function of the number of streams Ns, for Nt = Nr = 64. The
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Fig. 6. SINR mean and standard deviation for the full-digital case as a
function of the number of streams Ns, for Np = 20 scatterers, Nt = Nr = 64,
and SNR ρ = 30dB.

evaluation of multiple integrals of the analytical PDF (17)

becomes lengthy for large Ns and it is limited to Ns = 10 in

the figure. However the analytical expressions (15)-(16) can

be evaluated for any values of Ns and give values of the SINR

moments which differ only fractions of dB from the actual

values. Note that considering more scatterers increases the

variability of the SINR, hence the variance, but also reduces

the mean value due to the channel gain normalization.

For the hybrid analog-digital beamforming similar results

are presented in Fig. 7, which shows the mean SINR value for

different numbers of RF chains with Nt =Nr = 64 antennas. In

this case the results of the full-digital scheme and the lower

bounds (LB) for the hybrid scheme for Np ≥ (Nt − Lt +Ns)
are compared with the values obtained by simulation. We can
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Fig. 7. SINR mean value as a function of the number of scatterers Np, for
Ns = 4, Lt = Lr = 8, 16, 32, Nt = Nr = 64 antennas, and SNR ρ = 30dB.

note that the bound (18) related to the generalized Cauchy

interlacing theorem is useful only in the case of a large number

of scatterers, which is not very suited to typical mmWave

channels. On the other hand, the bound (19) based on the array

pattern provides a very good approximation to the actual mean

in the whole range of Np,. This latter bound becomes slightly

looser when increasing the number of scatterers Np. Anyway,

the validity of the approximation is good for all the values of
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Np, in particular for realistic values of Np in mmWave, which

are around 10–20 [24], [26], [27]. The difference between the

full-digital case and the hybrid analog-digital beamforming

becomes smaller if the number of RF chains increases from

Lt = Lr = 8 to 16 and 32, where the hybrid analog-digital

scheme gets nearer to the full-digital one. In any case a

clear idea of the trend is obtained by the lower bound, with

errors smaller than 1 dB. In Fig. 8 the values of the SINR

standard deviation are presented for the same system setup, as

a function of the number of scatterers Np. We should note
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Fig. 8. SINR standard deviation as a function of the number of scatterers Np,
for Ns = 4, Lt = Lr = 8,16,32, Nt = Nr = 64 antennas, and SNR ρ = 30dB.

first of all that a lower and upper bound on the singular

values does not reflect automatically on a central moment

such as the standard deviation, but actually on the first and

second non-central moments. In any case, also for the standard

deviation the considerations on the suitability of bound (18) to

a mmWave channel apply. On the other hand, the bound (19)

provides a good match to the simulated values, within fractions

of dB. In this figure we present the performance of both the

hybrid analog-digital and the full-digital scheme. The latter

can be approached also by more sophisticated hybrid analog-

digital beamforming techniques, for which the SINR formulas

(15)-(16) provide a good match.

C. Effect of the phase noise

Also in the presence of phase noise the PDF of the SINR fits

almost perfectly a Gaussian PDF, for both the full-digital and

the hybrid case with DFT-based matrix, as shown by the values

of the Kolmogorov-Smirnov (KS) test and the Kullback-

Leibler divergence (KL) presented in Table II. Due to the good

PN σ2
θ Full-dig. KS Full-dig. KL Hyb. KS Hyb. KL

0 2.1 ·10−2 7.9 ·10−3 2.3 ·10−2 3.0 ·10−2

0.01 2.8 ·10−2 2.2 ·10−2 2.5 ·10−2 5.3 ·10−2

0.05 3.0 ·10−2 2.4 ·10−2 2.4 ·10−2 5.4 ·10−2

0.1 3.0 ·10−2 2.5 ·10−2 2.4 ·10−2 5.4 ·10−2

TABLE II
VALUES OF THE KS TEST AND KL DIVERGENCE BETWEEN THE SINR

PDF AND A GAUSSIAN PDF FOR Ns = 4, Np = 10.

match between the PDF and its Gaussian approximation, one

can characterize the SINR by its mean and variance.

In order to compare different channel models, in Figs. 9–

10 we present the achievable rates per stream obtained: by

simulation, by the semi-analytical approach with the exact

SVD matrices of Method 1 and by the approximate Method 2

with (29)–(30). Fig. 9 shows the full-digital case and Fig. 10

the hybrid scheme. Together with the channel model of (3)

with Np scatterers, in Fig. 9 we present also a case in which the

scatterers are grouped into clusters (10 clusters) with a model

like [26], [27]. It can be seen that the theoretical analysis
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Fig. 9. Achievable rate per stream, with PN variance σ2
θ = 0.01, Np = 10

scatterers and Nt =Nr = 128: comparison of analytical and simulation results.

suits well different channel models. Moreover, the difference

between the beam-space model (3) and more sophisticated

models, with scatterers grouped in clusters, is reduced.

In the following, since we proved the accuracy of both the

singular value characterization and the accuracy of the PN

effects, Method 3 will be used. In Fig. 10 the results are

shown for the hybrid scheme with Lt = Lr = 8 RF chains

and Nt = Nr = 64 antennas. The same channel models as

in Fig. 9 are used, together with a further model, in which

we consider single scatterers (not grouped into clusters), but

with a minimum separation between the angles of different

scatterers, set to 10 degrees in the case of Fig. 9. With

separated scatterers, the equivalence between the beam-space

model (3) and a matrix spectral decomposition holds almost

perfectly. In any case, for the full-digital case theoretical and

simulated values are almost overlapped, while for the hybrid

case a very small difference is noticeable only at high SNR.

In order to validate the theoretical analysis of Section VI,

in Fig. 11 we present the achievable rate per stream for a

hybrid system with Lt = Lr = 16 RF chains and Nt = Nr = 64

antennas, for a channel with Np = 20 scatterers. It can be

clearly seen that the analysis gives a very good approximation

especially in the range of PN of practical interest. The accuracy

tends to become looser for a very high PN variance, which is

not practical, since the degradation would be too severe, as it

can be seen in the following results.

A first comparison between the effects of PN on the full-

digital and the hybrid schemes is shown in Fig. 12. The results

are obtained by the analytical approach of Method 3. Note that
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the large gap between the full-digital approach and the hybrid

solution is due to the limited number of RF chains compared

to the number of antennas, having a fixed DFT analog matrix.

However it can be noticed a smaller sensitivity to the PN

experienced by the hybrid scheme. In fact, if we consider the

sensitivity to the PN, the SNR penalty is presented in Fig. 13,

at the reference SNR of 15 dB, for Nt = Nr = 64,128 and

Lt = Lr = 8, again by the analytical approach of Method 3.

We note that the full-digital scheme is much more sensitive to

the effects of PN than hybrid schemes. A greater number of

antennas gives a worse degradation in the full-digital scheme,

due to the increased number of independent oscillators, while

for hybrid analog-digital schemes the sensitivity to PN is

determined by the number of RF chains.

D. Sensitivity to the channel estimation error

In Fig. 14 the sensitivity to the channel estimation error

is presented for an additive estimation error on each matrix

element characterized by a mean squared error (MSE) relative

to the channel matrix value. Also in this case the degradation

is measured by the SNR penalty, defined as the increase of

SNR necessary to reach the same achievable rate as in the
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0

2

4

6

8

10

0.00001 0.00010 0.00100 0.01000

S
N
R

p
en

a
lt
y
[d
B
]

PN variance σ2

θ

full-digital Nt = Nr = 64

full-digital Nt = Nr = 128

hybrid Nt = Nr = 64

hybrid Nt = Nr = 128

Ns = 4, Np = 10, Lt = Lr = 8, SNR= 15dB

Fig. 13. SNR penalty at the reference SNR of 15 dB, for a channel with
Np = 10 scatterers as a function of the PN variance σ2

θ, Lt = Lr = 8 RF chains
and Nt = Nr = 64 or Nt = Nr = 128 antennas.

absence of estimation errors. It is clear that the sensitivity of

the full-digital scheme to the channel estimation error in this

case is lower than for hybrid schemes. On the other hand,

if the estimation is performed directly on the beam-space,

the sensitivity to the estimation error is much bigger and it

is plotted in Fig. 15, showing an opposite effect, with much

greater sensitivity of the full-digital scheme with respect to

the hybrid scheme. By combining the effects of PN and of

the channel estimation error, we compare the rate of the full-

digital and the hybrid schemes in Fig. 16, using simulation

results, since the joint analysis in not tractable, for a channel

with Np = 10 scatterers, SNR of 15 dB, for Nt = Nr = 64 and

Lt = Lr = 8. We can see that when the effects of the channel

estimation error and of the PN are combined, the difference

between the achievable rate of the full-digital approach and

the DFT-based hybrid scheme greatly reduces, even with a

limited number of RF chains with respect to the number of

antennas. From the results considering jointly both PN and the

estimation error, we can say that the overall penalty is well

approximated by the sum of the two penalties, suggesting that

the two effects can be treated separately.
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E. Discussion

A first observation concerns the mmWave channel: the

singular values determining the SINR can be considered equal

to the channel coefficients of the beam-space representation.

The validity of this assumption increases with the number of

antennas, becoming very suitable to massive MIMO systems.

The sparsity of the mmWave channel can be captured by the

beam-space representation. For practical mmWave channels

the number of scatterers is limited to about 10–20, with a

consequent limit in the number of parallel streams that can

be spatially multiplexed. Moreover, the SINR in a log-scale is

well modeled by a Gaussian distribution: this holds both in the

full-digital case and in hybrid digital-analog schemes. There-

fore, a mean-variance characterization of the SINR provides a

full statistical description.

Impairments such as the PN and the channel estimation

error introduce an inter-stream interference, due to precoding

and combinig matrices not matched to the channel SVD. For

the effect of PN, the choice of the number of RF chains

determines a trade-off between the reduction of achievable rate

with respect to the full-digital case and the PN degradation.
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Although it may be unfeasible in massive MIMO, when the

number of RF chains approaches half the number of antennas,

Lt ≈ Nt/2, the rate obtained is almost the same as in a full-

digital scheme. Moreover, the sensitivity to PN is much higher

for the full-digital scheme than for hybrid schemes (Fig. 13),

with an interference term due to PN almost proportional to

the number of antennas in the full-digital scheme and to

the number of RF chains in hybrid schemes. Concerning

the channel estimation error, these schemes have a different

sensitivity, depending on the channel estimation method. With

a pilot-based estimation obtaining directly the channel matrix,

the full-digital approach proves to be more robust, and the

interference decreases with the number of antennas, as in

(33). If the sparsity of the mmWave channel is exploited by

the estimation method, identifying the beam-space parameters,

hybrid schemes are more robust, with an interference in the

SINR which depends on Lt/Nt . For practical values of PN

(σ2
θ ≤ 10−2) and channel estimation MSE (≤ −60 dB), the

penalty due to the estimation error is more severe than the one

due to PN. However, with a beam-space channel estimation,

the combination of the two effects can reduce the rate of full-

digital systems to values comparable with hybrid schemes.

IX. CONCLUSIONS

We derived the SINR statistics in massive MIMO for the

mmWave channel, for full-digital and hybrid analog-digital

SVD-based schemes. The full-digital case can be taken as

reference also for hybrid schemes with the joint optimization

of the analog and digital parts. The hybrid scheme presented

here is sub-optimum, but with a simpler design, since it does

not require the knowledge of the full channel matrix but only

of the reduced equivalent channel at the RF chains level.

The main conclusions are: i) The analytical expression of the

SINR mean and variance and the joint PDF of the largest

singular values have been derived. With the Gaussian model

of the SINR, this allows the theoretical evaluation of the

achievable rate. ii) In the presence of PN we obtained the

analytical expression of the interference due to the imperfect

SVD, giving the SINR degradation and the achievable rate.
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iii) In the presence of channel estimation errors we derived

the expression of the SINR degradation as a function of the

estimation MSE, both for a uniform estimation error on the

channel matrix and for an error in the beam-space parameters.

A practical design solution for hybrid analog-digital schemes

is the use of an analog matrix of fixed phase-shifters, with

columns taken from the DFT matrix. This scheme is more

robust to PN and channel estimation errors, narrowing the gap

in terms of achievable rate with the full-digital approach, if

Nt ≤ 8Lt . For more antennas the rate reduction is still notable.

APPENDIX A

DERIVATION OF THE SINR MEAN AND VARIANCE

Consider Np iid random variables with PDF f (a) and CDF

F(a). The i-th ordered (in decreasing order) random variable

has PDF given by [40]

fi (ai) =
Np!

(Np − i)!(i− 1)!
F(ai)

Np−i [1−F(ai)]
i−1

f (ai) (35)

From (3), Λp = |αp|
2 are exponentially distributed, fΛp (a) =

βe−βa, with β=Np. The SINR on the i-th stream, correspond-

ing to the i-th largest Λp, is SINRi,dB = 10log10 ρ+ 10
ln(10)

yi,

where the random variable yi = lnΛi, for i = 1, . . . ,Ns has PDF

fyi
(ai) =

Np!
[

1− e−βeai
]Np−i

(Np − i)!(i− 1)!
e−β(i)eai

βeai (36)

By using the following integrals [46]∫ +∞

−∞
xe−αex+x dx =

1

α

[(

ln
1

α
− γ

)]

(37)

∫ +∞

−∞
x2e−αex+x dx =

1

α

[

π2

6
+

(

γ− ln
1

α

)2
]

, (38)

where γ is the Euler-Mascheroni constant, the mean and the

variance of yi turn out to be

myi
= E[yi] =

Np!

(i− 1)!(Np − i)!

Np−i

∑
n=0

(

Np − i

n

)

(−1)n

n+ 1

×

[

ln
1

β(n+ 1)
− γ

]

(39)

Myi
= E[y2

i ] =
Np!

(i− 1)!(Np − i)!

Np−i

∑
n=0

(

Np − i

n

)

(−1)n

i+ n+ 1

×

[

π2

6
+

(

ln
1

β(n+ 1)
− γ

)2
]

. (40)

A more detailed analysis is obtained by considering the joint

statistics of the Ns largest singular values among Np. From the

general results [40], the joint PDF of the random variables yi

is

fy1,...,yNs
(a1, . . . ,aNs) =

Np!
[

1− e−βe
aNs

](Np−Ns)

(Np −Ns)!

Ns

∏
i=1

βeai−βeai ,

(41)

for a1 ≥ a2 ≥ . . . ≥ aNs . Then the expected value and all the

moments can be obtained by integration of the PDF (41). Note

however that the numerical evaluation of the multiple integrals

with the PDF (41) becomes lengthy. The approximation of

separating the integrals for each variable leads to (15), (16).

APPENDIX B

PERTURBATION ANALYSIS

Assume that the SVD of HHH is HHH =UUUΛΛΛVVV H . A perturbation

HHHe = HHH + δHHH, can be decomposed as HHHe =UUUeΛΛΛeVVV
H
e with

ΛΛΛe = ΛΛΛ+ δΛΛΛ UUUe =UUU + δUUU VVV e =VVV + δVVV (42)

The theory of [43] gives the matrices UUUe, ΛΛΛe and VVV e, in a

general framework, up to the second order. Considering the

first-order perturbation and δHHH with iid elements with zero-

mean and variance σ2
MSE (as in Section VII-A), we have

δΛΛΛ =UUUHδHHHVVV δUUU = δHHHVVVΛΛΛ−1 δVVV = δHHHUUUΛΛΛ−1 . (43)

The error comes from the application of the matrices derived

from HHHe to the actual channel HHH. We have

HHHbb =UUUH
e HHHVVV e = (UUU + δUUU)H

UUUΛΛΛVVV H (VVV + δVVV) . (44)

Using (43) and considering only the first-order perturbations,

with respect to the ideal case HHHbb,e we have an error δHHHbb,e

HHHbb = HHHbb,e + δHHHbb,e = HHHbb,e + 3UUUHδHHHVVV . (45)

By the approximation of considering the columns of UUU and VVV

as Gaussian vectors with iid zero-mean elements with variance

1/Lr and 1/Lt , the interference term (33) is

Ns

∑
j 6=i

E
[

|HHHbb(i, j)|2
]

=
3(Ns− 1)

LrLt

σ2
MSE . (46)

APPENDIX C

EFFECT OF ERRORS IN THE BEAM-SPACE

We assume that the channel coefficients, αp and the angles

ϑT,p, ϑR,p of (3) are affected by errors δαp, δϑT,p, δϑR,p,

modeled by iid zero-mean Gaussian random variables with

variance σ2
MSE,bs. It can be easily proven that the effect of the

errors δαp are negligible with respect to the errors δϑT,p, δϑR,p

on the angles, due to the high antenna directivity. For ϑT,p

and ϑR,p uniformly distributed in (−π/2,π/2), the variance

of δϑT,p, δϑR,p is σ2
MSE,bsπ

2/12. The derivation of the inter-

ference terms in HHHbb is similar to the PN effect of Section VI.

The difference is that now the columns of the precoding

and combining matrices correspond to steering vectors to the

angles ϑT,p+δϑT,p and ϑR,p+δϑR,p. With reference to Fig. 3,

the elements of the product of the combining and the SVD

matrices are now the inner products (5) for δϑR,i, scaled by
√

Lr/Nr. The Taylor expansion of (5), for small MSE, gives

E[|ΨΨΨR,i,i|
2] = 1−

Lr

Nr

σ2
MSE,bs

π2

12
E[
∣

∣ΨΨΨR,i, j

∣

∣

2
] =

Lr

Nr

σ2
MSE,bs

π2

12
(47)

Then the same steps as in Section VI lead to (34).
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