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Abstract. Ensemble Particle Tracking Velocimetry (EPTV) is a method to
extract high-resolution statistical information on flow fields from Particle Image
Velocimetry (PIV) images. The process is based on tracking particles and
extracting the velocity probability distribution functions of the image ensemble in
averaging-regions deemed to contain a sufficient number of particle pairs/tracks.
The size of the averaging regions depends on the particle density and the number of
snapshots. An automatic adaptive variation of the ensemble PTV is presented to
further push the spatial resolution of the method. The proposed Adaptive-EPTV
is based on stretching and orienting the averaging regions along the direction
of maximum curvature of the velocity fields. The process requires a predictor
calculation with isotropic-window EPTV to compute the second derivatives of
the mean velocity components. In a second step, the principal directions of the
Hessian tensor are calculated to tune the optimal orientation and stretch of the
averaging regions. The stretching and orientation are achieved using a Gaussian
windowing with different standard deviation along the local principal direction of
the Hessian tensor. The algorithm is first validated using three different synthetic
datasets: a sinusoidal displacement field, a channel flow and the flow around a
NACA 0012 airfoil. An experimental test case of an impinging jet equipped with
a fractal grid at the nozzle outlet is also carried out.
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1. Introduction

A long-standing line of research in Particle Image Ve-
locimetry (PIV) is devoted to increase its capabilities
in terms of spatial resolution. Traditionally, the focus
has been on two lines:

• maximize the spatial resolution of instantaneous
measurements: to cite some, the advanced multi-
step multi-grid [1] image deformation algorithms
[2], the adaptive PIV concept [3, 4, 5] and several
methods to pour time resolution into space [6, 7,
8];

• maximize the spatial resolution of turbulent
statistics, exploiting ensemble information to
push the resolution beyond the limits of the
instantaneous measurements.

Along this second path, the first approaches were
correlation-based, starting with the pioneering work
by Meinhart et al. [9], introducing the ensemble-
correlation concept. The method was based on
summing correlation maps to pump up the coherent
signal related to the mean velocity field. While
this approach was originally conceived for micro-
PIV applications [10], the concept was later extended
to turbulent flows and referred to as single-pixel
resolution [11]. Exploiting the statistical stationarity
of the measurement process as an additional source
of information, the spatial resolution can be brought
ideally down to a single pixel.

This approach has been extended to deliver
second-order statistics from the deconvolution of the
ensemble-correlation maps [12], as well as for the
application in unsteady flows [13] and in stereoscopic
measurements [14]. Nonetheless, ensemble-correlation
has issues with slow convergence, which can be partly
mitigated using symmetric double correlation [15].
Additionally, the computational burden and memory
requirements hinder the application of ensemble
correlation to 3D PIV, in which instead approaches
based on 3D Ensemble Particle Tracking Velocimetry
(EPTV) have been gaining increasing popularity [16].

EPTV is based on collecting particle pairs/tracks
to create a dense ensemble, whose density can
be increased virtually without limit. Turbulence
statistics at high resolution are obtained extracting the
probability distribution function (pdf) of the velocity
vectors in each averaging bin. This concept was
introduced by Cowen and Monismith [17] as a hybrid
digital PTV, exploiting cross-correlation as a predictor
for particle pairing as in the super-resolution PIV [18].
EPTV received limited attention for almost 25 years,
being it obscured by the superiority of cross-correlation
approaches. The interest in PTV, and consequently
in extracting high-resolution statistics from scattered
vectors, raised quickly in recent years driven by the

outstanding developments of 3D Lagrangian Particle
Tracking [19, 20].

The group of Kähler at UNIBW [21] built the
underpinnings of a renaissance of PTV also for planar
applications, demonstrating that the actual resolution
limit of single-pixel correlation is related to the particle
image diameter; PTV, on the other hand, is not limited
by the typical issues of cross-correlation, such as the
filtering effect of the diffraction spot, background noise
and bias of laser reflections. This leads to a much
superior performance in terms of dynamic range of the
turbulence statistics. The diameter of the averaging
area is defining the spatial resolution, and it can be
reduced in size (at fixed number of particles) simply by
increasing the number of samples. Ideally, the spatial
resolution can be pushed even below the pixel.

This concept has been brought to 3D in recent
applications ([22, 23, 24, 25]) with evident gain in
terms of computational cost if compared to ensemble
correlation. Additionally, EPTV is of straightforward
implementation for methods providing output directly
in form of particles pairs or tracks, as in the state-of-art
shake-the-box method [20]. Nonetheless, depending on
the desired bin size, the number of snapshots required
might be often prohibitive.

Considering a 2D PIV experiment, to achieve
single-pixel resolution of the turbulence statistics with
EPTV, the number of snapshots Nimg2D needed is:

Nimg2D =
Np

b2Nppp
(1)

where Np is the number of particles needed in each bin
to achieve sufficient convergence of the statistics, b is
the linear bin size (supposed square for simplicity) and
Nppp is the particle image density expressed in particles
per pixel. If b = 1 pixel and Nppp = 0.05, this leads
to 10000 snapshots to obtain Np = 500 particles on
average in each bin. In 3D:

Nimg3D =
NpLz
b3Nppp

=
NpNg,z
b2Nppp

= Nimg2DNg,z (2)

where Lz is the depth of the reconstructed volume
discretized with the same resolution of the images,
and Ng,z = b/Lz is the number of independent grid
points in the depth direction. Considering a quite
common case of volume observed by 1Mpixel cameras
and volume aspect ratio of 5:1 between in-plane and
depth direction, Ng,z = 200 points and for the same
case presented above, 2 million snapshots are needed to
reach convergence. This leads, inevitably, to sacrifice
the resolution in terms of bin size b.

Agüera et al. [26] observed that, if velocity
gradients are not adequately resolved, the residual
unresolved velocity gradient contaminates also the
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Reynolds stresses computation. For this reason, they
proposed an innovative approach with polynomial
fitting of the cloud of particles extracted in each
averaging box. This approach surprisingly allows to
follow wavelengths of the order of the averaging box
size and to dramatically reduce the contamination of
the Reynolds stresses due to unresolved mean velocity
gradients. This allows maintaining a rather large bin
size b and still enjoying the resolution of an equivalent
smaller bin. With this approach Agüera et al. [26]
reduced the requirement on the number of samples
ideally up to 27 times in 3D applications.

All the aforementioned methods employ isotropic
averaging bins. Nonetheless, there are several cases
where an obvious choice of elongated bins can be
employed to exploit flow anisotropy and increase
the resolution in the directions where the largest
velocity differences occur. In turbulent wall-bounded
flows, for instance, elongated bins in the wall-parallel
direction clearly allow to maintain the same averaging
area/volume (thus ideally the same number of particles
per bin) with smaller bin size in the wall-normal
direction and, consequently, to improve the resolution
in this direction (see e.g. Refs. [27, 28]). For
instantaneous fields, Di Florio et al. [29] proposed
to stretch the interrogation windows according to
the local direction of the velocity. Later, Scarano
[30] proved that an optimal stretching should be
based on the second derivative of the velocity fields.
Nonetheless, methods aiming to reduce the velocity
difference inside the interrogation window (either
based on velocity [29] or velocity-gradient direction
[5]) have the advantage of increasing the signal-
to-noise ratio of cross-correlation maps. Methods
based on the Hessian of the velocity fields [3,
30] are more rigorously adapting the interrogation
window to minimize the modulation effect on velocity
profiles due to averaging; on the downside, the
difficulty in achieving robust measurements of second
derivatives hinders the application to instantaneous
fields. Astarita [4] proposed to overcome this issue
using the even part of the fluctuating velocity field,
which is a more robust indicator of a modulation effect
due to velocity-profile curvature. However, methods
based on the Hessian have shown some success in
adaptive processes based on ensemble fields, where the
computation of second derivatives is significantly more
robust [31].

In this work, we propose a novel Adaptive
Ensemble PTV (A-EPTV), conceptually similar to the
solution proposed by [31], but with the advantage of
a much slender implementation when combined with
the EPTV approach. The unnecessary requirement
of isotropic averaging can be suppressed by locally
adapting the averaging bin in a recursive process. A

predictor field is estimated using the high-resolution
polynomial-fit method proposed by Agüera et al. [26];
the predictor is used to determine a local stretching
magnitude and direction for the averaging bins.

The working principle of the Adaptive Ensemble
PTV is presented in §2. A validation of the
method with 2D synthetic images of a 1D sinusoidal
displacement, a turbulent channel flow and the flow
around a NACA0012 airfoil is presented in §3. An
experimental application of the method to a jet flow
with a fractal grid located at the nozzle outlet is
reported in §4. Finally, in §5 the main conclusions
of the study are shown.

2. Working principle of the Adaptive
Ensemble PTV

The proposed algorithm, sketched in Figure 1, can
be subdivided into two main phases: 1) predictor
estimation and 2) window adaptation. The first part
of the process coincides with the EPTV procedure as
described by Agüera et al. [26] and briefly described
here for both 2D and 3D cases.

The first step of the process is the identification
of the particles position. For a standard planar PIV,
it consists in identifying local maxima and interpolate
to achieve sub-pixel accuracy (e.g. with Gaussian
interpolation [32] or wavelet-based algorithms [33]).
For volumetric PIV, there is a wealth of methods
to obtain particle positions, including, among others,
standard multi-camera triangulation [34], digital
defocusing [35], tomographic PTV [36, 37], iterative
particle reconstruction [19] and shake-the-box [20].

The particle pairs should be matched between
subsequent exposures. For 2D applications a super-
resolution approach [17, 18] might be required to in-
crease the robustness. In time-resolved applications,
further constraints can be enforced to build particle
tracks, e.g. time consistency and trajectory smooth-
ness [38, 39]. In 3D, since the particle spacing is larger
than in planar PIV, the choice of the matching algo-
rithm is less critical. Nonetheless, it is clear that, if
time-resolution is available, an improvement in recon-
struction quality can be obtained with an intense cross-
talk between particle identification and matching [20].

Once the velocity vectors corresponding to
each snapshot are available, ensemble averages are
performed in bins. The bin size is selected according
to the number of samples and the number of
particles desired in each spot to achieve satisfactory
convergence. The local pdf of the velocity components
can be extracted from the statistical dispersion of
the velocity field itself. The averaging procedure can
be based on top-hat weighting or using a filtering
approach [26].
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Figure 1. Schematic chart of the Adaptive Ensemble PTV process.

The second phase of the algorithm is the
automatic adaptive stretching of the bins. In this work,
a procedure similar to the one proposed by Scarano for
instantaneous fields [30] is implemented. The process
is based on stretching the windows according to the
direction with the largest curvature of the velocity
components.

For this purpose, the Hessian tensor H is
constructed using the predictor obtained from the
standard EPTV (i.e. with isotropic window). In
this implementation the Hessian tensor is calculated
separately for each velocity component, thus providing
different stretching direction for each of them. A
Savitzky-Golay filtering with a 2nd order polynomial
function on a 5× 5 kernel is performed to reduce noise
effects in the computation of the second derivative.
As proposed by Novara et al. [5] for the velocity
gradient, an eigendecomposition in each grid point
is performed to identify the principal directions of
the Hessian tensor, i.e. to spot the directions of
minimum and maximum curvature for each of the
velocity components:

H =


∂2u

∂x2
∂2u

∂x∂y

∂2u

∂x∂z
∂2u

∂y∂x

∂2u

∂y2
∂2u

∂y∂z
∂2u

∂z∂x

∂2u

∂z∂y

∂2u

∂z2

 = BSB∗ (3)

with S being a diagonal matrix containing the
eigenvalues of H , sorted according to their intensity.
The columns of the matrix B are the eigenvectors of
the decomposition, which corresponds to the principal
directions of the curvature along which the bins are

stretched. The ratios of the eigenvalues are indicators
of the anisotropy of the curvature, and consequently
the stretching ratio should be set according to their
value. Following previous works [3, 5], this stretching
process can be easily implemented using an anisotropic
Gaussian function to weight the contribution of each
vector to the turbulence statistics:

w(x, y, z) = exp

(
N∑
i=1

d2i (x, y, z)

2σ2
i

)
(4)

where w(x, y, z) are the weights, N is the number
of the dimension of the space (2 for planar EPTV,
3 for volumetric EPTV), di are the distances (along
the principal directions of H) of each vector position
in the ensemble from the grid point, and σi is the
standard deviation of the Gaussian in each principal
direction. The values of σi are set according to the
local anisotropy of the second derivative. Following
the criteria set by Novara et al. [5] for the velocity-
gradient stretching, for the general application to the
Hessian in 3D:

σ1 =
σ0

3
√
AR31AR21

(5)

σ2 = σ1AR21 (6)

σ3 = σ1AR31 (7)

where 1, 2 and 3 are the principal directions (sorted
for decreasing corresponding singular value), AR31 and
AR21 are the elongation ratios along the direction 2
and 3 with respect to the direction 1, and σ0 is the
spherical Gaussian window width for isotropic analysis
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(i.e. selected to achieve a weight equal to e−1 at the
edge of the averaging bin). For 2D application, the
same relations hold with AR31 = 1.

The aspect ratios are then computed as [5]:

ARn1 = (ARmax − 1 + ε)

(
1− sn

s1

)
+ 1 (8)

where sn is the eigenvalue for the nth direction, ARmax
is the maximum aspect ratio and ε is a parameter which
set the aspect ratio to the maximum value when sn/s1
falls below a certain threshold. Novara et al. [5] set
ε = 0.3 for the velocity-gradient stretching, which locks
the limit ratio for sn/s1 at 0.1 for ARmax = 4. The
same criteria is applied here for the stretching based
on the Hessian.

An additional threshold has been implemented
on the minimum curvature of the velocity profile
which triggers the adaptive algorithm by imposing
bin stretching only if smax = max(s1, s2, s3) ≥
1/b2, being b the bin size. This condition can be
obtained by considering that, if the second derivatives
are computed numerically on a three-point stencil
with size b (i.e. with grid points spaced by b/2),
with a minimum detectable difference of 0.1 pixels
displacements, the order of magnitude of the second
derivative is 2·0.1/(b/2)2 ≈ O(1/b2). This set of
parameters has been used throughout the paper.

The process can, in principle, be iterated to
improve the computation of the second derivatives
and thus the reliability of the windows stretching
procedure. Nonetheless, in our experience, the
algorithm produces only marginal improvements when
iterated, thus all the results presented in the following
have been obtained with one direct execution of the
process.

It has to be underlined that this method reduces
the modulation effects due to the curvature, but
the detrimental effect of unresolved velocity gradients
are still present in the window and contaminate the
estimation of turbulent statistics. Consequently, for
second order-statistics the filtering approach proposed
by Agüera et al. [26] is still highly recommended and
used throughout this work.

3. Validation

3.1. 1D Sinusoidal displacement fields

The algorithm is validated on 2D synthetic images of a
1D sinusoidal displacement with variable wavelength.
A set of 500 image pairs is generated, with particle
image density of 0.01 particles per pixel and size of
640× 640 pixels. The particle images are generated by
the integration of Gaussian spots with diameter equal

to 3 pixels and maximum intensity of 100 counts. The
pixel fill-factor is set equal to 1.

The simulated displacement field is:

u(x, y) = sin

(
2πy

λ

)
(9)

with λ being the wavelength of the displacement,
x, y being the horizontal and vertical directions,
respectively, and u being the velocity component
in the x direction. The sinusoidal test has been
extensively used in PIV to determine the Modulation
Transfer Function (MTF) of the algorithm, thus
giving a straightforward evaluation of the spatial
resolution. Assuming that EPTV only modulates the
exact displacement field, the MTF is calculated by
least-square fitting of the measured displacement with
a sinusoidal function, leading to:

MTF

(
λ

W

)
=

np∑
i=1

uiut,i

np∑
i=1

u2t,i

(10)

with np being the number of grid points and ut being
the true reference displacement, computed according
to Eq. 9.

In Figure 2 the performances of the standard
EPTV algorithm with isotropic and uniform weight,
the enhanced version proposed by Agüera et al. [26]
and the Adaptive EPTV are compared. The bin size b
is set to 16 pixels for the only purpose of demonstration
of the algorithm capabilities. This choice guarantees
good convergence of the statistics, since the average
number of particles per bin is ≈ 1280, according to
Eq. 1 assuming square bins b × b. The grid spacing
is set to 1 pixels in the y direction to minimize effects
of the approximation of the second derivative due to
finite grid spacing. This approach is in line with the
expected configuration in which this method will be
used, where high-resolution of the statistics is sought
and, expectedly, a small grid spacing is set. For
the Adaptive EPTV, the predictor is built with the
polynomial filtering approach of Agüera et al. [26] and
the threshold to activate the stretching is set to 1/b2

as mentioned above.
The MTF is presented as a function of the

normalized frequency, expressed as the ratio b/λ
between the bin size and the wavelength of the
sinusoidal displacement. The normalized frequency is
varied between b/0.1 = 160 and b/1.6 = 10 pixels.
For the standard EPTV and the enhanced version
with polynomial fit, square averaging regions have been
used. As expected, the MTF of the standard EPTV
process follows the theoretical impulsive response of
a top-hat filter, i.e. sinc(b/λ). While for large
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Figure 2. Modulation Transfer Function (top), total
error (center) and random error (bottom) for the sinusoidal
displacement test case for different wavelength λ. The bin size b
is set to 16 pix.

wavelengths the Adaptive EPTV and the EPTV
with polynomial fit [26] have similar performance, an
evident enhancement of the MTF is observed for scales
smaller than the bin size. At b/λ = 1.5, the MTF
of the Adaptive EPTV is still around 0.91, while for
the enhanced PTV with polynomial fit is approaching
about 0.25. Clearly, for smaller wavelengths, the
estimated predictor is not able to deliver a sufficiently
accurate mapping of the second derivatives, thus
hindering the bin stretching.

The accuracy is quantified in terms of total error
δ and random error σ, defined respectively as:

Bottom

Centerline

Top

8πh

3πh

2h

3029
...21

x
z

y

2h

u(y)

Figure 3. Sketch of the domain of the channel-flow database.
Dimensions not in scale. The red squares indicate examples of
region from which data are extracted to generate particle images.

δ =

√√√√ 1

np

np∑
i=1

(ui − ut,i)2 (11)

σ =

√√√√ 1

np

np∑
i=1

(ui −MTF · ut,i)2 (12)

Eq. 12 is again obtained by assuming that the
EPTV process only modulates the exact displacement.
Consequently, the random error can be measured by
the deviation of the measured displacement field from
an amplitude-modulated sinusoidal displacement field,
with modulation equal to the MTF measured by Eq.
10. An insightful derivation of this formula is reported
in [40].

Figure 2 reports the profiles of total (center) and
random error (bottom) as a function of the wavelength.
For the largest tested wavelength, the standard EPTV
error is almost equally shared between total and
random, while for Adaptive EPTV and the enhanced
PTV with polynomial filtering the performances are
similar up to a wavelength of approximately 50
pixels. For smaller wavelengths, the systematic error
becomes the dominant share, with significant accuracy
improvement when using the adaptive procedure.

It should be remarked that, while for the EPTV
the random error is approximately constant for λ <
2b, both the Adaptive EPTV and the EPTV with
polynomial filtering show an increase of the random
error. This might be related to larger uncertainty
in performing the Savitzky-Golay fitting of strongly
spatially-variable displacements, and computing the
corresponding second derivatives for the bin stretching.
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Figure 4. Aspect Ratio for the streamwise velocity component
of the adapted averaging bins with 16x16 pixels windows. The
x and y coordinates are normalized in inner units; y-axis is
represented in logarithmic scales.

Figure 5. Streamwise-averaged crosswise profile of the aspect
ratio of the adapted averaging bins with 16x16 pixels windows.
The second derivative of the velocity field from both the original
DNS velocity profile and from the EPTV with polynomial fitting
is reported alongside. The horizontal dashed line represent the
minimum threshold to activate the bin stretching. The y-axis is
normalized in inner units and represented in logarithmic scales.

3.2. Channel flow

The algorithm has been further tested on a syn-
thetic dataset based on flow simulations from the
Johns Hopkins Turbulence Databases (JHTDB, http:
//turbulence.pha.jhu.edu/). This dataset repre-
sents a good benchmark for experiments in wall-
bounded flows, where the presence of strong velocity
gradients introduces significant systematic errors in the
statistics. This error hinders the direct estimation, for
instance, of the average wall-shear stress, which has a
key role in determining friction drag. The synthetic
test case is based on the dataset of direct numerical
simulations in a channel at friction Reynolds number
Reτ ∼ 1000 [41, 42] with bulk velocity Ub equal to 1.
The DNS domain spans 2 half-channel-heights h from
wall to wall, 3πh in the span-wise direction and 8πh
in the stream-wise direction. The DNS sequence dura-
tion is of one channel flow-through time 8πh/Ub with a
DNS time step of δt = 0.0013h/Ub. This channel-flow
dataset has been recently gaining popularity in the PIV
community as a benchmark for processing algorithms

[43].
To simulate a virtual 2D-PIV experiment, 2D

velocity fields were extracted over a h × 2h domain
(going from the wall to the centerline) in the x − y
plane, similarly to the synthetic test case reported
in Ref. [44]. For each spatial location flow fields
are extracted each 5 DNS time steps, thus providing
200 fields from the entire duration of the simulation.
The flow fields are extracted at 30 different locations,
separated of 0.2h in the z-direction. The 2D sub-
domains extracted from the channel DNS are sketched
in Figure 3. A set of 6000 image pairs is generated
from the DNS flow fields. The images have size 500 ×
1000 pixels, thus corresponding to a resolution of 0.5
pixels per wall unit. The particle image density is equal
to 0.01 particles per pixel. The particle images are
generated by the integration of randomly-distributed
Gaussian spots with diameter equal to 2.5 pixels and
maximum intensity of 100 counts.

The EPTV procedure has been applied to the
set of synthetic images using averaging windows of
16 × 16 pixels. The predictor field fed to the PTV
algorithm has been obtained using a multi-pass [1]
image-deformation interrogation algorithm [2] with
final windows size of 48× 48 pixels.

The results are presented scaled in inner form, i.e.
using the friction velocity uτ = 0.0499 and the viscosity
ν = 5 · 10−5 in the non-dimensional units of the DNS
simulation. Inner-scaled quantities are indicated with
the superscript +.

Based on the EPTV results, stretched averaging
bins have been obtained setting ARmax = 4, ε = 0.3
and minimum value of the largest singular value to
activate the stretching equal to 1/b2, as in the previous
synthetic test case. Figure 4 shows the AR of the
adapted averaging bins computed in this step. Since
mean velocity differences are relevant only in the y-
direction, the AR distribution results approximately
in a step function which assumes value 4 when the
second spatial derivative of the mean velocity profile
in the y-direction is higher than 1/b2. These values
of the wall-normal distance to activate the stretching
depend on the size of the window itself due to the
averaging effect of the EPTV process in building the
predictor. In order to further stress out this point,
Figure 5 compares the streamwise-averaged crosswise
AR profile of the A-EPTV window and the velocity
curvature in the y-direction. The latter is computed
both from the velocity profile reported in the JHTDB
for the channel database and from the polynomial-
fitted EPTV estimation which has been fed to the
adaptive algorithm. The minimum curvature 1/b2

which activates the stretching (in horizontal dashed
line) is reported as well for the 16× 16 pixels window
case. The point where the stretching is activated

http://turbulence.pha.jhu.edu/
http://turbulence.pha.jhu.edu/
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Figure 6. Statistics for the turbulent channel flow test case. Left: profile of average streamwise velocity component for 16x16 pixels
windows. Right: profile of the variance of the streamwise velocity component for 16x16 pixels windows. The results are presented
scaled in inner units.

by the threshold d2u+/dy+
2
> 1/b+

2
corresponds to

y+ < 22 (with b+ being the interrogation window size
expressed in inner units).

In Figure 6, the performances of the adaptive
algorithm are compared in terms of profiles of
streamwise average velocity and velocity fluctuations
against both the ground truth, i.e. the original
profile from the DNS dataset, and isotropic-window
EPTV methods. The adaptive EPTV and the EPTV
procedure by Agüera et al. [26] are capable of
accurately follow the DNS average velocity profile up
to 2 wall units from the wall. This is equivalent to 1
pixel, which is the grid spacing selected for this test.
The standard EPTV procedure, instead, offers a good
estimation of the velocity profile up to 30 wall units, i.e.
up to y ≈ b. The standard EPTV procedure provides
also the worst estimation of the velocity fluctuation
profile, following accurately the DNS profile up to y+ =
46. The Adaptive EPTV procedure and the EPTV
with local polynomial fitting described by Agüera et al.
[26] shows similar performances for y+ > 22, i.e. when
the adaptive algorithm uses windows with AR = 1.
Closer to the wall the adaptive algorithm shows an
improvement with respect to the EPTV with local
polynomial fitting in the estimation of the fluctuation
profile, following accurately the DNS up to y+ = 8.
The EPTV with local polynomial fitting, instead, is
accurate up to y+ = 16. It is worth highlighting that
both the Adaptive EPTV and the EPTV with local
polynomial fitting are able to provide estimations of the
flow statistics with great accuracy up to wall-distances
at least up to half of the averaging bin height.

3.3. Flow around a NACA0012 airfoil

In the previous validation tests the optimal stretching
direction was trivial, since the only relevant second
derivative was ∂2u/∂y2. In addition to this, due to
the absence of (or very limited for the channel flow)

Figure 7. Contour of the velocity magnitude of the reference
field. The highlighted region corresponds to the area depicted in
Figure 8.

Figure 8. Contour of the error magnitude (Right column) in a
inset close to the leading edge for (from top to bottom) standard
EPTV, EPTV with local polynomial fitting and the proposed
Adaptive EPTV. The inset shows the error map in curvilinear
coordinates around the leading edge.
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Figure 9. Principal direction vector plot of the stretched window for the streawmise (top row) and crosswise (bottom row) velocity
components. The arrow color corresponds to the aspect ratio of the stretching. The magnitude of the vectors is scaled directly with
the local aspect ratio of the stretched windows. The arrows are plotted every 10 vectors and every 2 vectors in the streamwise and
crosswise directions, respectively.

gradients in the direction orthogonal to the curvature,
a uniformly stretched window would have provided
similar results to the proposed adaptive algorithm.
In this section, the performances of the adaptive
algorithm are demonstrated in a condition in which
the principal directions of the curvature of the
displacement field are space-dependent, thus requiring
different stretching ratios and orientations of the
averaging bins.
The synthetic test case presented in this section is
based on the flow field around a NACA0012 airfoil
at chord-based Reynolds number equal to 1 · 107 and
at angle of attack of 5 deg. The average flow field is
obtained with XFOIL [45]. The airfoil is discretized
using 160 panels. Free laminar-turbulent transition of
the boundary layer is calculated using the eN method
with N = 9, resulting in a transition at x/c = 0.05
on the suction side and at x/c = 0.75 on the pressure
side. The velocity magnitude contours of the XFOIL
flow field are reported in Figure 7 for reference.

A set of 1000 images is generated with a procedure
similar to the previous synthetic test case. A domain
of 0.5 × 1.5 chords c is discretized with 400 × 1000
pixels, i.e. 800 pixels/c. The particle image density
and characteristics (intensity, diameter, etc.) are the
same of the previous test case. The averaging is
carried out on bins of 32 × 32 pixels, thus resulting
in about 104 particles per bin. The relatively large size
of the averaging bin is adopted to create a test case
representative of the limitations of 3D experiments as
discussed in Sec. 1.
It is worth to remark here, that the virtual PIV images
have been generated only taking into account the mean

flow field, i.e. turbulent fluctuations are not simulated.
As in the previous test cases, averaging bins have been
obtained setting ARmax = 4, ε = 0.3 and threshold
to activate the stretching equal to 1/b2 (with b = 32
pixels).

Figure 8 shows the error magnitude for the
standard EPTV, the polynomial-fitted EPTV and the
Adaptive EPTV over a portion of the field including
the leading edge (as highlighted in Figure 7). The error
has been computed as ε =

√
(u− ut)2 + (v − vt)2,

where u and v are respectively the streamwise and
crosswise velocity, and ut, vt indicate the velocity field
of the ground truth. An inset reporting the error
map in curvilinear coordinates around the leading edge
is reported to highlight the differences. The average
error computed only in the inset and normalized with
the freestream velocity is equal to 10.2%, 3.8% and
3.5% for the standard EPTV, the EPTV with local
polynomial filtering and the proposed Adaptive EPTV,
respectively.

For the standard EPTV process the largest errors
are achieved in the flow acceleration region close to
the leading edge, as shown in the inset of Figure 8.
In general, the standard EPTV process is challenged
by the strong flow acceleration along the entire first
portion of the suction side, and by the strong velocity
gradients close to the airfoil surface.

The EPTV with local polynomial filtering achieves
already a significant improvement due to its ability
to cope with strong local velocity gradients. The
proposed Adaptive EPTV method shows slightly larger
errors close to the leading edge if compared with the
local polynomial fitting, possibly due to inaccuracy in
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the estimation of the principal directions of the Hessian
matrix. Nonetheless, throughout the suction side a
reduction of the error level close to the airfoil surface
is achieved.

The Aspect Ratio and the corresponding principal
direction of stretching for the streamwise and crosswise
velocity components are presented in Figure 9. As
expected, the bin stretching for the u component is
particularly evident on the suction side, where the
flow exhibits the strongest accelerations. For the v
component the stretching is activated only in proximity
of the leading edge and the trailing edge.

4. Experimental application to impinging jet
with fractal grids

The Adaptive EPTV algorithm is tested on an
experimental test case for validation on real data. The
flow field of the jet issued from a nozzle equipped
with a fractal grid as turbulator is analyzed. The
experiments are carried out in the air jet facility at
the University of Naples Federico II. Air is collected
from the environment with a centrifugal blower; an
inverter is used to regulate the input shaft power.
The flow rate is measured using a rotameter, then
the fluid passes through a radiator to control it in
temperature and it is then collected within a stagnation
chamber (internal diameter and length equal to 3D
and 20D, respectively, being D = 20 mm) located
upstream of the nozzle. Two honeycomb grids are
located within the stagnation chamber to abate any
large-scale fluctuation generated in the feeding circuit.
A contoured nozzle is used to carry the airflow through
a short-pipe (6.2D long) characterized by a round exit
section; a terminating cap is located in correspondence
of the nozzle exit section to allow for the accurate
positioning of the grid (Figure 10).

The stagnation chamber and the nozzle are
arranged on a traversing stage allowing for the
displacement along the nozzle axis direction. A glass
square impinging plate is located at a fixed distance
X = 2D from the nozzle exit section. The size of the
glass plate (15D × 15D) is chosen so that boundary
effects on the flow field are negligible. The accuracy
on the nozzle-to-plate distance is of the order 1/20D.

Here and in the following X and Y indicate
the streamwise and lateral coordinate, respectively;
correspondingly, U and V indicate the velocity
components in the X and Y directions. The lower case
u2 is used to indicate the variance of the streamwise
velocity.

The flow is seeded with olive oil particles (about
1µm diameter) generated using a Laskin nozzle. The
mixing between the working fluid and the seeding
particles occurs in a reservoir located upstream of the

Figure 10. Schematic representation of the impinging jet rig
facility.

stagnation chamber. The light source is a Quantel
Evergreen laser (532 nm wavelength, 200 mJ/pulse; ≤
10 ns pulse duration) with an exit beam diameter of
about 5 mm. The PIV imaging system consists of one
Andor Zyla sCMOS 5.5 Mpixels. The camera is aligned
such that it results orthogonal to the laser sheet and
equipped with a 100 mm Tokina objective, with focal
aperture set to f# = 16. The imaged area covers
2D in the streamwise (X) direction and 2.5D in the
lateral direction, thus resulting in a spatial resolution of
50 pix/mm. The acquisition frequency is set to 15 Hz.
The laser is operated in dual-pulse mode, with time
delay between the two pulses of 16µs. The flow rate
is regulated using the rotameter in order to obtain
a Reynolds number (based on the nozzle exit section
diameter D) equal to Re = 15, 000. The resulting bulk
velocity is then Ub = 11 m/s.

The fractal grid employed for this experimental
validation has already been studied for heat transfer
enhancement purposes [46]. The length L0 and the
thickness t0 of the first iteration of the investigated
square fractal grid are equal to 10 mm and 1 mm,
respectively. The grid is characterized by three
iterations; at each iteration j the length Lj and the

thickness tj are halved, i.e. Lj = L0R
j
L and tj = t0R

j
t ,

with RL = Rt = 1/2. For this grid the ratio between
the largest and the smallest bar thickness (i.e. the
thickness ratio tr) is equal to 4. The blockage ratio of
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Figure 11. Statistics for the turbulent fractal jet test case. Top:
profile of mean streamwise velocity component normalised with
respect to the bulk streamwise velocity Ub. Bottom: profile of
the variance of the streamwise velocity component normalised
with respect to U2

b . The profiles are taken at X/D = 0.2.

the grid is equal to 0.32.
The choice of the fractal pattern was driven by

the peculiar features in terms of turbulence production
that were demonstrated in wind tunnel experiments
[47]. Differently from the canonical ones, fractal
grids show a more elongated production region; more
importantly, the location of the peak is related to the
grid geometry [48], making them particularly amenable
for practical applications. The flow field obtained
when placing a fractal grid insert in correspondence
of the round jet exit section was described in the
case of free [49] and impinging jets [50]. In both
cases, the existence of a strong interaction among jet-
like and wake-like behaviour significantly challenges
the accuracy of the capabilities of the PIV algorithm,
requiring a large dynamic range.

A set of 200 snapshots is processed using a
standard EPTV algorithm and the Adaptive EPTV,
with interrogation window size of 64 × 64 pixels grid
with 4 pixels grid spacing. The reference flow statistics
are obtained with a larger dataset of 2000 samples,
allowing excellent convergence using a standard EPTV
with window size of 16 × 16 pixels and the same grid
spacing of 4 pixels (i.e. 75% overlap). The choice of a
final interrogation spot of 64 × 64, which is far from
the desired resolution when using EPTV, is driven

indeed by the need of building with the available
images a reference field with significantly higher spatial
resolution and robust statistical convergence. The
large interrogation window helps in reaching fast
convergence also on the reduced subset of 200 images.

The particle pairs are built similarly to the
previous test case, using a super-resolution [18] PIV
with multi-pass [1] image deformation algorithm [2]
with final window size of 40×40 pixels and 75% overlap.

Figure 11 reports the profiles of the mean
streamwise velocity and of the streamwise normal
velocity variance at the location X/D = 0.2. As
already mentioned, the fractal impinging jet represents
a challenging flow field for the PIV algorithm due
to the strong interaction of jet-like and wake-like
regions, which in turn generate intense shear layers.
In particular, the U/Ub profile measured at X/D =
0.2 features a strong low momentum region in the
lee of the first iteration grid bars. The streamwise
normalised velocity exceeds 1 as a consequence of
the blockage ratio of the grid (which is 32%). The
bulk velocity is indeed based on the mass flow rate
measured by the rotameter. When the grid is placed
in correspondence of the nozzle exit section, the flow
emerging through the holes experiences a significant
acceleration as a consequence of the reduced effective
area. The streamwise velocity is then suddenly
reduced from U/Ub ≈ 1.4 to 0. An overall view
of the mean streamwise velocity field is reported in
Figure 12. The three processes seem to lead to
qualitatively similar results (as also evidenced in Figure
12). Nonetheless, significant differences are observed
from a quantitative analysis. Figure 13 reports the
normalized differences between the EPTV and the A-
EPTV algorithm with respect to the reference flow field
for the mean streamwise velocity and for the variance
of the streamwise velocity. In the shear layer region,
both mean and variance estimated using the EPTV
algorithm show signficant discrepancies with respect
to the reference flow field.

Conversely, the Adaptive EPTV algorithm follows
more closely the reference profile, showing no signifi-
cant differences on the mean flow and only little over-
estimate of the variance in the outer shear layer.

Figure 14 shows the regions where the A-
EPTV algorithm introduces interrogation windows
with aspect ratio different from 1 for the streamwise (a)
and lateral (b) velocity components, respectively. The
region corresponding to both the inner and outer shear
layers requires the largest values of AR, thus leading to
better resolved mean flow gradients. Furthermore, at
X/D=2, in the region where the flow is characterized
by the conversion of streamwise momentum into lateral
one, the algorithm adapts the interrogation window
aspect ratio to accurately measure the strong lateral
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Figure 12. Spatial distribution of the mean streamwise velocity in the case of EPTV (a), Adaptive EPTV (b) and Reference (c).

Figure 13. Statistics for the turbulent fractal jet test case. Top:
difference between the mean streamwise velocity component
obtained with the EPTV and the A-EPTV algorithm and the
reference flow field (Uref ); data are normalised with respect to
the bulk velocity Ub. Bottom: difference between the variance
of the streamwise velocity component obtained with the EPTV
and the A-EPTV algorithm and the reference flow field (u2ref )

normalised with respect to U2
b . The profiles are taken at X/D =

0.2.

Figure 14. Aspect Ratio based on the Hessian of the streamwise
(a) and lateral (b) velocity components of the adapted averaging
bins with 16x16 pixels windows.

velocity gradients.

5. Conclusions

An adaptive principle to improve the spatial resolution
of ensemble PTV is proposed. Complying with the
idea that the main source of systematic errors in PIV is
due to the velocity curvature, the averaging regions are
stretched and oriented along the direction of maximum
curvature. While for instantaneous measurement this
adaptivity principle is hindered by noise amplification
when computing second derivatives, its application is
shown to be robust for mean flow fields computed from
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EPTV.
The results of the validation with synthetic images

and experimental data have demonstrated that a
significant improvement of the spatial resolution can
be achieved with this adaptivity principle. While
this idea has been often used by manual selection
of the stretched bins when the choice is trivial to
be set a priori (for instance in turbulent boundary
layers developing on flat plates), the proposed method
automatically optimizes the local bin stretching. The
only user input is the area of the averaging bin, which
is set by the desired convergence constraint.

It has to be remarked that the Adaptive EPTV
per se does not improve the convergence, which is
solely dependent on the number of particles per bin.
The clear advantage is that a larger bin can be
used without penalizing the resolution, thus in this
sense speeding up the convergence at fixed desired
resolution level if compared to standard EPTV. Notice
that in 3D applications a larger improvement is
foreseeable, thanks to the possibility of exploiting
the full 3D curvature information. The extension to
3D of the algorithm is trivial and already described
in this work (Eqs. 4-8). The Adaptive EPTV
allows reducing significantly the number of samples
required to reach a certain spatial resolution, feature
that is extremely desirable in 3D experiments, where
due to the relatively low seeding concentration (both
due to low image density to reduce reconstruction
artifacts and due to the extension of the observation
region in the third dimension) performing EPTV with
high resolution might be unfeasible due to technical
limitations.

Furthermore, the adaptive EPTV has shown to
work very effectively when local polynomial fitting
by Agüera et al [26] is employed, which allows
high-resolution velocity predictors for bin stretching.
Since the bin stretching compensates for the velocity
curvature, the local polynomial fitting is still to be
included in the process to suppress the detrimental
effect of the residual velocity gradient on turbulent
statistics.
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