
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 

This is a postprint version of the following published document:

Rodríguez, J. M., and Sigarreta, J. M. (2016). Spectral 
properties of geometric–arithmetic index. Applied 
Mathematics and Computation, 277, 142-153

DOI: https://doi.org/10.1016/j.amc.2015.12.046 

© Elsevier, 2015

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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Abstract. The concept of geometric-arithmetic index was introduced in the chemical graph theory recently,
but it has shown to be useful. One of the main aims of algebraic graph theory is to determine how, or whether,

properties of graphs are reflected in the algebraic properties of some matrices. The aim of this paper is to
study the geometric-arithmetic index GA1 from an algebraic viewpoint. Since this index is related to the
degree of the vertices of the graph, our main tool will be an appropriate matrix that is a modification of
the classical adjacency matrix involving the degrees of the vertices. Moreover, using this matrix, we define

a GA Laplacian matrix which determines the geometric-arithmetic index of a graph and satisfies properties
similar to the ones of the classical Laplacian matrix.
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1. Introduction

A single number, representing a chemical structure in graph-theoretical terms via the molecular graph, is
called a topological descriptor and if it in addition correlates with a molecular property it is called topological
index, which is used to understand physicochemical properties of chemical compounds. Topological indices
are interesting since they capture some of the properties of a molecule in a single number. Hundreds of
topological indices have been introduced and studied, starting with the seminal work by Wiener in which
he used the sum of all shortest-path distances of a (molecular) graph for modeling physical properties of
alkanes (see [45]).

Topological indices based on end-vertex degrees of edges have been used over 40 years. Among them,
several indices are recognized to be useful tools in chemical researches. Probably, the best know such
descriptor is the Randić connectivity index (R) [34]. There are more than thousand papers and a couple of
books dealing with this molecular descriptor (see, e.g., [2], [15], [17], [20], [25], [27], [31], [36], [37], [40] and
the references therein). During many years, scientists were trying to improve the predictive power of the
Randić index. This led to the introduction of a large number of new topological descriptors resembling the
original Randić index. The first geometric-arithmetic index GA1, defined in [44] as

GA1 = GA1(G) =
{

uv � E(G)

dudv
1
2 (du + dv)

where uv denotes the edge of the graph G connecting the vertices u and v, and du is the degree of the vertex
u, is one of the successors of the Randić index. Although GA1 was introduced just a few years ago, there
are many papers dealing with this index (see, e.g., [9], [10], [38], [39], [41], [44] and the references therein).
There are other geometric-arithmetic indices, like Zp,q (Z0,1 = GA1), but the results in [9, p.598] show that
the GA1 index gathers the same information on observed molecule as other Zp,q indices.

The reason for introducing a new index is to gain prediction of some property of molecules somewhat
better than obtained by already presented indices. Therefore, a test study of predictive power of a new
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index must be done. The GA1 index gives better correlation coefficients than Randić index for many
physico-chemical properties of octanes, but the differences between them are not significant. However,
the predicting ability of the GA1 index compared with Randić index is reasonably better (see [9, Table
1]). Furthermore, the improvement in prediction with GA1 index comparing to Randić index in the case
of standard enthalpy of vaporization is more than 9%. Hence, one can think that GA1 index should be
considered in the QSPR/QSAR researches.

Throughout this paper, G = (V,E) = (V (G), E(G)) denotes a (non-oriented) finite simple (without
multiple edges and loops) connected graph with E ∅= A. Note that the connectivity of G is not an important
restriction, since if G has connected components G1, . . . , Gr, then GA1(G) = GA1(G1) + ×××+ GA1(Gr);
furthermore, every molecular graph is connected.

Spectral graph theory is a useful subject that studies the relation between graph properties and the
spectrum of some important matrices in graph theory, as the adjacency matrix, the Laplacian matrix, and
the incidence matrix, see e.g. [1], [6], [18]. Eigenvalues of graphs appear in a natural way in mathematics,
physics, chemistry and computer science. One of the main aims of algebraic graph theory is to determine
how, or whether, properties of graphs are reflected in the algebraic properties of such matrices [18]. Many
papers study several topological indices from an algebraic viewpoint (for instance, [21], [36] and [37] study
the Randić index, and [39] deals with the geometric-arithmetic index).

The aim of this paper is to obtain new results on the geometric-arithmetic index GA1 from an algebraic
viewpoint. Since this index is related to the degree of the vertices of the graph, our main tool will be
an appropriate matrix, denoted by D, that is a modification of the classical adjacency matrix involving the
degrees of the vertices. Using D, we will define a GA Laplacian matrix ∪ and we will prove that it determines
the geometric-arithmetic index of a graph; besides, we show that ∪ satisfies many properties of the classical
Laplacian matrix. It is usual to define energies associated to some topological indices (see, e.g., [21]). Along
the paper we denote by n the order n = ‖V (G)‖of the graph G and by m its size m = ‖E(G)‖. The minimum
degree of a graph is denoted by δ and the maximum by Δ. We will denote by tr(M) the trace of the matrix
M .

2. Bounds for GA1

In order to state some bounds for GA1 we need some previous technical results.

Lemma 2.1. Let f be the function f(t) = 2t
1+t2 on the interval [0,∈ ). Then f strictly increases in [0, 1],

strictly decreases in [1,∈ ), f(t) = 1 if and only if t = 1 and f(t) = f(t0) if and only if either t = t0 or
t = t 1

0 .

Proof. The statements follow from f∈(t) = 2(1 t2)
(1+t2)2 . �

Corollary 2.2. Let g be the function g(x, y) =
2 xy

x+y with 0 < a ≥ x, y ≥ b. Then 2 ab
a+b ≥ g(x, y) ≥ 1. The

equality in the lower bound is attained if and only if either x = a and y = b, or x = b and y = a, and the
equality in the upper bound is attained if and only if x = y. Besides, g(x, y) = g(x∈, y∈) if and only if x/y is
equal to either x∈/y∈or y∈/x∈. Finally, if x∈< x ≥ y, then g(x∈, y) < g(x, y).

Proof. It suffices to apply Lemma 2.1, since g(x, y) = f(t) with t =
√

x
y , and

√
a
b ≥ t ≥

√
b
a . �

We will need the following result.

Proposition 2.3. Given an n • n symmetric matrix B = (bij) with bij ∞0 for every 1 ≥ i, j ≥ n and the
diagonal matrix D with entries dii =

∑n
j=1 bij, then L := D B is a positive semi-definite matrix.

Proof. Let x := (x1, . . . , xn) � R
n. Since x2

i + x2
j ∞2xixj for every 1 ≥ i, j ≥ n, we have

n{
i=1

n{
j=1

bijx
2
i +

n{
i=1

n{
j=1

bijx
2
j ∞2

n{
i=1

n{
j=1

bijxixj .
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Since bij = bji for every 1 ≥ i, j ≥ n, we conclude

xD xT =
n{

i=1

x2
i

n{
j=1

bij ∞
n{

i=1

n{
j=1

bijxixj = xB xT ,

and xLxT ∞0 for every x � R
n. �

Given a graph G, let us define the GA-adjacency matrix D with entries

auv :=

∑
2 dudv

du+dv
, if uv � E(G),

0, otherwise.

Note that D is a modification of the classical adjacency matrix involving the degrees of the vertices.

Let us define also L as the diagonal matrix with entries duu :=
∑

v∼u
2 dudv

du+dv
, where v ∼ u means that v

is a neighbor of u, i.e., uv � E(G). Finally, define the GA Laplace matrix ∪ := L D. Note that ∪ is the
classical Laplace matrix for every regular graph.

Denote by A the adjacency matrix of a graph. Since the adjacency matrix A, D and ∪ are real symmetric
matrices, their eigenvalues are real numbers. Denote by λ1 ∞×××∞λn, μ1 ∞×××∞μn and η1 ∞×××∞ηn the
ordered eigenvalues of A, D and ∪, respectively.

It is well known that the second smallest (classical) Laplacian eigenvalue of a graph (its algebraic connec-
tivity) is the most important information about its spectrum. This eigenvalue is related to several important
graph invariants and provides good bounds on the values of several parameters of graphs which are very hard
to compute. In in the third item of Proposition 2.4 below we obtain an identity for ηn 1 which is similar to
the one for the algebraic connectivity. Theorem 2.5 states that the geometric-arithmetic index is completely
determined by the GA Laplacian spectrum, and provides bounds of GA1 involving ηn 1 and η1. Hence,
Proposition 2.4 and Theorem 2.5 collect the main results about the spectrum of the GA Laplace matrix ∪,
which are similar to the properties of the classical Laplace matrix and its generalizations, see [36, 37].

Proposition 2.4. For any graph G with n vertices }v1, . . . , vn〈 and aij := 2
√
dvidvj/(dvi + dvj ) for every

1 ≥ i, j ≥ n, the following statements hold.

⊆ ∪ is a positive semi-definite matrix.
⊆ ηn = 0 is an eigenvalue with multiplicity one and eigenvector j = (1, 1, . . . , 1)T � R

n.

⊆ ηn 1 = 2nmin
} ∑

vi∼vj
aij(wi wj)

2

∑
vi,vj∈V (G)(wi wj)2

((( w := (w1, . . . , wn) � R
n, w ∅= aj with a � R

√
.

⊆ η1 = 2nmax
} ∑

vi∼vj
aij(wi wj)

2

∑
vi,vj∈V (G)(wi wj)2

((( w := (w1, . . . , wn) � R
n, w ∅= aj with a � R

√
.

Proof. The first item is a direct consequence of Proposition 2.3.

Since ∪ is a positive semi-definite matrix, we have η1 ∞×××∞ηn ∞0.
Since L j = D j, we have ∪ j = 0 ×j, and so 0 is an eigenvalue with multiplicity one and eigenvector j.

This fact and η1 ∞×××∞ηn ∞0 give ηn = 0. It is well known that the multiplicity of the eigenvalue 0 of the
classical Laplacian matrix of a graph is equal to the cardinality of the connected components of the graph
(see, e.g., [6]); the argument in [6] also gives the same result for the GA Laplacian. Since G is connected, 0
is an eigenvalue with multiplicity one of ∪.

The results of Fielder [16] and the Rayleigh quotient give third and fourth items, respectively. �

Theorem 2.5. For any graph G with n vertices the following statements hold.

⊆ The geometric-arithmetic index of G is GA1(G) = 1
2

∑n
j=1 ηj .

⊆ The geometric-arithmetic index of G satisfies the inequalities 1
2 (n 1)ηn 1 ≥ GA1(G) ≥ 1

2 (n 1)η1.

⊆ If G is a bipartite graph with parts X,Y, then √X√√Y√
n ηn 1 ≥ GA1(G) ≥ √X√√Y√

n η1.
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Proof. The first item follows from 2GA1(G) = tr(∪) = ∑n
j=1 ηj , and the second one is a consequence of this

equality. Finally, if G is a bipartite graph with parts X,Y, then consider w := (w1, . . . , wn) � R
n defined as

wj := 1 if vj � X and wj := 1 if vj � Y . Thus,{
vi,vj � V (G)

(wi wj)
2 = ‖X‖4‖Y ‖+ ‖Y ‖4‖X‖= 8‖X‖‖Y ‖.

The previous results give

ηn 1 ≥
n
∑

vi∼vj
aij(wi wj)

2

4‖X‖‖Y ‖ ≥ η1.

Since G is a bipartite graph,

aij(wi wj)
2 = 4

2
√
dvidvj

dvi + dvj

if vi ∼ vj , we have

‖X‖‖Y ‖
n

ηn 1 ≥ GA1(G) ≥ ‖X‖‖Y ‖
n

η1.

�

Since GA1(G) ≥ m, we have the following consequence.

Corollary 2.6. We have for any graph G the inequalities
∑n

j=1 ηj ≥ 2m, ηn 1 ≥ 2m
n 1 .

The following result relates the eigenvalues λ1 and μ1.

Theorem 2.7. We have for any graph G, λ1 ∞‖λj‖, μ1 ∞‖μj‖ for every j, λ1, μ1 > 0, and

(2.1)
2 Δδ

Δ+ δ
λ1 ≥ μ1 ≥ λ1,

and the equalities in (2.1) are attained simultaneously if and only if G is regular.

Proof. Since A are D non-negative and irreducible (we just consider connected graphs) Perron-Frobenius
Theorem gives λ1 ∞‖λj‖and μ1 ∞‖μj‖ for every j and then λ1, μ1 > 0.

Perron-Frobenius Theorem also gives that λ1 (respectively, μ1) is a simple eigenvalue and there exists an
eigenvector v of A with eigenvalue λ1 (respectively, v∈of D with eigenvalue μ1) such that all components of
v (respectively, v∈) are non-negative. Note that if aij and αij denote the entry (i, j) of A and D, respectively,
then

2 Δδ

Δ+ δ
aij ≥ αij ≥ aij

for every i, j. Hence, using Rayleigh quotient, we obtain

μ1 = max
xA=0

〉Dx,x|
√x√2 =

〉Dv∈, v∈|
√v∈√2 ≥ 〉Av∈, v∈|

√v∈√2 ≥ max
xA=0

〉Ax,x|
√x√2 = λ1,

2 Δδ

Δ+ δ
λ1 =

2 Δδ

Δ+ δ
max
xA=0

〉Ax,x|
√x√2 =

2 Δδ

Δ+ δ

〉Av, v|
√v√2 ≥ 〉Dv, v|

√v√2 ≥ max
xA=0

〉Dx,x|
√x√2 = μ1.

If the equalities in (2.1) are attained simultaneously, then Δ = δ by Corollary 2.2, and the graph G is
regular.

Reciprocally, if G is regular, then the lower and upper bound are the same, and they are equal to μ1. �

We deal in this part with some results related to the traces of powers of D. We start with a basic result
which can be obtained by a computation.
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Lemma 2.8. We have for any graph G

tr(D) = 0,

tr(D2) = 2
{

uv � E(G)

4 dudv
(du + dv)2

,

tr(D3) = 2
{

uv � E(G)

4 dudv
du + dv

{
w � V (G)
w∼u,w∼v

2 dw
(du + dw)(dv + dw)

,

tr(D4) =
{

u � V (G)

) {
v � V (G)
v∼u

4 dudv
(du + dv)2

{2

+
{

u,v � V (G)
uA=v

4 dudv

) {
w � V (G)
w∼u,w∼v

2 dw
(du + dw)(dv + dw)

{2

.

Remark 2.9. As usual, we define the sum over the empty set as zero. Hence, since u ∅= v, we have∑
w � V (G)
w∼u,w∼v

2 dw

(du+dw)(dv+dw) = 0 if N(u) { N(v) = A.

Theorem 2.10. We have for any graph G, 1
2 tr(D2) ≥ GA1(G) ≥ n tr(| 2)

4 n 1
. The equality in the lower bound

is attained if and only if G is regular, the equality in the upper bound is attained if and only if G is a star
graph.

Proof. By Corollary 2.2, taking a = 1 and b = n 1, we have 2 n 1
n ≥ 2 dudv

du+dv
≥ 1, and Lemma 2.8 gives

tr(D2) = 2
{

uv � E(G)

2 dudv
du + dv

2 dudv
du + dv

∞2
2 n 1

n

{
uv � E(G)

2 dudv
du + dv

=
4 n 1

n
GA1(G),

and

tr(D2) = 2
{

uv � E(G)

2 dudv
du + dv

2 dudv
du + dv

≥ 2
{

uv � E(G)

2 dudv
du + dv

= 2GA1(G).

By Corollary 2.2, the equality in the upper bound holds for G if and only if every edge joins a vertex of
degree 1 with a vertex of degree n 1, and this holds if and only if G is a star graph.

The equality in the lower bound holds, by Corollary 2.2, if and only if du = dv for every edge uv � E(G).
Since G is a connected graph, this happens if and only if G is regular. �

Theorems 2.5 and 2.10 allow to obtain bounds of η1 and ηn 1 involving tr(D2).

Corollary 2.11. We have for any graph η1 ∞ tr(| 2)
n 1 , ηn 1 ≥ n tr(| 2)

2(n 1)3/2
.

Proposition 2.12. For any graph tr(D2) ≥ 2m. Furthermore, a graph is regular if and only if tr(D2) = 2m.

Proof. Lemma 2.8 gives

tr(D2) = 2
{

uv � E(G)

4 dudv
(du + dv)2

≥ 2m,

and the equality is attained if and only if 2 dudv/(du + dv) = 1 for every uv � E(G). By Corollary 2.2,
this last condition holds if and only if du = dv for every uv � E(G). Since the graph G is connected, the
equality is attained if and only if G is regular. �

Recall that a (Δ, δ)-biregular graph is a bipartite graph for which any vertex in one side of the given
bipartition has degree Δ and any vertex in the other side of the bipartition has degree δ. The following
result improves Theorem 2.10, although its inequalities are not so nice as the ones in Theorem 2.10.
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Theorem 2.13. We have for any graph G

1

2
tr(D2) +

4Δδ

(Δ + δ)2
m(m 1) ≥ GA1(G) ≥ (Δ + δ) tr(D2)

4 Δδ
,

and the equality in each inequality holds if and only if G is either regular or (Δ, δ)-biregular.

Proof. Let us prove first the lower bound of GA1(G).
Lemma 2.8 gives

GA1(G)2 =
) {

uv � E(G)

2 dudv
du + dv

{2

=
{

uv � E(G)

4dudv
(du + dv)2

+
{

uvA=xy

2 dudv
du + dv

2
√
dxdy

dx + dy

=
1

2
tr(D2) +

{
uvA=xy

2 dudv
du + dv

2
√
dxdy

dx + dy
.

By Corollary 2.2, taking a = δ and b = Δ, we have

(2.2)
2 Δδ

Δ+ δ
≥ 2 dudv

du + dv
,

and we obtain

GA1(G)2 =
1

2
tr(D2) +

{
uvA=xy

2 dudv
du + dv

2
√
dxdy

dx + dy
∞ 1

2
tr(D2) +

{
uvA=xy

4Δδ

(Δ + δ)2

=
1

2
tr(D2) +

4Δδ

(Δ + δ)2
m(m 1).

Let us prove now the upper bound of GA1(G). Lemma 2.8 and (2.2) give

tr(D2) = 2
{

uv � E(G)

2 dudv
du + dv

2 dudv
du + dv

∞2
2 Δδ

Δ+ δ

{
uv � E(G)

2 dudv
du + dv

=
4 Δδ

Δ+ δ
GA1(G).

The equality in each inequality holds if and only if the equality is attained in (2.2), and by Corollary 2.2,
this happens if and only if either du = Δ and dv = δ, or viceversa, for each uv � E(G). Since G is connected,
this happens if and only if G is a regular graph if Δ = δ or a (Δ, δ)-biregular graph otherwise. �

Given a graph G, denote by N(u) the set of neighbors of the vertex u, and by δ0 and Δ0 the integer
numbers

δ0 := min
uv � E(G)

‖N(u) { N(v)‖, Δ0 := max
uv � E(G)

‖N(u) { N(v)‖.

It is clear that 0 ≥ δ0 ≥ Δ0 ≥ Δ.

Theorem 2.14. We have for any graph G with Δ0 > 0,

GA1(G)∞ δ2 tr(D3)

2Δ2Δ0
.

Furthermore, if δ0 > 0, then

GA1(G) ≥ Δ2 tr(D3)

2 δ2δ0
.

The equality is attained in each inequality if and only if G is regular and δ0 = Δ0.
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Proof. For each uv � E(G), we have w ∼ u, w ∼ v if and only if w � N(u) { N(v). Hence,

(2.3)

{
uv � E(G)

4 dudv
du + dv

{
w � V (G)
w∼u,w∼v

2 dw
(du + dw)(dv + dw)

≥
{

uv � E(G)

4 dudv
du + dv

{
w � V (G)
w∼u,w∼v

2Δ

4δ2

≥
{

uv � E(G)

2 dudv
du + dv

Δ

δ2
Δ0,

(2.4)

{
uv � E(G)

4 dudv
du + dv

{
w � V (G)
w∼u,w∼v

2 dw
(du + dw)(dv + dw)

∞
{

uv � E(G)

4 dudv
du + dv

{
w � V (G)
w∼u,w∼v

2δ

4Δ2

∞
{

uv � E(G)

2 dudv
du + dv

δ

Δ2
δ0.

Thus, Lemma 2.8 and (2.3) give

tr(D3) = 2
{

uv � E(G)

4 dudv
du + dv

{
w � V (G)
w∼u,w∼v

2 dw
(du + dw)(dv + dw)

≥ 2
{

uv � E(G)

2 dudv
du + dv

√
dudv

Δ

δ2
Δ0

≥ 2
{

uv � E(G)

2 dudv
du + dv

Δ
Δ

δ2
Δ0

=
2Δ2Δ0

δ2
GA1(G).

Using (2.4) instead of (2.3), we obtain

tr(D3) = 2
{

uv � E(G)

4 dudv
du + dv

{
w � V (G)
w∼u,w∼v

2 dw
(du + dw)(dv + dw)

∞2
{

uv � E(G)

2 dudv
du + dv

√
dudv

δ

Δ2
δ0

∞2
{

uv � E(G)

2 dudv
du + dv

δ
δ

Δ2
δ0

=
2 δ2δ0
Δ2

GA1(G).

If the graph is regular and δ0 = Δ0, then the lower and upper bounds are the same, and they are equal
to GA1(G).

If we have the equality in the lower bound of GA1(G), then dudv = Δ for every uv � E(G); hence,
du = Δ for every u � V (G) and the graph is regular. Besides, we have the equality in (2.3) and so
‖N(u) { N(v)‖= Δ0 for every uv � E(G); therefore, δ0 = Δ0.

If we have the equality in the upper bound, then dudv = δ for every uv � E(G); hence, du = δ for every
u � V (G) and G is regular. Furthermore, we have the equality in (2.4) and so ‖N(u) { N(v)‖= δ0 for every
uv � E(G); thus, δ0 = Δ0. �
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As usual, we denote by M1(G) the first Zagreb index of the graph G, defined in [23] as

M1(G) =
{

u � V (G)

d2u.

This index has attracted growing interest, see e.g., [3], [11], [22], [23], [24], [32], [46] (in particular, it is
included in a number of programs used for the routine computation of topological indices).

Theorem 2.15. We have for any graph G

1

2Δ
tr(D4)

1

2
M1(G) 2m

∣ ≥ GA1(G) ≥ (Δ + δ)3

16Δ3/2δ5/2
tr(D4)

Δ1/2

δ1/2(Δ + δ)
M1(G) 2m

∣
.

The equality is attained in the lower bound if and only if G is isomorphic to the complete bipartite graph
KΔ,Δ with Δ ∞1. The equality is attained in the upper bound if and only if G is a regular graph without
cycles of length 4.

Proof. Denote by CP3 the cardinality of the set of paths of length 2 in G that are not cycles. For any fixed
w � V (G), the set of paths of length 2 that are not cycles and have w as central vertex has cardinality
1
2 dw(dw 1). Hence,

CP3 =
1

2

{
w � V (G)

dw(dw 1) =
1

2
M1(G) m,

{
u,v � V (G)

uA=v

{
w � V (G)
w∼u,w∼v

1 = 2CP3 = M1(G) 2m,

and we obtain by Corollary 2.2

(2.5)

{
u,v � V (G)

uA=v

4 dudv

) {
w � V (G)
w∼u,w∼v

2 dw
(du + dw)(dv + dw)

{2

=
{

u,v � V (G)
uA=v

) {
w � V (G)
w∼u,w∼v

2 dudw
du + dw

2 dvdw
dv + dw

{2

≥
{

u,v � V (G)
uA=v

) {
w � V (G)
w∼u,w∼v

1
{) {

w � V (G)
w∼u,w∼v

1
{

=
{

u,v � V (G)
uA=v

) {
w � V (G)
w∼u,w∼v

1
{((N(u) { N(v)

((

≥ Δ
{

u,v � V (G)
uA=v

{
w � V (G)
w∼u,w∼v

1

= Δ M1(G) 2m
∣
.

Note that if N(u){N(v) = A, then 0 =
)∑

w � V (G)
w∼u,w∼v

1
{)∑

w � V (G)
w∼u,w∼v

1
{
=

∑
w � V (G)
w∼u,w∼v

1 = 0, and otherwise)∑
w � V (G)
w∼u,w∼v

1
{)∑

w � V (G)
w∼u,w∼v

1
{

=
)∑

w � V (G)
w∼u,w∼v

1
{
‖N(u) { N(v)‖∞∑

w � V (G)
w∼u,w∼v

1. Hence, we have in both

cases
)∑

w � V (G)
w∼u,w∼v

1
{)∑

w � V (G)
w∼u,w∼v

1
{
∞∑

w � V (G)
w∼u,w∼v

1. This fact and Corollary 2.2 (taking a = δ and b = Δ)
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give

(2.6)

{
u,v � V (G)

uA=v

4 dudv

) {
w � V (G)
w∼u,w∼v

2 dw
(du + dw)(dv + dw)

{2

=
{

u,v � V (G)
uA=v

) {
w � V (G)
w∼u,w∼v

2 dudw
du + dw

2 dvdw
dv + dw

{2

∞ 16Δ2δ2

(Δ + δ)4

{
u,v � V (G)

uA=v

) {
w � V (G)
w∼u,w∼v

1
{) {

w � V (G)
w∼u,w∼v

1
{

∞ 16Δ2δ2

(Δ + δ)4

{
u,v � V (G)

uA=v

{
w � V (G)
w∼u,w∼v

1

=
16Δ2δ2

(Δ + δ)4
M1(G) 2m

∣
.

Lemma 2.8 and (2.5) give

tr(D4) =
{

u � V (G)

) {
v � V (G)
v∼u

4 dudv
(du + dv)2

{2

+
{

u,v � V (G)
uA=v

4 dudv

) {
w � V (G)
w∼u,w∼v

2 dw
(du + dw)(dv + dw)

{2

≥
{

u � V (G)

) {
v � V (G)
v∼u

2 dudv
du + dv

{2

+Δ M1(G) 2m
∣

≥
{

u � V (G)

) {
v � V (G)
v∼u

2 dudv
du + dv

{) {
v � V (G)
v∼u

1
{
+Δ M1(G) 2m

∣

=
{

u � V (G)

{
v � V (G)
v∼u

2 dudv
du + dv

du +Δ M1(G) 2m
∣

≥ 2
{

uv � E(G)

2 dudv
du + dv

Δ+Δ M1(G) 2m
∣

= 2ΔGA1(G) + Δ M1(G) 2m
∣
.
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Using (2.6) instead of (2.5) and Corollary 2.2 (taking a = δ and b = Δ), we obtain

tr(D4) =
{

u � V (G)

) {
v � V (G)
v∼u

4 dudv
(du + dv)2

{2

+
{

u,v � V (G)
uA=v

4 dudv

) {
w � V (G)
w∼u,w∼v

2 dw
(du + dw)(dv + dw)

{2

∞
{

u � V (G)

) 2 Δδ

Δ+ δ

{
v � V (G)
v∼u

2 dudv
du + dv

{2

+
16Δ2δ2

(Δ + δ)4
M1(G) 2m

∣

∞ 4Δδ

(Δ + δ)2

{
u � V (G)

) {
v � V (G)
v∼u

2 dudv
du + dv

{) {
v � V (G)
v∼u

2 Δδ

Δ+ δ

{
+

16Δ2δ2

(Δ + δ)4
M1(G) 2m

∣

=
8Δ3/2δ3/2

(Δ + δ)3

{
u � V (G)

{
v � V (G)
v∼u

2 dudv
du + dv

du +
16Δ2δ2

(Δ + δ)4
M1(G) 2m

∣

∞ 8Δ3/2δ3/2

(Δ + δ)3
×2

{
uv � E(G)

2 dudv
du + dv

δ +
16Δ2δ2

(Δ + δ)4
M1(G) 2m

∣

=
16Δ3/2δ5/2

(Δ + δ)3
GA1(G) +

16Δ2δ2

(Δ + δ)4
M1(G) 2m

∣
.

If the equality is attained in the lower bound, then du = Δ for every u � V (G), and so G is regular.
Furthermore, we have either G = P2 or ‖N(u) { N(v)‖ = Δ for every u, v, w � V (G) with w ∼ u and
w ∼ v, by (2.5). Hence, in both cases we have either N(u) { N(v) = Aor N(u) = N(v) for each u, v �
V (G). If G is not P2 = K1,1, then fix u, v, w � V (G) with w ∼ u, w ∼ v; hence, N(u) = N(v). Let
N(u) = N(v) = }w1, w2, . . . , wΔ〈 with w1 = w. Fix 2 ≥ j ≥ Δ. Since A∅= }u, v〈 ≤ N(w1) { N(w2), we
have N(w1) = N(wj) = }u, v, z3, . . . , zΔ〈 . Since N(w1) does not depend on j, we have N(w1) = N(w2) =
×××= N(wΔ) = }u, v, z3, . . . , zΔ〈 . Since }w1, w2, . . . , wΔ〈 ≤ N(z3) { ×××∩ N(zΔ), we obtain N(z3) =
×××= N(zΔ) = }w1, w2, . . . , wΔ〈 , and so G is a Δ-regular bipartite graph with parts }w1, w2, . . . , wΔ〈 and
}u, v, z3, . . . , zΔ〈 . Hence, G is isomorphic to the complete bipartite graph KΔ,Δ.

Conversely, if G is isomorphic to the complete bipartite graph KΔ,Δ with Δ ∞1, then G is regular and
N(u) { N(v) = Aor N(u) = N(v) for each u, v � V (G), and so every inequality in the proof of the lower
bound is an equality.

If the equality is attained in the upper bound, then we have du = δ for every u � V (G), and so G is
regular. Furthermore, we have either G = P2 or for every u, v, w � V (G) with w ∼ u and w ∼ v we have
‖N(u) { N(v)‖= 1, by (2.6). Hence, in both cases we have ‖N(u) { N(v)‖� }0, 1〈 for any u, v � V (G), and
so G does not have cycles of length 4.

Conversely, if G is a regular graph without cycles of length 4, then G is regular and ‖N(u){ N(v)‖� }0, 1〈
for any u, v � V (G), and so every inequality in the proof of the upper bound is an equality. �

3. Geometric-arithmetic energy

Recall that we denote by λ1 ∞ ×××∞ λn and μ1 ∞ ×××∞ μn the ordered eigenvalues of A and D,
respectively. It is well known (see, e.g., [6]) that

∑n
j=1 λ

k
j is equal to the number of closed walks of length k

in the graph G.
The energy of the graph G is defined in [19] as E(G) =

∑n
j=1 ‖λj‖.

The geometric-arithmetic energy (GA energy) of the graph G is defined in an analogue way as

GAE(G) =
n{

j=1

‖μj‖.
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It is usual and useful to define modified energies as matching energy, Randić energy, Laplacian energy,
Laplacian-energy-like, incidence energy, skew energy, etc. (see, e.g., [4], [5], [7], [8], [12], [13], [14], [21], [28],
[29], [30] and [47]). These modified energies have applications in theoretical organic chemistry [35], image
processing [42] and information theory [26].

The following result appears in [39, Corollary 3.6].

Lemma 3.1. We have for any graph G the inequality μ1 ≥ n 1.

Theorem 2.7 and Lemma 3.1 have the following consequence.

Corollary 3.2. We have for any graph G the inequality GAE(G) ≥ n(n 1).

The following result is well known.

Lemma 3.3. We have for any complete graph λ1 = n 1 and λj = 1 for every 2 ≥ j ≥ n.

Since for any regular graph we have λj = μj for every 1 ≥ j ≥ n, we obtain the following consequences.

Corollary 3.4. We have for any complete graph μ1 = n 1 and μj = 1 for every 2 ≥ j ≥ n.

Corollary 3.5. For any complete graph G we have GAE(G) = 2(n 1).

We will use the following Ozeki’s inequality [33].

Lemma 3.6. If 0 ≥ N1 ≥ x1, . . . , xn ≥ N2, then
1
n x2

1 +×××+ x2
n

∣ )
x1+∗∗∗+xn

n

{2

≥ 1
4 (N2 N1)

2.

Theorem 3.7. We have for any graph G√
n tr D2

∣ 1

4
n2(μ1 μ≤)2 ≥ GAE(G) ≥

√
n tr D2

∣
,

where μ≤= min1′ j′ n ‖μj‖.
Proof. Since μ2

1, . . . , μ
2
n are the eigenvalues of D2, Cauchy-Schwarz inequality gives

GAE(G) =
n{

j=1

‖μj‖≥
) n{

j=1

1
{1/2) n{

j=1

μ2
j

{1/2

=
√
n tr D2

∣
.

Since μ≤≥ ‖μj‖≥ μ1 for every 1 ≥ j ≥ n, Lemma 3.6 gives

1

n
tr D2

∣ 1

n2
GAE(G)2 =

1

n
μ2
1 +×××+ μ2

n

∣ )‖μ1‖+×××+ ‖μn‖
n

{2

≥ 1

4
(μ1 μ≤)2,

and this implies the first inequality. �

We need the following lemma in order to obtain a lower bound of the GA energy involving tr D2
∣
and

tr D4
∣
.

Lemma 3.8. For every a1, . . . , an ∞0, we have
)∑n

j=1 a
2
j

{3/2

≥
)∑n

j=1 aj

{)∑n
j=1 a

4
j

{1/2

.

Proof. Fix a1, . . . , an ∞0. Applying Hölder’s inequality with exponents p = 3/2 and q = 3, we obtain
n{

j=1

a2j =

n{
j=1

a
2/3
j a

4/3
j ≥

) n{
j=1

a
2/3
j

∣ 3/2{2/3) n{
j=1

a
4/3
j

∣ 3{1/3

=
) n{

j=1

aj

{2/3) n{
j=1

a4j

{1/3

and the inequality holds. �

Theorem 3.9. We have for any graph G, GAE(G)∞ tr | 2
∣ ∣ 3

tr | 4
∣ .
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Proof. Since μ2
1, . . . , μ

2
n and μ4

1, . . . , μ
4
n are the eigenvalues of D2 and D4, respectively, Lemma 3.8 gives) n{
j=1

μ2
j

{3/2

≥
) n{

j=1

‖μj‖
{) n{

j=1

μ4
j

{1/2

,

tr D2
∣ ∣ 3/2 ≥ GAE(G) tr D4

∣ ∣ 1/2
.

�

The following result appears in [43, Theorem 2].

Theorem 3.10. If p∞1 is an integer and 0 ≥ x1, . . . , xn ≥ n 1, then) n{
j=1

x
1/p
j

{p

∞(n 1)1 p
n{

j=1

xp
j .

We will use also the following particular case of Jensen’s inequality.

Lemma 3.11. If f is a convex function in R+ and x1, . . . , xm > 0, then

f
)x1 +×××+ xn

n

{
≥ 1

n
f(x1) +×××+ f(xn)

∣
.

Next, we obtain several lower bounds of GAE(G) involving tr(D2) and detD.
Theorem 3.12. We have for any graph G, GAE(G)∞ tr(| 2)

n(n 1) .

Proof. Applying Lemma 3.11 to the convex function f(x) = x2, we obtain) 1

n

n{
j=1

‖μj‖1/2
{2

≥ 1

n

n{
j=1

‖μj‖,

GAE(G)∞ 1

n

) n{
j=1

‖μj‖1/2
{2

.

Since ‖μj‖≥ μ1 ≥ n 1 by Lemma 3.1, Theorem 3.10 (with p = 2) gives) n{
j=1

‖μj‖1/2
{2

∞(n 1) 1
n{

j=1

μ2
j =

tr(D2)

n 1
,

and we obtain the result. �

Theorem 3.13. We have for any graph G, GAE(G)∞√
tr(D2) .

Proof. Since the inequality
n{

j=1

x2
j ≥

) n{
j=1

xj

{2

holds for every x1, . . . , xn ∞0, we obtain

GAE(G)2 =
) n{

j=1

‖μj‖
{2

∞
n{

j=1

‖μj‖2 = tr(D2).

�

Theorems 2.10, 2.13, 3.7 and 3.13 have the following consequence.

Proposition 3.14. We have for any graph G

⊆ 2

√
n 1
n GA1(G) ≥ GAE(G) ≥√

2nGA1(G) ,
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⊆ 1
2n GAE(G)2 + 4Δδ

(Δ+δ)2 m(m 1) ≥ GA1(G)2 ,

⊆GAE(G)∞2
√

Δδ
Δ+δ GA1(G) .

Theorem 3.15. We have for any graph G, GAE(G)∞n
((detD ((1/n.

Proof. Since the arithmetic mean is greater than the geometric mean, we deduce

1

n
GAE(G) =

1

n

n{
j=1

‖μj‖∞ ‖μ1‖×××‖μn‖
∣ 1/n

=
((detD ((1/n.

�

Theorem 3.16. We have for any graph G

GAE(G)∞
√
tr(D2) + n(n 1)‖detD ‖2/n .

Proof. We have

GAE(G)2 =
) n{

j=1

‖μj‖
{2

=
n{

j=1

μ2
j + 2

{
1′ i<j′ n

‖μiμj‖= tr(D2) + 2
{

1′ i<j′ n

‖μiμj‖.

Since the arithmetic mean is greater than the geometric mean, we deduce

2

n(n 1)

{
1′ i<j′ n

‖μiμj‖∞ ‖μ1‖n 1×××‖μn‖n 1
∣ 2/(n(n 1))

= ‖detD ‖2/n,

and

GAE(G)2 = tr(D2) + 2
{

1′ i<j′ n

‖μiμj‖∞tr(D2) + n(n 1)‖detD ‖2/n.

�
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would like to thank the referees for their careful reading of the manuscript and several useful comments
which have helped us to improve the paper.

References

[1] N. Biggs, Algebraic graph theory, Cambridge University Press, 1993.

[2] B. Bollobás, P. Erdös, Graphs of extremal weights, Ars Combin. 50 (1998) 225-233.
[3] B. Borovicanin, T. Aleksic Lampert, On the Maximum and Minimum Zagreb Indices of Trees with a Given Number of

Vertices of Maximum Degree, MATCH Commun. Math. Comput. Chem. 74 (1) (2015), 81-96.
[4] L. Chen, Y. Shi, Maximal matching energy of tricyclic graphs, MATCH Commun. Math. Comput. Chem. 73 (1) (2015),

105-119.
[5] L. Chen, J. Liu, Y. Shi, Matching energy of unicyclic and bicyclic graphs with a given diameter, Complexity 21 (2) (2015),

224-238.
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[11] K. C. Das, D. W. Lee, A. Graovac, Some properties of the Zagreb eccentricity indices, Ars Math. Contemp. 6 (2013)

117-125.
[12] K. C. Das, S. A. Mojallal, Extremal Laplacian energy of threshold graphs, Appl. Math. Comput. 273 (2016) 267-280.
[13] K. C. Das, S. A. Mojallal, I. Gutman, On energy and Laplacian energy of bipartite graphs, Appl. Math. Comput. 273

(2016) 759-766.

[14] K. C. Das, K. Xu, On Relation Between Kirchhoff Index, Laplacian-Energy-Like Invariant and Laplacian Energy of Graphs
Bull. Malays. Math. Sci. Soc. DOI 10.1007/s40840-015-0280-4
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