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Abstract1

One key issue in the simulation of bare electrodynamic tethers is the accurate and fast2

computation of the collected current, an ambient dependent operation necessary to determine3

the Lorentz force each time step. This paper introduces a novel semi-analytical solution that4

allows us to compute the current distribution along the tether e�cient and e↵ectively under5

OML and beyond OML conditions, i.e. if tether radius is greater than certain ambient6

dependent threshold. The method reduces the original boundary value problem to a couple7

of nonlinear equations. If certain dimensionless variables are used, the beyond OML e↵ect8

just makes the tether characteristic length L⇤ larger and it is decoupled from the current9

determination problem. A validation of the results and a comparison of the performance in10

terms of the time consumed is provided with respect to a previous ad hoc solution and a11

conventional shooting method.12
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Nomenclature16

✏ = potential bias of power generator17

µ = electron-to-ion mass ratio18

⌦ = non-dimensional electrical load19

� = potential bias between conductor and faraway plasma20

� = tether conductivity21

' = non-dimensional potential bias22

⇠ = non-dimensional arc tether length23

At = tether transverse area24

~B0 = geomagnetic field25

~E = electric field26

e = electron charge27

I = current along the tether28
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i = non-dimensional current29

ISC = short circuit tether current30

L = tether length31

L⇤ = characteristic tether length32

`t = non-dimensional tether length33

me = electron mass34

mi = ion mass35

N0 = density of the ionospheric plasma36

pt = perimeter of the tether37

R = radius of a round tether38

r = load resistance39

Te = electron temperature40

Ti = ion temperature41

~u = unit vector from cathodic to anodic end42

Vcc = potential bias of cathodic contactor43

eVcc = non-dimensional potential bias of cathodic contactor44

Vpl = plasma potential45

~vrel = tether-to-plasma relative velocity46

Vt = tether potential47

w = width of a tape tether48
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x = coordinate along the tether49

INTRODUCTION50

The use of electrodynamic tethers (EDTs) has been proposed as an alternative and51

e�cient solution in scenarios such as orbital debris mitigation (Ahedo and Sanmart́ın 2002;52

Johnson et al. 2000; Peláez and Sanjurjo 2006) and planetary exploration (Sanmart́ın and53

Lorenzini 2005). A good analysis of both applications can be found in (Sanmart́ın et al.54

2010; Sánchez Torres 2013). EDTs are able to provide thrust or to generate electric power55

by converting from electrical to mechanical energy of the tethered system, depending on56

the operating regime. There are two di↵erent regimes: active regime, which corresponds, in57

general, with the former, and passive regime, which corresponds, in general, with the latter58

case. In both cases, the propellant mass consumption is small compared to other propulsion59

systems (Sanmartin et al. 2006).60

The concept of bare EDTs was presented for the first time in (Sanmart́ın et al. 1993).61

The formulation of the current profile computation problem, a necessary issue to find the62

Lorentz force, was also posed as well as the operation boundaries in the orbital-motion-63

limited (OML) regime (Sanmart́ın and Estes 1999). In the seminal and subsequent articles64

(Ahedo and Sanmart́ın 2002; Sanmartin et al. 2006), a handful of analytical approximations65

and exact solutions were proposed for di↵erent operational conditions and functions of EDTs66

operating under OML conditions.67

The problem of obtaining the current profile along the tether was tackled by Leamy in68

(Leamy et al. 2001). Although the boundary conditions considered in that paper are di↵erent69

from those herein, the fundamentals for the resolution of the boundary value problem are70

similar. The system of di↵erential equations with boundary conditions is turned into a71

set of algebraic non-linear equations. This transformation can be carried out by means of72

quadratures that link the independent variable, the length along the tether, and the state73

variables, current I and bias voltage �. In this manner, functions I and � can be described in74

terms of a single parameter. The above mentioned relation between length and the variables75
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of the problem entails the use of hypergeometric functions. Due to this, henceforth, this76

approach will be called hypergeometric solution or formulation.77

Recent results on tether mission design (Sanmart́ın et al. ), based on a tether survivability78

model (Khan and Sanmartin 2013), have shown that, for certain missions, tethers with high79

cross section can be useful. This can a↵ect the collected current if tether radius R (or width)80

is greater than a certain maximum Rmax, which depends on environmental conditions and81

tether parameters (Sanmart́ın and Estes 1999). For R > Rmax the tether is said to operate82

beyond the OML regime and the OML current must be corrected (Estes and Sanmart́ın 2000)83

by a factor, say G, below unity. Here we followed the procedure introduced in (Sanchez-84

Arriaga et al. ), which decouples the beyond OML e↵ect from the determination of the85

current and potential profiles thanks to a rescaling of the dimensionless variables by the factor86

G. However, since these calculations must be done each time step along the tether flight87

simulation, the computation ofG with the algorithm described in (Estes and Sanmart́ın 2000)88

may be computationally expensive. This issue is avoided here by presenting an analytical89

fitting of the factor G in a broad range of parameters.90

The current work introduces a novel semi-analytical solution of the current collection91

model. The approach is similar to the one described in (Leamy et al. 2001). Nevertheless, it92

represents a further simplification of the solution and provides a faster computation of the93

current profile, as it will be shown later. This new formulation together with the incorpora-94

tion of the beyond OML e↵ect through an analytical fitting of the factor G yields an e�cient95

and accurate algorithm appropriate for accurate tether flight simulators. The validation of96

the semi-analytical solution is made by comparing the results to Leamy’s and a standard97

shooting method (see chapter 18 of (Press et al. 1992), e.g.). The performance of the three98

methods is also compared.99

OPERATION OF ELECTRODYNAMIC TETHERS100

Let us consider a rigid bare tether of length L, conductivity � and cross section area101

At. At one of its ends, named point C, it has a load of resistance r or a battery that102
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supplies an electromotive force, ✏, followed by a plasma contactor device (a hollow cathode103

or a thermionic emitter device), which ejects electrons at a cost of a potential drop Vcc104

(Sanmart́ın et al. 1993). The opposite end, point A, is the origin of a system of coordinates105

S with its x-axis along the tether (see Fig. 1). Two possible operation regimes are possible:106

passive and active, as shown in the figure. For a detailed discussion on the di↵erences107

between both regimes, we refer to (Sanmart́ın et al. 1993). In this paper, only the passive108

regime is addressed, although the methodology can be extended to the active regime without109

complication.110

Thanks to the good and steady electrical contact between the tether and the surrounding

ionospheric plasma, an electric current ~I = �I(x)~ux flows along the tether. Its interaction

with the ambient magnetic field ~B0 yields the Lorentz force

~F =

Z L

0

I(x) ~B0 ⇥ ~uxdx (1)

Current exchange between the plasma and the tether happens at the plasma contactor

and at the bare tether itself, thus acting as a very long Langmuir probe (Sanmart́ın et al.

1993). It is well-known from plasma probe theory (Laframboise and Parker 1973) that current

collection is controlled by the local potential bias �(x) = Vt � Vpl, where Vt and Vpl are the

tether and faraway plasma potentials. Tether points within the range 0 < x < LB (anodic

segment), where �(x) > 0, collect electrons. The current per unit length is (Laframboise

and Parker 1973; Sanmart́ın et al. 1993; Sanchez-Arriaga et al. )

dI(x)

dx
= G (e�(x)/kTi;Te/Ti, R/�Di)⇥ eN0

pt
⇡

s
2 e�(x)

me
(2)

where e is the electron charge, m↵, T↵ and �↵ are the mass, temperature and Debye length111

and subscript ↵ = e, i denotes electrons and ions, N0 is the density of the ionospheric plasma112

and pt and R are the perimeter and the radius of the tether (R ⇡ w/4 if it is a tape with113

width equal to w ((Sanmart́ın and Estes 1999)) ). The factor G is a positive number below114
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unity and it takes into account the (possible) operation of the tether beyond the so called115

OML regime (Estes and Sanmart́ın 2000) (see Appendix for further details).116

For tether points in the range LB < x < L (cathodic segment) with �(x) < 0, the current

variation due to ion collection is

dI(x)

dx
= �G (e |�(x)| /kTe;Ti/Te, R/�De)⇥ eN0

pt
⇡

s
2 e (��)

mi
(3)

Here the current variation due to secondary emission of electrons in the cathodic region has117

been ignored. In general, this e↵ect represents a small correction with respect to Eq. (3)118

and disregarding it, it is possible to obtain the semi-analytical solution presented hereafter.119

This e↵ect is, nevertheless, taken into account in previous studies (Sanmartin et al. 2006)120

for situations in which the secondary emission plays a role.121

We remark that the same function G but with di↵erent arguments is used in Eqs. 2 and122

3. Such a simple universal function, valid for both polarizations, would not be possible if any123

additional e↵ect depending on the mass of the species is added. Two examples are magnetic124

field e↵ects and a plasma velocity relative to the probe, which introduce the Larmor radius125

and the ion (ram) energy, respectively.126

Both Vt and Vpl vary along tether length. Current I(x) and potential inside the tether Vt

satisfy Ohm’s law dVt/dx = I(x)/�At. Regarding the faraway plasma potential, a motional

electric field ~E = ~vrel ⇥ ~B0 appears in the tether frame due to the tether-to-plasma relative

velocity ~vrel and ~B0. Defining the projection of this field along the current direction, Em =

� ~E · ~ux, one finds dVpl/dx = Em. The equation for the local potential bias is

d�

dx
=

I(x)

�At
� Em (4)

In the passive tether regime, the problem is closed by the circuit equation, which is
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obtained by integrating Eq. (4) between LB and L

Vcc + rIC = Em (L� LB)�

Z L

LB

I(x)

�At
dx (5)

with IC ⌘ I(L) the current at the hollow cathode. System (2) and (5) together with the127

boundary conditions I(0) = 0, �(LB) = 0 gives the current and potential profiles I(x) and128

�(x) together with the anodic length LB.129

CURRENT AND BIAS DIFFERENTIAL EQUATIONS130

For convenience, non-dimensional variables are used to state the ordinary di↵erential

equations for current and bias. The characteristic magnitudes that appear in the problem

were already identified in the seminal paper (Sanmart́ın et al. 1993). Lately, a new ap-

proach has been proposed using slightly di↵erent characteristic magnitudes (Bombardelli

et al. 2010). This work has been carried out using a version of the former, modified to

include the e↵ect of operating beyond the OML regime. Thus, the characteristic length is

L⇤ (Sanmart́ın, Estes and Lorenzini 2001):

L⇤
⌘

✓
9⇡2

128
⇥

1

G2 (�i, Te/Ti, R/�Di)
⇥

me�2

e3
⇥

Emh2

N2
0

◆1/3

(6)

where �↵ ⌘ eEmL⇤/(kT↵) and h ⌘ 2At/pt. Note that the definition of �i and Eq. 6 yields

a nonlinear equation to find L⇤. All the lengths appearing on the problem are scaled with

this length:

⇠ =
x

L⇤ 2 [0, `t], where `t =
L

L⇤ (7)

The characteristic current is the short circuit current, i.e., Isc = �EmAt. Conversely, the

bias due to the induced electric field along the characteristic length, Em L⇤, is used as the

characteristic voltage drop. Finally, the dependent non-dimensional variables i and ' are

defined as:

i(⇠) = I/Isc '(⇠) = �/(Em L⇤) (8)
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The non-dimensional form of the parameters related to the electric devices is as follows:

eVcc =
Vcc

Em L
, ⌦ =

r�At

L
(9)

This work will use subscripts A, B and C in the variables ' and i to denote the values131

of these magnitudes for special points along the tether (see Fig. 1).132

The non-dimensional form of the system of di↵erential equations and boundary conditions133

for passive tethers is presented below:134

Anodic Segment135

Bias and current profile are governed by Eqs. (2) and (4)

di

d⇠
=

3

4

G (�i';Te/Ti, R/�Di)

G (�i;Te/Ti, R/�Di)

p
' ⇡

3

4

p
' (10)

d'

d⇠
= i� 1 (11)

where the ratio G (�i';Te/Ti, R/�Di) /G (�i;Te/Ti, R/�Di) was approximated to one because

the dependence of G with the bias is very weak ((Estes and Sanmart́ın 2000)) and it can be

safely ignored for large potentials ((Sanchez-Arriaga et al. )). The boundary conditions are

⇠ = 0 : i = 0 (12)

' = 0 : i = iB (13)

where iB is an unknown to be determined with the current profile solution.136

Cathodic Segment137

Bias and current profile are governed by Eqs. (3) and (4). This set of ordinary di↵eren-

tial equations of the cathodic segment can be identical to the ones of the anodic segment,
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providing that an appropriate set of variables is used:

⌘ ⌘ �µ2/3 (⇠ � ⇠f ) with µ ⌘

✓
me

mi

◆1/2 G (�e, Ti/Te, R/�De)

G (�i, Te/Ti, R/�Di)
(14)

 ⌘ �µ2/3' (15)

Eqs. (4) and (3) read

di

d⌘
⇡

3

4

p
 (16)

d 

d⌘
= i� 1 (17)

where we have assumed G(�e', Ti/Te, R/�De)/G(�e, Ti/Te, R/�De) ⇡ 1. Choosing ⇠f as

⇠f = ⇠B

✓
1 +

1

µ2/3

◆
(18)

one has ⌘ = 0 and ⌘ = ⇠B if ⇠ = ⇠f and ⇠ = ⇠B, respectively. With the new variables, the

solution is symmetric with respect to the point of zero bias (see Fig. 2). The boundary

condition of the cathodic segment at point B, then, reads

⌘ = ⇠B :  = 0, i = iB (19)

and Eqs. (16) and (17) are formally identical to Eqs. (10) and (11). Without any contactor

at the cathodic end, the current vanishes at both ends, and the solution corresponds to a

floating tether of length ⇠f (⌘ = 0). When a contactor is present, the last boundary condition

required to close the problem is the circuit equation, as depicted in Fig. 2. Circuit equation

(5) in non-dimensional variables reads:

(⌦iC + Ṽcc)`tµ
2
3 �  C = 0 (20)
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Ignoring the ratios of the G-functions in Eqs. 10 and 16 simplifies the problem notably138

(Sanchez-Arriaga et al. ). The beyond OML e↵ect is incorporated in L⇤, which is a factor139

1/G2/3 larger as compared with the OML regime, and the plasma parameters Te/Ti, R/�De140

and eEmL⇤/kTe do not a↵ect the dimensionless equations governing the current and potential141

profiles.142

SEMI-ANALYTICAL SOLUTION143

The systems (10, 11) and (16, 17) are autonomous. The vector fields in the state spaces

(', i) and ( , i) have the form:

di

d'
=

�
3
4

p
'

1� i
(21)

di

d 
=

�
3
4

p
 

1� i
(22)

The family of solutions of the di↵erential equations (21) and (22) can be expressed analyti-

cally:

'(i; iB) = (iB � i)2/3(2� iB � i)2/3 (23)

 (i; iB) = (iB � i)2/3(2� iB � i)2/3 (24)

where iB here is the parameter that determines the particular solution of the family. A144

representation of the solutions in the state plane (', i) can be found in Figure 3. The145

boundary conditions and the operational physic limits can also be represented in the state146

plane. The circuit equation (20) corresponds to a straight line. The physical limit of not147

exceeding the short circuit equation corresponds to a horizontal line at i = 1. The solution148

of the problem follows the orbit among the possible trajectories in the state plane, which149

fulfills that, in the intersection with the boundary conditions, the variable ⇠ is equal to `t150

(or ⌘ is equal to �µ2/3(`t � ⇠f )). It is worth mentioning that there exists a singular point in151

the state space: ' =  = 0, i = 1. The equilibrium solution corresponds to zero bias and152
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short-circuit current along an arbitrary length of the tether, ⇠S in non-dimensional variables.153

The value of ⇠S can be determined as part of the solution when the boundary conditions are154

imposed.155

In turn, the relation between current and tether location in the anodic segment (similarly

for the cathodic) is given by:

⇠ =
4

3

Z i

0

d⇣

(iB � ⇣)1/3(2� iB � ⇣)1/3
(25)

At this point, two auxiliary variables, v in the anodic segment and ṽ in the cathodic

segment, are defined, as shown in Fig. 2. The introduction of v allows us to obtain an

explicit parametric expression of i and ⇠. In the anodic segment, the parametric description

is as follows:

'(i) =(iB � i)
2
3 (2� iB � i)

2
3 (26)

i(v) =1� (1� iB) cosh(v) (27)

⇠(v) =
4

3
(1� iB)

1
3 [f(v0)� f(v)] (28)

where v 2 [0, v0]. As it can be seen in Fig. 2, v = v0 at the anodic end and v = 0 at point B.

The value of v0 can be expressed as a function of the parameter of the family of solutions iB,

v0 = cosh�1( 1
1�iB

). In the parametric representation of ⇠, an integral function, f(x), comes

up. It is defined as

f(x) =

Z x

0

sinh
1
3 (⇣)d⇣ (29)

The e�cient evaluation of f(x) is crucial and is discussed below. The previous description

is valid for iB 6= 1. When iB ⌘ 1 the parametric description turns out to be:

'(i) =(1� i)
4
3 (30)

⇠(i) =4
⇥
1� (1� i)1/3

⇤
(31)
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with i 2 [ 0, 1 ]. The approach on the cathodic segment is analogous and Eqs (26, 28) and

(30, 31) are valid changing ' !  , ⇠ ! ⌘ and v ! ṽ. The di↵erence lies in the boundary

conditions and, thus, ṽ varies between [0, ṽC ]. ṽC is an unknown of the problem and should

fulfill:

⌘(ṽC) = ⇠B � µ2/3 (`t � ⇠B) (32)

Finally, the circuit equation (20) should also be fulfilled.156

As previously indicated, the e�ciency in the computation of the non-dimensional current

and bias profiles depends on the ability to produce a fast evaluation of the function f(x),

defined above. There exists an analytical solution for f(x) in terms of hypergeometric func-

tions. However, in order to speed up the calculation, f(x) is computed using an asymptotic

formulation and a series expansion. Both formulations are found with the help of algebraic

manipulators. The behavior of f(x) when x ! 1 is given by:

f(x) ⇣ 3 cosh
1
3 x� k1 �

1

5
cosh� 5

3 x�
2

33
cosh� 11

3 x�
14

459
cosh� 17

3 x+O(cosh� 17
3 ) (33)

where constant k1 has the value:

k1 =
1

⇡
2�2/333/2(�(

2

3
))3 ⇡ 2.5871 (34)

The relative error of this asymptotic approximation is below 10�10 for x � 3. Conversely,

a power series expansion of f(x) is used for computing the value of the function for x < 3.

For completeness, the expansion is gathered below:

f(x) ⇣ x4/3

✓
3

4
+

1

60
x2

�
1

17280
x4 +

53

8981280
x6

�
191

587865600
x8

◆
+O(x28/3) (35)

It is also worth mentioning that, although the convergence of the series expansion is not fast,157

the number of terms can be extended with no harm to the computation performance.158
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COMPUTATIONAL ALGORITHM159

The steps to obtain the current and Lorentz force at a given instant of time are described160

in detail in this section. The data available at the beginning of the computation involve tether161

parameters, including L, cross-section dimensions (R for round tethers and w and h for tape162

tethers), Vcc, r and �, and environmental variables: Em, N0, Te and Ti. The non-dimensional163

length of the tether L⇤ can then be computed using the function G as it is described in164

the Appendix. Note that we can easily work out the value L⇤ thanks to the assumption165

that the dependence of G on its first argument is negligible. The other characteristic and166

derived magnitudes are also found. They allow us to obtain the non-dimensional parameters167

`t,⌦ and eVcc. These parameters determine the boundary conditions through Eq. (20).168

The parametric representation given by Eqs. (26) and (28) has two unknown parameters:169

iB which selects the orbit of the family of solutions and iC which determines the arc length170

corresponding to the non-dimensional length of the tether, `t. The solution must satisfy171

the constraints (20) and (32). Therefore, the problem is closed and it is well posed within172

the allowable range of parameters. For a more compact formulation of the algorithm, the173

variable � is used instead of iC : iC = iB � �. Substituting the previous in (20) and (32), a174

system of two equations with two unknowns (�, iB) is obtained:175

µ2/3`t =
4

3
(1� iB)

1/3
⇥
µ2/3f(v0) + f(ṽC)

⇤
(36)

µ2/3 (⌦`tiB + eVcc`t) = µ2/3 ⌦`t� + �2/3(2(1� iB) + �)2/3 (37)

where ṽC = cosh�1(1 + �
1�iB

).176

In this way, the boundary value problem is formulated as finding the root of a two-177

dimensional non-linear function of two variables iB and �. Therefore, conventional zero-178

finding computational algorithms can be used in order to solve for the unknowns. This179

formulation, using � instead of iC or ṽC as unknown presents two main advantages:180
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1. � ⌧ 1 because the current drop along the cathodic segment is small for common

tether lengths and electric loads; and this allows us to generate a good guess in the

iterative process:

�0 ⇡
µ
h
⌦`tiB + eVcc`t

i3/2

2(1� iB)

This approximation is not valid if iB ⌘ 1. In such a case, � ⇡ µ1/2
h
`t (⌦+ eVcc)

i 3
4

181

2. the equation in � (with iB as parameter), i.e., Eq. (37), is simpler than the equation182

in ṽC (with iB as parameter), i.e., Eq. (36). Therefore, e�cient methods for searching183

roots can be used, such as the Newton Raphson method.184

VALIDATION AND COMPARISON185

The validation of the work presented in this paper is twofold: the correction to the OML186

regime is compared with the results of (Estes and Sanmart́ın 2000) and (Sanmart́ın and Estes187

1999), and the computational algorithm is compared to prior solutions found in the literature.188

Concerning the former, the formulae which are introduced in the Appendix provide G with189

an error below few percent in common tether operation (as compared with the results from190

(Estes and Sanmart́ın 2000)). In the worst cases, which involve very extreme conditions, the191

error is below 8%. Taking into account the uncertainties in the environmental parameters192

and the assumption made in di↵erent part of the analysis (high bias approximation, straight193

tether, constant tether temperature and conductivity), this is an acceptable error. The194

alternative, i.e., the exact solutions of the shooting problem posed in (Estes and Sanmart́ın195

2000), would slow down the tether flight simulator.196

Regarding the latter, three methods have been implemented for the passive regime,197

whereas two methods were developed for the active regime. All the methods are intended to198

solve the problem formulated in the non-dimensional form. Therefore, the solution consists199

of the pair iB, � (iB, iC) given the input parameters `t,⌦, Ṽcc, µ. The input parameters are200

fed randomly (although all the methods solve for the same case), the values are taken from201

a continuous uniform distribution.202
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A shooting method is used as benchmark. The algorithm is based on a shooting method203

to a fitting point according to Section 18.2 of (Press et al. 1992). The integration of the204

equations of motion is made for anode and cathode independently, starting at both ends of205

the tether. The matching of the solution is imposed at point B. This is a suitable method206

because of the possible singular solution i = 1, ' = 0 at point B. Moreover, a method based207

on the utilization of hypergeometric functions as it is described in (Leamy et al. 2001) has208

been derived for the passive regime.209

The validation is conducted in terms of the relative and absolute di↵erence of the proposed210

algorithm with respect to the reference method (shooting). Regarding the relative error, a211

batch of computations has been carried out for random values of the parameters: `t,⌦. To212

perform the comparison, the integral of the current along the tether,
R `t
0 i(⇠)d⇠, has been213

considered. The results show that almost all the cases are below a relative error of 10�3.214

Those which are above that threshold correspond to either values of `t ⌧ 1 or the region of215

the parameter space where iB = 1,�B = 0 along ⇠S. In the first situation, the integral of the216

current is too small and, therefore, the relative errors increase. Nevertheless, the absolute217

error remains bounded. In the second case, the problem lies in the di�culty of the shooting218

method to produce an accurate solution when the singular solution i = 1, ' = 0 is present219

along a segment.220

In addition, a comparison of the performance is made in terms of the computational time.221

In Figure 4, this comparison is presented. As it can be observed, the semi-analytical method222

introduced here is about an order of magnitude faster than the method based on hyperge-223

ometric functions, and a couple of orders of magnitude more rapid than the conventional224

shooting method.225

CONCLUSION226

This paper addresses the fast and accurate computation of the current along a bare elec-227

trodynamic tether for variable environmental and dynamical conditions. This is mandatory228

for the simulation of bare EDTs dynamics and operation and for the assessment of its per-229
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formance. A semi-analytical approach is derived to satisfy the computational requirements230

in terms of time consumption using an state-of-the-art current collection model.231

The approach is based on the use of a change of variables that reduces the two-dimensional232

two-point boundary value problem to a two-dimensional root-finding problem. The latter is233

solved sequentially in two steps, using at each step conventional one-dimensional root-finding234

algorithms as bisection or the Newton Rapson methods.235

The numerical comparison between the proposed method and those found in the literature236

finds a good agreement in the vast majority of cases. The lack of agreement takes place237

in special situations in which the shooting method seems to be unable to find the profile238

solution. Finally, the results of the proposed method show an important time-consumption239

improvement with respect to the previous methods.240

The beyond OML e↵ect was incorporated in the model with a very low computational241

cost. This can be useful for certain missions, which must be carried out with wide tethers to242

have a small cut probability (Khan and Sanmartin 2013). Thanks to the proposed fitting,243

the algorithm just needs to evaluate the analytical function G at each time step to find244

the correct value of L⇤. In any case, beyond OML e↵ect is not expected to have a strong245

impact on the deorbit time because (i) function G does not decay very fast with the ratio246

R/�De and (ii) R is typically beyond Rmax just for low altitudes, where plasma density is247

higher and the Debye length is smaller, and the tether spends a small fraction of time there.248

However, although the Lorentz force computed with and without the beyond OML e↵ect can249

be close to each other at certain time steps, it is a cumulative e↵ect that may a↵ect tether250

behavior. For instance, a self-balanced tether mitigates the dynamic instability because a251

dimensionless parameter involving the Lorentz torque about the center of mass, say ✏, is252

very small (Peláez and Sanjurjo 2006). Since this torque is a↵ected by the current profile,253

small variations, like the one produced secularly by the beyond OML e↵ect, can produce a254

non-negligible e↵ect (the growth rate varies as ✏3 (Peláez et al. 2000)).255

There are some limitations of the model that should be taken into account. The high256
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bias hypothesis (e�/kT >> 1), underlies most of the analysis, including the determination257

of the function G, the equivalent radius rule (Req = w/4) for tape tethers and the OML258

law itself, which has a term with a complementary error function that was here ignored.259

Plasma thermal energy, about 0.15 eV, typical tether lengths, and motional electric field260

values normally meet the requirement e�/kT >> 1. However, for a tether orbiting in the261

F layer, where O+ is the dominant ion specie, ion (ram) energy is large compared with the262

thermal energy and a paradox appear in stationary Langmuir probe theories (2002 ). Recent263

simulations showed that: (i) the paradox is explained if electron trapping is included and264

(ii) collected current is not a↵ected severely by the ram e↵ect (2014 ). At higher altitudes,265

where H+ is dominant, the ram e↵ect can be ignored. Regarding the tape tether, potential266

barriers always appear and OML current is not achieved; current reduction below the OML267

value is of order [1/ln(e�/kTi)]2 (Sanmart́ın and Estes 1999).268

APPENDIX. THE CORRECTION TO THE OML REGIME269

The right hand sides in Eqs. (2) and (3) involve the functions G, which takes into270

account the formation of potential barriers at R and the deviation of the current from271

the OML regime. This function was computed in Ref. (Estes and Sanmart́ın 2000) for a272

cylindrical probe of radius R in the high and positive bias case e� >> kTe. The probe is273

considered immersed at rest in an unmagnetized equilibrium plasma with electron and ion274

temperatures Te and Ti, respectively. Its determination involves the solution of a boundary275

value problem, which is cumbersome for tether flight simulators. Here we propose a simple276

analytical fitting that allows the inclusion of the beyond OML e↵ect without a significant277

increase in the computational cost. For tape tethers, one may take R ⇡ w/4, where w is the278

width of the tape (Sanmart́ın and Estes 1999).279

Function G(�, µ, ⇢) has arguments �, µ and ⇢, which involves the normalized bias, the

temperature ratio and the normalized probe radius. As shown in (Sanmart́ın and Estes

1999), there is a maximum normalized radius of the probe ⇢max to operate within the OML

regime. Therefore, if ⇢ < ⇢max one has G = 1. A simple fitting of ⇢max obtained from the
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high bias results of (Sanmart́ın and Estes 1999) is

⇢max (y ⌘ ln�, µ) =
p1y2 + p2y + p3

y + p4
(38)

with

p1 =
0.08µ+ 0.11

µ+ 0.19
p2 =

�0.34µ� 0.26

µ+ 0.065
(39)

p3 =
1.63µ+ 1.73

µ+ 0.11
p4 =

1.8µ2
� 0.48µ+ 0.22

µ+ 0.3
(40)

If ⇢ > ⇢max, the tether operates beyond the OML regime and G drops below 1. In (Estes

and Sanmart́ın 2000) was shown that the dependence on probe bias is very weak and one

can write G = G (µ, ⇢� ⇢max). A fitting to the results obtained in (Estes and Sanmart́ın

2000) at the particular case � = 1000 is

G

✓
µ, z ⌘

⇢� ⇢max
p
µ

◆
=

c1z2 + c2z + c3
z2 + c4z + c3

(41)

where

c1 =
0.19µ2 + 0.056µ+ 0.0182

µ2 + 0.95µ+ 0.26
c2 =

1.46µ+ 1.29

µ+ 0.045
(42)

c3 =
17.2µ� 0.82

µ+ 0.13
c4 =

1.56µ+ 1.12

µ+ 0.037
(43)
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Figure 4: Computational time in seconds vs. number of calls for each method.
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