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An oblique shock impinging on a shear layer that separates two uniform supersonic
streams, of Mach numbers M1 and M2, at an incident angle σi can produce regular
and irregular interactions with the interface. The region of existence of regular shock
refractions with stable flow structures is delineated in the parametric space (M1,M2, σi)
considering oblique-shock impingement on a supersonic vortex sheet of infinitesimal
thickness. It is found that under supercritical conditions, the oblique shock fails to deflect
both streams consistently and to provide balanced flow properties downstream. In this
circumstance, the flow renders irregular configurations which, in absence of characteristic
length scales, exhibit self- similar pseudosteady behaviors. These cases involve shocks
moving upstream at constant speed and increasing their intensity to comply with equi-
librium requirements. Differences in the variation of propagation speed among the flows
yield pseudosteady configurations that grow linearly with time. Supercritical conditions
are described theoretically and reproduced numerically using highly-resolved inviscid
simulation.

1. Introduction

Shock-wave phenomenon is a fundamental topic in both high-speed flows and high-
energy density physics. A deep understanding on how these sudden compressions form,
evolve, and interact with the surrounding flow and the propagating medium has been
pivotal in the progress of many areas that include aerodynamics, propulsion, detonation
science, ballistics, inertial confinement fusion, or astrophysics, to name a few (Urzay
2018). The complexities that inherently appear in transonic flows have drawn the atten-
tion of the scientific community, as they have shown a proper identity characterized by
the non-trivial acoustic coupling and the high non-linearity of the governing equations.
A common example is the shock reflection in flat plates, whose seemingly simple problem
formulation in terms of the shock-jump equations fails at providing solutions in certain
conditions, as firstly noticed by Mach (1878). The irregular configuration that arises when
a single reflected shock does not suffice to provide mechanical equilibrium downstream
involves the generation of triple-point shock confluences. Substantial progress followed
after the pioneering theoretical work of von Neumann (1943a,b), with those of Jones
(1951) and Sternberg (1959) on the local nature of the triple point that deserve special
recognition. Although large-scale properties of irregular reflections have been mostly
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studied through ideal-flow assumptions (Dewey 1985a,b; Hornung 1986; Ben-Dor 2007),
the effect of the boundary layer, which is subsonic in the region closest to the wall,
has been found to play a significant role in more intricate multiscale processes inside
combustion chambers. This has led to the origin of the so-called λ-structure: a triple-shock
configuration distinguishably different from the Mach stem (Henderson 1967; Grossman
2018). In particular, the viscosity-dominated layer, the lowest of the triple-deck structure
that transversely extends up to zones of the order of Re−5/8 times the streamwise
coordinate (Nayfeh 1991), resolves the apparent paradox of upstream-moving information
in the supersonic incoming stream. Resolution of the shock trajectory and the succeeding
shock reflection in the vicinity of the plate needs for an appropriate model to describe the
distinguished regions within the boundary layer, with the triple-deck theory introduced
by Lighthill (1953a,b) and later on completed by Stewartson (1969). This problem is still
subject to discussion, with the focus being recently placed on the effect of turbulence in
the development of mixing layers (Dolling 2001; Pirozzoli 2011; Jammalamadaka 2014;
Adler 2018; Quadros 2018; Estruch-Samper 2018).

In a parallel manner, the interaction of shock waves with contact surfaces that may
result from stratified fluids, shear layers or mixing layers, has also been addressed from
experimental, theoretical and numerical approaches. A well-known interaction of this
type occurs when a planar shock crosses a perturbed interface that separates two different
fluids, leading to the so-called Richtmyer-Meshkov Instability (RMI). The study of this
phenomenon has accumulated a large number of scientific publications in the past century
since the pioneering works of Richtmyer (1960) and Meshkov (1969). We refer to the
recent works of Brouillette (2002); Nishihara (2010) and references therein for further
reading. The problem configuration suggests the use of linear theory to predict the growth
rate of rippled interfaces at early times, as analytically developed by Wouchuk (2001a,b).
By way of contrast, the interaction of oblique shocks with contact surfaces or tangential
discontinuities can be addressed from linear theory when the strength of the former is
sufficiently low (Ryley 1960; Huete 2016) or the Mach-number tangential discontinuity
is weak enough (see appendix C). This type of interactions, despite comprising rich
phenomena as bifurcations in the convective Mach number domain, transonic regions,
irregular reflections, and unstable structures, has received much less attention to the
best of the authors knowledge, with the works of Henderson (1966, 1968); Abd-El-
Fattah (1976, 1978a,b); Skews (2005); Ben-Dor (2007) and Tesdall (2008) being some
representative contributions in the limit of extremely thin contact surfaces. These works
have established the basis to predict the type of irregular reflections that may arise
attending to the structure shape. However,the study of the the temporal evolution and
the stability of the structure has received less consideration, in part due to the lack of
experiments capable of covering sufficiently long periods. This fact motivates the work
presented here, which aims to provide further insights on the time-dependent large-scale
flow-field structures.

By virtue of the advances in numerical methods and high-fidelity simulations, the
application of Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) to
shear and mixing layers have permitted further understanding of these flows in turbulent
conditions, see for instance the early works of Sandham (1989) and Rogers (1994). A
remarkable contribution has been the analysis of the shear-layer growth rate for inert
and reactive flows at different regimes of compressibility, as well as the characterization
of turbulent structures developed within the two streams as a function of the convective
Mach number. Although the vast majority of these numerical studies were carried out on
temporally evolving layers as they require much less computational resources compared
to spatially evolving layers, the latter strategy must be employed when the effect of the
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Figure 1. Sketch of regular shock/shear-layer interactions, (a) neutral transmission, (b)
reflected rarefaction and (c) reflected shock.

shock impingement on the mixing layer is to be investigated (Chaudhuri 2011; Mart́ınez-
Ferrer 2014; Fang 2018; Rao 2018).

The present work is focused on the study of the large-scale structures formed in
the interaction of oblique shocks with shear layers. It extends the works of Henderson
(1966, 1968) and Abd-El-Fattah (1978a,b) addressing the irregular refraction problem
from a combination of theoretical and numerical work. While the theoretical work
provides a deeper understanding of the canonical problem and the explanation of its
self-similar nature in time, the numerical simulations are used to describe the flow
dynamics. The polar-plot method, so-called Henderson-Neumann diagram, is employed
to predict and to characterize flow-field structures that arise when the convective Mach
number is sufficiently high to render non-steady configurations. The effect of the moving
structure, along with real-gas effects, has been included in the polar-plot argumentation.
Hereafter, real-gas will refer to a thermally-perfect gas with temperature-dependent heat
capacities. The chart of irregular refractions based on the shape of the structure has been
complemented with information about the temporal evolution. This evolution is found
to be pseudosteady (of self-similar type) when the characteristic size is much larger
than the shear thickness, yet smaller than the influencing domain. Results have been
contrasted with high-fidelity numerical simulations performed with the code CREAMS
that uses a fully compressible Navier-Stokes solver with a spatial seventh-order hybrid
WENO scheme and third-order total variation diminishing Runge-Kutta scheme. These
computations provide valuable information that can not be obtained from the hodograph
plane: the description of the time-dependent response, the characterization of lengths
of the generated Mach stems, and the determination of the final flow-field structure
among the multiple options predicted by the polar diagrams. The later point has been
previously addressed by less-energy-principle arguments (Henderson 1998) and also by
solving the inner structure of the interaction, which ultimately determines the shock
trajectory across the shear-layer in supersonic-everywhere conditions (Whitham 1974;
Mart́ınez-Ruiz 2018).

The study considers the free-stream laminar configuration schematically shown in
Fig. 1, which involves the interaction of a shear layer of thickness δu, separating two
supersonic parallel streams with Mach numbers M1 and M2, and an oblique shock with
initial incident angle σi. This shock is generated in the upper stream, that is the air stream
in typical scramjet combustors (Urzay 2018), and transmitted to the lower stream with
angle σt. The simplest regular case, only involving incident and transmitted shocks, is
the neutral transmission depicted in Fig. 1(a), where the exact upstream conditions are
set to automatically provide equal pressure and deflection behind both shocks. In regular
configurations involving a reflected expansion wave, see Fig. 1(b), the thin front curves
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locally while traversing the mixing layer as a consequence of the interaction with the
non-uniform flow. This results in a shock inclination σ(y), with y being the transverse
coordinate that varies across the mixing layer. The value σ = σt for y < −δ/2 at the edge
of the mixing layer corresponds to the transmitted-shock angle computed in Mart́ınez-
Ruiz (2018) using the method of characteristics at the inner mixing-layer region. Regular
solutions may also call for a reflected shock wave, as shown in Fig. 1(c), which yield five
uniform regions and three straight shocks in the steady asymptotic regime. However, in
situations that exceed a critical condition for the convective Mach number M1 −M2,
the downstream region does not maintain mechanical equilibrium and the flow-field
configuration is no longer steady. A curved shock wave is always transmitted and the
shock/shear-layer intersection point continuously moves backwards, which is ultimately
translated into different types of irregular structures whose sizes grow in time.

In contrast to boundary layers, where there exists a strong constraint in the slip-less
condition at the wall, the shear-layer inner properties are expected to have a negligible
impact on the large-scale structures since real-gas properties, like viscosity or thermal
conductivity, become relevant in distances larger than the flow-field structures in high
Reynolds number flows. In this limit, an inviscid coflow separated by an infinitely thin
shear layer is considered. Therefore, the analysis assumes that the shear layer evolution
ahead of the shock impingement is negligible in first approximation. Certainly, this might
not be true if the shock is sufficiently far from the streams’ contact point, partly due
to the Kelvin-Helmholz instability triggered by the velocity shear that may eventually
turn the initially-laminar layer into a turbulent mixing layer (Rikanati 2006; Rubidge
2014). However, as the convective Mach number may also be created by more stable
configurations, as those involving same-velocity different-temperature streams, the focus
is placed here on the large structures that are only dominated by the incident shock angle
and the stream Mach numbers.

The structure of the paper is as follows: the combinations of M1, M2, and σi that
lead to regular conditions of mechanical equilibrium downstream from the shock are
determined in Sec. 2 by investigation of the related problem of shock-wave refraction at
a contact surface. The limits to the regular conditions are also provided there. The effect
of the moving shear layer structure and temperature-dependent heat capacity ratio is
investigated in Sec. 3. Irregular configurations are later analyzed in Sec. 4 with aid of
computational data validated with theoretical predictions based on polar-plot diagrams.
The discussion of the results and a time-dependent analysis of the numerical simulations
are provided in Sec. 5. Finally, concluding remarks are offered in Sec. 6. Appendix A
details the numerical method employed, appendix B describes the polar-plot method
for regular reflections, and appendix C presents the linear theory for the interaction of
oblique shocks with weak perturbations.

2. Regular configurations

An oblique shock traversing a supersonic stream, of Mach number M and adiabatic
index γ, with an angle σ produces a net deflection of the flow of value λ = λ(M,σ, γ),
together with a change of its fluid properties such as temperature, density, pressure, and
Mach number. Furthermore, two coflowing streams under different upstream conditions
are unevenly affected by the same traversing shock. The latter is accommodated in
the lower stream to a transmitted angle σt such that the downstream deflection of
both currents must match and no pressure variations can be held across their contact
surface. This far-field accommodation involves further reflected waves to meet mechanical
equilibrium except for the degenerate case of neutral transmission.
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For a given co-flow configuration, made of the same gas with constant adiabatic
index γ, the flow in the interaction region and the curvature of the shock discontinuity
through the shear layer both depend on the Mach number distribution upstream from
the shock, involving the boundary values M1 and M2, and the inclination angle of the
incident shock σi. To determine the parametric domain (M1,M2, σi), under which the
resulting solutions correspond to those envisioned in Fig. 1, the outer-flow structure
surrounding the interaction region is considered and assumes that the length scales are
much larger than the shear-layer thickness δu. For these large scales, the shear layer
appears infinitesimally thin, so that the problem reduces to that of the interaction of an
oblique shock with a contact surface separating two supersonic streams. The outer-flow
solution is independent of the Mach number profile across the shear layer ahead of the
shock. This seemingly simple assumption admits in general multiple solutions depending
on the values of the controlling parameters.

As discussed in Landau (1987), the simplest configurations are regular refractions
involving straight-line waves, as sketched in Fig. 1. First, a transmitted shock propagating
from the impingement point into region-2, the lower stream. And secondly, a reflected
wave propagating into region-3, postshock stream of region-1 or upper stream. The
reflected wave can either be a rarefaction or a shock that leaves different fluid conditions
behind, both having been observed experimentally (Buttsworth 1997; Jahn 1956; Abd-
El-Fattah 1976, 1978a,b). Therefore, a total of five regions of uniform flow are defined,
where region-4 and region-5 are the downstream flow regions of the upper and lower
streams respectively. In turn, these must coexist under the same deflected angle and
pressure. These two types of regular refractions can only occur in certain ranges of the
controlling parameters, beyond which more complicated irregular-refraction patterns may
arise. Theoretical considerations indicate that the “atlas” of possible solutions include,
in principle, single and double Mach reflections, 4-wave confluences, and continuous
expansion bands (Henderson 1966, 1968; Abd-El-Fattah 1976, 1978a,b), although only
some of these solutions have been observed experimentally.

The above-mentioned regular refractions are composed by straight waves that delimit
uniform regions of the flow. For the sake of simplicity, a single gas will be considered
for both streams here, reducing the mixing-layer problem to a pure shear layer. When
the shear-layer thickness is sufficiently small in comparison with any length scale rep-
resentative of the flow-field domain besides the shock thickness, the regular solution is
purely local and lacks a length scale. For example, the angle of the transmitted shock
solely depends on the incoming flow conditions M1, M2, the adiabatic index γ, and the
shock incident angle σi, thereby providing a constant value for σt, i.e., the transmitted
shock is a straight line. The solution of regular reflections, corresponding to given values
of the input parameters M1, M2, γ, and σi, can be directly determined by application of
jump conditions across the different waves in a zero-dimensional problem together with
the compatibility conditions across the deflected contact surface. The Rankine-Hugoniot
expressions for the pressure jump

p̂(Mu, σ, γ) =
p

pu
=

2γM2
u sin2 σ + 1− γ
γ + 1

, (2.1)

flow deflection angle

λ(Mu, σ, γ) = tan−1
{

2(M2
u sin2 σ − 1) cotσ

2 +M2
u [γ + cos(2σ)]

}
, (2.2)
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andpostshockMachnumber

M2(Mu,σ,γ)=
(γ+1)2M4usin

2σ−4(M2usin
2σ−1)(γM2usin

2σ+1)

(2γM2usin
2σ+1−γ)[(γ−1)M2usin

2σ+2]
, (2.3)

aretobeusedfortheshockwavesinvolvedintheflow,withthesubscriptudenoting
flowpropertiesimmediatelyupstreamfromtheshock.Infact,forgivenvaluesofM1and
σi,directevaluationoftheseexpressionsprovides

λi=λ(M1,σi,γ), p3/pu=p̂(M1,σi,γ), and M
2
3=M

2(M1,σi,γ) (2.4)

acrosstheincidentshock,wherepu=p1=p2isthepressureoftheincomingstreams,
equalonbothsidesofthecontactsurface.Ontheotherhand,acrossthetransmitted
shock

λt=λ(M2,σt,γ), p5/pu=p̂(M2,σt,γ), and M
2
5=M

2(M2,σt,γ) (2.5)

yieldthedownstreamflowpropertiesbelowthecontactsurface,involvingtheunknown
valueofthetransmitted-shockangleσt. Whenthereflectedwaveisashock,theexpres-
sionsforthejumpbetweenregion-3andregion-4

λr=λ(M3,σr,γ), p4/p3=p̂(M3,σr,γ), and M
2
4=M

2(M3,σr,γ) (2.6)

applytothedownstreamflowpropertiesabovethecontactsurface.Correspondingly,
equations(2.4),(2.5),and(2.6)togetherwiththetwoadditionaldownstreamcontact-
surfaceconditions,allstreamlinesareparallelagainwithequaldeflectionangleand
pressure,

(p4/p3)(p3/pu)=(p5/pu) and λt=λi−λr (2.7)

provideasetofelevenalgebraicequationsthatdetermineM3,M4,M5,σr,σt,λi,λr,
λt,p3/pu,p4/pu,andp5/puasafunctionofM1,M2,andσiforaregularrefractionwith
areflectedshockwave.
However,whenthereflectedwaveisanexpansion,theexpressionsdetailedin(2.6)
mustbereplaced,withσr=sin

−1(M3),by

p4
p3

γ 1
γ

=
2+(γ−1)M23
2+(γ−1)M24

, and λr=FPM(M4)−FPM(M3), (2.8)

where

FPM(M)=
γ+1

γ−1

1/2

tan−1
γ−1

γ+1
(M2−1)

1/2

−tan−1 (M2−1)1/2 (2.9)

isthePrandtl-Meyerfunctionforasupersonicexpansion.Inthatcase,thecomputation
involves(2.4),(2.5),(2.7),and(2.8),with−λrreplacedby+λrinthesecondequation
of(2.7),ascorrespondstotheclockwisedeflectionassociatedwiththereflectedrarefac-
tion.Thevaluesofthe MachnumberbehindthereflectedwaveM4andbehindthe
transmittedwaveM5boundtheshearlayerfromaboveandfrombelow,respectively.
DifferentsetsofpossibleregularsolutionsareshowninFig.2overthedomainof
transmitted-shockanglevs.stream-2Machnumber.First,atrivialuniformflowfieldis
denotedbyasolidcircle,wherethetransmittedsolutionmatchestheselectedincident-
shockconditionsM1=M2andσi=σt.Thepossiblelocationsoftheupper-stream
incidentconditionsareboundedbythelowersolidlinethatrepresentstheweak-shock
limit,M1sinσi=1,belowwhichnoshockwouldarise.Inaddition,casesovertheM3=1
linewouldproducesubsonicpostshockconditionsbehindtheincidentshock.Moreover,
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Figure 2. Transmitted shock angle–Mach diagram given by (a) the outer problem for a stream
M1 = 2 and incident-shock angle σi = 50◦ and (b) the comparison between the outer problem
and highly-resolved inviscid simulations for M1 = 5 and σi = 30◦, 45◦ and 60◦. Dashed curves
represent the unstable branch of the multi-valued solutions.

the color curves define the collection of transmitted-shock angles σt that comply with
the problem equations for different values of M2 and the upstream parameters (M1,σi).

As soon as M2 6= M1, the solution generally produces either a reflected compression or
a reflected expansion wave, due to the combined effects of the convective Mach number
and the intensity of postshock Mach waves impinging back on the shock. However,
given an infinitesimally small convective Mach δM = M2 −M1, the postshock effects
can be neglected as discussed in appendix C. In that limit, and given that δM > 0,
compressions leading to a reflected shock are found inside the white island and expansions
inside the shaded region of Fig. 2(a). In turn, the inverse behavior is found if δM < 0,
expansions in the white region and compressions in the shaded region. Nevertheless, for
non-negligible values of δM , the effects of Mach waves reaching the front from behind
must be considered. Therefore, the previously mentioned regions are only approximately
valid as a cumulative effect of differential increments or decrements of M2 with respect to
M1. Resolution of the set of equations renders multiple solutions associated to the con-
figurations that provide mechanical equilibrium downstream. Consequently, in Fig. 2(a)
transmitted solutions are plotted in cyan for reflected shocks (M2 > M1) and in red for
reflected expansions (M2 < M1). However, the differential expansion contributions to the
M2 < M1 points balance out with the differential compressions that appear once into the
shaded area to yield a neutral transmission point and, further, reflected-shock solutions.

In addition, three different scenarios with M1 = 5 are represented in Fig. 2(b),
namely σi = 30◦, 45◦ and 60◦. A comparison of the transmitted angle σt is displayed in
dependence with M2 between numerical simulations (symbols), and the theoretical outer
problem (solid lines). The transmitted angle provided by simulations fits reasonably well
with Landau’s outer solution, result that is also extended to any other fluid property such
as pressure or deflection angle. Red curves in Fig. 2(b) represent the solution predicted
by a reflected-expansion configuration while cyan curves refer to shock-reflected cases.

Note that the set of solutions given by the regular-problem equations is multi-valued
in some regimes, involving further branches of secondary solutions for M2 as the ones
computed in the dashed upper curves in Fig. 2(b), which yield larger angles of the
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σi ↓ M1 = 2 M1 = 3 M1 = 4 M1 = 5 M1 = 6 M1 = 7 M1 = 8

60◦ 1.95∗/2.51∗ 2.85∗/3.92∗ 3.74∗/5.58∗ 4.61N/7.29∗ 5.48/9.01∗ 6.35/10.72∗ 7.23/12.42∗

45◦ 1.55∗/17.9∗ 2.24/16.39∗ 2.83/– 3.37/– 3.9/– 4.41/– 4.92/–
30◦ acoustic 1.565/– 1.91/– 2.18/– 2.4/– 2.6/– 2.77/–
15◦ not possible 2.53∗/– 1.055∗/– 1.28/– 1.42/– 1.51/– 1.58/–

Table 1. Critical values (M−
2c/M

+
2c) for the lower-stream Mach number predicted by Landau’s

outer-problem equations when γ = 1.4 = constant. Starred values refer to shock-reflected
configurations, non-starred values refer to expansion-reflected cases, and superscript N refers
to neutral transmission. The dash symbol means “not found” within the interval M2 = (1, 20).

transmitted shock. The two-valued solution suggests two candidates for the final solution
in a certain region. Multiplicity in the solutions can be solved by stability criteria
(Fowles 1981). This may be more easily seen in the hodograph plane as shown in
appendix B. There, the so-called pressure-deflection polar plots are computed by solving
the inviscid problem, as proposed by Landau. This method, firstly introduced by von
Neumann (1943a,b) and later extended by Henderson (1966, 1968), is particularly useful
to determine all possible solutions that ultimately lead to mechanical equilibrium in the
downstream shear layer, i.e., when the upper and lower postshock streams propagate
with the same pressure and direction. Additionally, highly-resolved inviscid simulations
have been used in this work to confirm the unstable nature of the upper branch in
Fig. 2(b). Such numerical computations, whose results have not been displayed here for
the sake of conciseness, have been initiated with the results predicted by (2.1)-(2.9).
When the lower-branch predictions of (2.1)-(2.9) are employed as initial conditions,
the numerical simulations rapidly accommodate to provide the stable results shown
in Fig. 2(b) in good agreement. It must be noted that, in the numerical simulations,
the adiabatic index depends on temperature (see appendix A) to meet the correction
requirements of the irregular reflections studied below. There, large Mach numbers and
flows including multiple shocks combined with expansions produce non-negligible changes
in the adiabatic index. However, for regular intersections, small deviations are produced
by these effects between the regular theoretical model for a calorically perfect gas (see
appendix B) and the numerical solutions.

The limits of the regular configurations are readily identified in the turning points of
the curves. Due to the maximum deflection that can be produced by an oblique shock
over a supersonic stream of a given Mach number plus a reflected wave, the downstream
conditions of parallel isobaric flow cannot be met for any desired combination of M1,
M2 and σi. Therefore, critical values of the lower stream M+

2c and M−2c are found in
both panels of Fig. 2, beyond which no regular solutions can be recovered by the system
of equations (2.1)-(2.9). These limits, and those predicted by the intersection criteria of
polar plots are, indeed, the same conditions. For the sake of completeness, lower and upper
limits in terms of M2 are identified as a function of M1 and σi, see Table 1. Starred values
refer to shock-reflected configurations and non-starred values refer to expansion-reflected
cases. The superscript N denotes a case of neutral transmission. The dash symbol means
not-found within the interval M2 ∈ [1, 20], following that M > 20 is impractical and not
normally encountered in applications. For instance, the curve corresponding to M1 = 5
and σi = 60◦ in Fig. 2(b) exhibits two turning points at M−2c = 4.61 and M+

2c = 7.3.
These limits can be easily anticipated by analyzing the hodograph plane, as described in
appendix B. The cases where M2 < M−2c corresponds to situations for which the stream-2
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polar in Fig. 18(b) is sufficiently small so that intersections do not occur neither with
the stream-3 polar nor a Prandtl-Meyer expansion. On the other hand, situations where
M2 > M+

2c corresponds to a stream-2 polar sufficiently narrow that does not intersect
with the M3-loop.

3. Unsteady and real-gas considerations

We must accept that small perturbations in the convective Mach number beyond
critical limits will produce a lack of equilibrium that fails to deflect the flow consistently.
In this fashion, new structures make appearance after impingement on the shear layer
involving curved shocks, triple points, shock intersections, subsonic non-uniform regions,
and growing finite-length shocks that result from the unsteady flow field. Following
Henderson (1966, 1968), the term Mach stem, that was firstly coined in the context
of shock-reflection in solid walls, will also be employed here to address the finite-length
shocks that emerge in irregular interactions.

Under conditions that render subsonic flow behind the incident shock, M3 < 1,
irregular configurations are found to be strongly affected by the upper-stream local
boundaries, which are typically responsible for the incident shock creation. This was
inferred from the experiments in Abd-El-Fattah (1978a,b), namely Bound Precursor
Refraction and Lambda Shock Refraction configurations. Nevertheless, when M3 > 1
and the downstream boundary conditions are sufficiently far to affect the dynamics of
the structure through any other subsonic region, the local flow field is self-similar as it
lacks of characteristic length scales. Therefore, the finite length of the Mach stem must
scale with time, growing with the whole interacting structure. The associated movement
is performed against the flow, so that the effective Mach number that is perceived at the
shock surface is increased sufficiently to provide an equilibrium closure in pressure and
deflection. In the hodograph plane, the corrected related polars are slightly larger, such
that intersecting solutions independent of time are provided anew. This fact forces the
contact point between the shear layer and shock structure to retreat at constant speed.
A direct consequence being that self-similar constructions are achieved, where angles and
downstream conditions are maintained constant.

Previous works making use of the hodograph method did not include the effects of
moving structures nor temperature-dependent heat capacities, which we present here.
Following this approach, an asymptotic analysis is developed for small perturbations on
the post-shock adiabatic index δγ and inflow Mach number δM , which produce necessary
second-order corrections to the pressure and deflection equilibrium conditions, as sketched
in Fig. 3(a).

In absence of viscous and conductive effects, the effect of temperature only enters into
play via the heat capacity ratio γ, whose temperature dependence has been taken into
account in the numerical simulations through the JANAF polynomials (see appendix A).
Direct inspection of the Rankine-Hugoniot equations in the strong-shock limit can be
used to provide an upper limit for the maximum temperature achieved for non-reactive
cases. As γ may vary down to 6% within the range of the shock-induced temperature
change considered, linear perturbations can be used to predict variations by an amount
of order δ(ρ/ρu) ∼ −γ/(γ2−1)δγ ∼ 10% for the mass-compression ratio across one single
shock. For a shock-train structure, this effect accumulates, with the value of δγ being
properly modeled with the local temperature.
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Figure 3. (a) Sketch of the moving contact point for M2 < M−
2c < M1 in a shock-anchored

reference frame. The shock angles and the post-shock deflection angle usually reverse for
M2 > M+

2c > M1. (b) Sketch of the deflected streamline corrected by variable γ(T ) in the
expansion fan.

The mass-compression ratio for a gas that is not calorically perfect reads

R =
ρ

ρu
=
γs(γu − 1)(1 + γuM

2
un)[

2 + (γu − 1)M2
un

] +

+

√
(γu − 1)

[
(γu − 1)γ2uM

4
un + 2γu(γu − γ2s )M2

un + γ2s (γu − 1)
][

2 + (γu − 1)M2
un

] , (3.1)

where Mun = Mu sinσ, is the normal component of the Mach number, and γu and γs are,
respectively, the upstream and post-shock values of the adiabatic index. Automatically,
it follows that

p̂ = 1 + γuM
2
un(1−R−1) and λ = σ − tan−1

(
tanσ

R

)
. (3.2)

Regardless the type of irregular interaction, the contact-point properties are always
determined by the local equilibrium downstream, p5 = p6 and λ5 = λ6, which yields σm
and σt as the local values of the oblique Mach stem and the transmitted shock. Therefore,
small variations δγm and δγt are taken into account with respect to the downstream value
γs = γm and γs = γt behind each shock, yielding the following perturbations to the shock
angles

δσm
δγm

=

p̂σ|t

(
λγ |t

δγt
δγm

− λγ |m

)
+ λσ|t

(
p̂γ |m − p̂γ |t

δγt
δγm

)
p̂σ|t λσ|m − p̂σ|m λσ|t

(3.3)

and

δσt
δγm

=

λσ|m

(
p̂γ |m − p̂γ |t

δγt
δγm

)
+ p̂σ|m

(
λγ |t

δγt
δγm

− λγ |m

)
p̂σ|t λσ|m − p̂σ|m λσ|t

, (3.4)

with the factors

p̂γ |m,t =
1

p̂

∂p̂

∂γm,t
, p̂σ|m,t =

1

p̂

∂p̂

∂σm,t
, λγ |m,t =

∂λ

∂γm,t
, λσ|m,t =

∂λ

∂σm,t
(3.5)

defining the variations of the pressure and deflection angle with the adiabatic index
and shock angle. The pressure and post-shock deflection angle are also affected by the
adiabatic index perturbation. Mechanical equilibrium downstream provides the following
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deviations with respect to the callorically-perfect assumption,

1

p

δp

δγ
= −

p̂σ|t
(
p̂γ |m λσ|m − p̂σ|m λγ |m

)
− p̂σ|m

(
p̂γ |t λσ|t − p̂σ|t λγ |t

)
λσ|t p̂σ|m − λσ|m p̂σ|t

, (3.6)

δλ

δγ
= −

λσ|t
(
p̂γ |m λσ|m − p̂σ|m λγ |m

)
− λσ|m

(
p̂γ |t λσ|t − p̂σ|t λγ |t

)
λσ|t p̂σ|m − λσ|m p̂σ|t

. (3.7)

In an analogous manner, anticipating that the contact-point speed is relatively small,
a perturbation analysis can be carried out to study the effect of the moving structure
in the final conditions. As we are considering similar thermodynamical properties in the
free streams, a single value of the perturbation parameter δM is proposed, as shown in
Fig. 3. It is immediate to see that shock angles get affected in the following proportion
for any small δM ,

δσm
δM

= −
λσ|t ( p̂M |m − p̂M |t)− p̂σ|t (λM |m − λM |t)

λσ|t p̂σ|m − λσ|m p̂σ|t
, (3.8)

δσt
δM

= −
λσ|m ( p̂M |m − p̂M |t)− p̂σ|m (λM |m − λM |t)

λσ|t p̂σ|m − λσ|m p̂σ|t
, (3.9)

with the factors

p̂M =
1

p̂

∂p̂

∂M
, and λM =

∂λ

∂M
(3.10)

defining the variations of the pressure and deflection angle with the upstream Mach
number. The pressure and deflection perturbations can be analytically determined by
the following expressions

1

p

δp

δM
= −

p̂σ|t ( p̂M |m λσ|m − p̂σ|m λM |m)− p̂σ|m ( p̂M |t λσ|t − p̂σ|t λM |t)
λσ|t p̂σ|m − λσ|m p̂σ|t

(3.11)

δλ

δM
= −

λσ|t ( p̂M |m λσ|m − p̂σ|m λM |m)− λσ|m ( p̂M |t λσ|t − p̂σ|t λM |t)
λσ|t p̂σ|m − λσ|m p̂σ|t

. (3.12)

Correspondingly, the intersection of the perturbed M1 and M2 curves in the polar plot
diagram, which defines the conditions of the contact-point, is given by

p

pu
=
p0
pu

+
1

pu

δp

δγm
δγm +

1

pu

δp

δM
and λ = λ0 +

δλ

δγm
δγm +

δλ

δM
δM. (3.13)

The functions (3.6), (3.7), (3.11) and (3.12) are computed in Fig. 4 as a function of
the free-stream Mach numbers M1 and M2 for negative values of λ. The vectors indicate
the modified intersection point between stream-1 and stream-2 polars by accounting for
the pressure and deflection perturbation, where the contour lines denote the isovalues
of the modulus. The upper half domain shows the corrections due to a unitary δM
perturbation while the lower half (shadowed) domain involves unitary δγ corrections.
As expected, perturbations in high-Mach-number configurations, which make the polars
slenderer, produce small flow deflections. Note that the intersection that actually happens
for M2 > M1 is the one placed at λ > 0 half-plane, so that perturbations in the deflection
angle are the opposite.

The values of δM and δγm are, in fact, dependent variables to be calculated with the
aid of the ultimate downstream conditions. The effect of the local deviation in the polar-
plot intersection points (equilibrium) is propagated through the rest of the contact points.
Clearly, a rather similar analysis can be performed for the different wave intersections
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Figure 4. Variation of the intersection point as a function of the free-stream Mach numbers
M1 and M2 for negative deflection angles λ (M1 > M2). Iso-contours represent the length of
the vectors.

exhibited in the irregular interaction, but the analytical details are omitted here for the
sake of simplicity.

While propagating effects are expected to have a significant role when |M±2c−M2| � 1,
real-gas effects are particularly relevant when temperature changes are sufficiently strong,
that is, across the incident shock for M1 > M2 and along the final expansion. For the
latter, (2.8) and (2.9) should be conveniently adapted to include the effect of temperature
on the adiabatic index. The pressure variation along the streamline in the expansion fan
can be approximated through∫ pf

pi

dp

p
=

∫ Tf

Ti

γ(T )

γ(T )− 1

dT

T
, ln

(
pf
pi

)
∼ ln

(
Tf
Ti

)
γi

γi − 1

[
1− γf − γi

γi (γi − 1)

]
(3.14)

with

Tf
Ti

=
2 + (γi − 1)M2

i

2 + (γf − 1)M2
f

(3.15)

and γ(T ) being provided by the corresponding constitutive relationship. Likewise, the
flow deflection can be computed with (2.9) by just employing the local value of γ at the
head and at the tail of the expansion wave, FPM(γi,Mi) and FPM (γf ,Mf ), respectively,
as a first approximation. Both propagating and real-gas effects are incorporated in the
polar plots, with the final result being compared with numerical simulations for the
identified structures.

Note that the function γ(T ) and the above expressions for the shock wave and the
PM expansion implicitly stem from the fact that excitation and relaxation times are
negligible, so the properties of the gas particles are assumed to be in local thermodynamic
equilibrium everywhere. Small but finite relaxation times would involve the presence of a
zone, close to the vertex within the expansion fan, where the residence time compares to
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Figure 5. Irregular configurations arising from the interaction of an oblique shock with a
supersonic shear layer. (a) Free Precursor Refraction, (b) Twin von Neumann Reflection, (c)
Fast-Slow Single Mach Reflection and (d) Slow-Fast Single Mach Reflection. Incident si, reflected
sr, transmitted st, and Mach stem sm shocks are labeled.

the characteristic relaxation time, thereby affecting the final structure. Since such effects
are found to be very weak (Hayes 2004), they will not be considered in this work.

4. Self-similar irregular configurations

Under certain convective Mach numbers, for large enough differences between M1 and
M2, the interaction with the shock discontinuity is driven to unsustainable conditions.
There, regular configurations fail to provide equilibrium downstream and irregular config-
urations arise involving the formation of additional waves that accommodate the flow by
moving upstream in a quasi-steady manner. For the sake of doing a general description of
the structures, the focus is placed here in conditions that render supersonic flow behind
the incident shock M3 > 1, mostly yielding complex boundary-independent canonical
configurations, such as those depicted in Fig. 5. For this reason, previously-identified
structures such as the Bound Precursor Refraction (BPR) and Lambda Shock Refraction
(LSR), will not be addressed here.

For sufficiently thin vortex sheets, the evolution of the irregular structure can be split
into three different regimes. First, the initial instant at which the shock impacts the
shear layer and the transmitted and reflected shock waves get connected through local
shocks that grow with time. Second, a mid-time regime at which the structure previously
formed evolves in a self-similar form until information of the boundary conditions enters
into play. And finally, the boundary-dominated stage where the irregular structure may
(or may not) get anchored to the domain walls that are likely present in laboratory
setups. In the pursue of facilitating the analysis, we shall focus on the scale-free regime
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that renders a self-similar flow pattern. There, the irregular structure is much larger than
the shear-layer thickness, yet much smaller than the flow-field downstream domain, so
the acoustic coupling with post-shock boundary conditions can be neglected. The most
characteristic features for the understanding of irregular configurations are developed in
the foregoing sections through hodograph and CFD analyses.

4.1. Free Precursor Refraction FPR

The first scenario of M1 > M2 providing a supersonic shear layer is depicted in
Fig. 5(a). An illustrative combination of parameters M1 = 5 and σi = 30◦ in air with
γ = 1.4 =constant, provide a critical value M−2c = 2.18 as presented in Table 1 and shown
in Fig. 2(b). Despite the complex structure that this irregular intersection exhibits, a
relatively simple analysis can be carried out to compute the values in the distinguished
zones. It implies the use of equations (2.1)-(2.9) along with the polar-plot diagrams. The
regular configuration for M2 > M−2c is analogous to that obtained in Fig. 18(b) showing a
reflected PM-expansion wave arising from post incident-shock conditions that intersects
stream-2 polar at a regular equilibrium point. This remains still a regular solution as
M2 is progressively diminished to M−2c providing a tangential intersection in the polar-
plot diagram. However, the qualitative change from regular to irregular configuration is
justified in Fig. 6(a), where it can be noted that for M2 < M−2c the pressure obtained
under the expansion is higher than the pressure that could be obtained by a stream-2
transmitted shock at any deflection angle (no intersection). The overpressure behind the
interaction point results in a twofold outcome: a push to the transmitted shock, and the
formation of a reflected shock wave instead of the regular expansion. Therefore, secondary
shocks are required to accommodate the flow, as found by the numerical simulations.
The term secondary is employed here to refer shocks that are not present in the far-field
domain, defining Mach stem shocks sm whose bounds are well delimited by other waves
and triple points. We have included the polars of sr and sm2

given the flow conditions
behind si and sm1, respectively.

Since pressure and deflection angle are constant across the contact surfaces, properties
are easily identified there with the crossing points in the p-λ plane. I.e., the intersection
between stream-1 and stream-2 polars for negative λ provides the flow conditions after
the contact point joining st and sm1

. Under these post-shock conditions, a new polar
representing the possible outcomes of sm2

arises and intersects with the sr polar in
a point that establishes the properties at the contact line produced after the four-
shock confluence and before the expansion. See sketched in Fig. 5(a). This isentropic
expansion, represented as a dashed line in Fig. 6(a), bends down the reflected shock and
accelerates the supersonic flow lowering pressures to fulfill equilibrium with the subsonic
flow after the moving transmitted shock. This can be seen in Fig. 7(b) from the numerical
simulations. From the polar-plot viewpoint, the intersection of the Prandtl-Meyer curve
with the lower stream polar would determine the final downstream conditions. As
previously deduced, such expansion does not intersect the M2 polar indicating that far-
field equilibrium cannot be achieved in static conditions. The color legend for σ in Fig. 6,
as well as in Figs. 8, 10 and 12, refers to the shock angle relative to the local incident
streamline slope, which is given by the abscissa.

The real-gas effects introduced above must be considered to ensure the closure of the
problem with the most sensitive process being the expansion wave. In particular, polars
widen substantially for small changes in γ and more-intense less-deflecting expansions are
found. The perturbations to the adiabatic index are computed in the hodograph plane as
shown above, varying across the different regions that range from γu = 1.4 to γB = 1.36 in
the four-shock confluence. Nevertheless, the moving front is also responsible for the final
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Figure 6. FPR polar plots associated with an oblique shock, with incident angle σi = 30◦,
crossing an upper stream moving at M1 = 5 and lower stream M2 = 2 < M−

2c. Standard
polar plots do not provide a closure to the analytic problem (a), corrected polars given the
perturbations δγ and δM for real gases and moving structure (b). Black points denote the
numerical solutions evaluated at the different regions with their respective error bars.

Figure 7. FPR simulations showing Mach (a) and pressure-field (b) distribution for M1 = 5,
M2 = 2, and σi = 30◦ after impingement of the oblique shock with the shear layer.

solution. In the moving transmitted-shock reference frame, the incoming flow in the lower
stream moves at a higher Mach number M ′2 = M2 + δM2, so that pressure downstream
is increased up to the value that the interaction demands. As a result of the receding
transmitted shock, sm1

arises to match the static incident shock wave. Consequently,
this new shock front must also move with a local inflow Mach number M ′1 = M1 + δM1,
with δM1 = (a2/a1)δM2. When the upper and lower streams share thermodynamical
properties, and the sound speeds are equal, the Mach number variation δM is the same
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in both gas streams. Although the flow behind the incident shock is not affected by the
moving structure, the reflected wave does move, varying the pre-shock streamwise Mach
number δM3x = (a1/a3)δM and yielding

δλ3 = − sinλ3
δM3x

M3
= − sinλ3

a1
a3M3

δM and δM3 = cosλ3
a1
a3
δM (4.1)

for the flow deflection angle and the total Mach number, respectively. The value of M ′2
is then provided by the minimum low-stream Mach number for which its associated
modified polar reaches the final expansion line. This is marked by the tangent solution
(C-D) in Fig. 6(b), where δM = 0.015, according to polars-plot theory.

There are some implicit assumptions in the use of polar-plot methods to solve the
complex structures mentioned above. One of them is that it resolves the final expansion
as a Prandtl-Meyer expansion. Although it is true that this transformation can be taken
isentropic within the interaction domain, the assumption that streamlines bend according
to (2.9) is not rigorously right because the expansion does not depart from a single point,
but rather from a finite region in the non-uniform subsonic flow that radiates pressure
changes along Mach lines. Such interaction is far from being trivial, and theoretical
descriptions have only been able to cover weak cases. The secondary shock impingement
on the transonic shear layer resembles the flow structure analytically studied in Huete
(2016), where it was found that the impinging weak shock reflects as a pressure ridge
followed by an expansion. Something alike applies to the flow right behind the secondary
shock sm1

, which has been assumed completely homogeneous as the influence from the
non-uniform subsonic flow has been neglected. The latter assumption is justified by the
linear analysis developed in appendix C, which predicts a very low influence of these
pressure waves on sm1

. As a matter of example, the value of ∆I computed in Fig. 20(b)
represents the shock trajectory deviations when it is only affected by acoustic waves
departing from non-uniform pressure fields δσ = ∆Iδp/p. For the region of interest
behind sm1

, linear theory predicts ∆I ∼ 0.2, then rendering a very small value of the
shock trajectory deviation δσ ∼ 1.45◦, provided that pressure changes are δp/p ∼ 0.13
within the influence zone, according to the numerical simulations.

The equilibrium condition predicted by polar plots calls for constant angles of the
shocks structure, which dictates equal velocities in the backwards-moving intersection
points delimiting sm1

. The structure is pseudosteady when these values remain constant
in the polar diagram. In addition, when all the local lengths in the irregular structure
grow proportionally to time with the same power law, the flow-field is self-similar, akin to
those found in shock-wall reflections (Jones 1951; Sternberg 1959; Hornung 1986; Tesdall
2008). Note that, for setups made of different gases as those carried out by Abd-El-Fattah
(1978a,b), a modified version of Fig. 6(b) would apply, with the adjusted Mach numbers
providing different equilibrium angles.

The numerical simulation for M1 = 5, M2 = 2 and σi = 30◦ is shown in Fig. 7, which
displays a self-similar solution that is maintained through simulation time. Mach-number
variations can be used to identify the aforementioned regions of the flow, where the
subsonic zone is confined in the dark-brown domain in Fig. 7(a). The slip-line originated
at the four-shock confluence is not easily distinguished as the Mach numbers across are
very similar, although it can be tracked over the streamlines on the right panel. The
contact surface, placed at y = 0, encounters first the backwards-moving transmitted
shock, which is curved and generates positive (far bottom-wards) and negative (close
to the contact surface) deflection angles. The pressure distribution shown in Fig. 7(b),
behind st and sm1

, remains nearly uniform p/pu ' 5 as denoted by the equilibrium
intersections in Fig. 6(b). The maximum pressure is placed right behind the four-
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Figure 8. TNR polar plots for σi = 50◦ and M1 = 2 and M2 = 1.5 < M−
2c(a), detail

of equilibrium solution for real gases and moving structures involving a subsonic region of
expansions (shaded area) (b), including the simulation values (black points) with their respective
error bars, and analytical solutions (white circles).

shock confluence. Although not directly seen because of the wide range in the scale,
the subsonic zone is not exactly uniform as deduced from the streamlines deflection in
Fig. 7(b). Spatial-averaged values retrieved from the simulations are 〈pnum〉/pu = 5.11
and 〈pnum〉/pu = 4.27 for the pressure behind the transmitted shock close and far
below the contact surface, (points A and D, respectively) and 〈pnum〉/pu = 22.3 for
the maximum pressure found behind the four-shock confluence (point B), values in great
concordance with the results thrown by the modified hodograph method. As for the
receding velocity, polar-plot theory predicts 5.2 m/s, while numerical simulations renders
a smaller value, 2.1 m/s. This may be explained by the transmitted shock trajectory,
which employs a very long distance in accommodating to the equilibrium condition,
thereby generating a non-uniform subsonic flow.

4.2. Twin von Neumann Reflection TNR

The following configuration includes the previously-identified secondary shocks of the
FPR, sm1 and sm2, plus an extra Mach stem sm3 that joins the latter to the incident and
reflected shocks, as shown in Fig. 5(b). This forms a kind of symmetric composition of
si and sr with sm1 and sm2, that gives the name Twin von Neumann Reflection to this
case. This kind of structure arises for weak shocks, although an analogous configuration is
possible for strong shocks called Twin Mach Reflection TMR, which will not be addressed
here.

This distinguished case arises when the reflected and secondary shocks, sr and sm, do
not suffice to provide equilibrium originating an expansion, defined previously by their
intersection B in Fig. 6(b). A linking shock sm3 is produced, defined by the segment of
loop between the two intersections B and C shown in Fig. 8(b), where the Mach stems, the
transmitted, and the reflected shock polars are modified in consonance with the relative
Mach number δM = 0.02 and the adiabatic index ranging from γu = 1.4 to γB ∼ 1.38.

Unlike in the FPR previous case, where the upper stream is supersonic everywhere, the
subsonic flow behind the Mach stem impedes solving the local structure by inspection of
the polar curves. The subsonic expansion lies in the shaded region of Fig. 8(b), limited
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Figure 9. TNR simulations showing Mach (a) and pressure-field distribution with streamlines
(b) for M1 = 2, M2 = 1.5, and σi = 50◦ after impingement of the oblique shock with the shear
layer.

by the known boundaries of the flow, though not explicitly defined by a curve in the
hodograph plane, and responsible for the subsonic link of E and D. Note that further
increases in δM modifies stream-2’ polar in the closure direction (displacing E towards D),
but also widens stream-1’ polar finally moving away of D, so that no tangential solution is
found. Nonetheless, polar plots can still provide useful information for the distinguished
zones in the shock-reflection structure, except for its actual dimensions. Perforce, the
relative lengths are retrieved from the numerical simulations shown in Fig. 9, which
show that non-uniform regions extend over lengths of greater order of magnitude than
the Mach-stem length, involving the coupling of the subsonic flow with downstream
boundaries. Spatial-averaged values retrieved from the simulations are 〈pnum〉/pu = 2.3
and 〈pnum〉/pu = 4.5 for points A andD, respectively. Asymptotic far-field pressure values
for the end of the expansion and below the transmitted shock are 〈pnum〉/pu = 2.48 and
〈pnum〉/pu = 2.52, respectively. Excluding point A, for which the pressure predicted by
theoretical polar plots is lower, the rest of the estimations are definitely consistent with
the numerical simulations.

Besides rendering more accurate values, numerical simulations help in providing in-
formation about the relative sizes of the secondary shocks, as well as the flow-field
properties. From Fig. 9, a supersonic-flow layer separating the subsonic regions formed
behind the transmitted shock and the Mach stem is identified. In absence of boundary
constraints, a boundless concave Mach steam would dynamically evolve towards a planar
shape, as the downstream mass flux induced parallel to the front would accumulate
in the local maximum then pushing the front upwards. The dynamical response could
exhibit decaying oscillations until the planar shape is ultimately achieved. In this case,
as the Mach stem boundaries are determined by the newly-formed triple points, the
disequilibrium in the concave Mach stem forces it to move upwards as a whole. For this
particular case, however, the value of δM ∼ 0.01 is found to be quite small.
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Figure 10. Fast-slow SMR regular polar plot for σi = 60◦, M1 = 5 and M2 = 4 (a), detail of
corrected equilibrium solution involving a subsonic region of expansions (shaded area) (b) with
measured values from the simulations (black points), and analytical solutions (white circles).

4.3. Single Mach Reflection SMR

4.3.1. Fast-slow SMR

We shall now consider the flow structure shown in Fig. 5(c), which appears, e.g., for
M1 = 5, σi = 60◦, and M2 = 4 < M−2c. There, a new shear layer is recognized between
subsonic and supersonic regions arising from the triple point, namely the confluence of
the incident, reflected, and Mach stem shocks. Analogously to solutions of FPR type,
when M2 is reduced below the critical value M−2c, regular configurations fail to provide
downstream equilibrium as shown in Fig. 10(a), with the overpressure triggering the
evolution of quasi-steady structures. Akin to the previous case, the Mach stem curvature
impedes static equilibrium so it moves upwards, along with the transmitted shock, causing
an increase of the relative Mach number.

The complete polars are presented in Fig. 10(b), where the subsonic flow with the
appropriate expansion is shown in a shaded area as in the TNR, with δM ∼ 0.1 and
adiabatic index ranging from γu = 1.4 to γB = 1.33, measured at the moving shocks
in the numerical solution. The properties of the Mach stem are given by the M ′1 curve
and predict a positive angle for σm in contact with si and negative with st as recovered
from the simulations, see Fig 11. Intersection A of stream-1’ and stream-2’ polars yields
the conditions at the impingement of the shock with the shear layer, which provides
the local angle of the shocks at each side, rendering subsonic and supersonic flow in the
lower and upper stream respectively. The upper conditions form a small supersonic patch
that originates a new slip line in contact with the Mach stem, siting very close to the
original slip line of the shear layer. This seems a degenerate version of the previous TNR
case, where the supersonic intermediate layer becomes a point with no scale linking the
regions.

In turn, the span of the secondary wave that generates the supersonic pocket remains
negligible to the progressively growing Mach-stem, thus sets the slip lines close together
enclosing supersonic post-shock conditions at the confluence point in y = 0, see A-B.
Consideration of viscous and thermal effects, would provide a proper development scale
to which this small structures could be compared.
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Figure 11. Fast-slow SMR simulations showing Mach (a) and pressure-field distribution with
streamlines (b) for M1 = 5, M2 = 4, and σi = 60◦.

The flow behind the reflected shock is supersonic, with higher pressure than the region
behind the transmitted shock. Although it is not noticeable from the framework displayed
in Fig. 11, a closer look at the triple-shock point C reveals a Guderley-type locus, with a
well-delimited subsonic patch appearing akin to that predicted by Vasilev (2008). Such
non-idealized flow patterns, whose characteristic length is much smaller than large-scale
structures developed in the pseudosteady regime, have been experimentally observed
in shock-wall reflection phenomena (Skews 2005, 2009) and have been now found in
irregular interactions with contact surfaces. Since this work mainly focuses on the large-
scale structures, a thorough analysis on this small-scale formation is not provided in
this work. Roughly, the fluid particle departs from the triple-shock and crosses the small
subsonic patch while expanding isentropically, with a flow deflection function that can be
approximated with a Prandtl-Meyer expansion, as observed in the numerical simulations.

Finally, note that the transmitted shock displays a varying angle along the M ′2
curve from the interaction with M ′1 to the value given at equilibrium pressure. Far-
field numerical solution shows that pressure equilibrium is not achieved between the
upper expansion and the flow right behind the transmitted shock far below the contact
surface, as the region in between (left out in Fig. 11 for clarity purposes) is not uniform.
This is mainly due to the strong pressure and deflection-angle gradients found in the
intersection point, which induce strong vortex structures convected downwards. Here,
the values predicted by the modified polars are σt(y = 0) = 105.1◦, referring to the
transmitted shock very close to the contact surface, and σr = 157.6◦ for the reflected
shock departing from the triple point. The corresponding pressure values are p/pu ' 30
and p5/pu ' 19, whose comparison with numerical simulations stands in good agreement
for 〈pnum〉/pu = 29.51 and 〈pnum〉/pu = 19.05. However, the gap between the deflection
angles provided by D and E in the polar plots is connected via the subsonic vortex sheet
with varying deflection angle that is formed at the slip lines. As expected, the supersonic
upper region that is less affected by the non-uniform subsonic zone, is reproduced by the
polar plots with higher accuracy.
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Figure 12. Slow-fast SMR polar plots associated with an oblique shock, with incident angle
σi = 60◦, crossing an upper stream moving at M1 = 5.5 and a lower stream M2 = 10 (a).
Corrected polars including numerical solution measurements (black points) (b).

4.3.2. Slow-fast SMR

An irregular flow-field configuration of the SMR kind is also observed when the lower-
edge supersonic Mach number exceeds a critical value, out of the weak-shock limit. This
critical value is easily found in Fig. 2(b) at the curve bending in the right side of the
plot. Beyond this value, there is no solution of the regular kind. The case illustrated in
Fig. 12(a) represents the standard polar plots for critical conditions M1 = 5.5, σi = 60◦,
M2 > M+

2c. It is readily seen that for M2 > M+
2c the polar for M2 no longer intersects

the polar M3 of the reflected shock, arising from the incident-shock conditions. The
resulting configuration is computed in Fig. 12(b) considering the value of δM ∼ 0.1 for
the upstream moving structure, according to the simulations, and the effects on γ. A clear
picture of the intersection is given by the numerical simulations shown in Fig. 13. The
Mach-stem connecting M ′1-M ′2 and M ′1-M ′3 crossing points is easily identified, thereby
generating a new slip line in the downstream flow. The flow in zones A and B departs
with different angles, λB > λA, which forces the acceleration of the subsonic fluid particles
along the stream lines.

This irregular configuration demands high-Mach streams that translate into high
pressures downstream. Consequently, temperature changes are alike, with the associated
real-gas effects taking a dominant role in providing the equilibrium conditions. As a
matter of example, the value of γ in points A and B reaches γ ∼ 1.32. The corresponding
pressure values of the polar plots are p/pu ' 38 and p/pu ' 37 for points A and B,
respectively, and indicate a good correspondence with the numerical simulations. They
are 〈pnum〉/pu = 38.24 and 〈pnum〉/pu = 37.92 for the pressure at the contact point A
and right behind the triple point B, respectively. According to Fig. 12(a), calorically-
perfect predictions yield significantly smaller values of pressure. From Fig. 12 it is also
evidenced that critical conditions are affected by the γ value reduction. In particular,
as the polar plots widens with temperature, the value of M+

2c is found to be greater
and the regular-reflection domains broadens. For instance, M1 = 5, σi = 60◦, and γ(T )
renders M+

2c = 8.1, which is definitely greater than M+
2c = 7.29 computed in table 1 for

γ = 1.4 =constant.
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Figure 13. Slow-fast SMR simulations showing Mach and pressure-field distribution for
M1 = 5.5, M2 = 10, and σi = 60◦.

5. Discussion

5.1. Self-similar regime

Relevant studies on irregular configurations arising at the interaction with a gas
interface have been instrumental to provide deeper understanding on this topic through
intricate experimental methods (Abd-El-Fattah 1978b). There, a shock produced in a
tube for different pressure-jump intensities interacts with a contact surface between two
gases at rest, generating reflected structures on a layer of non-zero convective Mach
number from a fixed-reference view point. Even though their results on a gas interface
of constant properties are captured via numerical simulations, accounting for possible
shear or temperature differences, such that M1 6= M2, calls for more subtle details to
be addressed. Here, proper consideration of a moving reference frame with the incident
shock allows to identify the nature of the final structure that grows as the transmitted
shock further moves against the stream. This explains the lack of agreement between
their experimental and theoretical results for increasing shock intensities. The modified
speed that we introduced above, obtained from numerical data, provides equilibrium
conditions in the hodograph plane with a reasonable degree of accuracy. This is valid
when the upper stream is supersonic everywhere and leads to conditions that are uneasy
to comprehend for a passing shock on their laboratory-fixed reference frame. There,
some confusion was shed under the unavoidable transient effects and wall reflections of
the experiments, which yield in particular the bound-precursor reflection BPR type of
interaction that we have been unable to find in the open domain. Furthermore, in the free-
precursor type FPR and twin von Neumann refraction TNR, the transmitted waves were
said to propagate faster than the incident shock, which complicated the harmonization
with their self-similar observations.

Here, M2 < M−2c cases have shed light onto their pseudosteady nature, with the self-
similar structure displacing as a whole with the speed that yields the minimum pressure
increase needed to render downstream equilibrium. As noted above, the intersection of
the PM curve, which represents the expansion of the fluid particles behind the origin
of the reflected shock, with the modified polar plot for the lower stream, given by the
Mach number measured from the counter-stream moving transmitted shock, provides
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the final equilibrium conditions. As the departure conditions of the final PM-expansion
depend on the relative upstream Mach number, the equilibrium point must be resolved
iteratively. Fortunately, since the reflected shock is not very strong, the final Prandtl-
Meyer expansion renders conditions that are very similar to those obtained with the
reflected expansion in regular interactions. Therefore, the relative Mach number of the
transmitted shock with respect to the incoming stream scales with the deviation from
critical conditions δM ∼M ′2 −M−2c.

Secondly, the case M2 > M+
2c, computed in Fig. 13, shows a seemingly simple structure

with the reflected and transmitted shock plus a Mach stem, whose formation is predicted
by polar plots. The length of this Mach stem, or those found in Fig. 7 and Fig. 11,
cannot be predicted by the length-less equations employed in the polar diagrams. The
moving transmitted shock together with the anchored incident shock, relate the length of
the Mach stem to the retreating velocity and the evolution time. This fact indicates that
information about the largest length scale involved in the problem, be the domain length-
scale, must eventually reach the Mach stem (Hornung 1986). This clearly occurs through
the downstream flow behind the Mach stem that is inherently subsonic. Nonetheless,
the length of this Mach stem has been found to play a negligible role in predicting the
properties of the backwards-traveling transmitted wave. It is suggested that constraints
in the boundary domains, as the walls in the experiments conducted by Abd-El-Fattah
(1978a), can make the Mach-stem-length growth saturate at increasing times.

The numerical method employed, in consonance with the theory used in computing the
polar diagrams, is set to the inviscid Euler equations, so that the only length scale involved
in the problem enters through the domain size. The shear layer only diffuses via numerical
effects, which has been observed to be negligible within the local interaction structure
domain. For instance, some shocks are much shorter than other lengths appearing in the
irregular structure as seen in Fig. 11 for the subsonic pocket, which in absence of viscous
effects adapts to the minimum mesh size. The consideration of viscosity will provide
additional scales to compare with, being the mixing-layer thickness the most important
one at early times. This will affect the post-shock conditions if these small structures that
have lead to nearly-discontinuous solutions. In turn, if the shear layer becomes turbulent,
the numerical method calls for realistic 3D computations that resolve all contributions of
the vorticity perturbations, which would include additional scales. However, this is out
of the scope of the present work and it is left for future studies.

It must be also stated that, as a result of the high non-linearity of the problem, the final
flow-structure configuration depends on the initial conditions. For the cases considered
here, where the flow is initiated with the two co-flowing streams and the shock originated
at the corner imposed by the flow deflection, the asymptotic structure is found to settle
at short times after the shock impingement in the tangential discontinuity. Afterwards,
although it moves and expands in the physical domain, the structure becomes self-similar
as all the angles remain unaltered. This finding was explained by the permanence of the
intersection points in the polar plots.

A relatively simple demonstration is provided in Fig. 14, which shows the length of the
secondary shocks that appear in the irregular reflections. If the secondary shocks length
grows proportional to time, the Euler equations can be rewritten in a self-similar form
through the transformation x̃ = x/t, ỹ = y/t, as the analysis performed by Sternberg
(1959); Samtaney (1997) for Mach-wall reflections. It is seen that shortest lengths, as
is |sm2 | in the FPR structure, takes longer to fit into the linear trend, as its length is
comparable to the shear layer thickness at early times.
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5.2. Induced vorticity downstream

The vorticity amplification that the contact surface experiences across the oblique
shock, which depends on the velocity (shear-type) and density (baroclinic source) jumps,
is of paramount importance in supersonic propulsion devices (Urzay 2018). There, shocks
generated in the air stream at wedged walls and fuel injectors impinge on the shear
layer surrounding the fuel jets downstream from the injection point (Laurence 1973).
Although the flow is typically turbulent in these high-Reynolds-number applications,
analyses of laminar flows have been shown to be instrumental in providing insightful
information pertaining to mixing augmentation by vorticity production as studied by
Menon (1989); Lu (1991); Gutmark et al. (1995); Buttsworth (1996) and Tritarelli (2017),
and enhanced chemical reaction leading to ignition behind the curved shock in recent
works (Huete 2015, 2017). The acoustic coupling in the shock train has been observed
to experience unsteady responses, even for simple geometrical configurations (Xiong
2018). More realistic configurations would involve the presence of multi-gas flow field,
with the spatial-evolving mixing and shear layers having a significant impact on the
final shock-train structure. The characterization of the limits below which the shock
transmission/reflection remains steady, as well as the eventual evolution of unsteady
shock configurations is crucial in the design of supersonic combustion chambers.

The interaction of the oblique shock with perturbed shear layer triggers the unstable
growth of the contact surface ripple, which can be seen as a combination of Kelvin-
Helmholtz and Richtmyer-Meshkov instabilities (Samtaney 1993; Mikaelian 1994; Rika-
nati 2006; Rubidge 2014). In this respect, the analysis of the perturbations growth behind
the shock impingement cannot be uniquely determined by the free-stream Mach numbers
M2 −M1, as the upstream shear (U2 −U1)/δu and the density ρ2 − ρ1 would contribute
differently. The latter is the baroclinic contribution, as there are unaligned density and
pressure gradients across the shock impingement. It has been previously reported that
considering lighter gases in the low-speed stream, which is an archetype configuration of
hydrogen-air mixing-layers in scramjets, makes the two contributions have a destructive
interference.

An example of the large-scale vorticity structures generated at the shock is provided in
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Figure 15. Dimensionless vorticity field, scaled with the upstream shear (U1 − U2)/δu, for the
fast-slow SMR simulation: M1 = 5, M2 = 4, and σi = 60◦.

Fig. 15 for the fast-slow SMR simulation. The initial vorticity associated to the co-flowing
streams, namely (U1 −U2)/δu, is amplified by the shock impingement. The downstream
vorticity sheet rolls up, thereby generating local eddies that propagate downstream
convected by the fluid particles. This effect will promote the macroscopic mixing of
the compressed gases. Clearly, viscosity will have a pivotal effect in the mixing rate, as
the vorticity distribution will be dominated by viscous effects at scales of the order of
∼ δu. A detailed study of the expected mixing enhancement induced by the oblique shock
impingement (Menon 1989; Lu 1991; Gutmark et al. 1995) would require the resolution
of the mixing layer region, with the upstream turbulent fluctuations demanding three-
dimensional computations (Mart́ınez-Ferrer 2017; Fang 2018; Rao 2018). However, such
detailed analysis would exceed the scope of the present paper.

6. Concluding Remarks

The response of shock waves impinging on contact surfaces, mixing or shear layers,
has been addressed here to obtain further understanding on compressible-flow irregu-
lar configurations in semi-infinite domains. The critical conditions of convective Mach
number and incident shock angle under which these structures arise are delineated from
a theoretical zero-dimensional analysis of the inviscid regular-problem. These limits to
regular solutions are further studied by means of the hodograph plane and high-fidelity
numerical simulations of inviscid flows.

In this work, classic polar plots have been extended to include real-gas effects and the
effective Mach number at the retreating shocks to be applied to the atlas of irregular
configurations. It has been found that the moving set of waves is a result of the lack of
mechanical balance in regular configurations, which pushes back the set increasing the
relative Mach number and favors the achievement of downstream balanced conditions.
Therefore, once the stable conditions are reached, the angles that form the asymptotic
growing structure remain unaltered and produce self-similar solutions.
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The modified hodograph method provides, with an acceptable degree of accuracy,
values of the distinguished complex configurations. In particular, it reproduces remark-
ably well combined details as triple shocks, local intersections, shock confluences and
expansions. By way of contrast, diagrams do not provide any information about the
characteristic size of the structure, which remains a function of time. Nevertheless, the
scale of the domain must arise at large times, as it is the only typical length involved
and it determines the final stages of the structure.

Numerical simulations using the inviscid Euler equations have been used here to
characterize the irregular configurations removing the viscous-diffusive length scale of
the problem. This removes the Reynolds number dependency or the classical length
scale given as the distance of the impingement to the origin of the mixing layer. These
simulations enable the visualization of the complex shock structures, and are able to
provide the growth rate of the shock lengths. In addition, it has also been instrumental to
confirm the spurious character of particular cases as the unstable upper-branch solutions
of regular configurations, and discard them.

From the far-field standpoint, when a single reflected wave cannot yield conditions
to provide equilibrium downstream, two mayor events can happen. For fast-slow shear
layers, as the transmitted shock pressure is not sufficiently high, the generation of a
reflected shock is accompanied with a posterior expansion, and the transmitted shock
retreats as a consequence of the pressure mismatch. As a result, secondary shocks must
come into play to join the moving transmission and the fixed impinging shock. In this
regard, the upper stream and the incoming wave govern the final flow configuration. For
slow-fast shear layers, the far-field qualitative picture is similar, but with the absence of
the expansion flow downstream since the transmitted shock pressure is higher than that
demanded by the mechanical equilibrium in static conditions. In both scenarios, the local
structure defined by finite-length shocks are formed in the upper stream layer.
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Appendix A. Details of numerical simulations

The unsteady, three-dimensional, compressible Euler equations of a multi-species
thermally-perfect gas mixture, namely

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (A 1)

∂ρui
∂t

+
∂ρuiuj
∂xj

+
∂p

∂x i
= 0, i = 1, 2, 3, (A 2)

∂ρet
∂t

+
∂ (ρet + p)uj

∂xj
= 0, (A 3)

∂ρYα
∂t

+
∂ρYαuj
∂xj

= 0, α = 1, . . . , N, (A 4)
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are numerically solved for the spatially-developing shear layers studied in this work. In
the above system, t denotes the time, x is the Cartesian coordinate with subscripts i and j
referring to spatial directions, ui is the velocity component in i-direction, ρ is the density,
p is the pressure, et = e+ uiui/2 is the total specific energy (obtained from the internal
specific energy, e = h−p/ρ, and the kinetic energy) and Yα is the mass fraction of species
α, being N the total number of species in the mixture. Thermodynamic variables follow
the equation of state of an ideal gas mixture, p = ρRT/W , where R = 8.314 J/mol·K is

the universal gas constant and T and W (α) = (
∑N
α=1 Yα/Wα)−1 are the temperature and

molar mass of the gas mixture, respectively. The enthalpy, h(α, T ) =
∑N
α=1 hα(T ), and

heat capacity, cp(α, T ) =
∑N
α=1 cp,α(T ), are functions of the temperature and mixture

composition (calculated via JANAF tables, see Stull (1971)). Therefore, the ratio of
specific heats γ = cp/cv is not constant. For same-gas shear layers, like the ones studied
in this work, the value of γ is uniquely determined by the temperature.

The numerical simulation of compressible flows does require the use of highly-accurate
numerical schemes capable of capturing shock waves precisely. Consequently, the spatial
discretization of the first-order derivatives in (A 1)–(A 4) is carried out with a seventh-
order accurate hybrid upwinded-WENO scheme (see Balsara (2000) for a detailed de-
scription of the WENO implementation), whilst time integration is performed via a third
order, total variation diminishing, Runge-Kutta scheme as described by Gottlieb (1998).
The aforementioned equations and numerical procedures are integrated in the direct
numerical simulation (DNS) solver CREAMS, which has been thoroughly described and
validated in a previous work, Mart́ınez-Ferrer (2014).

Following previous works based on temporally-developing (Pantano 2002; Mahle 2007)
and spatially-developing (Stanley 1997; Fu 2006; Mart́ınez-Ferrer 2017) shear layers, the
flow is initialized using a hyperbolic tangent profile for the mean streamwise component
of the velocity

u1 =
U1 + U2

2
+
U1 − U2

2
tanh

(
2y

δω,0

)
, (A 5)

whilst the other two orthogonal components are set to zero. In (A 5), U1 and U2 are
the mean streamwise velocities of the top and bottom streams, respectively, δω,0 ≡
δω(x = 0) = (U1 − U2)/(|∂〈u1〉f/∂x2|max,0) is the initial vorticity thickness of the
shear layer where brackets indicate Reynolds averaged quantities, being the additional
index f utilized for Favre averaged quantities. The thermodynamic conditions of all the
shear layers studied in this work correspond indeed to the ICAO standard atmosphere
(p = 101325 Pa and T = 288.15 K) and the retained air mixture composition is given by
XO2

= 0.21 and XN2
= 0.79 for the volume fractions of hydrogen (α = 1) and nitrogen

(α = 2) species, respectively.
In (A 5), the initial vorticity thickness is a crucial parameter defining the problem

because it controls the amount of initial diffusion between the two streams of the shear
layer. This quantity has an associated Reynolds number

Reω,0 =
ρ̄∆Uδω,0

µ̄
, (A 6)

where ∆U = |U1 −U2|, ρ̄ = (ρ1 + ρ2)/2 and µ̄ = (µ1 + µ2)/2. Following the literature of
supersonic inert mixing layers (Pantano 2002; Fu 2006; Mart́ınez-Ferrer 2017), the value
Reω,0 = 640 is retained in the present work. With this value one can deduce from (A 6)
the initial vorticity thickness of a given shear layer and thus its corresponding velocity
profile with (A 5). The grid size employed in numerical simulations is a factor of the initial
vorticity thickness δω,0 = 2.8 · 10−5 m, and has a typical value corresponding to DNS of
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∆x ≈ 0.168δω,0 according to the literature (Pantano 2002; Mahle 2007; Mart́ınez-Ferrer
2017). Clearly, the definition of the vorticity thickness is not compatible with the system
of Euler equations describing the shear layers of this work, since the hyperbolic tangent
profile (A 5) would asymptotically degenerate into a step function as δω,0 = 0 for an
inviscid flow. However, δω,0 6= 0 is employed for the following two reasons: (i) it provides
an estimated grid size for the numerical simulations and (ii) it allows comparing results
with the vast majority of previous works based on that definition. A parametric study is
conducted below to assess the difference between δω,0 = 0 and δω,0 6= 0 approaches.

A rectangular computational domain, measuring ∼ 600 δω,0 × 600 δω,0, is employed,
where is the initial vorticity thickness that acts as the numerical reference length in this
problem. The area of interest where the two streams are defined (see Fig. 1) covers a
squared region of dimensions 100 δω,0 × 100 δω,0, placed at the top left corner of the
entire domain. This area features a constant grid size of ∆x = 0.25 δω,0 whilst the rest of
the computational domain is linearly stretched towards the boundaries with a constant
factor of 5%. Boundary conditions are implemented as follows: the left boundary acts as
a supersonic inlet where Dirichlet conditions are imposed for pressure, temperature and
mixture composition (ICAO standard atmosphere) whilst the velocity profile follows (A 5)
where U2 changes over time. At the top boundary generalized Rankine-Hugoniot jump
conditions for an ideal gas mixture are applied (Mart́ınez-Ferrer 2014) and non-reflecting
boundary conditions are specified at the bottom and right boundary conditions. A
constant CFL number of 0.5 is specified to advance the simulation in time.

For the sake of simplicity and computational-cost efficiency, the following assumptions
have been made in the present work. Simulation sets are run as follows: Fristly, the upper
stream Mach number M1 remains fixed whilst the bottom stream is either accelerated
(M1 6 M2) or decelerated (M1 > M2) from an initial value of M2 = M1; Secondly,
instantaneous, i.e. not averaged, data measurements are taken for increments of ∆M2 =
0.1 at certain times in order to guarantee equilibrium between two consecutive values
of M2. This reduces the computational costs significantly in comparison to running a
different simulation for each pair of (M1,M2) values and averaging the measured data;
Finally, a fixed grid size is calculated based on (A 6), where the value of ∆U is replaced
by unity. However, as the bottom stream accelerates or decelerates and ∆U � 1, this
constant grid size would be overestimated.

A parametric study on the influence of the grid size is conducted through a series of
preliminary simulation sets, consisting of an oblique incident shock of 45◦ penetrating two
streams of air at M1 = M2 = 5. Up to four grid sizes are considered herein: ∆x/δω,0 =
1, 0.5, 0.25, 0.125 and thus comparable to the value of 0.168 typically employed in the
numerical simulations. The rectangular computational domain and boundary conditions
are set as stated above.

Figure 16(a) shows the transmitted shock angle as a function of the Mach number of
the bottom stream, M2, given by the analytical solution and calculated numerically for
various grid sizes. Overall, both solutions are fairly close within the range of M2 values
covered. Relative differences illustrated in Fig. 16(b) evidence that numerical shock angles
tend to be larger than the analytical ones. As expected, these differences become more
significant for larger grid sizes. Grid sizes ∆x/δω,0 = 0.25, 0.125 give very similar results,
thus indicating numerical convergence, with a relative difference below 1% with respect
to the analytical solution. Good agreement is obtained in this case between the analytical
solutions with constant γ = 1.4, and variable γ(T ) in the simulations, as the effect of
variable heat-capacity ratio is negligible in regular configurations due to a low increase in
temperature. Real gas effects must, otherwise, be taken into account for irregular cases
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Figure 16. Transmitted shock angle given by the analytical solution and calculated numerically
for various grid sizes (a) and relative difference between analytical and numerical transmitted
angles for various grid sizes (b). Computations are conducted for variable γ, M1 = 5 and
σi = 45◦.
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Figure 17. Relative difference between numerical and analytical transmitted angles for various
grid sizes and δω,0 = 0 (a) and relative difference between δω,0 = 0 and δω,0 6= 0 numerical
solutions (b). Computations are conducted for variable γ, M1 = 5 and σi = 45◦.

involving the combined contributions in this matter of multiple shocks and expansions,
or for strong-shock cases with large variations in temperature.

The numerical results reported on Fig. 16 were obtained with the assumption of δω,0 6=
0, that is, if the current shear layers were indeed viscous. Figure 17(a) reports the relative
differences between the numerical solutions with δω,0 = 0 and the analytical ones. Overall,
they are slightly larger compared to the ones with δω,0 6= 0 shown in Fig. 16(b), especially
for larger values of M2. It is also worth mentioning that the converged solution ∆x =
0.125 δω,0 exhibits a noticeable bump between M2 = 6 and M2 = 9 with a peak around
M2 = 8.25 whilst some values close to M2 = 10 are missing. Since the simulations
ran as usual and the WENO scheme was able to handle well the discontinuous, i.e.
step function, inlet shear layer profile, we believe that this bump is strictly caused by
our automatized postscript tool having trouble identifying the transmitted shock wave
and thus calculating its slope correctly. Finally, Fig. 17(b) shows the relative difference
between the step (δω,0 = 0) and the hyperbolic (δω,0 6= 0) numerical solutions. When the
bottom stream is decelerated, this difference is close to zero except for values approaching
the lower limit of M2 = 3. However, this difference tends to be larger when the bottom
stream is accelerated, especially for the coarsest grid, but mesh refinement helps getting
both solutions close again. The effect of the aforementioned bump also produces a relative
difference increase but, in general terms, both approaches should produce similar results
within a margin of ±1% for sufficiently fine grids, e.g. those typically employed in the
numerical simulations.
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From the preliminary results shown in Figs. 16 and 17 it can be concluded that the
considered numerical setup (either with δω,0 6= 0 or δω,0 = 0) is appropriate for the study
of shock-impinged shear layers and its later comparison with other data. For the sake of
simplicity and practicability, δω,0 6= 0 has been considered for the numerical simulations
throughout this work.

Appendix B. Analytical solutions for regular intersections

The Henderson-Neumann diagram or polar-plot method, is presented here for regular
refractions. The basis of the methodology is explained for its later use in non-regular
cases. Given the two coflowing streams and the incident shock angle, analytical solutions
are obtained, analogous to the results presented in Fig. 2. For each-stream Mach number,
Eqs. (2.1)-(2.2) allow the calculation of the postshock pressure and streamline deflection
for any shock inclination angle, 0 < σ < 180◦. This yields a closed curve of the shock
polar, locus of possible independent solutions for each stream. As depicted in Fig. 18(a),
the polar of each stream provides a maximum deflection for a certain shock inclination
σ = σλmax . Horizontal dashes separate, above and below, subsonic and supersonic flow
conditions behind the wave respectively. Maximum pressure jump and no deflection,
λ = 0◦, is achieved through a normal shock σi = 90◦, always delivered in subsonic flow.
Note that M1 > M2 in the three cases depicted in Fig. 18, as the maximum pressure
jump is greater in the M1-polar than the one found for the M2-polar.

Neutral transmission is a singular case for which the incident and transmitted shocks
are enough to provide mechanical equilibrium downstream. This case is exemplified in
Fig. 18(a), for a given incident shock angle σi = σiNT , where the rendered pressure
and deflection are the same for both streams, represented by the intersection of both
polar curves. Note that, at that point, the incident and transmitted shock angles are
different σiNT 6= σtNT . However, it must be stated that this polar intersection, although
necessary, does not suffice to guarantee neutral-transmission conditions. That is, since
eqs. (2.1)-(2.2) provide multiple solutions, with the neutral-transmission being a potential
solution in some particular conditions, the least-energy criterion should be employed
to select the final configuration (Henderson 1998). Therefore, if there exists a possible
solution that involves an expansion wave, this configuration is preferred over the neutral
configuration. It can be then stated that σi = σiNT when the local slope of the M2-polar
at the intersection is smaller than the corresponding slope of the Prandtl-Meyer curve
that departs from this point, namely

1

p

dp

dλ

∣∣∣∣
M2

<
1

p

dp

dλ

∣∣∣∣
PM

= − γM2

√
M2 − 1

(B 1)

according to (C 2), provided that (dp)/(dλ) is negative in the positive half-plane of λ.
The slope of the polar curve is given by the following function

1

p

dp

dλ
=
γM2 sin(2σ)

γ + 1

M4 sin2 σ
[
γ2 + 2γ cos(2σ) + 1

]
+ 4M2 sin2 σ(γ − 1) + 4

M4 sin2 σ [γ cos(2σ) + 1] +M2 [cos(2σ) + γ − 1] + 2
, (B 2)

where M = M1 and σ = σtNT must be substituted into (B 2) to be used later in (B 1).
It is readily seen that neutral transmission is possible only in a very narrow range of
possibilities, with the intersection of M2 and M1 loops occurring above, yet close, the
turning point in the former, and below the sonic mark in the latter.

Any deviation from this specific incident-shock inclination σiNT , necessitates a third
wave at least. For instance, given a shock angle σi as in Fig. 18(b), the postshock
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Figure 18. Polar plots for (a) neutral transmission, (b) reflected rarefaction and (c) reflected
shock for M1 > M2. Solutions given at intersections are marked with circles.

conditions (λ, p/pu) cannot be met by the M2 stream as this is not a common point
to both polars. Therefore, either a shock wave (blue line) or a reflected Prandtl-Meyer
expansion (dashed line) is required to accommodate pressure and flow deflection between
both streams. The latter lowers the pressure and increases the deflection angle from the
σi point conditions after the incident shock, represented by the dashed curve intersecting
the stream-2 polar. This intersection provides mechanical equilibrium behind the incident
and transmitted shocks via a Prandtl-Meyer expansion. Similarly, a reflected shock
would also yield two solutions through the corresponding stream-3 polar curve shown
in Fig. 18(b), originated at the σi point and intersecting the stream-2 polar twice.
However, the lowest-pressure solution of the three (white circles) is the most relevant
configuration, which provides the transmitted-shock angle and, therefore, the values of the
flow variables downstream. Note from Fig. 18(c) that certain Mach number combinations,
corresponding to supersonic yet sufficiently low Mach numbers, do not yield polar
intersections so that the neutral-transmission solution is not possible. Furthermore, the
stream-2 polar cannot be intersected through a Prandtl-Meyer expansion from point
σi in the stream-1 polar of Fig. 18(c), only accepting a reflected-shock solution. This
reflected-shock polar is given by M3, the Mach number value that is found after the
incident oblique shock and, hence, ahead the reflected one, which adds pressure to the
stream and decreases the deflection angle from the conditions at point σi (λi, p3/pu).
This curve intersects twice with stream-2 polar, which provides two candidates for
mechanical equilibrium downstream, being again the lowest-pressure solution the most
likely configuration. In that sense, “possible” does not imply “actually observed” but
just consistent with the conservation equations.

As easily deduced from Fig. 18, there exist parameter combinations (M1, M2, σi) that
do not yield polar intersections even considering third-wave combinations in the plane
of pressure–flow deflection, indicating that mechanical equilibrium can not be achieved
with regular configurations. In this work, critical conditions are conveniently identified
by varying the lower-stream Mach number M2, while taking constant M1, σi, and γ.
In particular, the polar intersection points degenerate in one and only tangent contact
between polars that define the critical values.
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Figure 19. Sketch of the perturbation field rendered by the interaction of a shock wave with
an upstream-impinging weak discontinuity and a downstream-approaching Mach wave.

Appendix C. Effect of weak perturbations on the shock front

The problem investigated throughout the paper focuses on the finite-strength shock-
wave impingement on a shear layer. It has been found, in agreement with previous studies
(Henderson 1966, 1968), that the high non-linearity associated with the interaction may
result in bifurcations when the convective Mach number is sufficiently large, rendering
complex structures that may exhibit an unstable behaviour. Although Linear Interaction
Analysis (LIA) cannot predict bifurcations, the behaviour of some local structures formed
within such complex configurations can be understood by looking into the perturbation
problem.

With this aim, the response of an oblique shock wave to two source of perturbations
is investigated: an upstream weak tangential discontinuity that interacts with the shock
and a Mach wave that impinges on the oblique shock from behind.

As viscous and thermal dissipative effects can be neglected within the interaction
region, the entropy is conserved along the streamlines, C0, a condition that can be
expressed in the form

dT

T
− γ − 1

γ

dp

p
= 0 on

dy

dx
= tanλ , (C 1)

where λ is the anticlockwise angle measured with the longitudinal direction. The tan-
gential discontinuity, whose entropy cannot be uniquely determined, moves along the
streamlines. Provided that downstream flow remains supersonic, the shock front gets
partially coupled with the downstream flow variations. The information of the postshock
expansions and compressions reach the shock and scape outwards through the C− and
C+ characteristics, respectively, whose properties along their trajectories obey

dp

p
± γM2

√
M2 − 1

dλ = 0 on
dy

dx
= tan (λ± µ) (C 2)

with µ = sin−1(1/M) being the Mach-line angle. The streamline, therefore, is locally
placed in the bisector of the two characteristics.

The weak interaction problem is sketched in Fig. 19, where a local oblique shock
with angle σ and incident Mach number Mu reacts to an upstream shear perturbation
and a downstream pressure fluctuation that reach the shock front. Assuming that the
impinging Mach wave intensity, defined as δI− = δp−/p, and the upstream Mach number
perturbation, δMu, are independent variables, the dependent variables such as the shock-
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Figure 20. Perturbation coefficients ∆M and ΓM (a), and ∆I and ΓI (b) as a function of the
local shock angle σ and upstream Mach number Mu.

angle perturbation δσ and the reflected Mach wave δI+ = δp+/p are determined by
imposing mechanical equilibrium along the contact surface downstream. After some
straightforward algebra it is found that

δσ = ∆IδI
− +∆MδMu (C 3)

and

δI+ = ΓIδI
− + ΓMδMu (C 4)

for the shock-angle perturbation and the reflected Mach wave intensity, respectively. The
relationships in (C 3) and (C 4) involve the factors

∆I = 2

(
1

p̂

∂p̂

∂σ
+

γM2
s√

M2
s − 1

∂λ

∂σ

)−1
, (C 5)

∆M = −

(
1

p̂

∂p̂

∂Mu
+

γM2
s√

M2
s − 1

∂λ

∂Mu

)(
1

p̂

∂p̂

∂σ
+

γM2
s√

M2
s − 1

∂λ

∂σ

)−1
, (C 6)

ΓI =

(
1

p̂

∂p̂

∂σ
− γM2

s√
M2
s − 1

∂λ

∂σ

)(
1

p̂

∂p̂

∂σ
+

γM2
s√

M2
s − 1

∂λ

∂σ

)−1
, (C 7)

ΓM =
1

p̂

γM2
s√

M2
s − 1

(
∂p̂

∂σ

∂λ

∂Mu
− ∂p̂

∂Mu

∂λ

∂σ

)(
1

p̂

∂p̂

∂σ
+

γM2
s√

M2
s − 1

∂λ

∂σ

)−1
, (C 8)

with p̂ and λ being the functions, provided in (2.1) and (2.2), for the pressure jump
and the streamline deflection across the oblique shock. The function Ms is the postshock
Mach number given in (2.3). Note that a more complete analysis would also consider the
possibility of upstream Mach waves hitting on the shock front, but this effect is purposely
left out as the inflow conditions are taken isobaric.

The above relationships (C 3) and (C 4), with δI− = 0, can be used to describe the
conditions of the oblique shock impinging on shear layers with weak convective Mach
numbers. The shock-angle perturbation and the intensity of the reflected wave would be
determined by the factors ∆M and ΓM , respectively, both computed in Fig. 20 (a). The
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value of ∆M refers to the local slope, associated to the incident-shock conditions of the
lower σ-M curve in Fig. 2. Between all the multiple solutions that polar-plot analysis
suggests, LIA opts for the lower-branch family of solutions as the one actually occurring.
On the other hand, the parameter ΓM determines the character of the reflected wave,
being a compression or expansion wave depending on whether ΓM is greater or lower
than zero, respectively, when δMu < 0. As seen in Fig. 20 (a), there exists a family
of solutions, or a combination of Mu and σ that yields ΓM = 0, which produces no
reflected wave, as shown in the dotted line of Fig. 2. Extrapolated to finite-strength
shocks, configurations placed within the upper side of the curve ΓM = 0 return a
reflected shock wave for a decreasing Mach inflow. The opposite case, which is much
more representative, provides an expansion wave as the reflected wave. This analysis
agrees with the polar-plot discussion accompanying Fig. 18.

In other cases, often found in local structures of irregular interactions, the shock wave
is affected by downstream Mach waves that depart from non-uniform pressure fields. If
the Mach number upstream is uniform within that region, the shock bending and the
properties of the reflected wave would be determined by (C 3) and (C 4) by imposing
δMu = 0. In this case, the coefficients ∆I and ΓI , computed in Fig. 20 (b), provide the
perturbation intensity of the shock angle and the reflected wave, respectively, relative to
δI−. The function ΓI , as happened with ΓM , does not change its sign, thereby indicating
that the shock angle perturbation is always positive if δMu < 0 or/and ∆I > 0. The sign
of the function ∆I , which determines the character of the reflected wave, does change its
sign twice. There is a well-delimited region, where ΓI > 0, which results in a reflected
wave of the same type of the incident wave. The opposite occurs for ΓI < 0.
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