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On the consistency of the matrix equation
XJAX “ B when B is symmetric

Alberto Borobia, Roberto Canogar and Fernando De Terán

Abstract. We provide necessary and sufficient conditions for the matrix
equation XJAX “ B to be consistent when B is a symmetric matrix,
for all matrices A with a few exceptions. The matrices A,B, and X
(unknown) are matrices with complex entries. We first see that we can
restrict ourselves to the case where A and B are given in canonical form
for congruence and, then, we address the equation with A and B in such
form. The characterization strongly depends on the canonical form for
congruence of A. The problem we solve is equivalent to: given a com-
plex bilinear form (represented by A) find the maximum dimension of a
subspace such that the restriction of the bilinear form to this subspace
is a symmetric non-degenerate bilinear form.
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1. Introduction

We are interested in providing necessary and sufficient conditions for the
equation

XJAX “ B (1.1)

to be consistent. Here, A and B are square complex matrices (that is, matrices
with entries in the complex field C) not necessarily of the same size, X is the
unknown, and MJ denotes the transpose of the matrix M .

Equation (1.1) arises in several settings, in particular related to bilinear
forms and matrix congruence. These two concepts are connected, since two
square matrices A and B of the same size represent the same bilinear form
with respect to different bases if and only if A and B are congruent. By
definition, this is equivalent to say that Eq. (1.1) has a nonsingular solution.

.
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In order to determine whether two particular square matrices A and
B of the same size are congruent, one should ask for invariants or intrinsic
properties of A and B that characterize this equivalence relation or, moreover,
for a canonical form. Canonical forms for congruence are known since, at least,
the 1930s [19, p. 139], but we follow the one in [17] (and we will refer to it
as the CFC). Using the CFC, we can get a characterization for the existence
of a nonsingular solution of Eq. (1.1), namely, this happens if and only if A
and B have the same CFC. Then, this characterization solves, theoretically,
the question on whether or not Eq. (1.1) has a nonsingular solution.

But, what happens if we remove the constraint on the nonsingularity
of the solution? More precisely, we may allow X to be not only nonsingular,
but even rectangular. So, assume that X P Cnˆm is a solution of Eq. (1.1).
In order for (1.1) to be well defined, it must be A P Cnˆn and B P Cmˆm,
namely, A and B must be square, but not necessarily of the same size. In this
setting, Eq. (1.1) may have a solution with A and B not being congruent (in
particular, this happens if they are not of the same size). So congruence is just
the extreme case, m “ n, of the general equation (1.1) (with X nonsingular).

The other extreme case of Eq. (1.1) is when m “ 1. In this case, Eq.
(1.1) becomes xJAx “ β, with β P C. This gives a quadratic form (note that,
if β ‰ 0, the equation has a solution whenever A is not skew-symmetric). So
our problem is placed in between these two extreme cases, namely, congruence
and quadratic forms.

Nonetheless, congruence plays a key role in our general strategy. More
precisely, we will see that Eq. (1.1) is consistent if and only if the equation
obtained after replacing A and B by their respective CFCs is consistent as
well. Since we are interested in characterizing when Eq. (1.1) is consistent,
we will assume most of the time that A and B are already given in CFC.

The CFC is a block-diagonal form containing blocks of three different
types (see Theorem 1). A natural approach to solve Eq. (1.1) when both A
and B are in CFC is to partition the solution X into blocks, conformally
with the partitions of A and B, and then try to solve individually all the
equations corresponding to each pair of canonical blocks of A and B in order
to get a solution of the whole equation. However, this approach presents a
relevant obstacle when applied to Eq. (1.1) (see Section 2), and to analyze
the solvability of Eq. (1.1) with A and B in CFC seems to be, in general, a
very hard task.

Nonetheless, we have succeeded in obtaining necessary and sufficient
conditions for Eq. (1.1) to be consistent when B is symmetric. We want to
emphasize that Eq. (1.1) can be consistent with B being symmetric and A be-
ing non-symmetric. However, when A is symmetric, if Eq. (1.1) is consistent,
then B must be symmetric as well. Then, the case where A is symmetric is a
particular case of the one we are interested in. Moreover, as we will see, the
case where B is symmetric is much richer than the case where A is symmetric,
and the characterization for the consistency is more complex. In particular,
the characterization for consistency of Eq. (1.1) when A is symmetric can be
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stated in a very elementary way without explicitly using the CFC of A (see
Lemma 2.2). By contrast, the characterization of the consistency when B is
symmetric requires the knowledge of the CFC of A (see Theorem 8). We want
to note that the characterization in Theorem 8 is not complete, since it does
not cover the case where a particular kind of one type of blocks appear in
CFC(A) (namely, blocks of either the form H4p1q or H2p´1q, see Theorem 1).
Nevertheless, this characterization is almost complete, since it covers most
instances of CFC(A) or, in other words, is valid for most matrices A.

Our strategy to get the characterization for the consistency of Eq. (1.1)
when B is symmetric consists in first obtaining a necessary condition in
terms of the canonical blocks of the CFC of A. Then, we show that this
condition is sufficient by analyzing Eq. (1.1) for A being a single block of
each of the different types in the CFC (excluding the blocks of the form
H4p1q and H2p´1q mentioned in the previous paragraph). In other words, we
show that, when the necessary condition is satisfied, then a block diagonal
solution exists. We want to note that, in most of the cases where Eq. (1.1)
is consistent, we have provided an explicit solution. Therefore, our proof for
the consistency is, in many cases, a constructive proof (up to the matrices
that take A and B to their CFC).

Something that is important to emphasize is that, despite (1.1) is a
nonlinear (in particular, quadratic) equation, in this work we have used tech-
niques, tools, and developments from linear algebra.

There are several references in the literature that deal with Eq. (1.1).
In particular, several papers have been devoted, since the 1960s, to count the
number of either general solutions or solutions with some particular prop-
erty (like having some fixed rank) and with A and B being either arbitrary
or having some specific structure (like “alternate”) for matrices over finite
fields [2–5, 15, 20]. It has also appeared in [14] to determine which m ˆ n
matrices over fields with characteristic 2 have a generalized inverse or pseu-
doinverse, and also to count the number of such matrices for finite fields with
characteristic 2. More recently, this equation has arisen in connection with
several applications, like image deblurring problems [13] and dynamics gen-
eralized equilibrium (DSEG) problems (see [1] and the references therein).
Numerical methods to compute the minimal solution to the more general
nonsymmetric J-Riccati equation (with real matrices) have been proposed in
the recent work [1].

Some other related equations to Eq. (1.1) have been of interest in the
recent years. Among them, we cite the so-called “generalized Yang-Baxter
matrix equation”, AXA “ XAX, which is also a nonlinear equation that
is analyzed using linear algebra techniques in several papers, like [12]. The
equation XAX “ B, which resembles very much Eq. (1.1) (it is the same
equation without transposing the second appearance of the unknown X)
has been analyzed in [18] for A,B being symmetric or skew-symmetric, and
using also appropriate canonical forms of the coefficient matrices in order to
reduce the equation to a more manageable expression. The previous equations
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are nonlinear and do not involve transposition. Some other recent references
deal with linear equations close to Eq. (1.1), and involving transposition.
For instance, the works [6–11], where the solution of Sylvester-like equations
XA`AXJ “ 0, AX`XJB “ 0, or AXB`CXJD “ E has been considered.
In all these references, both the coefficients and the unknown are complex
matrices, like in the present work.

The paper is organized as follows. In Section 2, we present the notation
and recall the basic notions and tools that are used throughout the manu-
script (like the CFC). We also settle the basic approach that we follow to
analyze the consistency of Eq. (1.1), and present some elementary technical
results. Section 2.1 is devoted to characterize the consistency of Eq. (1.1)
when A is symmetric. The core of the manuscript are Sections 3–7. In these
sections, we study the consistency of Eq. (1.1) when B is symmetric. We first
present, in Theorem 2, a necessary condition for Eq. (1.1) to be consistent.
This condition depends on the size of A, the rank of B, and the number
of blocks of certain types appearing in the CFC of A. In Sections 4–6 we
analyze the consistency of Eq. (1.1) for A being a single block of the CFC.
This allows us to present, in Theorem 8 (which is the main result of this
paper), a characterization for the consistency of Eq. (1.1) when the CFC of
A does not contain blocks of either the form H4p1q or H2p´1q, by proving
that the condition of Theorem 2 is sufficient. In Section 8 we summarize the
contributions of this paper and indicate some lines of further research.

We close the Introduction by recovering the idea that A represents a
bilinear form over Cn. In this case, if Eq. (1.1), with B “ Im, has a solutionX,
then the rank of X is necessarily m, so the columns of X form the basis of an
m-dimensional linear subspace of Cn. It is noteworthy that the restriction of
the bilinear form to this subspace is a symmetric and non-degenerate bilinear
form. So, from this point of view, the problem that we solve in this work is
the following: given a bilinear form A (with the few exceptions mentioned
above), we find the maximum dimension mA that a subspace of Cn can have
so that the restriction of A to this subspace is symmetric and non-degenerate.
Moreover, we provide a basis of such a subspace. Note that this problem is
trivial when A is symmetric, since then mA “ rankA and the basis can be
found by means of the Autonne-Takagi factorization [16, Cor. 4.4.4(c)].

2. Basic approach and definitions

Throughout the manuscript, In and 0n denote, respectively, the identity and
the null matrix with size n ˆ n. By 0mˆn we denote the null matrix of size
m ˆ n. By i we denote the imaginary unit (namely, i2 “ ´1), and by ej
we denote the jth canonical vector of the appropriate size (namely, the jth
column of the identity matrix).

When considering the question on whether Eq. (1.1) is consistent or not,
a useful tool is the canonical form for congruence (CFC). In order to recall



Consistency of XJAX “ B with B symmetric 5

the CFC we first need to introduce the following matrices:

Jkpλq :“

»

—

–

λ 1
. . .

. . .
λ 1

λ

fi

ffi

fl

is a k ˆ k Jordan block associated with λ P C; for each k ě 1, let Γk be the
k ˆ k matrix

Γk :“

»

—

—

—

—

—

—

—

–

0 p´1qk`1

. .
.
p´1qk

´1 . .
.

1 1
´1 ´1

1 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pΓ1 “ r1sq;

and, for each λ P C and each k ě 1, H2kpλq is the 2k ˆ 2k matrix

H2kpλq :“

„

0 Ik
Jkpλq 0



,

where Jkpλq is a k ˆ k Jordan block associated with λ.

Theorem 1. (Canonical form for congruence, CFC) [17, Th. 1.1]. Each square
complex matrix is congruent to a direct sum, uniquely determined up to per-
mutation of addends, of canonical matrices of the following three types

Type 0 Jkp0q
Type I Γk

Type II
H2kpµq,

0 ‰ µ ‰ p´1qk`1

(µ is determined up to replacement by µ´1)

The CFC is the basic tool in our strategy to analyze the consistency of
Eq. (1.1). More precisely, let CA and CB be, respectively, the CFCs of A and
B. Then, there are two nonsingular matrices R and S such that

A “ RJCAR and B “ SJCBS.

Now, (1.1) is equivalent to

XJpRJCARqX “ SJCBS ô pRXS´1qJCApRXS
´1q “ CB .

With the change of variables Y “ RXS´1, the previous equation reads

Y JCAY “ CB , (2.1)

so (1.1) is consistent if and only if (2.1) is consistent. Note that, in (2.1),
the coefficients matrices are given in CFC. As a consequence, when analyzing
the consistency of Eq. (1.1), we may restrict ourselves to the case where the
coefficient matrices A and B are already given in CFC.

A natural approach to address the solution of Eq. (1.1), when A and
B are given in CFC, is to partition the unknown X conformally with the
block partition of A and B. This is, for instance, the approach followed in [6]
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for the equation XA ` AXJ “ 0 using the CFC, in [8] for the equation
AX`XJB “ 0 using the Kronecker canonical form of the matrix pencil A´
λBJ, or in [18] for the equation XAX “ B using canonical forms for the so-
called simultaneous contragredient transformation. However, when trying this
approach with Eq. (1.1), some relevant difficulties arise. Let us illustrate these
obstructions assuming that both A and B consist of exactly two diagonal
blocks of any of the types described in Theorem 1. More precisely, assume
that A and B are of the form

A “

„

A1 0
0 A2



, and B “

„

B1 0
0 B2



.

Then, we partition the unknown X conformally with the previous block par-
titions, as

X “

„

X11 X12

X21 X22



.

Now, multiplying by blocks in Eq. (1.1) with the previous partitions and
equating by blocks, we get the system of matrix equations

XJ11A1X11 `X
J
21A2X21 “ B1

XJ11A1X12 `X
J
21A2X22 “ 0

XJ12A1X11 `X
J
22A2X21 “ 0

XJ12A1X12 `X
J
22A2X22 “ B2

.

The previous system contains equations which are not of the form (1.1) and,
moreover, the blocks Xij are mixed in these equations. This happens even
if either A or B consists only of just one canonical block. As a consequence,
to address the solution of Eq. (1.1) using this approach does not seem to be
appropriate. Nonetheless, there are some particular and very elementary cases
where this strategy is useful (see, for instance, Lemmas 2.2 and 2.3). Also, our
approach to prove that the necessary condition for Eq. (1.1) to be consistent
when B is symmetric is also sufficient (Section 7) uses the fact that, in order
to obtain a solution when A is a direct sum of canonical blocks of different
types, it is enough to get a solution for the direct sum of canonical blocks
of the same type, and then the solution for the direct sum of all blocks is
obtained as a block-diagonal matrix by plugging-in every individual solution.

As we have mentioned in the Introduction, our aim is to look for neces-
sary and sufficient conditions for Eq. (1.1) to be consistent when B is sym-
metric. When A is symmetric, B is necessarily so, and the characterization
in this case is elementary (see Section 2.1). However, when B is symmetric,
the equation XJAX “ B can be consistent, with A not being symmetric.
Consider, for instance,

XJ
„

0 1
0 0



X “
“

1
‰

,

which has a solution X “ r 11 s . This makes the problem on the consistency of
Eq. (1.1), with B symmetric, a more interesting problem. We will see that the
characterization for the consistency in this case is far from being so simple
as when A is symmetric, and it strongly depends on the CFC of A.
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2.1. The case where A is symmetric

If A is symmetric and XJAX “ B is consistent, then B is also symmetric.
In this case, the canonical form for congruence of both A and B consists of
Type-0 and Type-I blocks of size 1ˆ 1, that is,

CFCpAq “

„

Ir 0
0 0



, CFCpBq “

„

Is 0
0 0



.

The necessary and sufficient condition for Eq. (1.1) to be consistent in this
case is simply r ě s. It is obviously necessary, and to see that it is sufficient
just take X “

“

Is 0
0 0

‰

as a solution. This is stated in the following result.

Lemma 2.1. Let A P Cnˆn be symmetric and B P Cmˆm. Then, the equation
XJAX “ B has a solution if and only if B is also symmetric and rankA ě
rankB.

Note that Lemma 2.1 extends [16, Th. 4.5.12] to matrices A and B not
necessarily being of the same size and X not necessarily invertible.

2.2. Some technical results

In this section, we present three elementary results that will be used later.
As we saw in (2.1), in order to analyze the consistency of Eq. (1.1), we

may restrict ourselves to the case where the coefficient matrices A and B are
already given in CFC. IfB is symmetric, its CFC is of the formB “ Im1‘0m2 .
The following result allows us to get rid of the null diagonal blocks.

Lemma 2.2. Let A “
”

rA 0
0 0d

ı

and B “
”

rB 0
0 0k

ı

. Then, the equation XJAX “

B is consistent if and only if the equation XJ rAX “ rB is consistent.

Proof. Let us assume first that XJAX “ B is consistent, with A and B as
in the statement. Let us partition

X “

„

X11 X12

X21 X22



,

where X22 has size dˆ k. Then, XJAX “ B can be written as
„

XJ11 XJ21
XJ12 XJ22

 „

rA 0
0 0d

 „

X11 X12

X21 X22



“

«

XJ11
rAX11 XJ11

rAX12

XJ12
rAX11 XJ12

rAX12

ff

“

„

rB 0
0 0k



,

so, in particular, X11 is a solution of XJ rAX “ rB.

Conversely, assume that XJ rAX “ rB has a solution X11. Then, X “
”

X11 0
0 0kˆd

ı

is a solution of XJAX “ B. ˝

The next result deals also with Eq. (1.1) with B symmetric, already in
CFC, and of full rank.

Lemma 2.3. If XJAX “ Im`1 is consistent, then XJAX “ Im is consistent
as well, for all m ě 1.
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Proof. If X0 is a solution of XJAX “ Im`1, then X0

„

Im
01ˆm



is a solution of

XJAX “ Im. ˝

The last result shows the transitivity of the consistency of Eq. (1.1).

Lemma 2.4. If both XAXJ “ B and Y BY J “ C are consistent, then
ZAZJ “ C is also consistent.

Proof. Let X0 be a solution of XAXJ “ B, and let Y0 be a solution of
Y BY J “ C. Since pX0Y0q

JApX0Y0q “ Y J0 pX
J
0 AX0qY0 “ Y J0 BY0 “ C, then

Z0 “ X0Y0 is a solution of ZAZJ “ C ˝

3. A necessary condition

In this Section, we introduce a necessary condition on A for Eq. (1.1) to be
consistent when B is symmetric.

Lemma 2.2 guarantees that, when looking for the consistency of (1.1),
there is no loss of generality in assuming that A and B are given in CFC,
that A has no blocks of type J1p0q, and that B “ Im (the CFC of symmetric
invertible mˆm matrices). In particular, in the next theorem we get a nec-
essary condition for Eq. (1.1) to be consistent with such B. In the statement
we have included, however, the case where CFC(A) contains blocks of type
J1p0q, for the sake of completeness.

Theorem 2. Let A P Cnˆn be a matrix whose CFC has

(i) exactly d Type-0 blocks with size 1;
(ii) exactly r Type-0 blocks with odd size greater than 1;
(iii) exactly s Type-I blocks with odd size;
(iv) exactly t Type-II blocks of the form H4vp1q, and
(v) an arbitrary number of Type-0, Type-I, and Type-II blocks with other

sizes.

Then, in order for

XJAX “ Im (3.1)

to be consistent, it must be

n´ d ě 2m´ r ´ s´ 2t. (3.2)

Proof. As mentioned before, we may assume that A is given in CFC.

Assume first that d “ 0. In the conditions of the statement, we can
write

A “ J2m1´1p0q ‘ ¨ ¨ ¨ ‘ J2mr´1p0q
À

J2mr`1
p0q ‘ ¨ ¨ ¨ ‘ J2mr`hp0q

À

Γ2xm1´1 ‘ ¨ ¨ ¨ ‘ Γ2xms´1

À

Γ2xms`1
‘ ¨ ¨ ¨ ‘ Γ2xms`g

À

H2|m1
pµ1q ‘ ¨ ¨ ¨ ‘H2|mupµuq

À

H4|mu`1´2p´1q ‘ ¨ ¨ ¨ ‘H4|mu`v´2p´1q
À

H4|mu`v`1
p1q ‘ ¨ ¨ ¨ ‘H4|mu`v`tp1q,
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where mi ą 1, for i “ 1, . . . , r; pmi ě 1, for i “ 1, . . . , s ` g; qmi ě 1, for
i “ 1, . . . , u` v ` t; and µj ‰ 0,˘1, for j “ 1, . . . , u. Let us set

M :“ m1 ` ¨ ¨ ¨ `mr`h, xM :“ pm1 ` ¨ ¨ ¨ ` pms`g, and
|M :“ qm1 ` ¨ ¨ ¨ ` qmu ` 2qmu`1 ` ¨ ¨ ¨ ` 2qmu`v ` 2qmu`v`1 ` ¨ ¨ ¨ ` 2qmu`v`t.

Then, we have

n “ 2pM ` xM ` |Mq ´ r ´ s´ 2v, (3.3)

rank pA´AJq “ 2pM ` xM ` |Mq ´ 2r ´ 2s´ 2v ´ 2t. (3.4)

Equation (3.3) is immediate. In order to get (3.4), it suffices to check that
the rank of the skew-symmetric part of the canonical blocks involved in this
identity is the following

rank pJnp0q ´ Jnp0q
Jq “

"

n´ 1 if n is odd,
n if n is even,

(3.5)

rank pΓn ´ ΓJn q “

"

n´ 1 if n is odd,
n if n is even,

(3.6)

rank pH2npµq ´H2npµq
Jq “ 2n if µ ‰ 0,˘1, (3.7)

rank pH4n´2p´1q ´H4n´2p´1qJq “ 4n´ 2, (3.8)

rank pH4np1q ´H4np1q
Jq “ 4n´ 2. (3.9)

The first identity of (3.5) (i.e. for n odd) is a consequence of the fact that any
skew-symmetric matrix with odd size is singular, together with the fact that
e1, . . . , en´1 belong to the column space of Jnp0q´Jnp0q

J. To get the second
identity in Equation (3.5) (i.e. for n even) we can prove that detpJnp0q ´
Jnp0q

Jq “ ˘1 when n is even. This can be done by induction, spanning the
determinant across the first row, then across the first column, and then using
induction in the remaining minor, namely detpJn´2p0q ´ Jn´2p0q

Jq.

Equation (3.6) is a consequence of the identity

Γn ´ ΓJn “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

»

—

—

–

0

. .
.
´2

0 . .
.

0 2

fi

ffi

ffi

fl

if n is odd,

»

—

–

´2

. .
.

´2

2

fi

ffi

fl

if n is even.
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Finally, Equations (3.7)–(3.9) follow from the identity:

H2npµq ´H2npµq
J “

»

—

—

—

—

—

—

—

—

—

—

–

1´ µ ´1
. . .

. . .

1´ µ ´1
1´ µ

µ´ 1

1
. . .

. . . µ´ 1
1 µ´ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

From (3.3)–(3.4) we conclude

n´ rank pA´AJq “ r ` s` 2t. (3.10)

Now, transposing (3.1) and subtracting, we get

XJpA´AJqX “ 0. (3.11)

Since X P Cnˆm is a solution of (3.1), it must be rankX “ rankXJ “ m.
Using this fact, together with the well-know inequality (see [16, page 13])

rank pPQq ě rankP ` rankQ´ k, for P P Cpˆk and Q P Ckˆq,
(3.12)

we obtain

rank pXJpA´AJqq ě m` rank pA´AJq ´ n,

and, then, using this inequality and (3.10), we get

dimpNul pXJpA´AJqq “ n´ rank pXJpA´AJqq
ď n´ pm` rank pA´AJq ´ nq
“ pn´mq ` pn´ rank pA´AJqq
“ n´m` r ` s` 2t.

Equation (3.11) implies that the column space of X P Cnˆm is contained in
the null space of XJpA´AJq. Since rankX “ m, the column space of X has
dimension m, so it must be

m ď n´m` r ` s` 2t

or, in other words,

n ě 2m´ r ´ s´ 2t,

as wanted for the case in which d “ 0.
Assume now that d ą 0. Then A can be written as in the statement

of Lemma 2.2, with rA P Cpn´dqˆpn´dq being the matrix obtained from A by
deleting the d blocks J1p0q. By Lemma 2.2, XJAX “ Im is consistent if and

only if XJ rAX “ Im is consistent. As we have just seen, the condition

n´ d ě 2m´ r ´ s´ 2t

is necessary for XJ rAX “ Im to be consistent, so it is also necessary for
XJAX “ Im to be consistent. ˝
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We want to emphasize that Theorem 2 provides a necessary condition
for Eq. (1.1) to be consistent, when B is symmetric, that covers all possible
matrices A. To see this, just note that conditions (i)–(v) in the statement
are not restrictive at all, but just a particular description of the CFC of an
arbitrary matrix A.

The main open question after Theorem 2 is whether or not condition
(3.2) is sufficient. We will show that it is sufficient with very few exceptions
(see Theorem 8). The next example shows one of such exceptions.

Example 1. Let

A “ H2p´1q “

„

0 1
´1 0



, B “ I1 “ 1.

Then, we are in the case n “ 2,m “ 1, r “ s “ t “ 0 in the statement of
Theorem 2, so (3.2) is satisfied (recall that µ “ ´1 is allowed in H2pµq, since,
for H2npµq, only µ “ 0, p´1qn`1 are not allowed). However, Eq. (1.1) is not
consistent, since

XJAX “
“

x1 x2
‰

„

0 1
´1 0

 „

x1
x2



“
“

´x2 x1
‰

„

x1
x2



“ 0.

The other exception for condition (3.2) to be sufficient is the presence
of Type-II blocks of the form H4p1q in the CFC of A (see Theorem 7).

4. The case where CFC(A) is a Type-0 block

We start with the following result, whose proof is straightforward.

Lemma 4.1. The equation XJJn`1p0qX “ Jnp0q is consistent for n ě 1. A

solution is X “

”

01ˆn
In

ı

.

The following result provides a characterization for the consistency of
(3.1) when A is a single Type-0 block.

Theorem 3. Given m ě 1, the equation

XJJnp0qX “ Im (4.1)

is consistent if and only if one of the following situations hold:

1. n ą 1 is odd and n ě 2m´ 1; or
2. n is even and n ě 2m.

Proof. Clearly XJJ1p0qX “ Im is not consistent, since J1p0q “ r 0 s. The
proof for n ą 1 is divided in two cases:

1. Case n ą 1 odd. In Theorem 2, the necessary condition (3.2) forXJJnp0qX “

Im to be consistent when n is odd reads n ě 2m ´ 1. Let us see that
n ě 2m´ 1 is also sufficient:
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(a) If n “ 2m´1 with m even, then XJJ2m´1p0qX “ Im is consistent,
and a solution is given by

X “

„

X32

01ˆ2



‘ ¨ ¨ ¨ ‘

„

X32

01ˆ2



looooooooooooooooomooooooooooooooooon

m´2
2 times

‘X32, where X32 “

»

–

1 0
1 ´i
0 i

fi

fl .

(b) If n “ 2m ´ 1 with m ě 3 odd, then XJJ2m´1p0qX “ Im is
consistent, and a solution is given by

X “

„

X32

01ˆ2



‘ ¨ ¨ ¨ ‘

„

X32

01ˆ2



looooooooooooooooomooooooooooooooooon

m´3
2 times

‘X53,

where X32 “

»

–

1 0
1 ´i
0 i

fi

fl and X53 “

»

—

—

—

—

—

–

1 0 0
1 i?

2
0

0 ´ i?
2

0

0 i?
2

1

0 0 1

fi

ffi

ffi

ffi

ffi

ffi

fl

.

(c) Let n “ 2rm´ 1 ą 2m´ 1. In 1(a) and 1(b) we have seen that the
equationXJJ2Ăm´1p0qX “ I

Ăm is consistent, and Lemma 2.3 implies
that XJI

ĂmX “ Im is consistent as well. These results, together
with Lemma 2.4, imply that XJJ2Ăm´1p0qX “ Im is consistent.

2. Case n even. In Theorem 2, the necessary condition (3.2) forXJJnp0qX “

Im to be consistent when n is even reads n ě 2m. Let us see that, if
n ě 2m, then it is also sufficient:
(a) If n “ 2 andm “ 1, then the equationXJJ2p0qX “ I1 is consistent

and a solution is X “ r 11 s.
(b) Let n ě 4, with n “ 2rm ě 2m. In Lemma 4.1 we saw that

XJJ2Ămp0qX “ J2Ăm´1p0q is consistent. In cases 1(a) and 1(b) we
have seen that XJJ2Ăm´1p0qX “ I

Ăm is consistent, and, if rm ą m,
Lemma 2.3 implies that XJI

ĂmX “ Im is consistent as well. These
results, together again with Lemma 2.4, imply that XJJ2mp0qX “

Im is consistent.

˝

Note that the proof of Theorem 3 is constructive since, in the case where
Eq. (4.1) is consistent, we provide an explicit solution of this equation.

5. The case where CFC(A) is a Type-I block

The first result in this section, whose proof is straightforward, will be used
later. We denote by

Rn :“

«

1
. .
.

1

ff

nˆn
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the nˆ n antidiagonal matrix whose antidiagonal entries are all equal to 1.

Lemma 5.1. The equation

XJΓn`1X “ Γn

is consistent for n ě 1. In particular:

(i) if n is odd, then X “

”

01ˆn
Rn

ı

is a solution;

(ii) if n is even, then X “

”

01ˆn
iRn

ı

is a solution.

The following result, analogous to Theorem 3, characterizes the consis-
tency of (3.1) when A is a single Type-I block.

Theorem 4. Given m ě 1, the equation

XJΓnX “ Im (5.1)

is consistent if and only if one of the following situations hold:

1. n is odd and n ě 2m´ 1, or
2. n is even and n ě 2m.

Proof. 1. Case n odd. In Theorem 2, the necessary condition (3.2) for
XJΓnX “ Im to be consistent when n is odd reads n ě 2m´ 1. Let us
see that n ě 2m´ 1 is also sufficient:
(a) Let n “ 2m´1. We will see that a solution of XJΓ2m´1X “ Im is

given by the matrix X defined below. To understand the pattern
it is important to note that (for both the odd and the even cases)
the rows alternate between having a consecutive list of 1’s and a
consecutive list of i’s.

XJ “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

»

—

—

—

—

—

–

1 1 1 ¨ ¨ ¨ 1 1 ¨ ¨ ¨ 1 1
0 i i ¨ ¨ ¨ i i ¨ ¨ ¨ i i
0 0 1 ¨ ¨ ¨ 1 1 ¨ ¨ ¨ 1 0
...

...
. . .

. . .
...

... . .
.

. .
. ...

0 0 . . . 0 1 1 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

fl

if m is odd,

»

—

—

—

—

—

–

1 1 1 ¨ ¨ ¨ 1 1 ¨ ¨ ¨ 1 1
0 i i ¨ ¨ ¨ i i ¨ ¨ ¨ i i
0 0 1 ¨ ¨ ¨ 1 1 ¨ ¨ ¨ 1 0
...

...
. . .

. . .
...

... . .
.

. .
. ...

0 0 . . . 0 i i 0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

fl

if m is even.

(5.2)

We start with the case n “ 2m´ 1 when m is odd.
Let Y1, . . . , Y2m´1 be the columns of the matrix XJ in (5.2). Then

XJΓ2m´1 “
“

Y1 Y2 ¨ ¨ ¨ Y2m´1

‰

Γ2m´1

“ rY2m´1 Y2m´1 ´ Y2m´2 ¨ ¨ ¨ ´Ym`1 ` Ym ¨ ¨ ¨ Y3 ´ Y2 ´Y2 ` Y1s .

Finally,

pXJΓ2m´1qX “
“

B1 B2 B3 B4 . . . Bm
‰

,
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where the columns of the product are computed below, in such a
way that almost everything cancels out (note that Ym´i “ Ym`1`i

for i “ 0, . . . ,m´ 1) after reordering the summands:

B1 “ Y2m´1 ` pY2m´1 ´ Y2m´2q ` p´Y2m´2 ` Y2m´3q ` ¨ ¨ ¨ `

pY3 ´ Y2q ` p´Y2 ` Y1q “ 2pY2m´1 ´ Y2q ` 2p´Y2m´2 ` Y3q ` ¨ ¨ ¨ `

2p´Ym`1 ` Ymq ` Y1 “ Y1 “ e1;

B2 “ i
´

pY2m´1 ´ Y2m´2q ` p´Y2m´2 ` Y2m´3q ` ¨ ¨ ¨ ` pY3 ´ Y2q ` p´Y2 ` Y1q
¯

“ i
´

pY2m´1 ´ Y2q ` 2p´Y2m´2 ` Y3q ` ¨ ¨ ¨ ` 2p´Ym`1 ` Ymq ` p´Y2 ` Y1q
¯

“ ipY1 ´ Y2q “ e2;

B3 “ p´Y2m´2 ` Y2m´3q ` pY2m´3 ´ Y2m´4q ` ¨ ¨ ¨ ` pY3 ´ Y2q ` p´Y2 ` Y1q

“ p´Y2m´2 ` Y3q ` 2pY2m´3 ´ Y4q ` ¨ ¨ ¨ ` 2p´Ym`1 ` Ymq ` pY3 ´ Y2q

“ Y3 ´ Y2 “ e3;

...

Bm “ p´Ym`1 ` Ymq ` pYm ´ Ym´1q “ pYm ´ Ym´1q “ em.

The proof for the case n “ 2m´ 1 when m is even is analogous.
(b) Let n “ 2rm´1 ą 2m´1. We have just seen in (a) thatXJΓ2Ăm´1X “

I
Ăm is consistent, and, in Lemma 2.3 we saw that XJI

ĂmX “ Im is
consistent as well. Using Lemma 2.4, we conclude thatXJΓ2Ăm´1X “

Im is consistent as well.
2. Case n even. In Theorem 2, the necessary condition (3.2) for the con-

sistency of XJΓnX “ Im when n is even reads n ě 2m. Let us see
that it is also sufficient. Suppose that n “ 2rm ě 2m. In Lemma 5.1 we
saw that XJΓ2ĂmX “ Γ2Ăm´1 is consistent. In the “n odd case” we have
seen that XJΓ2Ăm´1X “ I

Ăm is consistent and, if rm ą m, in Lemma 2.3
we saw that XJI

ĂmX “ Im is also consistent. Then, Lemma 2.4 implies
that XJΓ2ĂmX “ Im is consistent.

˝

Note that the proof of Theorem 4 is constructive. More precisely, when
Eq. (5.1) is consistent, we provide an explicit solution of this equation, like
in the proof of Theorem 3 with Eq. (4.1).

6. The case where CFC(A) is a Type-II block

Recall that H2npµq is a Type-II block if and only if µ ‰ 0, p´1qn`1. The
first result in this section, whose proof is straightforward, is the analogue of
Lemmas 4.1 and 5.1 for Type-II blocks.

Lemma 6.1. For any complex µ and any n ě 1, the equation

XJH2n`2pµqX “ H2npµq
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is consistent. A particular solution is the p2n` 2q ˆ p2nq matrix

X “

»

—

—

–

In 0n
01ˆn 01ˆn
0n In

01ˆn 01ˆn

fi

ffi

ffi

fl

.

The following three results are the analogues of Theorems 3 and 4 for
a single Type-II block H2kpµq, depending on whether µ ‰ 0,˘1; µ “ ´1; or
µ “ 1.

Theorem 5. The equation

XJH2mpµqX “ Im, µ ‰ 0,˘1 (6.1)

is consistent.

Proof. Let us first consider the cases m “ 1, 2, and then the case m ě 3.

1. Case m “ 1. Let

XJH2pµqX “
“

a b
‰

„

0 1
µ 0

 „

a
b



“
“

abp1` µq
‰

.

Then a solution is X “
“

1 1
1`µ

‰J
.

2. Case m “ 2. Let X “

”

1 0 1 0
0 1 1

µ´1 0

ıJ

, so

XJH4pµqX “

„

1 0 1 0
0 1 1

µ´1 0



»

—

—

–

0 0 1 0
0 0 0 1
µ 1 0 0
0 µ 0 0

fi

ffi

ffi

fl

»

—

—

–

1 0
0 1
1 1

µ´1

0 0

fi

ffi

ffi

fl

“

„

µ` 1 µ
µ´1

µ
µ´1

1
µ´1



,

and let

detpXJH4pµqXq “
´1

pµ´ 1q2
‰ 0.

Then XJH4pµqX is symmetric and nonsingular, so its CFC is I2. There-
fore, XJH4pµqX “ I2 is consistent.

3. Case m ě 3. Consider the following matrices Za of size mˆm and Xa

of size 2mˆm:

Za :“

»

—

—

—

—

—

—

—

–

1 1
µ´1 0 ¨ ¨ ¨ 0 0

0 1 1
µ´1 ¨ ¨ ¨ 0 0

0 0 1 ¨ ¨ ¨ 0 0
...

. . .
. . .

. . .
. . .

...
0 0 0 ¨ ¨ ¨ 1 1

µ´1

0 0 0 ¨ ¨ ¨ a

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and Xa :“

„

Im
Za



.
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Then

XJa H2mpµqXa “
“

Im ZTa
‰

„

0 Im
Jmpµq 0

 „

Im
Za



“ ZJa Jmpµq ` Za (6.2)

“
1

µ´ 1

»

—

—

—

—

—

—

—

–

µ2 ´ 1 µ 0 ¨ ¨ ¨ 0 0
µ µ2 µ ¨ ¨ ¨ 0 0
0 µ µ2 ¨ ¨ ¨ 0 0
...

. . .
. . .

. . .
. . .

...
0 ¨ ¨ ¨ 0 µ µ2 µ
0 ¨ ¨ ¨ 0 0 µ apµ2 ´ 1q ` 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

This matrix is symmetric. So, if it has rank equal to k, then its CFC is
Ik ‘ 0m´k. Clearly the rank is, at least, m ´ 1, since the submatrix of
size pm´1qˆpm´1q obtained by deleting the first row and the last col-
umn has determinant equal to p µ

µ´1 q
m´1 ‰ 0. If we prove that, for any

µ ‰ 0,˘1, there exists some value of a such that detpXJa H2mpµqXaq ‰

0, then rank pXJa H2mpµqXaq “ m, which implies that the CFC of
XJa H2mpµqXa is Im, and the proof is finished.

For k “ 1, . . . ,m ´ 2, consider the matrix Ym´kpµq of size pm ´

kqˆpm´kq obtained by deleting the last k rows and the last k columns
of XJa H2mpµqXa, multiplied by µ´ 1, that is,

Ym´kpµq :“

»

—

—

—

—

—

—

—

—

—

–

µ2 ´ 1 µ 0 ¨ ¨ ¨ 0 0

µ µ2 µ
. . . 0 0

0 µ µ2 . . . 0 0
...

. . .
. . .

. . .
. . .

...
0 ¨ ¨ ¨ 0 µ µ2 µ
0 ¨ ¨ ¨ 0 0 µ µ2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Note that

detpY2pµqq “ det

„

µ2 ´ 1 µ
µ µ2



“ µ4 ´ 2µ2 “ 0 ô µ P t0,˘
?

2u (6.3)

and

detpY3pµqq “ det

»

–

µ2 ´ 1 µ 0

µ µ2 µ
0 µ µ2

fi

fl “ µ6 ´ 3µ4 ` µ2 “ 0ô µ P

#

0,˘

c

3˘ 5

2

+

. (6.4)

The only common root of Y2pµq and Y3pµq is µ “ 0.
Suppose now that, for some µ0 ‰ 0 and some k ě 3, we have

detpYkpµ0qq “ detpYk`1pµ0qq “ 0.

Spanning the determinant of Yk`1pµ0q across the last row we obtain

detpYk`1pµ0qq “ µ2 detpYkpµ0qq ´ µ
2 detpYk´1pµ0qq,

and, equivalently,

detpYk´1pµ0qq “ detpYkpµ0qq ´
detpYk`1pµ0qq

µ2
.
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This implies that

detpY2pµ0qq “ detpY3pµ0qq “ ¨ ¨ ¨ “ detpYk`1pµ0qq “ 0,

which contradicts (6.3) and (6.4), since there is no µ0 ‰ 0 which makes
Y2pµ0q and Y3pµ0q to be singular at the same time. Therefore, we con-
clude that, for any k ě 2 and any µ0 ‰ 0, either detpYkpµ0qq ‰ 0 or
detpYk`1pµ0qq ‰ 0.

Now we come back to the matrix XJa H2mpµqXa in (6.2). Spanning
its determinant across the last row, we get

detpXJa H2mpµqXaq “
1

pµ´ 1qm

”

`

apµ2´1q`1
˘

detpYm´1pµqq´µ
2 detpYm´2pµqq

ı

.

Let µ0 R t0, 1,´1u. Then:
(a) If detpYm´2pµ0qq “ s ‰ 0, take a “ 1

1´µ2 , and so detpXJa H2mpµ0qXaq “

´
µ2

pµ´1qm s ‰ 0.

(b) If detpYm´2pµ0qq “ 0, then detpYm´1pµ0qq ‰ 0. Take a ‰ 1
1´µ2 , so

that detpXJa H2mpµ0qXaq ‰ 0.
Then, for any µ ‰ 0,˘1, there exists some a such that

detpXJa H2mpµqXaq ‰ 0,

and the proof is finished.

˝

Theorem 6. For all m odd, the equation

XJH2mp´1qX “ Im (6.5)

is consistent if and only if m ‰ 1.

Proof. When m “ 1, (6.5) is inconsistent (see Example 1).
Assume that m ě 3. Consider the matrix

“

Im Z
‰

of size mˆ 2m with

Z “

»

—

—

—

—

—

—

–

0 0 ¨ ¨ ¨ 0 0 1 1{2

0 0 ¨ ¨ ¨ 0 1 0 0
0 0 ¨ ¨ ¨ 1 0 0 0
...

... . .
. ...

...
...

...

0 1 ¨ ¨ ¨ 0 0 0 0
1 0 ¨ ¨ ¨ 0 0 0 0

0 0 ¨ ¨ ¨ 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Then

“

Im Z
‰

„

0 Im
Jmp´1q 0

 „

Im
ZJ



“ ZJmp´1q`ZJ “

»

—

—

—

—

—

—

–

0 0 0 ¨ ¨ ¨ 0 0 1
2

0 0 0 ¨ ¨ ¨ 0 1 0

0 0 0 ¨ ¨ ¨ 1 0 0
...

...
... . .

. ...
...

...
0 0 1 ¨ ¨ ¨ 0 0 0

0 1 0 ¨ ¨ ¨ 0 0 0
1
2

0 0 ¨ ¨ ¨ 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

is symmetric and nonsingular, and so its CFC is Im. Therefore (6.5) is con-
sistent.
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We can provide a particular solution of (6.5). Consider themˆmmatrix:

Y “

»

—

—

—

—

—

—

—

—

—

–

1 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 0 1

0 1 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 1
2

0...
. . .

. . .
. . .

... . .
.

. .
.

. .
. ...

0 ¨ ¨ ¨ 0 1 0 1
2

0 ¨ ¨ ¨ 0

0 ¨ ¨ ¨ 0 0 1 0 0 ¨ ¨ ¨ 0

0 ¨ ¨ ¨ 0 i 0 ´ i
2

0 ¨ ¨ ¨ 0

0 . .
.

. .
.

. .
. ...

. . .
. . .

. . .
...

0 i 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 ´ i
2

0

i 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 0 ´i

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Multiplying by blocks, it is straightforward to check that

Y ¨
“

Im Z
‰

H2mp´1q

„

Im
ZJ



¨ Y J “ Im.

The matrix Y
“

Im Z
‰

is equal to

X
J
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 0 1 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0 1 1
2

0 1 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 1
2

0 1
2

. . .
...

...
... . .

.
1 0 0...

. . .
. . .

. . .
... . .

.
. .

.
. .

. ... 0
. . . 0 0 0 . .

.
. .

.
0 0

0 ¨ ¨ ¨ 0 1 0 1
2

0 ¨ ¨ ¨ 0 0
. . . 1

2
0 1 0 ¨ ¨ ¨ 0 0

0 ¨ ¨ ¨ 0 0 1 0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0 1 0 0 ¨ ¨ ¨ 0 0

0 ¨ ¨ ¨ 0 i 0 ´ i
2

0 ¨ ¨ ¨ 0 0 . .
.

´ i
2

0 i 0 ¨ ¨ ¨ 0 0

0 . .
.

. .
.

. .
. ...

. . .
. . .

. . .
... 0 . .

.
0 0 0

. . .
. . .

...
...

0 i 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 ´ i
2

0 ´ i
2

. .
. ...

...
...

. . . i 0 0

i 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0 0 ´i 0 ¨ ¨ ¨ 0 0 0 ¨ ¨ ¨ 0 i i
2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(6.6)

and gives a particular solution of (6.5). ˝

Theorem 7. For all m even, the equation

XJH2mp1qX “ Im`1 (6.7)

is consistent if and only if m ‰ 2.

Proof. Let us partition XJ “
“

Y Z
‰

, with Y,Z P Cpm`1qˆm. Then

XJH2mp1qX “
“

Y Z
‰

„

0 Im
Jmp1q 0

 „

Y J

ZJ



“ ZJmp1qY
J ` Y ZJ “ ZJmp0qY

J ` ZY J ` Y ZJ.
(6.8)

The consistency of (6.7) is equivalent to the matrix (6.8) being symmetric
and nonsingular. If this is the case, the CFC of the matrix in (6.8) is Im`1, so
the matrix will be congruent to Im`1. As the sum ZY J`Y ZJ is symmetric,
the matrix in (6.8) is symmetric if and only if ZJmp0qY

J is symmetric as
well. Let us first analyze the case m “ 2, and then the case m ě 4:

. m “ 2 We will show that the matrix equation XJH4p1qX “ I3 is not

consistent. To do this we will show that, if ZJ2p0qY
J is symmetric, then

XJH4p1qX must be singular, so it can not be equal to I3.
Let Y1, Y2 and Z1, Z2 denote the columns of Y and Z, respec-

tively. If ZJ2p0qY
J is symmetric, then ZJ2p0qY

J “ Y J2p0q
JZJ, which

is equivalent to Z1Y
J
2 “ Y2Z

J
1 , and this implies Z1 “ αY2, for some

α P C. If rank
“

Y1 Z1 Z2

‰

ă 3, then rankX ă 3, which, in turn,
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implies rank pXJH4p1qXq ă 3, and we are finished. Otherwise, there is
some nonzero vector v P C3 satisfying

»

–

Y J1
ZJ1
ZJ2

fi

fl v “

»

–

´1
0
α

fi

fl .

Then:

XJH4p1qXv “ ZJ2p0qY
Jv ` pZY Jqv ` pY ZJqv

“ Z1Y
J
2 v ` Z1Y

J
1 v ` Z2Y

J
2 v ` Y1Z

J
1 v ` Y2Z

J
2 v

“ 0´ Z1 ` 0` 0` αY2 “ 0.

This means that there is a nonzero vector in the right null space of
XJH4p1qX, so XJH4p1qX is singular, as claimed.

. m ě 4 Let X P C2mˆpm`1q be given by

XJ “
“

Y Z
‰

“

»

—

—

—

—

—

—

–

0 0 0 ¨ ¨ ¨ 0 1 0 0 ¨ ¨ ¨ 0...
...

... . .
.

1 0 1 0 ¨ ¨ ¨ 0

0 0 0 . .
.

0
...

. . .
. . .

. . .
...

0 0 1 . .
.

0 0 ¨ ¨ ¨ 0 1 0
0 0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0 0 1
1 0 0 ¨ ¨ ¨ 0 0 ¨ ¨ ¨ 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (6.9)

with Y,Z P Cpm`1qˆm. We analyze independently the three addends in
the right-hand side of (6.8):

‚ Y ZJ “ Y

„

Im
01ˆm

J

“
“

Y 0mˆ1

‰

“

»

—

—

–

0 0 0 ¨ ¨ ¨ 0 0...
...

... . .
.

1 0
0 0 0 . .

.
0 0

0 0 1 . .
. ...

...
0 0 0 ¨ ¨ ¨ 0 0
1 0 0 ¨ ¨ ¨ 0 0

fi

ffi

ffi

fl

.

‚ ZY J “ pY ZJqJ “

»

—

—

–

0 ¨ ¨ ¨ 0 0 0 1
0 ¨ ¨ ¨ 0 0 0 0
0 ¨ ¨ ¨ 0 1 0 0... . .

.
. .
.
. .
. ...

...
0 1 0 ¨ ¨ ¨ 0 0
0 0 0 ¨ ¨ ¨ 0 0

fi

ffi

ffi

fl

.

‚ ZJmp0qY
J “

„

Im
01ˆm



Jmp0q

»

—

—

—

—

–

0 ¨ ¨ ¨ 0 0 0 1
0 ¨ ¨ ¨ 0 0 0 0
0 ¨ ¨ ¨ 0 1 0 0... . .

.
. .
.
. .
. ...

...
0 1 0 ¨ ¨ ¨ 0 0

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

0 ¨ ¨ ¨ 0 0 0 0
0 ¨ ¨ ¨ 0 1 0 0... . .

.
. .
.

. .
. ...

...

0 1 0 ¨ ¨ ¨ 0 0
0 0 0 ¨ ¨ ¨ 0 0

0 0 0 ¨ ¨ ¨ 0 0

fi

ffi

ffi

ffi

ffi

fl

.
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Adding all together we obtain:

ZJmp0qY
J ` ZY J ` Y ZJ “

»

—

—

—

—

—

–

0 ¨ ¨ ¨ 0 0 0 0 1
0 ¨ ¨ ¨ 0 0 1 1 0

0 ¨ ¨ ¨ 0 1 2 0 0... . .
.

. .
.
. .
.

. .
. ...

...

0 1 2 0 ¨ ¨ ¨ 0 0

0 1 0 0 ¨ ¨ ¨ 0 0
1 0 0 0 ¨ ¨ ¨ 0 0

fi

ffi

ffi

ffi

ffi

ffi

fl

,

which is a symmetric and nonsingular matrix, so we are done.

˝

The next remark, which summarizes all results of this section, charac-
terizes the consistency of (3.1) when A is a single Type-II block.

Remark 6.2. Given m ě 1, regarding the consistency of

XJH2kpµqX “ Im, with µ ‰ 0, p´1qk`1, (6.10)

we have the following:

(i) If µ ‰ 0,˘1, then (6.10) is consistent if and only if k ě m.
(ii) If µ “ ´1, then k is odd, and

(a) if k “ 1, then (6.10) is not consistent;
(b) if k ě 3 is odd, then (6.10) is consistent if and only if k ě m.

(iii) If µ “ 1, then k is even, and
(a) if k “ 2, then (6.10) is only consistent for m “ 1, 2;
(b) if k ě 4 is even, then (6.10) is consistent if and only if k ě m´ 1.

Let us check the results item by item. For item (i), the necessity is
given in (3.2) of Theorem 2, and the sufficiency follows from Theorem 5,
Lemma 2.3, and Lemma 2.4. Item (ii)(a) is part of Theorem 6. For item
(ii)(b), the necessity is given in (3.2) of Theorem 2, and the sufficiency follows
from Theorem 6, Lemma 2.3, and Lemma 2.4. Regarding (iii)(a): for m “ 1,

the equation XJH4p1qX “ I1 has solution X “
“

1 1{2 0 1
‰J

; for m “ 2,

the equation XJH4p1qX “ I2 has solution X “

”

1 1{2 0 1
i ´i{2 0 i

ıJ

; for m “ 3, the

inconsistency of XJH4p1qX “ I3 is part of Theorem 7; and, for m ą 3, the
inconsistency is a consequence of the inconsistency for m “ 3 together with
Lemma 2.3. As for item (iii)(b), the necessity is given in (3.2) of Theorem 2,
and the sufficiency follows from Theorem 7, Lemma 2.3, and Lemma 2.4.

7. A necessary and sufficient condition

In this section, we prove that (3.2) is a sufficient condition for Eq. (3.1) to
be consistent, provided that the CFC of A does not contain blocks of either
the form H4p1q or the form H2p´1q. This is stated in the following result.

Theorem 8. Let B be a complex symmetric matrix with rankB “ m, and let
A P Cnˆn be a matrix whose CFC has

(i) exactly d Type-0 blocks of the form J1p0q,
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(ii) exactly r Type-0 blocks with odd size greater than 1,
(iii) exactly s Type-I blocks with odd size,
(iv) exactly t Type-II blocks of the form H4kp1q, with k ě 2,
(v) no Type-II blocks of either the form H2p´1q or H4p1q, and
(vi) an arbitrary number of Type-0, Type-I, and Type-II blocks with other

sizes.

Then XJAX “ B is consistent if and only if

n´ d ě 2m´ r ´ s´ 2t. (7.1)

Proof. First, we may assume both A and B are in CFC. In particular, A has
d blocks of type J1p0q and B is of the form Im ‘ J1p0q ‘ ¨ ¨ ¨ ‘ J1p0q. By
Lemma 2.2, we can get rid of the J1p0q blocks in both A and B, so we can
assume that A has size pn´ dq ˆ pn´ dq and B “ Im.

Now, in the conditions of the statement, we can write

A “ J2m1´1p0q ‘ ¨ ¨ ¨ ‘ J2mr´1p0q
À

J2mr`1p0q ‘ ¨ ¨ ¨ ‘ J2mr`hp0q
À

Γ2xm1´1 ‘ ¨ ¨ ¨ ‘ Γ2xms´1

À

Γ2xms`1
‘ ¨ ¨ ¨ ‘ Γ2xms`g

À

H2|m1
pµ1q ‘ ¨ ¨ ¨ ‘H2|mupµuq

À

H4|mu`1`2p´1q ‘ ¨ ¨ ¨ ‘H4|mu`v`2p´1q
À

H4|mu`v`1
p1q ‘ ¨ ¨ ¨ ‘H4|mu`v`tp1q,

where mi ą 1 for i “ 1, . . . , r; qmu`v`k ą 1 for k “ 1 . . . , t; and µj ‰ 0,˘1,
for j “ 1, . . . , u.

Note that condition (7.1) is equivalent to

n´ d “ p2m1 ´ 1q ` ¨ ¨ ¨ ` p2mr ´ 1q ` 2mr`1 ` ¨ ¨ ¨ ` 2mr`h`

p2pm1 ´ 1q ` ¨ ¨ ¨ ` p2pms ´ 1q ` 2pms`1 ` ¨ ¨ ¨ ` 2pms`g`

2qm1 ` ¨ ¨ ¨ ` 2qmu ` p4qmu`1 ` 2q ` ¨ ¨ ¨ ` p4qmu`v ` 2q`
4qmu`v`1 ` ¨ ¨ ¨ ` 4qmu`v`t

ě 2m´ r ´ s´ 2t.

If we set

rm : “ m1 ` ¨ ¨ ¨ `mr `mr`1 ` ¨ ¨ ¨ `mr`h`

pm1 ` ¨ ¨ ¨ ` pms ` pms`1 ` ¨ ¨ ¨ ` pms`g`

qm1 ` ¨ ¨ ¨ ` qmu ` p2qmu`1 ` 1q ` ¨ ¨ ¨ ` p2qmu`v ` 1q`
p2qmu`v`1 ` 1q ` ¨ ¨ ¨ ` p2qmu`v`t ` 1q,

then condition (7.1) becomes rm ě m. In turn, the statement of the theorem
becomes:

XJAX “ Im is consistent if and only if rm ě m.

Theorem 2 proves that (7.1) is necessary, so rm ě m is necessary. Let us
prove that rm ě m is sufficient as well. Suppose first that rm “ m. According
to Theorem 3, there exist X1, . . . , Xr such that

XJi J2mi´1p0qXi “ Imi for i “ 1, . . . , r,

and there also exist Xr`1, . . . , Xr`h such that

XJj J2mj p0qXj “ Imj for j “ r ` 1, . . . , r ` h.

According to Theorem 4, there exist Y1, . . . , Ys such that

Y Ji Γ2xmi´1Yi “ I
xmi for i “ 1, . . . , s,
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and there also exist Ys`1, . . . , Ys`g such that

Y Jj Γ2xmjYj “ I
xmj for j “ s` 1, . . . , s` g.

According to Theorem 5, there exist Z1, . . . , Zu such that

ZJi H2|mipµiqZi “ I
|mi for i “ 1, . . . , u;

according to Theorem 6 there exist Zu`1, . . . , Zu`v such that

ZJj H4|mj`2p´1qZj “ I2|mj`1 for j “ u` 1, . . . , u` v;

and according to Theorem 7 there exist Zu`v`1, . . . , Zu`v`t such that

ZJj H4|mkp´1qZj “ I2|mk`1 for k “ u` v ` 1, . . . , u` v ` t.

Then XJAX “ Im is consistent, with a solution given by

X “ pX1 ‘ ¨ ¨ ¨ ‘Xr`hq
à

pY1 ‘ ¨ ¨ ¨ ‘ Ys`gq
à

pZ1 ‘ ¨ ¨ ¨ ‘ Zu`v`tq. (7.2)

Suppose now that rm ą m. As we have just proved, XJAX “ I
Ăm is consistent

(with a solution X given in (7.2)). Then, the consistency of XJAX “ Im
follows from Lemma 2.3 and Lemma 2.4. So rm ě m is sufficient. ˝

Remark 7.1. In the proof of Theorem 8, we show that Eq. (1.1), with B
symmetric and A in the conditions of the statement, is consistent if and only
if, after taking A and B to their CFC, the equation is consistent block-wise,
where the (three) blocks of A are the direct sum of all Type-0, Type-I, and
Type-II blocks in the CFC, respectively (and those of B are identities of the
appropriate size).

After Theorem 8, it is natural to ask whether or not allowing the blocks
of the form H2p´1q and H4p1q to appear in the CFC of A one could get
a characterization like the one in this theorem for the consistency of Eq.
(1.1) with B symmetric. We have seen in Example 1 and in Theorem 7 that
XJH2p´1qX “ I1 and XJH4p1qX “ I3, respectively, are not consistent, so
their inclusion in the CFC of A has an unknown effect on the increase of the
value of m (the rank/size of B) in the bound (7.1). Following Remark 7.1, we
should look for a sufficient condition like (3.2) that allows one to construct a
block-wise solution, looking only at the direct sum of blocks of the same type.
However, it may happen that the combined effect of blocks of either the form
H2p´1q or H4p1q, together with some other blocks in the CFC of A, make
Eq. (1.1) to be consistent, even if the equation is not consistent block-wise.
This is indeed what happens, as the following examples show.

Example 2. Let

A “ H2p´1q ‘ J2p0q “

»

—

—

–

0 1 0 0
´1 0 0 0
0 0 0 1
0 0 0 0

fi

ffi

ffi

fl

, B “ I2 “

„

1 0
0 1



.
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With these A and B, Eq. (1.1) is consistent. A particular solution is

X “

»

—

—

–

i 0
0 1
1 i
1 ´i

fi

ffi

ffi

fl

.

However, this equation is not consistent block-wise, since XJH2p´1qX “ I1
is not consistent (see Example 1).

Example 3. Let

A “ H4p1q‘J2p0q “

»

—

—

—

—

—

—

–

0 0 1 0 0 0
0 0 0 1 0 0
1 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, B “ I4 “

»

—

—

–

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

fi

ffi

ffi

fl

.

With these A and B, Eq. (1.1) is consistent, and a particular solution is

X “

»

—

—

—

—

—

—

–

1 0 0 i
0 1

2 ´ i
2 0

1
2 0 0 ´ i

2
0 1 i 0
1
2 0 0 ´ i

2

0 ´ 1
2

i
2 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Again, the equation is not consistent block-wise, since XJH4p1qX “ I3 is
not consistent (see Theorem 7).

8. Conclusions and open problems

We have provided necessary and sufficient conditions for the matrix equation
(1.1) to be consistent when B is symmetric. We have also extended the well-
known characterization of congruence for two symmetric square matrices of
the same size, to matrices not necessarily having the same size. The charac-
terization for the case when B is symmetric depends on the CFC of A and
B (in particular, CFCpBq “ Im). However, this characterization does not
include the case where CFCpAq contains Type-II blocks of either the form
H4p1q or H2p´1q.

As a continuation of this work, the following lines of research arise:

‚ To obtain necessary and sufficient conditions, like in Theorem 8, for
Eq. (1.1) to be consistent in the case where B is skew-symmetric.

‚ To get a characterization for Eq. (1.1) to be consistent, with B sym-
metric and A arbitrary (namely, including the case where its CFC has
blocks of the form H4p1q and H2p´1q).

‚ To obtain necessary and sufficient conditions for Eq. (1.1) to be consis-
tent when CFC(A) contains only one block, and B is arbitrary.
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‚ (Quite hard) To get necessary and sufficient conditions for Eq. (1.1) to
be consistent, with A and B arbitrary.

Another natural project that can be addressed consist in analyzing the
consistency of Eq. (1.1) over the real field (instead of the complex one). That
would require to use an appropriate canonical form for congruence over R.
Finally, it also remains as an open problem to address the consistency of the
related equation X˚AX “ B, where p¨q˚ denotes complex conjugation, over
the complex field.
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