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SPECTRAL PROPERTIES OF GEOMETRIC-ARITHMETIC INDEX

JOSE M. RODRIGUEZ AND JOSE M. SIGARRETA

ABSTRACT. The concept of geometric-arithmetic index was introduced in the chemical graph theory recently,
but it has shown to be useful. One of the main aims of algebraic graph theory is to determine how, or whether,
properties of graphs are reflected in the algebraic properties of some matrices. The aim of this paper is to
study the geometric-arithmetic index GA; from an algebraic viewpoint. Since this index is related to the
degree of the vertices of the graph, our main tool will be an appropriate matrix that is a modification of
the classical adjacency matrix involving the degrees of the vertices. Moreover, using this matrix, we define
a GA Laplacian matrix which determines the geometric-arithmetic index of a graph and satisfies properties
similar to the ones of the classical Laplacian matrix.
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1. INTRODUCTION

A single number, representing a chemical structure in graph-theoretical terms via the molecular graph, is
called a topological descriptor and if it in addition correlates with a molecular property it is called topological
index, which is used to understand physicochemical properties of chemical compounds. Topological indices
are interesting since they capture some of the properties of a molecule in a single number. Hundreds of
topological indices have been introduced and studied, starting with the seminal work by Wiener in which
he used the sum of all shortest-path distances of a (molecular) graph for modeling physical properties of
alkanes (see [45]).

Topological indices based on end-vertex degrees of edges have been used over 40 years. Among them,
several indices are recognized to be useful tools in chemical researches. Probably, the best know such
descriptor is the Randié¢ connectivity index (R) [34]. There are more than thousand papers and a couple of
books dealing with this molecular descriptor (see, e.g., [2], [15], [17], [20], [25], [27], [31], [36], [37], [40] and
the references therein). During many years, scientists were trying to improve the predictive power of the
Randi¢ index. This led to the introduction of a large number of new topological descriptors resembling the
original Randi¢ index. The first geometric-arithmetic index G A1, defined in [44] as

dyd,
uviE(G) 3 (0 + o)

where uv denotes the edge of the graph G connecting the vertices u and v, and d,, is the degree of the vertex
u, is one of the successors of the Randi¢ index. Although GA; was introduced just a few years ago, there
are many papers dealing with this index (see, e.g., [9], [10], [38], [39], [41], [44] and the references therein).
There are other geometric-arithmetic indices, like Z, , (Zo,1 = GA1), but the results in [9, p.598] show that
the GA; index gathers the same information on observed molecule as other Z, , indices.

The reason for introducing a new index is to gain prediction of some property of molecules somewhat
better than obtained by already presented indices. Therefore, a test study of predictive power of a new

GA = GA(G) =
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index must be done. The GA; index gives better correlation coefficients than Randié¢ index for many
physico-chemical properties of octanes, but the differences between them are not significant. However,
the predicting ability of the GA; index compared with Randi¢ index is reasonably better (see [9, Table
1]). Furthermore, the improvement in prediction with GA; index comparing to Randié¢ index in the case
of standard enthalpy of vaporization is more than 9%. Hence, one can think that GA; index should be
considered in the QSPR/QSAR researches.

Throughout this paper, G = (V,E) = (V(G), E(G)) denotes a (non-oriented) finite simple (without
multiple edges and loops) connected graph with £ # A Note that the connectivity of G is not an important
restriction, since if G has connected components Gy, ...,G,, then GA;(G) = GA1(G1) + x4 GA1(G,);
furthermore, every molecular graph is connected.

Spectral graph theory is a useful subject that studies the relation between graph properties and the
spectrum of some important matrices in graph theory, as the adjacency matrix, the Laplacian matrix, and
the incidence matrix, see e.g. [1], [6], [18]. Eigenvalues of graphs appear in a natural way in mathematics,
physics, chemistry and computer science. One of the main aims of algebraic graph theory is to determine
how, or whether, properties of graphs are reflected in the algebraic properties of such matrices [18]. Many
papers study several topological indices from an algebraic viewpoint (for instance, [21], [36] and [37] study
the Randi¢ index, and [39] deals with the geometric-arithmetic index).

The aim of this paper is to obtain new results on the geometric-arithmetic index GA; from an algebraic
viewpoint. Since this index is related to the degree of the vertices of the graph, our main tool will be
an appropriate matrix, denoted by D, that is a modification of the classical adjacency matrix involving the
degrees of the vertices. Using D, we will define a GA Laplacian matrix U and we will prove that it determines
the geometric-arithmetic index of a graph; besides, we show that U satisfies many properties of the classical
Laplacian matrix. It is usual to define energies associated to some topological indices (see, e.g., [21]). Along
the paper we denote by n the order n = [V (G)||of the graph G and by m its size m = ||[F/(G)|| The minimum
degree of a graph is denoted by d and the maximum by A. We will denote by tr(M) the trace of the matrix
M.

2. BOUNDS FOR GA;

In order to state some bounds for GA; we need some previous technical results.

Lemma 2.1. Let [ be the function f(t) = % on the interval [0,€ ). Then [ strictly increases in [0,1],
strictly decreases in [1,€ ), f(t) =1 if and only if t = 1 and f(t) = f(to) if and only if either t = ty or
t=t,".

Proof. The statements follow from f§t) = ?&7{4@ . U

Corollary 2.2. Let g be the function g(z,y) = igf with 0 < a > x,y > b. Then Qa—f? > g(x,y) > 1. The

equality in the lower bound is attained if and only if either x = a and y = b, or v = b and y = a, and the
equality in the upper bound is attained if and only if x = y. Besides, g(x,y) = g(zSy9 if and only if x/y is
equal to either x5y or y5 xS Finally, if < x >y, then g(zSy) < g(x,y).

Proof. Tt suffices to apply Lemma 2.1, since g(z,y) = f(t) with ¢t = \/2’, and \/% >t > \/E O
We will need the following result.

Proposition 2.3. Given an n e n symmetric matriz B = (b;;) with b;; 000 for every 1 > 4,5 > n and the

diagonal matriz D with entries d;; = =1 bij, then L := D B is a positive semi-definite matriz.
Proof. Let x := (x1,...,2,) / R™. Since 7 + 27 oo2xx; for every 1 >4, j > n, we have
n n n n n n

=1 j5=1 =1 j5=1 =1 j5=1
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Since b;; = bj; for every 1 > 4,j > n, we conclude
n n n n
xD XT = { 1‘12 { bij OO{ { bijxiacj =xB XT,

=1 =1 i=1 y=1
and xL xT 000 for every x / R". O
Given a graph G, let us define the G A-adjacency matriz D with entries

o Lduj_“di” , ifw / E(G),

Ay )
0, otherwise.

Note that D is a modification of the classical adjacency matrix involving the degrees of the vertices.
Let us define also £ as the diagonal matrix with entries dy, =Y, _, 2d i“dd” , where v ~ u means that v
is a neighbor of u, i.e., uv / E(G). Finally, define the GA Laplace matriz U := L D. Note that U is the

classical Laplace matrix for every regular graph.

Denote by A the adjacency matrix of a graph. Since the adjacency matrix A, D and U are real symmetric
matrices, their eigenvalues are real numbers. Denote by A\ 00>xxx00),,, 11 00300 1, and 11 00 xxxoon,, the
ordered eigenvalues of A, D and U, respectively.

It is well known that the second smallest (classical) Laplacian eigenvalue of a graph (its algebraic connec-
tivity) is the most important information about its spectrum. This eigenvalue is related to several important
graph invariants and provides good bounds on the values of several parameters of graphs which are very hard
to compute. In in the third item of Proposition 2.4 below we obtain an identity for 7, 1 which is similar to
the one for the algebraic connectivity. Theorem 2.5 states that the geometric-arithmetic index is completely
determined by the GA Laplacian spectrum, and provides bounds of GA; involving 1, 1 and 7;. Hence,
Proposition 2.4 and Theorem 2.5 collect the main results about the spectrum of the GA Laplace matrix U,
which are similar to the properties of the classical Laplace matrix and its generalizations, see [36, 37].

Proposition 2.4. For any graph G with n vertices }vi,...,v,( and a;; := 2 _[dy,dy, /(dy, + dy,) for every
1> 14,7 > n, the following statements hold.
C U is a positive semi-definite matrix.

Cn, = 0 is an eigenvalue with multiplicity one and eigenvector j = (1,1,...,1)T /R™.

i @i (Wi wy)? .
2uiy W30 s Ew::(wl,...,wn)/R”,w@:aJwztha/R\/.

C =2n min}

=T 1 Ev,i,ijV(G)(wi w;)?
o ig (Wi w;)?
Zvi,vjEV(G)(wi w;j)

§n1:2nmax} s (W= (wy,...,w,) /R" wdj witha/R\/

Proof. The first item is a direct consequence of Proposition 2.3.

Since U is a positive semi-definite matrix, we have 77 0o xxxocon,, co0.

Since Lj = Dj, we have Uj = 0 Xj, and so 0 is an eigenvalue with multiplicity one and eigenvector j.
This fact and 7, 0o xxxcon, 000 give i, = 0. It is well known that the multiplicity of the eigenvalue 0 of the
classical Laplacian matrix of a graph is equal to the cardinality of the connected components of the graph
(see, e.g., [6]); the argument in [6] also gives the same result for the GA Laplacian. Since G is connected, 0
is an eigenvalue with multiplicity one of U.

The results of Fielder [16] and the Rayleigh quotient give third and fourth items, respectively. O

Theorem 2.5. For any graph G with n vertices the following statements hold.

C The geometric-arithmetic index of G is GA1(G) = % i1 1

C The geometric-arithmetic index of G satisfies the inequalities 5 (n = 1)n, 1 > GA1(G) = 5 (n 1)m.
C If G is a bipartite graph with parts X,Y, then V)Lﬁ%\/f]n 1> GA(G) > v/)/—ﬂ%\/fh-
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Proof. The first item follows from 2 GA;(G) = tr(U) = Y 7_; 1;, and the second one is a consequence of this
equality. Finally, if G is a bipartite graph with parts XY, then consider w := (wy,...,w,) / R" defined as
wj:=1ifv; / X and w; := 1ifv; /Y. Thus,

(wi w;)? = XY [+ VI = 8| (IR

vi,v; /V(G)
The previous results give
1> D aij(w;  w;)? -
Xl
Since G is a bipartite graph,
ot )t =a 0
j

if v; ~ v;, we have

B, > caye = B,

Since GA1(G) > m, we have the following consequence.

Corollary 2.6. We have for any graph G the inequalities 2:1 n; > 2m, M 1> % .

The following result relates the eigenvalues A\; and p.
Theorem 2.7. We have for any graph G, Ay co|\;|l p1 ooll;|| for every 5, Ai, 1 > 0, and

2 AS
(2.1) mAl > p1 > A,

and the equalities in (2.1) are attained simultaneously if and only if G is regular.

Proof. Since A are D non-negative and irreducible (we just consider connected graphs) Perron-Frobenius
Theorem gives A1 oo|\;||and g1 oo|;|| for every j and then Aq, g > 0.

Perron-Frobenius Theorem also gives that A; (respectively, 1) is a simple eigenvalue and there exists an
eigenvector v of A with eigenvalue \; (respectively, v€of D with eigenvalue p;) such that all components of
v (respectively, v9 are non-negative. Note that if a;; and «;; denote the entry (¢, j) of A and D, respectively,
then

2 A
A i 2> Qij 2 Gij
for every i, 7. Hence, using Rayleigh quotient, we obtain
Dx,x DovSwv AvSwv Ax,x
“_T,-Ao>\7( | >\762ﬂ> 1 >\72|:/\17
2 A6 2 AS \/Axx|\/2 Aé\;vﬂ va\\i
= [

At+o P T AT do \7{\/2 A+to \7\/ JV k0

If the equalities in (2.1) are attained simultaneously, then A = ¢ by Corollary 2.2, and the graph G is
regular.
Reciprocally, if G is regular, then the lower and upper bound are the same, and they are equal to u;. O

We deal in this part with some results related to the traces of powers of D. We start with a basic result
which can be obtained by a computation.
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Lemma 2.8. We have for any graph G
tr(D) =0,

4d,d
tr(D?) =2 i Al
E(G) (du +do)

uv

4d,d 2d
tr(D?) =2 i Sfubv i w ,
dy + dy dy + dy)(dy + dy
v T WV (du +du)(dy + )

uv
w~U, WU

4d,d, (2 2d 2
(DY) = {V i n i 4dudv) {/ w .
(dy + dy)? dy + dw)(dy + dy
u v (@) + { w,v/V(G) w/V(G) ( + )( + )

v~U wAv WU, WD

Remark 2.9. As usual, we define the sum over the empty set as zero. Hence, since u ¥ v, we have
2dy, —0 _

Sy, T =0 V) { () = 4

Theorem 2.10. We have for any graph G, 1 tr(D?) > GA(G) > Tm )

s attained if and only if G is reqular, the equality in the upper bound is attained if and only if G is a star

graph.

. The equality in the lower bound

2 n 1 2 dydy
nZ wtdy

Proof. By Corollary 2.2, taking a =1 and b=n 1, we have > 1, and Lemma 2.8 gives

2 d,d, 2
2\ __ uYv
”(D)”i o+ dy dy
E(G)

uv

u d’U
d'l)

and

dy +dy dy +dy —

uv

tr(D?) = 2 & 2 dudy2 dudy i 2 duds _ o cay ().
B(0) B(G)

By Corollary 2.2, the equality in the upper bound holds for G if and only if every edge joins a vertex of
degree 1 with a vertex of degree n. 1, and this holds if and only if G is a star graph.

The equality in the lower bound holds, by Corollary 2.2, if and only if d,, = d, for every edge uv / E(G).
Since G is a connected graph, this happens if and only if G is regular. O

Theorems 2.5 and 2.10 allow to obtain bounds of 7; and 1, 1 involving tr(D?).

Corollary 2.11. We have for any graph m oo“;l(‘ f) , Mn 12> %

Proposition 2.12. For any graph tr(D?) > 2m. Furthermore, a graph is reqular if and only if tr(D?) = 2m.

Proof. Lemma 2.8 gives

4d,d
tr(D?) =2 i >
wv /E(G) <du T dv)

and the equality is attained if and only if 2 d,d,/(d, + d,) = 1 for every wv / E(G). By Corollary 2.2,
this last condition holds if and only if d,, = d, for every uwv / E(G). Since the graph G is connected, the
equality is attained if and only if G is regular. O

2m,

Recall that a (A,d)-biregular graph is a bipartite graph for which any vertex in one side of the given
bipartition has degree A and any vertex in the other side of the bipartition has degree §. The following
result improves Theorem 2.10, although its inequalities are not so nice as the ones in Theorem 2.10.
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Theorem 2.13. We have for any graph G

ANS (A +6) tr(D?)

1 2
§tr(D)+(A+§)2m(m 1) > GA(G) > Y

)

and the equality in each inequality holds if and only if G is either regqular or (A, d)-biregular.

Proof. Let us prove first the lower bound of GA;(G).
Lemma 2.8 gives

2 dyd, (?
du + di)

GA(G)? =) i
wo JE(G)

uviE(G)

(ot d? "\, ditd, dy +d,

2 d,d, 2, /d.d,
dy +d, dy+d,

1
uvATY
By Corollary 2.2, taking a = 6 and b = A, we have
2 Ad _ 2 dd,
>

(2.2) A+S§ ~ dy+d,’

and we obtain

1 2 dud, 2. [dyd, 1 4A
GAl(G)Q _ 5t,,ﬂ(rl)2)_|_ { dyd A Y *tr(’DQ)—l- { 1)

\4 o0 2
uvATY dy +dy do + dy 2 uvATY (A + 5)
1. 4AS
— = 20 1).
2tr(D)+(A+6)2m(m )

Let us prove now the upper bound of GA;(G). Lemma 2.8 and (2.2) give

tr(D?) =2

uv

2 dyd, 2 d,d, 2 Ad 2 dyd, 4 A¢
i i = GAL(G).
E(G) uv /E(G)

dotdy dy+d, C“A¥0 dotd, A+to

The equality in each inequality holds if and only if the equality is attained in (2.2), and by Corollary 2.2,
this happens if and only if either d,, = A and d,, = 0, or viceversa, for each uv / E(G). Since G is connected,
this happens if and only if G is a regular graph if A = § or a (A, J)-biregular graph otherwise. O

Given a graph G, denote by N(u) the set of neighbors of the vertex u, and by dy and Ay the integer
numbers

b= min [N { N A= max [N(u) { N©)|

uwv /E(G) uv /E(G)
It is clear that 0 > 69 > Ag > A.

Theorem 2.14. We have for any graph G with Ag > 0,
52 tr(D3
GA1(G) ooﬁAo) .
Furthermore, if 69 > 0, then
A2 tr(D?)
2620
The equality is attained in each inequality if and only if G is reqular and 69 = Ag.

GAL(G) >
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Proof. For each uv / E(G), we have w ~ u, w ~ v if and only if w / N(u) { N(v). Hence,

4d,d, 2d,, - 4dy,d, 2A
dy + d, {/ dy 4+ dy)(dy + dy) — i dy + d, {/ 452
uv iE(G) T wu,)v/u 1([)(1)’0 ( + )( + ) wv /E(G) T w/V(G)

2.3 WU, WA
23) 2dyd, A
= o 20
wv /E(G) y + dy g
(24) WU, WA WU, WA

4d,d, 2dy, - 4d,d, 26
dy +d, i dy + dy)(dy + dy i dy + dy {/ 4N2
uviE(G) + w/V(G) ( + )( T ) wv /E(G) + w/V(G)

Thus, Lemma 2.8 and (2.3) give

dd,d 2d

tr(D%) =2 i uy {/ v
dy +dy dy + dw)(dy + du
pia) DT N (et du)(dy )

uv
WU, WD

2 dyud, A
>2 uwYv =5
- i gt d, /Pl gz B0
wv /E(G)
<9 2 dyd, . A
> = Ao
uviE(G) y + dy 0
2A2A
= 0 GA(G).

52
Using (2.4) instead of (2.3), we obtain

4d,d 2d
tr(D?) =2 i ks {/ e
dy + dy dy + dy)(dy + du
E(G) * w/V(G) (du + du)(d + du)

uv

WU, WSV

dy + dy v A2

uv

2 dud, b
002 i d,d 5o
E(G)

dy + dy

2 dyd, . &
02 i 0 73 0o
wv /E(G)
~26%5

o GAG).

If the graph is regular and §y = Ay, then the lower and upper bounds are the same, and they are equal

to GA1(G).

If we have the equality in the lower bound of GA;(G), then d,d, = A for every uv / E(G); hence,
d, = A for every u / V(G) and the graph is regular. Besides, we have the equality in (2.3) and so

IN(u) { N(v)||= Ag for every uv / E(G); therefore, §yp = Ay.

If we have the equality in the upper bound, then d,d, = d for every uv / E(G); hence, d,, = 0 for every
u / V(G) and G is regular. Furthermore, we have the equality in (2.4) and so |[N(u) { N(v)||= do for every

wv / E(G); thus, 6y = Ao.
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As usual, we denote by M;(G) the first Zagreb index of the graph G, defined in [23] as

Mi(G) = i d2.
(@)

This index has attracted growing interest, see e.g., [3], [11], [22], [23], [24], [32], [46] (in particular, it is
included in a number of programs used for the routine computation of topological indices).

Theorem 2.15. We have for any graph G

1 w1 |
P — >
5 tr(D*) 5 Mi(G) 2ml >GAL(G) >

(A+(5)3 Al/2

B Sl 4 oa |
= Tea02572 TP 01/2(A +9) Mi(G)  2ml.

The equality is attained in the lower bound if and only if G is isomorphic to the complete bipartite graph
Ka,a with A ocol. The equality is attained in the upper bound if and only if G is a regular graph without
cycles of length 4.

Proof. Denote by C P5 the cardinality of the set of paths of length 2 in G that are not cycles. For any fixed
w / V(G), the set of paths of length 2 that are not cycles and have w as central vertex has cardinality
1dy,(dy 1). Hence,

1 1
CPs =5 i du(dy 1) = 3 Mi(G) m,
@)

i 1=2CP; = M(G) 2m,

wA: U w~u w~v

and we obtain by Corollary 2.2

2dw
4d,d, i
umiV(G) ) w/V(G) (du + duw)(d + du) {

wAv WU, WAV

o
"o wwiwf?wwiv N
"oy

(2.5) {/ 1 EN )J{ N(v g
(G)
v w~u,w~v
> A i i
u,v/V(G) w/V(G)
wAv WU, WS
Note that if N(u){ N(v) = A then 0 = ) w/va) 1 wv@ 1) =3 w/ve 1=0,andotherwise
) w/V(G) 1 Zw/V(G 1{ = )Zw/V(G) 1{||N(u { N(v)[| oo N % v(e) 1. Hence, we have in both

~U, WAV ~U, WD ~U, WD

cases ) w,/V(G) 1{) w /V(GQ) 1{00 w,v(a) 1. This fact and Corollary 2.2 (taking a = ¢ and b = A)
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give
2d 2 2 dydy, 2 dydy (2
4dudv> {/ w _ i ) {/ uw v Uw
dy + dy)(dy + dy dy +dy dy +dy
u,viV(G) w/V(G) ( T )( + ){ u,v/V(G) w/V(G) + +
wAv WA, WA wAY WA, WA
16A262
e i ) i t 1

U,V w (G w (G)
(26) uA v WU, WAV WA, WA

16A242 )
00—
=3 |
( + ) u,w/V(G) w/V(G)
wAv WU, WAV
16A2%52

= Ao My(G) 2ml.

Lemma 2.8 and (2.5) give

wAv WU, WD

ddyd, 2d >
+ 4dudv) i w
(dy + dy)? i dy + dy)(dy + dy
{/ * { ww V(@) w Vi (Gt dw)(do+d ){

{ YA M(G) 2ml

{V L) +A M(G) 2m!
v/V(QG)

v~U

")
* )
* )
iw

i

CA+AM(G) 2m!

iE(G)
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Using (2.6) instead of (2.5) and Corollary 2.2 (taking ¢ = 6 and b = A), we obtain

4d,d, (2 2d 2
r(D') = i i + i 4dyd, ) i v
(dy + dy) dy + duw)(dy + duw
u v/V(G) + { w,v/V(G) w/V(G) ( t )( T )

v~U wAv WU, WD

2 A 2 d,d 16A%52

00 )+ M;(G) 2m/
A dy + dy A 4
u/V(G) +5v/ (@) + { (A+9)

v~U

4N 2 dud, 2 AS 16A262

00—t My(G) 2m
A+ 0)2 {/ ) {/ dy +d, {/ NI Ato)d
SR e v/V(G) - (i T@

v~U

8A3/2§3/2 2 16A242
+ 1 Ml(G) le
A+6 {/(G U{/(g) u+d (A+9)

5+ Mi(G) 2m!

8A3/2§3/2 2 dud, 16A262
3 4
> (A +9) iE(G) dy + dy (A +6)
16A3/265/2 16A252
= ____GA = M 2m!.
NE G I(G)+(A+5)4 1(G) 2m

If the equality is attained in the lower bound, then d,, = A for every u / V(G), and so G is regular.
Furthermore, we have either G = P, or |N(u) { N(v)||= A for every u,v,w / V(G) with w ~ u and
w ~ v, by (2.5). Hence, in both cases we have either N(u) { N(v) = Aor N(u) = N(v) for each u,v /
V(G). If G is not P, = K1, then fix u,v,w / V(G) with w ~ u, w ~ v; hence, N(u) = N(v). Let
N(u) = N(v) = }wy,wa,...,wa( with w; = w. Fix 2 > j > A. Since A& }u,v( < N(wy) { N(ws), we
have N(w1) = N(w;) = }u, v, 23,...,2a(. Since N(w1) does not depend on j, we have N(w;) = N(wsz) =

xox= N(wa) = }u,v,23,...,2a(. Since }wy,wa,...,wa{ < N(z3) { N N(za), we obtain N(z3) =
xxx= N(za) = }wi,wa, ..., wa(, and so G is a A-regular bipartite graph with parts }w, ws, ..., wa{ and
tu,v,23,...,2a(. Hence, G is isomorphic to the complete bipartite graph Ka a.

Conversely, if G is isomorphic to the complete bipartite graph Ka a with A ool, then G is regular and
N(u) { N(v) = Aor N(u) = N(v) for each u,v / V(G), and so every inequality in the proof of the lower
bound is an equality.

If the equality is attained in the upper bound, then we have d,, = ¢ for every u / V(G), and so G is
regular. Furthermore, we have either G = P, or for every w,v,w / V(G) with w ~ u and w ~ v we have
IN(u) { N(v)||=1, by (2.6). Hence, in both cases we have |N(u) { N(v)||/ }0,1{ for any u,v / V(G), and
so G does not have cycles of length 4.

Conversely, if G is a regular graph without cycles of length 4, then G is regular and |V (u){ N(v)|| / }0, 1(
for any u,v / V(G), and so every inequality in the proof of the upper bound is an equality. O

3. GEOMETRIC-ARITHMETIC ENERGY

Recall that we denote by A1 0o xxxoo A, and p; 0o xXxx00 i, the ordered eigenvalues of A and D,
respectively. It is well known (see, e.g., [6]) that 2:1 )\;? is equal to the number of closed walks of length k
in the graph G.

The energy of the graph G is defined in [19] as E(G) = 7_, [\l

The geometric-arithmetic energy (GA energy) of the graph G is defined in an analogue way as

GAE(G) ={ Il

=1
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It is usual and useful to define modified energies as matching energy, Randi¢ energy, Laplacian energy,
Laplacian-energy-like, incidence energy, skew energy, ete. (see, e.g., [4], [5], [7], [8], [12], [13], [14], [21], [28],
[29], [30] and [47]). These modified energies have applications in theoretical organic chemistry [35], image
processing [42] and information theory [26].

The following result appears in [39, Corollary 3.6].

Lemma 3.1. We have for any graph G the inequality uz >n 1.

Theorem 2.7 and Lemma 3.1 have the following consequence.
Corollary 3.2. We have for any graph G the inequality GAE(G) > n(n  1).

The following result is well known.
Lemma 3.3. We have for any complete graph Ay =n 1 and \j; = 1 for every 2> j > n.

Since for any regular graph we have A\; = p; for every 1 > j > n, we obtain the following consequences.
Corollary 3.4. We have for any complete graph 1 =n 1 and uj = 1 for every 2 > j > n.
Corollary 3.5. For any complete graph G we have GAE(G) =2(n  1).

We will use the following Ozeki’s inequality [33].
2
Lemma 3.6. If0> Ny > 21,...,2, > Na, then = 2% + so0¢t 22| )W{ > L (N2 Np)2
Theorem 3.7. We have for any graph G

\/ntr D2 inQ(ul pS?2 > GAE(G) > | [ntr D2I |

where p<=miny, j, , [l

Proof. Since p2,...,u2 are the eigenvalues of D?, Cauchy-Schwarz inequality gives

GAE(G)_{n sll> ) {n 1 {”2) {n 2 {”2— fntr D2 .
J=1 J=1 J=1

Since <> ||| > py for every 1 > j > n, Lemma 3.6 gives

1 1 1 (21
—tr D S GAB(G)? = — i + ooct 1y >—”u1”+ el ”{ >l o
n n n n 4
and this implies the first inequality. O

We need the following lemma in order to obtain a lower bound of the GA energy involving tr D?! and
tr D41,

3/2
Lemma 3.8. For every ay,...,a, 0c0, we have ) 221 a?i i) E L ]
/

Proof. Fix ay,...,a, c00. Applying Holder’s inequality with exponents p = 3Y2 and ¢ = 3 we obtain

L= ) [ g

J=1 J=1 J=1 J=1

and the inequality holds.

E
Theorem 3.9. We have for any graph G, GAE(G) oo tr 12

t’l“|4|
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Proof. Since p2,...,u2 and uf, ..., pt are the eigenvalues of D? and D*, respectively, Lemma 3.8 gives
n 3/2 /2
J{ sl 2){ uj ,
J=1
tr D2||3/2>GAE 1>4||1/2

The following result appears in [43, Theorem 2].

Theorem 3.10. If p ool is an integer and 0 > x1,...,x, >n 1, then
>{ x;/p co(n 1) p{ .
=1 =1
We will use also the following particular case of Jensen’s inequality.
Lemma 3.11. If f is a convex function in Ry and z1,..., 2, > 0, then
T, + X4 x4, 1
gy iz L fan) + sooct f(an)!.
n n
Next, we obtain several lower bounds of GAE(G) involving ¢r(D?) and det D.

Theorem 3.12. We have for any graph G, GAE(G) 0o tr(l %)

n(n 1)°

2

Proof. Applying Lemma 3.11 to the convex function f(z) = x*, we obtain

Lo ety
>nj{1w {znj{lm

1 n
GAE(G) oo ) L |}
J=1
Since |;||> w1 > n 1 by Lemma 3.1, Theorem 3.10 (with p = 2) gives

){nl sl {2oo<n 1) 1{"lu§=ﬁ;@?,

and we obtain the result.

Theorem 3.13. We have for any graph G, GAE(G) oo _[tr(D?).

n n 2
2

{ x5 > ) { T

1= =1

1

Proof. Since the inequality

holds for every z1,...,x, 000, we obtain

GaB@y =) { Il { of sl = tr(0?),

J=1 J=1

Theorems 2.10, 2.13, 3.7 and 3.13 have the following consequence.
Proposition 3.14. We have for any graph G
C2 [ 1GA(G) > GAE(G) >  2nGA(G),
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C & GAE(G)? + 5= m(m 1) > GA(G)?,

C GAE(G) 002, | 522 GA,(G).

Theorem 3.15. We have for any graph G, GAE(G) con EdetD m

Proof. Since the arithmetic mean is greater than the geom

MN%WMWWMV”z@@D(¢
1

tric mean, we deduce
1 I

—GAE(G) = —
. (G) = {

O
Theorem 3.16. We have for any graph G
GAE(G) oo, [tr(D?) +n(n  1)|detD |p/™.
Proof. We have
n 2 n
GABG? =) { Ml ={ w+2 { =) 42 { )
=1 J=1 17 iXjr n 17 iXjr n
Since the arithmetic mean is greater than the geometric mean, we deduce
2 2/(n(n 1))
e anslioo ol ool ! = det D P/,
17 i%jr n
and
GAE(G)? = tr(D?) +2 { \ipss]|cotr(D?) +n(n  1)|det D |P/™.
1 ixjr n
O
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