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Numerous problems of both theoretical and practical interest are related to finding shortest (or otherwise
optimal) paths in networks, frequently in the presence of some obstacles or constraints. A somewhat related
class of problems focuses on finding optimal distributions of weights which, for a given connection topology,
maximize some kind of flow or minimize a given cost function. We show that both sets of problems can
be approached through an analysis of the large-deviation functions of random walks. Specifically, a study of
ensembles of trajectories allows us to find optimal paths, or design optimal weighted networks, by means of an
auxiliary stochastic process (the generalized Doob transform). The paths are not limited to shortest paths, and
the weights must not necessarily optimize a given function. Paths and weights can in fact be tailored to a given
statistics of a time-integrated observable, which may be an activity or current, or local functions marking the
passing of the random walker through a given node or link. We illustrate this idea with an exploration of optimal
paths in the presence of obstacles, and networks that optimize flows under constraints on local observables.
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I. INTRODUCTION

Shortest paths are one of the main objects of interest
in network science, an interest driven by applications in
transportation networks [1–3], the internet [4–8], and protein-
protein interaction networks [9,10], among other systems.
They also enter into the definition of key structural properties
such as the closeness, the efficiency, or the betweenness cen-
trality [11,12]. The definition of a shortest path between two
nodes can be generalized to include, for example, constraints
or obstacles (see, e.g., [13–16]) or to reach several targets
from one or several sources (see, e.g., [17,18]). A great deal
of work in the applied discrete mathematics, theoretical com-
puter science, and statistical physics communities has dealt
with the solutions of such problems, and the computational
complexity of the algorithms involved to find them.

Generally speaking, this research addresses problems such
as how to find the shortest path between two nodes always
passing, or without ever passing, through another one, but
does not consider situations where a node is visited a fraction
of times. Moreover, these methods cannot be easily extended
to address problems where a given path observable is required
to take a specific (not necessarily extremal) value, which may
be characterized in a statistical sense. For example, it is not
clear how one goes about finding the path or paths that max-
imize the fluctuations (e.g., the variability across realizations
of a stochastic process) of a given current, or the path that
guarantees that a certain node is visited on average twice as
frequently as another node. In more practical terms, what is
the shortest path that a passenger or a data packet can take
without saturating a given node or link? Or what is the choice

that maximizes the number of paths taken without the overall
path length exceeding a certain threshold? These can also be
considered optimal paths in a generalized sense, as they are
chosen to ensure that the statistics of a given observable for
a particle moving across the network takes specific values or
does not exceed certain bounds.

Similarly, one could think of redistributing the link weights
of a network, characterized by a given adjacency matrix, so as
to ensure that a set of nodes is visited with some frequency in
the resulting weighted network, or that no link carries more
than a certain amount of some flow. While this problem is less
intensively investigated than that of optimal paths, examples
can be found in the literature of, e.g., networks that are opti-
mal for sustaining a synchronized dynamics [19–22]. Recent
contributions based on a kindred dynamical-control approach
show how to engineer force fields in many-particle systems so
as to achieve prescribed steady-state distributions [23–25].

In this paper we propose a theoretical approach to unveil
such generalized optimal paths and weight distributions by
studying the statistics of trajectories using large-deviation
methods [26–28]. Specifically, we analyze the large devia-
tions of random walks on graphs [29,30]. This allows us
to find paths that are optimal in the statistical sense out-
lined above, or weight distributions that make a network
optimal for a given statistical characterization pertaining to
the flow of information or physical entities. By biasing the
dynamics with certain observables we obtain the random-walk
stationary distribution that guarantees that such observables
(e.g., the activity associated with a node or link, or a cur-
rent in a specific direction in a spatial network) satisfy some
statistical constraint, which may be related to its mean value,
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fluctuations, or higher-order cumulants. We then employ the
auxiliary process given by the generalized Doob transform
[31–34], to find the transition probabilities which give rise
to the long-time statistics of the above-mentioned observable.
By combining the biased stationary state with the generalized
Doob transform, we extract the probability fluxes of the biased
walk, which highlight the existence of optimal paths. Further-
more, the Doob-transformed process itself yields an optimal
distribution of link weights in the same generalized sense.

We illustrate this versatile approach by finding generalized
optimal paths in random graphs in the presence of constraints.
To this end, we study the trajectories of the maximal entropy
random walk (MERW) [35] in an appropriate trajectory en-
semble using as observable local activities. We also study
constrained optimal weight distributions for maximal current
or flow on spatial networks by means of the standard random
walk (SRW) [36]. These choices have been made as each is
uniquely well suited to the problem under study. Once the
choice of the appropriate process, observables, and trajectory
ensemble is made for a given problem involving generalized
optimal paths or weight distributions, the solution can be
found by a few steps of linear algebra.

While the large-deviation approach lies at the basis of equi-
librium statistical mechanics, and is regarded as the natural
language for dealing with many problems in nonequilibrium
statistical physics [28], its application to the study of networks
has started only recently. We conclude this introduction with
a brief summary of some significant recent research. In the
first work, as far as we are aware, on large deviations of
time-integrated observables of random walks on networks
[29], localization and mode-switching dynamical phase tran-
sitions are revealed. More recently, in a contribution that
has strongly influenced our methodology [30], such localiza-
tion phenomena are explained by means of the generalized
Doob transform, which is also used to shed new light on
the relationship between the maximum entropy random walk
and the standard random walk. Various other processes have
been explored with related methodologies in publications
dealing with, e.g., percolation transitions in single or multi-
layer networks subject to rare initial configurations, [37,38],
paths leading to epidemic extinction [39,40], the connection
between the rate of rare events and heterogeneity in popula-
tion networks [41], or large-fluctuation-induced phase switch
in majority-vote models [42]. Additionally, large-deviation
and rare-event techniques have been employed in the explo-
ration of structural properties, such as the assortativity in
configuration-model networks [43], the study of ensembles of
random graphs satisfying structural constraints [44,45], and
the existence of a first-order condensation transition in the
node degrees [46].

II. THERMODYNAMICS OF TRAJECTORIES
OF RANDOM WALKS

Random walks have been studied in continuous media and
discrete spaces. Among the latter, much recent work has been
devoted to the study of random walks on networks [47,48].
Here we consider two different types of discrete-time ran-
dom walks on networks: the SRW [36] and the MERW [35].
Both are discrete-time Markov chains the components of the

probability vector of which p evolve in time as p j (n + 1) =∑
i � ji pi(n), where the non-negative integer n is the time

step, pi(n) is the probability that a random walker visits node
i at time n, and � ji is the probability of a transition to j
conditioned on the node being in i. As usual,

∑
i pi(n) = 1

for all n, and the probabilities of all possible transitions from
a given node add up to 1,

∑
j � ji = 1.

The SRW is suitable for the study of flow on networks—
currents, fluid flow, goods, etc. [49]—as it considers that a
particle in a node can jump to any of its neighbors with the
same probability (in the case of unweighted networks) or with
probabilities proportional to the link weights (for weighted
networks). Given an unweighted network—this will be our
starting point, though the generalization to weighted networks
does not pose any difficulty—with directed adjacency matrix
A, where Aji = 1 if there is a link pointing from i to j and is
zero otherwise, the entries of the transition matrix � are

�SRW
ji = Aji

kout
i

. (1)

The normalization by the out degree, which is defined as the
number of neighbors joined by outgoing links, kout

i = ∑
j A ji,

ensures the conservation of probability.
The MERW, on the other hand, is most suitable for the

exploration of generalized optimal paths in networks, as it
assigns the same probability to all trajectories joining two
given nodes that comprise the same number of steps (which
the SRW does not do, see Appendix A). The transition matrix
is given by

�MERW
ji = Aji

λ

v j

vi
, (2)

where λ is the largest eigenvalue of the directed adjacency
matrix, and v is the normalized eigenvector associated with it,
Av = λv. For a more detailed discussion of the SRW and the
MERW, as well as references treating other types of random
walks on networks, see Appendix A.

For either type of random walk, a trajectory up to time
τ , ωτ , is given by the sequence of nodes visited at each
step, ωτ = (iτ ← · · · ← i2 ← i1 ← i0). We consider time-
extensive observables of the form Ô(ωτ ) = ∑τ

n=1 ô(in ←
in−1), with ô(in ← in−1) being the increment of the observable
at a time step, the value of which depends on the nodes in−1

and in, which are joined by a link. As the probability as-
signed to the trajectory is P(ωτ ) = �iτ iτ−1 · · · �i2i1�i1i0 pi0 (0),
the probability distribution of the observable is Pτ (O) =∑

ωτ
δ[O − Ô(ωτ )]P(ωτ ). This distribution corresponds to an

ensemble of trajectories with fixed observable O and fixed
time τ . In the long-time limit, it adopts a large-deviation
form Pτ (O) ∼ e−τ I (O/τ ), which is here given in terms of the
time-intensive observable O/τ (see Appendix B for details).
The function I (O/τ ) is called the rate function, which plays
the role of a dynamical entropy. This ensemble of trajectories
is analogous to the microcanonical ensemble of equilibrium
statistical mechanics, and it is generally speaking not the most
useful one to work with. Fortunately, the thermodynamic for-
malism of time-integrated dynamical observables developed
in [26,27] shows how to study the statistics of O in more
suitable ensembles.
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By biasing trajectories with a parameter s—which we
refer to as the tilting parameter—we obtain the s ensem-
ble, where τ is fixed but O is now a fluctuating observable
the probability distribution of which is given by Ps

τ (O) =
Z−1

τ (s) e−sOPτ (O). The normalization factor is a dynamical
partition function which also acquires a large-deviation form
for large τ , Zτ (s) = ∑

O e−sOPτ (O) ∼ eτθ (s), where θ (s) is
the so-called scaled-cumulant generating function (SCGF),
and is related to the rate function by a Legendre-Fenchel
transform [28]. Its role is that of a dynamical free energy,
and in fact from its derivatives one can obtain the cumu-
lants of the time-intensive observable O/τ (see Appendix B).
Crucially, the partition function can be expressed as Zτ (s) =∑

i, j[(�
s)τ ] ji pi(0), where �s is the tilted operator, which is

akin to a transfer matrix, the elements of which are

�s
ji = e−sô( j←i)� ji. (3)

Thus, finding the SCGF θ (s)—which fully characterizes the
statistics of O—reduces, in the long-time limit, to an eigen-
value problem for the tilted operator (3). Actually, by spectral
decomposition it is straightforward to check that, for long
times, θ (s) is given by the logarithm of the largest eigenvalue
of �s. While the derivatives of θ (s) at s = 0 correspond to
the cumulants of O in the typical (unbiased) distribution,
Pτ (O), those evaluated at s �= 0 provide information about the
statistics of O in the tilted (biased) one, Ps

τ (O). For s �= 0 such
statistics is carried by the so-called rare trajectories (as they
are exponentially unlikely), which are not, however, easily
retrieved from the tilted operator (3), as it is not a stochastic
matrix (

∑
j �

s
ji �= 1). Nevertheless, as we later explain, this

unphysical tilted operator can be transformed into a proper
stochastic matrix by means of the generalized Doob trans-
form, revealing the rare trajectories of interest. The latter
arise from the transition probabilities leading to the fluctuation
conjugate to the tilting parameter s.

If instead of keeping fixed the duration of a trajectory
τ , we fix the value that the observable O reaches for each
trajectory—thus allowing τ to fluctuate—, we obtain a differ-
ent statistical ensemble, namely, the x ensemble [50]. In this
ensemble, we shall consider as observable O a local activity,
namely, the number of times a given link (or set of links) is
traversed in a trajectory, having ô( j ← i) = 1 whenever this
occurs and zero otherwise. We denote by P(yO) the probability
of a trajectory yO = (iτ ← · · · ← i2 ← i1 ← i0) that reaches
a fixed value O in a number of steps τ . As the latter fluctuates
from trajectory to trajectory, the probability distribution of the
time duration for fixed O is PO(τ ) = ∑

yO
δ[τ − τ̂ (yO)]P(yO),

where the operator τ̂ counts the number of time steps in a
trajectory. In this case, the dynamical partition function con-
ditioned on a fixed value of O reads

ZO(x) =
∑

τ

e−xτ PO(τ ) =
∑
i, j

[(�x )O] ji pi(0), (4)

which again we write in terms of a tilted operator, namely,

�x = �O(ex − �̃)−1. (5)

Here, �O is a matrix which preserves the transition
probabilities of � only for those transitions (links)
contributing to O, i.e., j ← i such that ô( j ← i) �= 0, the
rest of its entries being zero, and �̃ = � − �O. For large

O (which also corresponds to large τ ), the grand-partition
function acquires a large-deviation form ZO(x) ∼ eOϕ(x),
where eϕ(x) is the largest eigenvalue of �x. The cumulants
of the fluctuating time between observable O updates, τ/O,
can then be obtained from the derivatives of the x-ensemble
SCGF ϕ(x) (see Appendix B).

While the s ensemble and the x ensemble are equivalent
in the τ → ∞ (hence O → ∞, as O is time extensive) limit
[50,51], the former is more natural for the study of time-
averaged observables of the form O/τ , and the latter is more
appropriate for the analysis of their reciprocal, τ/O. In the
following, we will use one or the other depending on the
specific problem under study.

In fact, we will also consider ensembles of biased trajec-
tories with two different tilting parameters. The latter will
be conjugate to two fluctuating time-extensive observables,
or a fluctuating observable and the duration of the trajectory
τ . A description of such ss and sx ensembles, as they are,
respectively, referred to, as well as a more detailed charac-
terization of the ensembles presented above can be found in
Appendix B. In the ss and sx ensembles it will also be pos-
sible to obtain the relevant SCGFs by computing the largest
eigenvalues of certain transfer operators, which are extensions
of those given in Eqs. (3) and (5).

All such tilted operators, as explained above for the s
ensemble and regardless of the ensemble under consideration,
have something in common: they are not stochastic operators.
However, by an application of the generalized Doob trans-
form [31–34]—which for convenience we will just refer to
as the Doob transform in the remainder of this paper—one
obtains an auxiliary process the statistics of which is given by
Ps

τ (O) in the long-time limit. The Doob transform of a tilted
operator is discussed in Appendix C and references therein.
The transformed transition matrix �Doob, which unlike the
tilted operator is a proper stochastic matrix, gives us the set
of transition probabilities that characterize the auxiliary pro-
cess. By multiplying these with the corresponding stationary
probabilities pst, which satisfy �Doobpst = pst, we obtain the
probability fluxes (�Doob) ji pst

i , which are the joint probabil-
ities of being at node i at a given time step, and moving to
node j at the next one. While the transition matrix �Doob

will give us the optimal link weights in order to sustain a
given statistics, the probability fluxes will visually reveal most
clearly the network that results from imposing such statistics
on the observables of interest, and highlight the optimal paths
in it.

III. OPTIMAL PATHS FROM LARGE DEVIATIONS
OF MAXIMAL ENTROPY RANDOM WALKS

A. Biased trajectories in directed rings

We first illustrate the idea of searching for optimal paths
with a simple example. Consider the ring with a shortcut
shown in Fig. 1(a). A particle starts from the node which has
been highlighted in red, and then hops counterclockwise to
the neighboring node, and then hops again always following
the MERW transition probabilities. These are all identically
1, except when the particle reaches the node from which the
shortcut starts, where it may continue along the ring with
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FIG. 1. Finding paths that extremize the cycle length or maximize its fluctuations in simple graphs. (a) Probability distribution of the sample
mean of the cycle length 	 (see text for the definition) of M random walk trajectories on the graph depicted on the upper right corner, starting
and ending at the node highlighted in red, for M = 1, 10, 50, 100. The distribution follows a large deviation principle PM (	) ∼ e−MI (	) for large
M, where only small fluctuations around the mean are Gaussian, since I (	) is not quadratic for large fluctuations. (b) Original 	 distribution
(x = 0) for M = 100, and three tilted distributions: while x = −0.075 maximizes the fluctuations, x = −1.5 and 1.5 peak around the longest
and shortest possible lengths, respectively. The graphs display the probability fluxes as given by the Doob transform (arrow thickness is
proportional to the probability flux). Probability fluxes smaller than the largest value divided by 200 are not displayed for visibility reasons.
(c) SCGF ϕ(x) and path length mean 〈	〉x = −ϕ′(x) and (scaled) fluctuations M(〈	2〉x − 〈	〉2

x ) = ϕ′′(x) for large M. (d) SCGF ϕ(x), 〈	〉x , and
M(〈	2〉x − 〈	〉2

x ), and probability fluxes for x = 3 (shortest path) and x = −0.28 (localized walker), corresponding to the graph depicted in this
panel for x = 0.

probability p ≈ 0.41 or it may take the shortcut with proba-
bility q = 1 − p ≈ 0.59.

We will be interested in the statistics of the length (number
of time steps) of a cyclic walk that starts and ends in the red
node. If the cycle is performed M times, we consider the prob-
ability distribution of the sample mean 	 = M−1 ∑M

i=1 	(i),
where 	(i) is the cycle length of a given realization. For a
single cycle (M = 1), the walker can either follow along the
ring with probability p, which gives 	 = 	p = 12, or take
the shortcut with probability q, for which 	 = 	q = 7 [see
Fig. 1(a)]. As M grows, 	 takes more and more values, and
for sufficiently large M, the distribution centers around the
mean p 	p + q 	q ≈ 9.04 following a large deviation princi-
ple PM (	) ∼ e−MI (	), with fluctuations that are approximately
Gaussian only around the mean, i.e., |	 − 〈	〉| ∼ O(1/

√
M ),

as expected from the law of large numbers and the central
limit theorem. Fluctuations that deviate far from the average
are, however, not Gaussian and they are the prime concern of
large-deviation theory.

In order to unveil optimal paths, we shall focus on the
probability of large deviations of 	. These are studied in the
x ensemble, since we are interested in the fluctuations of the
length (number of time steps) for a given number of cycles.
The duration of the trajectory 	M is thus fluctuating (this
would correspond to τ in Sec. II) and the number of realiza-
tions M is fixed (this would correspond to O in Sec. II). The
latter condition can be achieved by fixing to M the activity
through the link that reaches the red node from the preceding
node in the ring—this is the local observable. We thus take
the probability distribution PM (	), corresponding to M = 100
cycles, and bias it using x as tilting parameter:

Px
M (	) = e−xM	PM (	)/ZM (x). (6)

Here PM (	) = Px=0
M (	), ZM (x) is a normalizing factor, and the

large-deviation regime corresponds to large values of M. In
Fig. 1(b), we show such tilted probability distribution for M =
100 and different values of x, namely, x = −1.5,−0.075, and
1.5—the untilted case x = 0, which was already shown in
Fig. 1(a), is also included for comparison. These choices of
x correspond to the largest (x = −1.5) and smallest (x = 1.5)

possible 〈	〉x, which are of course 	p and 	q, respectively,
and to the value (x = −0.075) that maximizes the fluctuations
〈	2〉x − 〈	〉2

x . This information is obtained from the SCGF
ϕ(x) of the x ensemble of MERW trajectories, which is shown,
together with its first and second derivatives, in Fig. 1(c).
Such derivatives (with the appropriate signs) correspond to
the mean and the (scaled) fluctuations of 	: 〈	〉x = −ϕ′(x) and
M(〈	2〉x − 〈	〉2

x ) = ϕ′′(x).
In this simple directed ring, the analytical expression for

the SCGF ϕ(x) can be readily obtained from the large de-
viations of 	, so one does not need to compute the largest
eigenvalue of the tilted operator in Eq. (5). We briefly re-
view the main steps of the calculation—a detailed derivation
can be found in Appendix D. As each 	(i) is a Bernoulli
trial which takes the values 	p and 	q with probabilities
p and q = 1 − p, the random variable np, quantifying the
fraction of times that the path of length 	p is taken, has
a binomial probability distribution. Its large-deviation form
can be obtained through an application of Stirling’s approx-
imation. By a change of variable we find the distribution of
	 = np	p + (1 − np)	q, which also acquires a large-deviation
form PM (	) ∼ e−MI (	). From the rate function I (	), the SCGF
ϕ(x) = limM→∞ log[ZM (x)]/M is obtained via a Legendre
transform ϕ(x) = −min	[x	 + I (	)], yielding

ϕ(x) = −x	q + log[pe−x(	p−	q ) + (1 − p)]. (7)

The analytical expression of its first derivative shows that the
average 〈	〉x is bounded between 	q and 	p, and approaches
those bounds for large tilting-parameter (absolute) values.
The asymptotic value 	q is reached for positive x, while 	p

corresponds to negative x, as expected for a sufficiently strong
bias towards shorter or longer cycles. In Fig. 1(c), for the
values p, 	p, and 	q under consideration, such extreme values
are already practically reached for |x| ≈ 1, but this value will
change if the shortcut is located elsewhere (see Appendix D).

The probability fluxes corresponding to those same val-
ues for which we show the tilted distributions, namely, x =
−1.5,−0.075, and 1.5, are also displayed in Fig. 1(b). They
highlight the optimal paths in each of the three situations con-
sidered. The extreme values of x correspond to a walk that just
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moves along the ring (for negative x, which favors long paths,
〈	〉x ≈ 	p) or takes the shortcut (for positive x, which favors
short paths, 〈	〉x ≈ 	q). On the other hand, the maximization
of the fluctuations leads to the shortcut being taken or avoided
with probability 1/2. While one can calculate the statistics of
	 for all x without resorting to the x-ensemble tilted generator
(5)—at least for very simple systems the SCGF ϕ(x) of which
can be found analytically—the eigenvectors of such operator
are still needed to compute the Doob transform, and therefore
to obtain the probability fluxes (see Appendix C). Moreover,
the distributions for |x| = 1.5 displayed in Fig. 1(b) are also
based on the Doob-transformed process, as this allows us to
circumvent the challenging task of numerically performing
very strong tiltings, which result in distributions lying on
regions where PM (	) is negligibly small—see the discussion
of an analogous issue in the last section of [52].

While in the illustrative example we have just considered
the resulting optimal paths are trivial, in more complex topolo-
gies our approach unveils paths and weight distributions the
adequacy of which for sustaining given observable statistics
is far from obvious. But before moving on to such more
interesting examples, let us illustrate the point with another
simple case, namely, a ring with alternate bidirectional links
[see Fig. 1(d)], where the original probability fluxes are shown
for x = 0. This allows us to discuss localization phenomena
and diverging times, which will also appear later. In this case
we compute the SCGF from the corresponding x-ensemble
operator, and obtain from its derivatives the mean cycle length
〈	〉x and the (scaled) fluctuations M(〈	2〉x − 〈	〉2

x ). For x = 3
the probability fluxes show the shortest possible path, as ex-
pected, which moves counterclockwise along the ring with
vanishingly small fluctuations. For negative x, however, there
is a vertical asymptote in the SCGF, hence the cumulants
diverge. The probability fluxes for a value of x sufficiently
close to the divergence show a situation where the particle
becomes localized and never reaches the red node from its
clockwise neighbor—see the trajectories for x = −0.28 in
Fig. 1(d). Quite appropriately, 〈	〉x grows unboundedly as x
approaches the divergence and the particle becomes more and
more localized. The mathematical origin of divergences in the
x ensemble is discussed in Appendix B.

B. Constrained optimal paths in random graphs

A more interesting case is considered next, namely, that
of finding optimal paths in the presence of constraints in
random graphs. To provide a concrete illustration, we consider
a random graph of N = 20 nodes with 3N directed links
distributed uniformly at random among them [see Figs. 2(c)
and 2(d)—the links highlighted in colors others than gray will
be discussed below]. Much larger networks with Poissonian
or power-law degree distributions or networks arising from
applications that do not correspond to a precise mathematical
model could be similarly studied.

In this case, a particle repeatedly performs a MERW from
the source node 1 and reaches the target node 20 after 	 steps.
Again, we study the statistics of 	, but this time we also con-
sider whether the particle goes through an obstacle, node 15,
before reaching the target node. Here, “obstacle” is used in
a loose sense to indicate that some constraint, based on how

FIG. 2. Finding optimal paths in random graphs in the presence
of constraints. (a) Average length 〈l〉sx of path joining nodes 1
(source) and 20 (target) in the graph shown in panels (c) and (d) as
a function of the tilting parameters s and x. (b) Average activity
〈k〉sx , i.e., number of times that node 15 is visited before the target
is reached, as a function of the tilting parameters s and x. High-
lighted points correspond to probability fluxes shown in the panels
below. The black segment shows the contour line for 〈k〉sx = 1/3.

(c) Probability fluxes obtained from the Doob-transformed process
corresponding to the red circle, the green star, and the blue square
points shown in panel (b). (d) Probability fluxes obtained from the
Doob-transformed process of the magenta triangle in panel (b). Prob-
ability fluxes smaller than the largest value divided by 200 are not
displayed for visibility reasons.

frequently the walker goes through that node, will be applied.
To this end, we employ a second observable, namely, k, which
gives the activity of the obstacle, defined as the number of
times the particle goes through the obstacle before reaching
the target node (see [53] for a similar observable in a diffusion
process). The obstacle can be completely avoided, or it can
just be avoided a fraction of the times that the target node is
reached, or the particle may even be biased to visit it more
frequently than in the natural dynamics—it all depends on the
value of the tilting parameter s conjugate to k (see below).

Before discussing the results of our analysis, we men-
tion a technical point which may be relevant in applications.
The large-deviation analysis allows us to access the average,
fluctuations, and higher cumulants of k and 	, including cor-
relations between them, for different tilting-parameter values.
This is made possible by the existence of a link connecting
node 20 with node 1, which restarts the process when the
target node is reached and guarantees the time-extensivity
of integrated observables (see Appendix B for details). In
practice, this may already be part of the network or, if not,
it should be expressly introduced for the analysis.

We consider an sx ensemble, with tilted probability distri-
bution

Psx
M (k, 	) = e−sMk−xM	PM (k, 	)/ZM (s, x) (8)
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where PM (k, 	) = Ps=0,x=0
M (k, 	), ZM (s, x) is a normalizing

factor, and M is assumed to be fixed and large. The fluctuating
time is again M	, and Mk is an M-extensive—hence time-
extensive—observable (it corresponds to K in Appendix B).
The SCGF ϕ(s, x) is calculated from the largest eigenvalue
of the tilted operator (see Appendix B), and from its partial
derivatives we obtain the average activity 〈k〉sx = −∂sϕ(s, x)
and the average path length 〈	〉sx = −∂xϕ(s, x), which are
shown in Figs. 2(a) and 2(b), respectively. The gray area on
the lower left-hand corner corresponds to a region where the
averages grow extremely rapidly and eventually diverge for
reasons analogous to those given above regarding the diver-
gence shown in Fig. 1(d). For x = 0 (no tilting is applied on 	)
the physical meaning is clear: as s becomes negative, the
particle goes through the obstacle more and more frequently
before reaching the target node, and when s is sufficiently
large and negative it never reaches it. For sufficiently large
and positive s, on the other hand, the particle completely
avoids the obstacle, so we have 〈k〉sx ≈ 0 and a finite 	. As
x is increased (when the tilting favors shorter walks joining
the source node and the target node), the particle goes more
rapidly towards the target, and therefore it requires a larger
negative value of s to start growing steeply and eventually
diverge.

The probability fluxes derived from the Doob transform for
the point (s = −5.24, x = 1.95), which lies very close to the
divergence and is highlighted with a green star in Fig. 2(b), are
shown as green arrows in Fig. 2(c). They clearly display a tra-
jectory where the particle moves back and forth between the
obstacle and its neighbors, without ever reaching the target.
This and other points discussed below are only highlighted in
Fig. 2(b), where the color map shows values of 〈	〉sx, but of
course they correspond to the same parameter-space points in
Fig. 2(a), where the color map shows values of 〈k〉sx.

More importantly, a crossover between a region where
〈k〉sx ≈ 0 and a plateau where 〈k〉sx ≈ 1 is observed in
Fig. 2(a), which corresponds to a crossover from a region
where 〈	〉sx is larger than 4 to a region where 〈	〉sx ≈ 4 in
Fig. 2(b). The probability fluxes for the point (s = −3, x = 5),
which is highlighted with a red disk in Fig. 2(b) and corre-
sponds to 〈	〉sx = 4, are shown as red arrows in Fig. 2(c). They
show a trajectory where the particle moves along the shortest
path between the source and the target, and gets back to the
source after precisely four steps. As the obstacle lies on this
path, we have 〈k〉sx = 1. On the other side of the crossover
and for sufficiently large s and x, for example for (s = 12,
x = 5), the walker chooses the shortest amongst the paths that
avoid the obstacle [see the blue square in Fig. 2(b) and the
blue arrows in Fig. 2(c)].

One may be interested in finding the path or combination of
paths that only visit the obstacle with a given frequency while
reaching the target node in the smallest possible number of
steps. In contrast with the cases discussed above, this type
of generalized path is, as far as we are aware, outside the
reach of the graph-theoretical methods typically used for find-
ing shortest paths, despite its clear practical interest, e.g., in
transportation networks where a given station or airport may
have a limited capacity that cannot be exceeded. To this end
we set the activity of the obstacle to 〈k〉sx = 1/3: one in three
times when the target is reached the walker has passed through

FIG. 3. Optimal weight distribution for the maximization of
flows under constraints in spatial networks. (a) Average global cur-
rent 〈 jg〉sgsl in the graph shown in panels (c) and (d) as a function
of the tilting parameters sg and sl . (b) Average local current through
the highlighted links joining two red nodes 〈 jl〉sgsl as a function of
the tilting parameters sg and sl . Highlighted points correspond to
probability fluxes shown in the panels below. (c) Probability fluxes
obtained from the Doob-transformed process corresponding to the
blue circle and the cyan star shown in panel (b). (c) Probability fluxes
obtained from the Doob-transformed process corresponding to the
light green triangle and the dark green square in panel (b). Probability
fluxes smaller than the largest value divided by 200 are not displayed
for visibility reasons.

the obstacle. We then obtain the set of points of the (s, x)
grid where 〈k〉sx = 1/3 with an error of ±0.001. The resulting
segment is highlighted in black in Fig. 2(b). For x � 4 the
average path length evaluated along the segment practically
reaches an asymptotic value of 〈	〉sx ≈ 4.67, which is then
the shortest time it takes to reach the target while passing
through the obstacle only 1/3 of the times. The probability
fluxes for the point (s = 4.815, x = 4), which is highlighted
with a pink triangle in Fig. 2(b), are shown in Fig. 2(d). Apart
from the shortest path, which occurs with a probability 1/3
(as it should, given that it contains the obstacle), the other 2/3
are equally split among the three second shortest paths, out of
a total of five, that do not cross the obstacle.

IV. OPTIMALWEIGHT DISTRIBUTION FROM LARGE
DEVIATIONS OF STANDARD RANDOM WALKS

We next illustrate how to find optimal weight distributions
that maximize flows in the presence of constraints. To do
so, we consider a SRW on the spatial network shown in
Figs. 3(c) and 3(d)—the links highlighted in colors other than
gray are probability fluxes in certain dynamical regimes that
will be discussed below. This network of N = 100 nodes has
been generated by adding a noise term uniformly distributed
in [−0.5, 0.5] to the x and y coordinates of the nodes of a
10 × 10 square lattice of lattice constant 1. As an additional
source of disorder, the links are equiprobably set to be either
bidirectional or unidirectional (in the latter case, the direc-
tion is also chosen at random). Since we consider periodic

022319-6



GENERALIZED OPTIMAL PATHS AND WEIGHT … PHYSICAL REVIEW E 103, 022319 (2021)

boundary conditions, these links also include those connecting
one end of the network with the opposite end, both in the
horizontal and vertical directions (not shown in the figure for
visibility reasons). The fact that the network is spatial is im-
portant, because the definition of the flow will depend on the
coordinates of the nodes that are traversed. As in the previous
section, our results are meant to be illustrative and thus we
focus on a moderately large and visually simple network, but
the same approach can be employed on any topology without
restriction.

Two observables are considered, a global observable and
a local one. The global observable is the total current along
the horizontal axis, which we denote jg, and is defined as the
increment in x coordinate per unit time in a random walk of τ

time steps. In a jump from node i to node j, the contribution to
the current is thus x j − xi, where xi is the horizontal Cartesian
coordinate of node i. As we are interested in the flow between
the leftmost and rightmost nodes of a finite spatial network,
those links that (due to the periodic boundary conditions)
join nodes at opposite ends in the horizontal direction do not
contribute to the global current jg.

The local observable, on the other hand, is associated with
the highlighted links joining the red nodes in the center of
the graphs displayed in Figs. 3(c) and 3(d). We denote it jl
as it is a local current, which simply adds +1 if the particle
jumps from a red node to another red node that its lying on
the right and −1 if the jump goes towards the left. In any other
case it is zero, and that includes jumps that are predominantly
in the vertical direction or which connect a red node with
a black node or two black nodes. In the definition of jl we
do not consider the coordinates of the red nodes, as we are
just interested in limiting how frequently the walker passes
through those links in a given direction. The role of predom-
inantly horizontal links joining red nodes is in a way similar
to that of the links leading to the obstacle in Fig. 2, though in
this case we are considering weight distributions, not optimal
paths, and currents instead of activities, and both the type of
random walk and the statistical ensemble are different. While
−1 < jg < 1, the maximum value that jl can achieve depends
on the details of the network (see below).

As both currents, jg and jl , are time-averaged observables
(of the form O/τ , see Sec. II), we consider the ss ensemble
(see Appendix B), for which the tilted probability distribution
is

P
sgsl
τ ( jg, jl ) = e−sgτ jg−sl τ jl Pτ ( jg, jl )/Zτ (sg, sl ), (9)

where Pτ ( jg, jl ) = P
sg=0,sl =0
τ ( jg, jl ), and Zτ (sg, sl ) is a

normalizing factor, and the time τ is assumed to be fixed
and large. The SCGF θ (sg, sl ) is computed as the largest
eigenvalue of the corresponding tilted operator (see Appendix
B), and from its partial derivatives we obtain the average
global current 〈 jg〉sgsl = −∂sgθ (sg, sl ) and the average local
current 〈 jl〉sgsl = −∂sl θ (sg, sl ), which are shown in Figs. 3(a)
and 3(b), respectively. Several distinct regions are identified
on both color maps. While for a regular lattice there is a
symmetry under the simultaneous reversal of both tilting
parameters sg → −sg, sl → −sl , i.e., θ (−sg,−sl ) = θ (sg, sl ),
the presence of disorder breaks that symmetry in the finite
disordered spatial network, leading to some quantitative

differences. Such a symmetry would be recovered in the
hydrodynamic limit, where microscopic structural details are
coarse grained [54].

We focus on global currents moving from left to right,
corresponding to sg < 0. We first look at the case where this
is the only tilting parameter, by setting sl = 0 [see the (sg =
−2, sl = 0) point highlighted as a cyan star in Fig. 3(b) and
the probability fluxes depicted as cyan arrows in Fig. 3(c)].
The very large global current 〈 jg〉sgsl ≈ 0.769 [see Fig. 3(a)] is
due to the existence of jumps that advance consistently to the
right along the fastest possible routes. It turns out that those
routes go along the links joining the red nodes [see Fig. 3(c)],
and thus the local current 〈 jl〉sgsl is also relatively large for
this point, specifically 〈 jl〉sgsl ≈ 0.078 [see Fig. 3(b)]. From
the Doob-transformed transition matrix used to calculate the
probability fluxes, one extracts the optimal link weights that
give rise to such currents, as explained in Appendix C.

While keeping such a strong negative tilting parameter sg

so as to generate a strong global current to the right, one
may want to prevent the red links from being overused. In
applications, this may correspond to a transportation route or
communication link that may exceed its limiting capacity. To
achieve that, we set sl to some positive value. Specifically, we
select the value of sl that gives rise to a local current 〈 jl〉sgsl

that is half the value obtained for the same sg and sl = 0,
which corresponds to the point (sg = −2, sl = 2.19). The re-
sulting weight distribution finds alternative routes so that the
particle goes through the red links half as frequently as for
sl = 0, while decreasing the total current by slightly less than
10%. See the blue circle in Fig. 3(b) and the corresponding
blue arrows in Fig. 3(c).

An interesting phenomenon occurs for very strong tilting
of the local current jl . See for example the points (sg =
0, sl = −25) and (sg = 0, sl = 25), highlighted as a dark
green square and a light green triangle in Fig. 3(b), respec-
tively. They correspond to the largest and the smallest value
that 〈 jl〉sgsl can take, which are 1/8 and −1/4. These values
are associated with the appearance of vortices in the trajec-
tories [see Fig. 3(d)], the absolute value of 〈 jl〉sgsl being the
reciprocal of the number of nodes in the cycle. An analogous
vortex dynamics has been found in the simple exclusion pro-
cess on general graphs [55] and in the zero-range process on
a diamond lattice [56], but its appearance in random walks
with periodic boundary conditions has not been previously
reported, as far as we are aware. For sufficiently small (in
absolute value) sg, this vortex dynamics is preserved intact,
as illustrated by the blue and yellow triangle-shaped regions
in Fig. 3(b), which shows that the tilting of the local current
sl prevails over sg there. The corresponding points in Fig. 3(a)
show a zero average global current, as befits such localized
cyclic motion.

To conclude the exploration of the different dynamical
regimes to be found over the spatial network, we focus on
positive values of sg, which correspond to negative global
currents jg. Apart from the vortex regions for very large |sl |
already discussed (where the sign of sg becomes irrelevant),
there is a crossover between a negative and a vanishing local
current jl as sl is decreased from zero towards negative values
[see Fig. 3(b)]. This reflects the fact that, while for sl = 0
(or moderately positive values) the highest current is achieved
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by going across the links joining the red nodes, decreasing sl

forces the local current to be positive, which entails avoiding
those links. As a consequence, the absolute value of the global
current also diminishes [see Fig. 3(a)].

V. DISCUSSION

We have shown how to unveil generalized optimal paths
and weight distributions in networks by means of a large-
deviation approach. By combining the use of ensembles of
trajectories of random walks, where time-integrated observ-
ables play the role of order parameters, and the application
of the Doob transform, one can visualize the paths, or ob-
tain the transition probabilities, that yield a certain statistical
characterization of one or several observables. The statistical
nature of the approach presumes that the random walk is
performed numerous times, either successively in time, or by
many noninteracting random walkers simultaneously. On the
other hand, the results are not statistical in the sense of giving
information on network ensembles (e.g., all random graphs
with a certain degree distribution); quite to the contrary, paths
and weights are found for specific topologies (i.e., specific
realizations, if one considers the network to be an element of
an ensemble), which can be arbitrary—directed, undirected,
weighted, unweighted, spatial, or nonspatial. Time-dependent
networks could be conceivably considered too, by including
a time dependence in the transition probabilities of the pro-
cesses, but that problem is outside the scope of the present
paper.

The most important aspect of our approach is that it shows
how to find optimal paths and weight distributions with con-
straints, which do not have to be limited to one or a given
number of observables. For example, one can find the shortest
route between two nodes that does not pass through an-
other one more than one-fifth of the times the target node is
reached, while another node is visited twice as frequently; or
the optimal weighted links adapted to a certain flow without
exceeding some activity threshold in some set of nodes, and
another one in some specific links. Paths and weights can be
tailored to a given mean value or fluctuations of essentially
any time-integrated observable, so we expect the approach to
be widely applicable.

To our acknowledge, these are problems that are out-
side the reach of standard graph-theoretical algorithms and
combinatorial approaches. Even when some proposals might
exist to address one of the problems we have discussed—
which is in fact quite possible given the large literature
on the subject, spanning various fields of science and
engineering—shortest-path and related algorithms are typ-
ically specific to the problem at hand, small qualitative
changes in the constraints requiring important methodolog-
ical modifications, while our statistical physics approach is
very flexible in this regard. The examples we have shown
are meant to be simple and illustrative, but more complex
scenarios (in terms of network topology, observables, and
constraints) can be similarly studied. All depends on a ju-
dicious choice of the appropriate process—which type of
random walk, though processes involving exclusion or oth-
ers could also be considered—observables, and statistical
ensemble.

The computational complexity of this approach will be that
of the algorithm used to extract the largest eigenvalue (the
logarithm of which is the SCGF) and the associated eigen-
vectors of the tilted generator. While the latter is typically a
sparse matrix, which may constitute a significant numerical
advantage, for very large networks the numerical eigenvalue
problem may be challenging. In such situations, the large-
deviation function can be obtained from numerical approaches
based on the cloning algorithm [57–59] or adaptive sampling
[23,60]. Moreover, the intriguing possibility of finding the
optimal dynamics leading to a prescribed fluctuation by ap-
proaches adapted from reinforcement learning has emerged
lately [61]. Similar machine-learning formulations have been
recently proposed for dealing with numerically intractable
optimization problems in condensed-matter physics [62,63].
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APPENDIX A: RANDOM WALKS ON NETWORKS

We consider two different types of discrete-time random
walks on networks: the standard random walk [36] and the
maximal entropy random walk [35]. Below we will explain
why these choices are particularly well adapted to the prob-
lems at hand—others could conceivably be better addressed
by other random-walk local rules (see, e.g., [48] and refer-
ences therein). The networks are of finite size N , directed
and strongly connected, i.e., a walker can reach any of the
N nodes from any other node along directed links [12]. Con-
nected undirected networks are also implicitly considered as a
particular case.

1. Standard random walk

The SRW—variously known in the literature as generic,
unbiased, normal, or uniform random walk, or simply the
random walk—has been extensively studied in the last two
decades [36,47,48]. A random walker moves every time step
to one of the neighboring nodes that can be reached from
its present location, the specific destination being chosen
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(uniformly) at random among the different possibilities. Given
a network with directed adjacency matrix A, where Aji = 1 if
there is a link pointing from i to j and zero otherwise, the
transition matrix of the SRW, �SRW, thus assigns the same
probability to each of the directed links emanating from a
given node:

�SRW
ji = Aji

kout
i

. (A1)

The normalization by the out degree of node i, defined as the
number of neighbors joined by outgoing links kout

i = ∑
j A ji,

ensures the conservation of probability,
∑

j �
SRW
ji = 1. If

the probability of occupying node i at time step n is de-
noted by pi(n), then this N-state process evolves according
to p j (n + 1) = ∑

i �
SRW
ji pi(n). Due to general properties of

finite Markov chains [65], the system evolves asymptotically
towards a single stationary state, π, limn→∞(�SRW)np(0) = π

[where p(0) is an arbitrary initial state], which is the right
eigenvector of the transition matrix associated with eigenvalue
1, �SRWπ = π. While the SRW on undirected networks is
reversible and the probability of occupying a node in the
stationary state is proportional to its degree, for directed
networks detailed balance is generally not satisfied and the
stationary state in general can only be found approximately
[47]. When considering particle currents or other types of
flows, the SRW appears to be the most natural choice, as
illustrated in Sec. IV.

2. Maximal entropy random walk

In a regular network, where all nodes have the same out
degree, every walk comprising a given number of jumps
governed by Eq. (A1) occurs with the same probability. In
a more general setting, however, sequences of nodes visited
by the walker of the same length, joining a given source
node to a given target node, are not equiprobable. In fact,
the SRW trajectory ωτ = (iτ ← · · · ← i2 ← i1 ← i0) occurs
with probability P(ωτ ) = pi0 (0)/(kout

iτ · · · kout
i1 kout

i0 ), which in
general depends on the out degree of the intermediate nodes.

In order to explore generalized optimal paths in networks
(see Sec. III), it is necessary to start from a Markov chain that
assigns the same probability to all walks of the same number
of steps joining a given pair of nodes. The goal is that the
contributions of specific walks to the solution only depend on
the statistics of the observables under study and not on the out
degree of the visited nodes. For this reason we focus on the
MERW [35], the transition matrix of which is

�MERW
ji = Aji

λ

v j

vi
, (A2)

where λ is the largest eigenvalue of the directed adjacency
matrix, and v is the normalized eigenvector associated to it,
Av = λv. In fact, v is the eigenvector centrality [12], so the
MERW can be considered as a biased random walk [48,66,67]
based on this node-centrality measure. This type of random
walk assigns the same probability to each walk of τ steps

between the source i0 and the target iτ , namely,
pi0 (0)

λτ

viτ

vi0

.

Moreover, it can be shown that the MERW produces Shan-
non entropy at a rate ln λ, which is the highest possible

entropy-production rate for a discrete-time random walk [35].
While the SRW maximizes the entropy locally (i.e., in a single
jump), the MERW optimizes the entropy along a trajectory,
and in fact it has been studied in a quite general framework
of dynamic entropy maximization with constraints [68]. For
undirected networks the stationary-state probability of a given
node is the square of its eigenvector centrality, while for
directed networks one encounters difficulties similar to those
that arise in the characterization of the stationary state of
the SRW (see above). At the end of Appendix C we briefly
comment on a connection between the MERW and the SRW
that has been recently unveiled.

APPENDIX B: ENSEMBLES OF TRAJECTORIES

Time-integrated observables of random walks on networks
are studied by means of a thermodynamic formalism of
trajectories or histories [26]. Specifically, for a trajectory
ωτ = (iτ ← · · · ← i2 ← i1 ← i0), involving τ ∈ N jumps,
we consider time-extensive observables of the form Ô(ωτ ) =∑τ

n=1 ô(in ← in−1), where ô(in ← in−1) is the increment of
the observable at each time step, the value of which depends
on the nodes in−1 and in, which are joined by a link. While
the probability associated to a given trajectory is just P(ωτ ) =
�iτ iτ−1 · · · �i2i1�i1i0 pi0 (0), where the details of the transition
matrix � depend on the choice of random walk, the prob-
ability distribution of the observable is Pτ (O) = ∑

ωτ
δ[O −

Ô(ωτ )]P(ωτ ). This distribution corresponds to an ensemble
of trajectories (walks) with fixed observable O and fixed time
τ . If the random walk is ergodic, it acquires a large-deviation
form, which in terms of the time-intensive observable O/τ

is Pτ (O) ∼ e−τ I (O/τ ), where the function I (O/τ ) is called the
rate function, and plays the role of a dynamical entropy.

This ensemble of trajectories is analogous to the micro-
canonical ensemble of configurations in equilibrium statistical
mechanics, and, also in this context, it is less useful to work
with than other ensembles that yield equivalent results in
the τ → ∞ limit. In the following we will briefly review
the thermodynamics of trajectories approach to the study of
the large deviations of such time-integrated observables. The
main theoretical framework is developed in [27], though some
of the developments that we use are more recent—appropriate
references are cited below.

1. s ensemble

By biasing each trajectory with a tilting parameter s conju-
gate to the observable O, we obtain the s ensemble Ps

τ (O) =
Z−1

τ (s) e−sOPτ (O), where the normalization factor is a dy-
namical partition function Zτ (s) = ∑

O e−sOPτ (O). In this
ensemble, τ is still fixed, but O is not, as it can fluctuate—
instead, the tilting parameter s, which plays a role similar to an
inverse temperature, is fixed. For large τ , the partition function
also acquires a large-deviation form, Zτ (s) ∼ eτθ (s), where the
so-called scaled-cumulant generating function θ (s) is related
to the rate function defined above by a Legendre-Fenchel
transform. The SCGF can be seen as a dynamical free energy,
the derivatives of which yield the cumulants of O:

lim
τ→∞

〈〈Op〉〉s

τ
= (−1)p d pθ (s)

dsp
, (B1)
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〈〈Op〉〉s being the pth-order cumulant of O for a certain value
of s. We focus on the first and second derivatives, correspond-
ing to the average value and the fluctuations. While these
derivatives evaluated at s = 0 yield a statistical characteriza-
tion of the natural dynamics, we will also consider them for
s �= 0, which (as shown below) corresponds to a dynamics
that does not conserve probability. In Appendix C we explain
how to obtain proper stochastic dynamics that yield the same
statistics for O that are found for s �= 0.

It turns out that the partition function can be written as
Zτ (s) = ∑

i, j[(�
s)τ ] ji pi(0), where the transfer matrix �s is

the tilted operator, the matrix elements of which are

�s
ji = e−sô( j←i)� ji (B2)

for a given random-walk transition matrix � ji. The largest
eigenvalue of this matrix corresponds to eθ (s) [27]. Finding
the statistics of O thus becomes an eigenvalue problem of the
tilted generator, which is not a stochastic generator,

∑
j �

s
ji �=

1 for s �= 0.

2. ss ensemble

If we consider two time-integrated observables instead of
one, let them be denoted as O1 and O2, which can fluctuate
in a trajectory of fixed duration τ , then we are in the ss
ensemble, Ps1s2

τ (O1, O2) = Z−1
τ (s1, s2) e−s1O1−s2O2 Pτ (O1, O2).

Here s1 and s2 are two tilting parameters conjugate to O1 and
O2, respectively. The ss ensemble is the ensemble of choice
for the study of constrained flows in networks developed in
Sec. IV. The large-deviation form of the partition function is
in this case Zτ (s1, s2) ∼ eτθ (s1,s2 ), and it can be obtained again
by computing the largest eigenvalue of the tilted operator,

which adopts the form

�
s1s2
ji = e−s1ô1( j←i)−s2 ô2( j←i)� ji. (B3)

From the (first-, second-, or higher-order) derivatives of
θ (s1, s2) with respect to s1 or s2 only, one obtains the cu-
mulants of O1 and O2. The cross derivatives yield the O1O2

correlations:

lim
τ→∞

〈�O1�O2〉s1s2

τ
= ∂2θ (s1, s2)

∂s1∂s2
, (B4)

where �O1 = O1 − 〈O1〉s1s2 , and �O2 is defined analogously.

3. x ensemble

If instead of keeping fixed the duration of a trajectory
τ we fix the value that the observable O reaches for each
trajectory—while allowing τ to fluctuate—we obtain a dif-
ferent statistical ensemble, namely, the x ensemble [50]. We
focus the description of this ensemble on the case in which the
observable is a local activity that equals 1 if a given link (or set
of links) is traversed, or zero otherwise, as this is the case that
we explore in Sec. III. What follows is a discrete-time version
of the discussion to be found in Sec. IV of [51].

The probability that the observable reaches a given value O
at time τ is the probability that the link or links that contribute
to O are traversed at times τ1, τ2, . . . , τO−1, τO = τ , where all
but the last one can take any value. In terms of the operator
�O, which preserves the transition probabilities of � only for
those transitions (links) contributing to O, and �̃ = � − �O,
this probability is given by

PO(τ )=
∑

ji

∑
0�τ1�···�τ

[�O�̃τ−τO−1−1 · · · �O�̃τ1−1] ji pi(0).

(B5)
The x-ensemble probability distribution is Px

O(τ ) =
ZO(x)−1 e−xτ PO(τ ), where the normalization factor is

ZO(x)=
∞∑

τ=0

e−xτ PO(τ ) =
∑

ji

∞∑
τ=0

e−xτ
∑

0�τ1···�τ

[�O�̃τ−τO−1−1 · · · �O�̃τ1−1] ji pi(0)

=
∑

ji

∞∑
�τ1=0

· · ·
∞∑

�τO=0

[
e−x�O(e−x�̃)�τO · · · e−x�O(e−x�̃)�τ1

]
ji pi(0)

=
∑

ji

[(
e−x�O

∞∑
�τ=0

(e−x�̃)�τ

)O]
ji

pi(0) =
∑

ji

[(�x )O] ji pi(0). (B6)

The auxiliary time-increment variables �τ1 = τ1 − 1, �τ2 =
τ2 − τ1 − 1, . . ., �τ0 = τ − τO−1 − 1, the values of which are
unrestricted due to the sum over τ , are introduced in the
second line so as to emphasize that there are just O identical
factors of the form e−x�O

∑∞
�τ=0(e−x�̃)�τ . Once the sum

over �τ is performed (see the discussion below), the result
is a dynamical grand-partition function written in terms of a
transfer operator:

�x = �O (ex − �̃)−1. (B7)

This is the tilted operator for the x ensemble.

For large O, which also corresponds to large τ , the grand-
partition function acquires a large-deviation form ZO(x) ∼
eOϕ(x), where eϕ(x) is the largest eigenvalue of �x. The cu-
mulants of the fluctuating time τ can then be obtained from
the derivatives of ϕ(x):

lim
O→∞

〈〈τ p〉〉x

O
= (−1)p d pϕ(x)

dxp
. (B8)

This ensemble is equivalent to the s ensemble in the large
τ (large O) limit—see [50,51], the discussion of which for
continuous-time dynamics can be easily adapted to discrete
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time. Nevertheless, for finding optimal paths the x ensemble
is more natural, as one is interested in finding the number of
steps (i.e., the fluctuating time) needed to reach certain target
nodes. The length of the walk between consecutive observable
increments, τ/O for fixed and large number of repetitions O,
is more appropriate for the task than the s ensemble O/τ , for
fixed and large τ , even if one can be easily obtained from the
other. A simple mapping relating the large-deviation functions
of one and the other ensemble exists—see [50], as well as the
pertinent discussion in Appendix C.

Since the transfer operator in Eq. (B7) results from the
sum of the matrix series

∑∞
�τ=0(e−x�̃)�τ , and this sum only

converges for x > log(λmax), where λmax is the largest eigen-
value of �̃, only in that range is the SCGF well defined.
As we move along the x axis towards smaller values and
we get sufficiently close to log(λmax) we see a divergence
in the SCGF, and consequently in (minus) its first derivative
〈τ 〉/O. In Sec. III the physical meaning of such divergences is
clarified. A divergence is clearly observed in Fig. 1(d)—and
also in Figs. 2(a) and 2(b), in the case of the sx ensemble,
see below—and explained in the text that discusses it. In the
case of Fig. 1(c), there is no such divergence, as the largest
eigenvalue of �̃ for the ring with a shortcut is λmax = 0.
Physically, it is obvious that no divergence is possible there,
as the red node is always reached.

4. sx ensemble

We next consider an ensemble involving two observables O
and K in a trajectory of duration τ , like in the ss ensemble. In

this case, however, O is fixed (i.e., the trajectory ends when O
reaches a certain value) and K is a fluctuating observable that
is a local activity. Moreover, the duration τ is also fluctuating.
This is the sx ensemble, and to the best of our knowledge it
has not been studied previously. The tilted probability in this
ensemble has two tilting parameters s and x:

Psx
O (K, τ ) = Z−1

O (s, x) e−sK−xτ PO(K, τ ) (B9)

where PO(K, τ ) is the probability that an unbiased trajectory
has a given duration τ and the fluctuating observable reaches
a certain value K by the time the other observable reaches its
fixed value O. The corresponding grand-partition function is

ZO(s, x) =
∑

K

∑
τ

e−sK−xτ PO(K, τ ) ∼ eOϕ(s,x), (B10)

where the right-hand side takes the expected large-deviation
form with SCGF ϕ(s, x).

We again obtain the SCGF ϕ(s, x) from the largest eigen-
value of a transfer operator. To do so, this time we need to
split the original transition matrix into three parts:

� = �O + �K + �̂ (B11)

where the three terms of the right-hand side include all tran-
sitions that result in an update of observable O, all transitions
that result in an update of K , and the rest of the transitions,
respectively. We obtain

ZO(s, x) =
∑

K

∞∑
τ=0

e−sK e−xτ
∑

ji

∑
0�τ1�···�τ

[�O�̂τ−τO+K−1−1�K · · · �O�̂τ2−τ1−1�K�̂τ1−1] ji pi(0)

=
∑

ji

∞∑
τ=0

e−xτ
∑

0�τ1�···�τ

∑
K

[�O�̂τ−τO+K−1−1(e−s�K ) · · · �O�̂τ2−τ1−1(e−s�K )�̂τ1−1] ji pi(0) (B12)

where, apart from those sums made explicit, we are in fact also
summing over all possible orders of occurrence of the K and
O transitions contained in �K and �O, respectively. We have
split the e−sK factor into K factors of the form e−s, associating
each of them to one occurrence of �K .

As all possible values of K are summed over in Eq. (B12),
we can combine the (tilted) transitions e−s�K and those in-
cluded in �̂—we thus put together every transition that does
not contribute to O, including the s tilting in those contributing
to K . We are in a situation analogous to that of the first line of
Eq. (B6), but replacing �̃ by �̂ + e−s�K . Then, by splitting
the e−xτ on the different operators, and finally summing over
all possible values of the intermediate times τ1, τ2, . . ., just
as we did in our discussion of the x ensemble, we obtain
ZO(s, x) = ∑

ji[(�
sx )O] ji pi(0), with a tilted operator:

�sx = �O(ex − �̂ − e−s�K )−1. (B13)

Our remarks on the convergence of the x-ensemble operator
also apply in this case. And in fact an example of a region

in tilting-parameter space where the sum over τ does not
converge is shown in Fig. 2.

From ϕ(s, x) = lim O→∞ 1
O log ZO(s, x) one can as usual

obtain mean values, fluctuations, and higher-order cumulants
of K and τ by taking derivatives. In Sec. III we consider the
mean values

〈K〉
O

= −∂sϕ(s, x),
〈τ 〉
O

= −∂xϕ(s, x), (B14)

in the limit of large O (which also corresponds to large K and
large τ , as both are O extensive). The second derivatives with
respect to the same tilting parameter yield the fluctuations, and
the cross derivatives are again the correlations between K and
τ for fixed and large O.

APPENDIX C: DOOB TRANSFORM

The Doob transform allows us to obtain a stochastic matrix
giving rise to the same statistics as the tilted operator (which
is not stochastic) for some observables of interest (O, τ , etc.).
From the resulting transition matrix �Doob we can obtain the
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transition probabilities (link weights of the resulting weighted
networks) that give rise to such statistical behavior in the long-
time limit.

In Figs. 1–3 we show the Doob-transformed dynamics
corresponding to some observable statistics of interest (as
given by some values of the tilting parameters). More pre-
cisely, we display probability fluxes, which are the product of
the Doob-transform transition probabilities and the stationary
state distribution �Doobpst, where pst is the vector the compo-
nents of which are the stationary probabilities associated with
the different nodes. While the entries of �Doob are transition
probabilities, (�Doob) ji pst

i is the joint probability of occupying
node i in a given time step and node j in the next one, which is
the probability flux of j ← i. The sizes of the colored arrows
in Figs. 2(c), 2(d), 3(c), and 3(d), as well as the arrows shown
for x �= 0 in Figs. 1(b) and 1(d), are proportional to these
probability fluxes.

We next discuss the Doob transform in each of the ensem-
bles reviewed in Appendix B. In the s ensemble, the tilted
operator �s is linked to the biased probability Ps

τ (O) through
the largest eigenvalue eθ (s). The left and right eigenvectors
associated with it are ls and rs, respectively: �srs = eθ (s)rs,
lTs �s = eθ (s)lTs , where T indicates transposition. However the
tilted operator is not a proper stochastic matrix (

∑
j �

s
ji �= 1),

so it does not provide the transition probabilities leading to
the fluctuation of interest. In order to convert it into a proper
stochastic matrix one resorts to the generalized Doob trans-
form [31–34], which is

�s
Doob = e−θ (s)L̂s�

sL̂−1
s , (C1)

where L̂s is a diagonal matrix which has the components of
ls along the diagonal. The Doob transform �s

Doob conserves
probability:

∑
j (�

s
Doob) ji = e−θ (s)lTs �sL̂−1

s = 1T , where 1
is the unit vector. And it has the stationary distribution
pst = L̂srs: �s

Doobp
st = e−θ (s)L̂s�

sL̂−1
s pst = e−θ (s)L̂s�

srs =
L̂srs = pst.

The Doob transform can be generalized to the ss ensemble
in a straightforward manner: in Eq. (C1) the matrices and the
SCGF are now functions of both s1 and s2, but otherwise the
expression remains intact,

�s1s2
Doob = e−θ (s1,s2 )L̂s1s2�

s1s2 L̂−1
s1s2

, (C2)

and satisfies analogous properties of stochasticity and having
the same stationary distribution as the tilted dynamics.

The x-ensemble tilted operator �x satisfies �xrx = eϕ(x)rx,
lTx �x = eϕ(x)lTx , where lx and rx are again the eigenvectors
associated with the maximum eigenvalue eϕ(x). In this case,
the Doob transform is

�x
Doob = e−xL̂x�

s=ϕ(x)L̂−1
x , (C3)

where L̂x is a diagonal matrix which has the components of lx
along the diagonal. In fact this is just a rewriting of Eq. (C1)
in terms of x-ensemble parameters, based on the ensemble
equivalence whereby θ (s) = x and ϕ(x) = s when the left
eigenvectors in both ensembles are equal [50,51].

The Doob transform of the sx ensemble is written in terms
of the left eigenvector of �sx associated with the eigenvalue
eϕ(s,x), lsx, more precisely on its rearrangement as a diagonal

matrix L̂sx. It is given by

�sx
Doob = e−xL̂sx�

s,s′=ϕ(s,x)L̂−1
sx . (C4)

This is just a rewriting of Eq. (C2) in terms of sx-ensemble
parameters, based on the ensemble equivalence whereby
θ (s, s′) = x and ϕ(s, x) = s′ when the left eigenvectors in both
ensembles are equal. These relations are like those between
the s and the x ensembles fixing one of the s variables (namely,
s, which plays the role of s1).

It seems pertinent to conclude by highlighting a connection
between the SRW and the MERW that has been recently
unveiled by means of the Doob transform. It turns out that
the MERW is the Doob transform of the s-biased SRW for
the observable

∑
i log kout

i , where the sum is taken over the
nodes visited in a walk, with tilting parameter s = −1 [30].
While in the highly symmetric case of regular networks both
random walks are equivalent, important qualitative differences
in the trajectories are observed already in the presence of
small deviations from regularity, including localization effects
[35]. In a large-deviation framework, these are a consequence
of biasing the SRW in such a way that the walker favors visit-
ing nodes with a larger (logarithm of the) degree. Dynamical
phase transitions towards localized states in biased SRWs on
networks are more generally explored in [29].

APPENDIX D: LARGE DEVIATIONS OF A RANDOM
WALK ON A DIRECTED RINGWITH A SHORTCUT

In the case of the random walk on a directed ring with
a shortcut studied in the first part of Sec. III.A, one can
analytically obtain the SCGF of x ensemble ϕ(x) from the
large deviations of the probability distribution of the sample
mean of the cyclic-walk length 	.

A cyclic walk that ends at the starting node is performed
M times in succession, with cycle lengths 	(1), 	(2), . . . 	(M ),
where each 	(i) is a Bernoulli trial which takes the values 	p

and 	q with probabilities p and q = 1 − p, respectively. Let np

be a random variable that gives the fraction of cycles of length
	p that occur in the sequence, the probability distribution of
which takes the following binomial distribution:

PM (np) = M!

(npM )![(1 − np)M]!
pnpM (1 − p)(1−np)M . (D1)

For large M a straightforward application of Stirling’s
approximation, M! ∼ MMe−M , yields the large-deviation
form PM (np) ∼ e−MI (np), where I (np) = DKL(np||p) =
np log[np/p] + (1 − np) log[(1 − np)/(1 − p)] is the
Kullback-Leibler divergence between a Bernoulli
trial with probability p and one with probability
np. Such rate function I (np) achieves its minimum
(zero) for np = p, which corresponds to the mean
value, 〈np〉 = p. Notice that for small fluctuations
around the mean, i.e., |np − p| ∼ O(1/

√
M ), I (np)

can be approximated up to second order as I (np) ≈
(np − p)2/[2p(1 − p)] + O[(np − p)3], which corresponds
to the central limit theorem prediction.

As we are interested in the statistics of 	 = M−1 ∑M
i=1 	(i),

which can be rewritten as 	 = np	p + (1 − np)	q, we sim-
ply change variables. The probability distribution of 	 thus
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acquires the large-deviation form

PM (	) ∼ e−MI (	). (D2)

Here, I (	) is just I[np = (	 − 	q)/(	p − 	q)], and the Jacobian
factor of the change of variable has been neglected as it does
not alter the dominant exponential form of the distribution for
large M.

The number of times M that the random walker returns to
the starting node is fixed, but the duration of the trajectory is
fluctuating. Therefore, we study the random-walk trajectories
in the x ensemble. The partition function of the x-ensemble
distribution Px

M (	) = Z−1
M (x)e−xM	PM (	) takes the form

ZM (x) =
∑

	

e−xM	PM (	) ∼ eMϕ(x), (D3)

where the SCGF ϕ(x) = −min	[x	 + I (	)], which is the Leg-
endre transform of the rate function I (	), is obtained from a
saddle-point approximation.

We then minimize x	 + I (	), which amounts to finding
the value 	∗ such that I ′(	∗) = −x, so we can write ϕ(x) =
−x	∗ − I (	∗). The minimum is found for

	∗ = pe−x(	p−	q )	p + (1 − p)	q

pe−x(	p−	q ) + (1 − p)
. (D4)

In terms of px = pe−x(	p−	q )/[pe−x(	p−	q ) + (1 − p)], 	∗ =
px	p + (1 − px )	q, which is the mean length for a process that
avoids taking the shortcut with probability px. The SCGF is

then

ϕ(x) = −x[px	p + (1 − px )	q] − DKL(px||p), (D5)

where DKL(px||p) is the Kullback-Leibler divergence between
a Bernoulli trial with probability p and one with probability
px. This expression can be simplified so as to yield the simple
form that appears in the main text:

ϕ(x) = −x	q + log[p e−x(	p−	q ) + (1 − p)]. (D6)

As expected, the same result is obtained from the analytical
calculation of the largest eigenvalue of the x-ensemble transfer
operator for the directed ring (B7).

The first derivative of the SCGF yields the average cyclic
path length:

〈	〉x = −ϕ′(x) = 	q + (	p − 	q)
p

p + (1 − p)ex(	p−	q )
. (D7)

For large absolute values of x, 〈	〉x ≈ 	q if x > 0, and 〈	〉x ≈
	p if x < 0. This is in agreement with the asymptotic values
observed in Fig. 1(c), and with the intuitively expected result
of a strong bias towards shorter or longer paths, respectively.
As x appears multiplying the difference between path lengths
in the exponent x(	p − 	q), a weaker (stronger) bias will be
required to approach the asymptotic values in rings where the
shortcut starts closer to the beginning (end) of the path around
the ring.
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