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This paper examines the steady interaction of a shear layer separating two uniform supersonic streams of Mach

numbers M1 and M2 with an oblique shock approaching from the faster stream at an incident angle σi sufficiently

small for the post-shock flow to remain supersonic everywhere. The development begins by considering the related

problem of oblique–shock impingement on a supersonic vortex sheet of infinitesimal thickness, for which the re-

gion of existence of regular shock refractions with downstream supersonic flow is delineated in the parametric space

(M1,M2, σi). The interaction region located about the impingement point, scaling with the shear-layer thickness, is

described next by integrating the Euler equations in the post-shock region, formulated in characteristic form, subject

to the Rankine-Hugoniot jump conditions at the shock front. The results are used to investigate the accuracy and

limitations of a simplified treatment, the so-called Moeckel-Chisnell approach, commonly employed for determining

the shape of the shock wave in these scenarios, which does not account for the influence of the post-shock flow. It is

found that, while the Moeckel-Chisnell method predicts accurately the shape of the shock front as it evolves across the

shear layer, it is unable to predict the final transition to the transmitted–shock solution, which occurs beyond the edge

of the shear layer. The structure of the shear layer in the far field also is addressed here for the first time, the objective

being to lay the groundwork for future studies of shock-induced ignition in supersonic fuel-air mixing layers.

Nomenclature

M Mach number

p pressure, nondimensional pressure variation

T temperature, nondimensional temperature variation

δ characteristic shear-layer thickness
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µ angle of inclination of the two Mach lines with

respect to the local flow direction

λ counterclockwise inclination of the streamlines

ν clockwise flow deflection across the shock

ρ density

γ adiabatic index

σ shock angle

x, z upstream spatial coordinates

y downstream transverse coordinate

Subscript

u flow properties upstream from the shock

s flow properties right behind the shock

d farfield flow properties behind the shock

i incident

t transmitted

r reflected

MC Moeckel-Chisnell

PM Prandtl-Meyer

I. Introduction

The interaction of an oblique shock with a shear layer constitutes a fundamental problem in compressible-flow the-

ory [1]. Such interactions occur, for instance, in combustion chambers of supersonic-combustion ramjets (scramjets),

where shocks generated in the air stream at wedged walls and fuel injectors impinge on the shear layer surrounding

the fuel jets downstream from the injection point [2]. Although the flow is typically turbulent in these high-Reynolds-

number applications, analyses of laminar flows have been shown to be instrumental in providing insightful information

pertaining to mixing augmentation by vorticity production [3, 4] and enhanced chemical reaction leading to ignition

[5, 6] behind the curved shock.

As in earlier studies, the present work considers a laminar configuration, schematically shown in Fig. 1, involving

the interaction of a shear layer of thickness δu, separating two supersonic parallel streams with Mach numbersM1 and

M2 < M1, and an oblique shock with initial incident angle σi generated in the faster stream (typically the air stream

in scramjet combustors). The front curves as a consequence of the interaction with the nonuniform flow, resulting in a

shock inclination σ(z) that varies across the shear layer, approaching the value σ = σt for z → −∞, corresponding

to the transmitted shock.

The determination of the shock-front shape poses a complicated free-boundary problem, addressed for the first

time by Moeckel [7] for configurations with supersonic flow everywhere in the post-shock region, that also being the

case analyzed here. In that case, the influence of the post-shock flow on the shock shape enters in the computation

through the Mach lines reaching the shock from behind, identified as the C− characteristics in the figure. An ad-
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Figure 1. Sketch of the model problem.

hoc simplification was introduced by Moeckel [7] to circumvent this complicating feature of the calculation. His

approximate analysis neglects waves “resulting from internal reflection” in the interaction region downstream from

the shock, leading to a differential equation that relates the variation of σ with that of the local incident Mach number,

so that the Euler-equation problem downstream need not be considered in determining the shock shape.

As noted by Whitham [8], who formulated the method in a more straightforward manner, similar types of approx-

imations were introduced later by Chisnell in independent analyses of shock propagation in tubes of variable area and

in nonuniform media [9, 10]. Correspondingly, this approximate computational procedure, adopted for instance in

[3, 4], was termed by Whitham [1] the Moeckel-Chisnell approach. Since this approximate theory has no rigorous

basis, its applicability must be checked by comparison with exact solutions, as was done previously for the problem

of shock propagation in a nonuniform tube [1], for which the accuracy of the results is truly remarkable. The corre-

sponding accuracy quantification has not yet been performed for the problem of shock-wave interaction with a region

of nonuniform flow. This is to be accomplished below by comparisons of Moeckel-Chisnell results with numerical

solutions of the complete problem.

The structure of the paper is as follows: The combinations of M1, M2, and σi that lead to supersonic conditions
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downstream from the shock are determined in Sec. II by investigation of the related problem of shock-wave refraction

at a contact surface. The interaction region is considered next in Sec. III, where the mathematical problem needed

to determine the shape of the curved shock front is formulated, with use made of the characteristic form of the con-

servation equations in the postshock region. Numerical results are compared in Sec. IV with the predictions of the

Moeckel-Chisnell theory, including shock-wave shapes and associated temperature distributions, the latter of direct

interest in supersonic-combustion applications. Finally, concluding remarks are given in Sec. V.

II. Refraction of an oblique shock at a supersonic vortex sheet

The flow in the interaction region depends on the Mach number distribution across the shear layer upstream from

the shock, involving the boundary values M1 and M2, and on the inclination angle of the incident shock σi. To de-

termine the parametric region (M1,M2, σi) where the resulting solution corresponds to that envisioned in Fig. 1, it is

convenient to begin the analysis by considering the outer flow structure surrounding the interaction region, correspond-

ing to distances from the impingement point much larger than the shear-layer thickness δu. At these large distances the

shear layer appears infinitesimally thin, so that the problem reduces to that of the interaction of an oblique shock with

a contact surface separating two supersonic streams. This seemingly simple problem admits in general multiple solu-

tions depending on the values of M1, M2, and σi. As discussed in [11], the simplest solutions are regular refractions

involving a transmitted shock propagating from the impingement point into stream 2 and a reflected wave propagating

into stream 1, thereby defining a total of five regions of uniform flow, as shown in the schematic plots of Fig. 2. The

reflected wave can be either a rarefaction or a shock, both having been observed experimentally. These two types of

regular expansions can occur only in certain ranges of the controlling parameters, outside of which more complicated

irregular-refraction patterns may arise. Theoretical considerations indicate that the “atlas” of possible solutions may

include in principle single and double Mach reflections, 4-wave confluences, and continuous expansion bands [12],

although only some of these solutions have been observed in experiments. The present considerations are restricted to

the cases illustrated in Fig. 2.

For regular refractions, the solution corresponding to given values of M1, M2, and σi can be determined by

application of the jump conditions across the different waves, together with the compatibility conditions across the

deflected contact surface. The Rankine-Hugoniot expressions for the pressure jump

ps
pu

= Fp(Mu, σ) =
2γM2

u sin
2 σ + 1− γ

γ + 1
, (1)
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Figure 2. Regular refractions at a supersonic vortex sheet.

flow deflection

ν = Fν(Mu, σ) = tan−1

{
2(M2

u sin
2 σ − 1) cotσ

2 +M2
u [γ + cos(2σ)]

}
, (2)

and post-shock Mach number

M2
s = FM (Mu, σ) =

(γ + 1)2M4
u sin

2 σ − 4(M2
u sin

2 σ − 1)(γM2
u sin

2 σ + 1)

(2γM2
u sin

2 σ + 1− γ)[(γ − 1)M2
u sin

2 σ + 2]
, (3)

are to be used for the shock waves, with the subscript u and s denoting flow properties immediately upstream and

immediately downstream from the shock, respectively. For instance, direct evaluation of these expressions for given

values of M1 and σi provides

νi = Fν(M1, σi), p3/pu = Fp(M1, σi), and M2
3 = FM (M1, σi), (4)

across the incident shock, where pu = p1 = p2 is the pressure of the incoming streams, equal on both sides of the

contact surface. On the other hand, across the transmitted shock

νt = Fν(M2, σt), p5/pu = Fp(M2, σt), and M2
5 = FM (M2, σt), (5)

for the downstream flow properties below the contact surface, involving the unknown value of the inclination angle σt.

When the reflected wave is a shock, the case shown in the first plot of Fig. 2, the expressions

νr = Fν(M3, σr), p4/p3 = Fp(M3, σr), and M2
4 = FM (M3, σr) (6)

apply to the downstream flow properties above the contact surface. Correspondingly, equations (4), (5), and (6)

together with the two additional contact-surface conditions

(p4/p3)(p3/pu) = (p5/pu) and νt = νi − νr (7)
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provide a set of eleven algebraic equations that determine M3, M4, M5, σr, σt, νi, νr, νt, p3/pu, p4/pu, and p5/pu

as a function of M1, M2, and σi for a regular refraction with a reflected shock wave. When the reflected wave is an

expansion, however, the expressions (6) must be replaced, with σr = sin−1(M3), by

(
p4
p3

) γ−1
γ

=
1 + γ−1

2 M2
3

1 + γ−1
2 M2

4

, and νr = FPM(M4)− FPM(M3), (8)

where

FPM(M) =

(
γ + 1

γ − 1

)1/2

tan−1

{[
γ − 1

γ + 1
(M2 − 1)

]1/2}
− tan−1

[
(M2 − 1)1/2

]
, (9)

is the Prandtl-Meyer function. In that case, the computation involves (4), (5), (7), and (8), with −νr replaced by +νr

in the second equation of (7), as corresponds to the clockwise deflection associated with the reflected rarefaction.

The interaction region depicted in Fig. 1 is located in the vicinity of the impingement point where the incident,

transmitted, and reflected waves meet. The streamlines in the shear layer curve as they cross the downstream inter-

action region. Far downstream all streamlines are parallel again, with deflection νt corresponding to that indicated

in Fig. 2 behind the reflected and transmitted shocks. Correspondingly, the values of the Mach number behind the

reflected wave M4 and behind the transmitted wave M5 correspond to the values of the downstream Mach number

for the two streamlines bounding the shear layer from above and from below, respectively. In general, the separation

between these two boundary streamlines differs from the initial separation δu, as is needed to satisfy continuity.

Attention is given here to configurations for which the flow downstream from the curved shock remains supersonic,

corresponding to regular refractions satisfying both M4 > 1 and M5 > 1, the second condition being more restrictive

for shear layers with M1 > M2. The range of values of M1, M2, and σi for which such regular refractions exist

was investigated by use of the above algebraic equations. To that end, for given fixed values of M1 and σi satisfying

M1 sinσi ≥ 1 and M3 ≥ 1, the value of M2 was progressively reduced from M2 = M1 until a value of M2 was

achieved at which M5 = 1.

The resulting value of M2 is represented by isocurves on the M1 − σi plane of Fig. 3 for γ = 1.4. The upper

and lower boundaries in the plot are defined by the conditions M3 = 1 and M1 sinσi = 1. For the case M2 < M1

considered here, it is found that under most conditions the refraction involves a reflected rarefaction, while reflected

shocks occur only in a small parametric region located near the upper left corner of Fig. 3, corresponding to low-

velocity streams and relatively large incident angles. The subsequent analyses therefore pertain to the other region,

corresponding to the second plot in Fig. 2, encompassing the cases of greatest interest.
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Figure 3. The value of M2 for M5 = 1 when γ = 1.4.

For a given value of M2, the corresponding dashed isocontour in Fig. 3 defines the upper boundary of the para-

metric region M1 − σi where regular refractions with supersonic flow can be encountered, in that for higher values of

σi the corresponding solution, if it exists al all, would involve values of M5 < 1. The additional condition M1 > M2

provides an additional boundary for the parametric region of interest, which is depicted in the plots of Fig. 4 for the par-

ticular caseM2 = 4. Isocurves are employed to represent the values of the post-shock Mach number of the transmitted

shock M5 (first plot) and its inclination σt, obtained from the solution to the set of eleven algebraic equations.

III. Formulation of the shock-wave/shear-layer interaction problem

The description of the interaction region employes the shear-layer thickness δu to define dimensionless cartesian

coordinates (x, z), centered at the point where the shock impinges on the upper edge of the shear layer, with x aligned

with the approaching flow and z pointing towards the faster stream, as indicated in Fig. 1. Correspondingly, the shape
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Figure 4. Parametric region where a regular refraction with supersonic post-shock flow may occur when M2 = 4, with isocurves used to

indicate the resulting Mach number behind the transmitted shock (a) and the inclination of the transmitted shock (b).

of the shock front x = xs(z) is given by

xs = −
∫ z

0

dz

tanσ(z)
(10)

in terms of the shock inclination σ(z), which in turn depends on the Mach-number distribution upstream from the

shock Mu(z).

As previously indicated, the computation of σ(z) for a given Mu(z) constitutes a complicated free-boundary

problem involving the integration of the Euler equations downstream from the shock, with the conditions immediately

behind the shock determined by application of the Rankine-Hugoniot relations given in (1)–(3). The previous shock-

refraction analysis has served to identify the values of M1, M2, and σi for which the flow behind the curved front

remains everywhere supersonic (e.g. values of M1 and σi within the shaded region of Fig. 4 would provide such

conditions when M2 = 4). For supersonic flow the Euler equations can be formulated in characteristic form, with

three different characteristic lines crossing any given point. The entropy is conserved along the streamlines in the

post-shock region, a condition that can be expressed in the form

dp

p
− γ

2

d(M2)

1 + γ−1
2 M2

= 0, on
dz

dx
= tanλ, (11)

where p is the pressure, M is the Mach number, and λ is the (counterclockwise) local angle of deflection of the

streamlines with respect to the horizontal. On the other hand, manipulation of the conservation equations for continuity

and momentum provides the two additional characteristic equations [13]

dp

p
± γM2

√
M2 − 1

dλ = 0, on
dz

dx
= tan(λ± µ), (12)
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where µ = sin−1 (1/M) defines the angle of inclination of the two Mach lines relative to the local flow direction, as

depicted in Fig. 1.

The integration along the streamlines and along the C+ characteristic lines dz/dx = tan(λ + µ) starts at the

shock, with corresponding initial conditions

p/pu = Fp[Mu(z), σ], λ = −ν = −Fν [Mu(z), σ], M2 = FM [Mu(z), σ], at x = xs(z), (13)

involving the Rankine-Hugoniot functions defined in (1)–(3). On the other hand, the C− characteristics originate in

the shocked stream above the shear layer, so that the associated uniform properties of region 3 must be used as initial

conditions, to be imposed along the C+ characteristic line leaving the impingement point according to

p/pu = p3/pu, λ = −ν3, M =M3, at x =
z

tan[sin−1(1/M3)− νi]
. (14)

The integration must be continued until the C− characteristic line intersects the shock, providing the information

needed at each point to determine the shock curvature dσ/dz.

To the best of our knowledge, the problem formulated above has never been solved. Previous computations (see

e.g. [3, 4]) incorporate instead the approximate Moeckel-Chisnell analytic method for determining the shock shape

σ(z). As explained by Whitham [1], the Moeckel-Chisnell approach amounts to applying the relation

dp

p
=

γM2dλ√
M2 − 1

, (15)

corresponding to theC− characteristic line of (12), along the shock front. Differentiating the first two equations in (13)

and substituting the result into the above equation yield

dσ

dMu
= −Ap + γFMAν/(FM − 1)1/2

Bp + γFMBν/(FM − 1)1/2
(16)

as a local expression for the shock evolution, where the functions FM ,

Ap =
1

Fp

∂Fp
∂M

, Bp =
1

Fp

∂Fp
∂σ

, Aν =
∂Fν
∂M

, and Bν =
∂Fν
∂σ

(17)

can be evaluated explicitly in terms of σ and Mu with use made of the definitions given in (1)–(3). In the Moeckel-

Chisnell approach, integration of (16) with initial condition σ = σi at Mu = M1 provides σ = σMC(M1, σi,Mu),

which increases with decreasingMu. One can use this function to determine the shock inclination σ(z) for a given up-

stream Mach-number distribution Mu(z), with the front shape xs(z) following by straightforward integration of (10).
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IV. Comparisons of the numerical results with the Moeckel-Chisnell predictions

IV.A. Representative numerical results

To generate specific numerical results a choice must be made for the upstream Mach-number distribution Mu(z) of

Fig. 1. Sample results are discussed here corresponding to the representative selection
M =M1 for z > 0

M = 1
2 (M1 +M2) +

1
2 (M1 −M2) sin

[
π(z + 1

2 )
]

for 0 > z > −1

M =M2 for− 1 > z

(18)

as shown in Fig. 5 for M1 = 10, M2 = 4, and σi = 30o. Besides maps of the flow inclination λ, the dimensionless

pressure p/pu, and the Mach numberM , a plot is included for the distribution of temperature, computed by considering

the conservation of stagnation temperature along streamlines, with a uniform temperature Tu assumed upstream from

the shock.

The computations reveal that the variation of σ(z) is non-monotonic, resulting in a curved shock front with an

inflection point at the lower boundary of the shear layer, corresponding to a local maximum of the incident angle,

indicated by a dot in Fig. 5. The non-negligible shock deflection occurring below the inflection point, in the region

where the upstream Mach-number profile is already uniform, is a consequence of the interactions of the C− charac-

teristics with the shock, resulting in a decrease of the incident angle. The value of σ eventually approaches the value

σt corresponding to the inclination of the transmitted wave σt ' 51o.

IV.B. Moeckel-Chisnell shock-wave shapes

The plots of Fig. 5 include also the shape of the shock front predicted with the Moeckel-Chisnell theory, obtained by

integration of (16) with initial condition M1 = 10 and σi = 30o, followed by use of (10) supplemented with (18).

The differences between the predicted shape and the numerical results are almost invisible throughout the shear layer,

but they become somewhat more noticeable farther below, as the shock front curves to approach the inclination angle

σt, while the approximation remains a straight line after exiting the shear layer very near the inflection point of the

numerical results. The Moeckel-Chisnell theory thus fails to predict the inflection.

These differences are investigated further in Fig. 6. According to (16), the inclination of the shock predicted

by the Moeckel-Chisnell method reaches its maximum value σMC(M1, σi,M2) at the lower edge of the shear layer,

and remains constant farther below, in the region of uniform flow where Mu is constant, as indicated above. The
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Figure 5. Results corresponding to M1 = 10, M2 = 4, and σi = 30o including distributions of temperature (a), deflection angle (b),

pressure (c), and Mach number (d) for γ = 1.4; the inflection point of the shock front is indicated with an enlarged dot. The dashed

curves without an inflection represent the Moeckel-Chisnell prediction corresponding to these conditions while the solid line indicates the

inclination σt of the transmitted shock as obtained from the numerical integration.

resulting value of σMC(M1, σi,M2) is always larger than the inclination of the transmitted wave by an amount that

depends on the specific conditions considered. This difference σMC(M1, σi,M2) − σt, which is plotted in Fig. 6 for

M2 = 4, becomes greater for larger values of M1 and σi, with the largest differences found for conditions such that

M5 approaches unity (i.e. near the upper boundary of the accessible region in the M1 − σi plane). For example, for

M1 = 10 and σi = 30o we find σMC(M1, σi,M2)− σt ' 12o, corresponding to the shock of Fig. 5.

IV.C. Predictions of post-shock properties

For a given shock inclination σ(z), associated with a Mach number distribution Mu(z), the Rankine-Hugoniot jump

conditions provide the distribution of flow properties immediately behind the shock, identified by the subscript s
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Figure 6. The difference between the inclination of the transmitted shock, σt, and that predicted by Moeckel-Chisnell method at the lower

edge of the shear layer, σMC(M1, σi,M2), for M2 = 4 when γ = 1.4.

in the following discussion. For instance, the post-shock Mach number Ms(z) and the stagnation pressure (1 +

γ−1
2 M2

s )
γ/(γ−1)(ps/pu) can be obtained from

M2
s (z) = FM (Mu, σ) and

(
1 +

γ − 1

2
M2
s

)γ/(γ−1)

(ps/pu) =

[
1 +

γ − 1

2
FM (Mu, σ)

]γ/(γ−1)

Fp(Mu, σ),

(19)

where Fp and FM are defined in (1) and (3), respectively. Post-shock profiles evaluated with the shock-inclination

σ(z) determined by numerical integration of (11)–(14) for the Mach-number distribution (18) with M1 = 10 and

M2 = 4 are plotted in Fig. 7 for three different values of the incident–shock angle σi = (20◦, 25◦, 30◦). The

results are compared with the corresponding Moeckel-Chisnell predictions, obtained with use made of the function

σMC(M1, σi,Mu) as calculated from (16), in evaluating the functions Fp and FM in (19). As expected from the

agreement in shock-front shapes observed in Fig. 5, the approximate Moeckel-Chisnell theory gives very accurate

post-shock distributions for −1 ≤ z ≤ 0. Significant departures are noticeable only below the lower edge of the

shear layer, in the region z < −1 where the shock inclination decreases to approach σt, an effect not captured in the

Moeckel-Chisnell approximation.
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Figure 7. Post-shock distributions of Mach number (a), stagnation pressure (b), and temperature (c) as given by Moeckel-Chisnell approx-

imation (dashed) and numerical integration (solid) for M1 = 10, M2 = 4, and σi = 20◦, 25◦, 30◦, with γ = 1.4.

The interaction problem investigated here is relevant in particular for supersonic-combustion applications, in which

local compression by shock waves impinging on mixing layers separating the air and fuel streams may promote au-

toignition by raising the temperature of the shocked gas. Post-shock temperature distributions are needed in computing

ignition events. As discussed in [5], depending on the conditions, ignition may occur either in a localized ignition ker-

nel adjacent to the shock or at a distant location downstream from the interaction region. For these reasons, there is

interest in the computation of temperature distributions both immediately downstream from the shock, Ts, and also

across the mixing layer in the far field, Td. The former can be obtained by using conservation of stagnation temperature
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across the shock to yield

Ts
Tu

=
1 + γ−1

2 M2
u

1 + γ−1
2 FM (Mu, σ)

. (20)

This equation is used in Fig. 7 to evaluate the temperature profiles for the specific conditions of that figure. Besides

evaluations obtained with the value of σ corresponding to the numerical integrations of the post-shock Euler problem,

the figure represent as dashed curves the temperature profiles evaluated with the function σMC(M1, σi,Mu). As occurs

with the other post-shock properties discussed above, the predictions of the Moeckel-Chisnell theory are seen to be

very accurate across the shear layer, with noticeable differences appearing only near the lower edge and beyond.

In non-premixed supersonic-combustion systems ignition can only occur inside the mixing layer separating the fuel

and air streams, where both reactants are present, whence the departures observed in Fig.7, which affect mostly the

temperature distribution outside the shear layer, are inconsequential for ignition. These results therefore indicate that

the computation of critical ignition conditions can make use of the Moeckel-Chisnell theory in evaluating the post-

shock temperatures with good accuracy, as was done in earlier analyses [5, 6].

IV.D. The structure of the shear layer in the far field

The temperature across the shear layer continues to evolve downstream from the shock as a result of the interaction

with the pressure waves. As the pressure approaches the final value pd = p4 = p5, determined by the regular-refraction

analysis presented in Sec. II, the temperature and Mach number settle into the final asymptotic distributions Td(y) and

Md(y), where y is the distance to the upper edge of the mixing layer, scaled with the upstream thickness δu. In the

computation of these profiles it is convenient to consider the flow along a given streamline, identified by its upstream

position z. The final Mach number Md(z) can be computed by using conservation of stagnation pressure downstream

along streamlines from the shock to give

Md(z) =

(
2

γ − 1

)1/2
{[

1 +
γ − 1

2
FM (Mu, σ)

] [
pu
pd
Fp(Mu, σ)

] γ−1
γ

− 1

}1/2

, (21)

whereas the final temperature is related to the upstream distribution by

Td(z)

Tu(z)
=

1 + γ−1
2 M2

u(z)

1 + γ−1
2 M2

d (z)
, (22)

corresponding to conservation of stagnation temperature. The relative downstream position y of the streamline initially

located at z follows from the condition of conservation of mass applied to a differential stream tube written in the form
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(puMu/
√
Tu)dz = (pdMd/

√
Td)dy. Integrating from the upper edge of the shear layer yields

y =
pu
pd

∫ z

0

Mu(z)

Md(z)

(
1 + γ−1

2 M2
u(z)

1 + γ−1
2 M2

d (z)

)1/2

dz, (23)

which, when evaluated at the lower edge of the shear layer, yields

δd
δu

=
pu
pd

∫ 0

−1

Mu(z)

Md(z)

(
1 + γ−1

2 M2
u(z)

1 + γ−1
2 M2

d (z)

)1/2

dz (24)

for the final shear-layer thickness δd. Equations (21), (22), and (23) determine implicitly the asymptotic profiles Td(y)

and Md(y).

Figure 8 shows the far-downstream profiles of the temperature ratio and the Mach number for the same conditions

as those in Fig. 7. Although these results were computed employing the full numerical simulation for the shock wave in

the shear-layer region, differences that would be obtained by employing the Moeckel-Chisnell approximation instead

would be very small, as can be inferred from the comparisons in Fig. 7. It may be seen from Fig. 8 that in all cases the

range of y over which appreciable variations of the profiles occur is approximately 0.4. This indicates that the final

shear-layer thickness δd is less than half the initial shear-layer thickness δu even though it is clear, for example from

Fig. 1, that some streamline divergence occurs as the gas flows downstream from the shock. Temperature decreases of

fluid elements will be associated with the streamline divergence, but, since the divergence is small, this temperature

decrease will not be large. In applying these results to address shock-induced ignition in supersonic fuel-air mixing

layers, therefore, when conditions are such that ignition does not occur right behind the shock, in most instances it will

be a reasonable approximation to assume that ignition occurs essentially at far-field gas conditions. In that respect, it

may be noted that, in pursuing the mixing-layer analysis, for the effectively inviscid range considered here, the final

mass fraction distribution of a chemical species Yd(y) is given simply by the equation Yd(z) = Yu(z), stating the

constancy of the composition along any given streamline, given by (22).

V. Concluding Remarks

A principal finding of the present investigation is that, for the entirely supersonic shear layers addressed here, the

Moeckel-Chisnell approximation, in which the conditions that apply along the family of characteristics that extends

from the stream at the higher Mach number (within which an oblique shock originates) towards the stream of lower

Mach number, are applied instead along the curving oblique shock, produces very good accuracy for the shock shape

and shock jump conditions throughout the shear layer. The approximation deteriorates increasingly with increasing
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Figure 8. Far-field temperature distribution (a) and Mach-number profiles (b) for M1 = 10, M2 = 4, and σi = 20◦, 25◦, 30◦, with

γ = 1.4.

distance into the stream of lower Mach number, having failed to predict the inflection point in the shape of the oblique

shock, required to recover the correct far-field solutions in which the shear layer reduces to a slip surface. The

full numerical integration predicting the flow field, accomplished here for the first time, by use of the characteristic

coordinates, demonstrates clearly that the inflection point in the oblique-shock profile always is essential in a fully

proper description of this flow.

As a preliminary step in addressing oblique-shock-induced initiation of combustion in supersonic fuel-air mixing

layers, the present study supports the good accuracy of adoption of the Moeckel-Chisnell approximation to obtain

significant simplifications in such analyses. For example, for conditions under which ignition occurs close behind the

oblique shock, that approximation results in a very good approximation for the thermodynamic state in the ignition

kernel. In less reactive mixtures the ignition will occur farther downstream, and, by including analysis of the far-field

flow in the shear layer, the present work provides the thermodynamic conditions needed for pursuing ignition analyses,

irrespective of their bases, which may range from one-step-chemistry approximations to descriptions involving detailed

chemistry. It has been seen here that the changes in the chemistry-free thermodynamic state along streamlines, from

the oblique shock to the far field, are generally small enough that the far-field state usually may be employed with

reasonable accuracy in ignition investigations when combustion is not initiated right behind the shock.
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