Universidad

ucdm | CarloslIl -Archivo
de Madrid

This document is published at:

Moreno-Boza, D., Martinez-Calvo, A., Sevilla, A.
(2020). The role of inertia in the rupture of
ultrathin liquid films. Physics of Fluids, 32(11),
112114,

DOI: https://doi.org/10.1063/5.0031430

“This article may be downloaded for personal use only.
Any other use requires prior permission of the author
and AIP Publishing”.

© 2020 Author(s).
Published under license by AIP Publishing.


https://doi.org/10.1063/5.0031430

7
9
=
LL
e
o
0
—
7
>
=
Q

The role of inertia in the rupture of ultrathin
liquid films

Cite as: Phys. Fluids 32, 112114 (2020); https://doi.org/10.1063/5.0031430

Submitted: 30 September 2020 . Accepted: 03 November 2020 . Published Online: 24 November
2020

D. Moreno-Boza, "= A. Martinez-Calvo, and A. Sevilla

) S @

View Online Export Citation CrossMark

AR

ARTICLES YOU MAY BE INTERESTED IN

Leidenfrost drop impact on inclined superheated substrates
Physics of Fluids 32, 112113 (2020); https://doi.org/10.1063/5.0027115

The perspective of fluid flow behavior of respiratory droplets and aerosols through the
facemasks in context of SARS-CoV-2

Physics of Fluids 32, 111301 (2020); https://doi.org/10.1063/5.0029767

How coronavirus survives for days on surfaces
Physics of Fluids 32, 111706 (2020); https://doi.org/10.1063/5.0033306

READ NOW

rjd Plasmas Collection

Phys. Fluids 32, 112114 (2020); https://doi.org/10.1063/5.0031430 32, 112114

© 2020 Author(s).


https://images.scitation.org/redirect.spark?MID=176720&plid=1296191&setID=379031&channelID=0&CID=444925&banID=520069418&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=f76c35e4f6c2092c025177934da716ac3a50d918&location=
https://doi.org/10.1063/5.0031430
https://doi.org/10.1063/5.0031430
http://orcid.org/0000-0002-8663-0382
https://aip.scitation.org/author/Moreno-Boza%2C+D
http://orcid.org/0000-0002-2109-8145
https://aip.scitation.org/author/Mart%C3%ADnez-Calvo%2C+A
http://orcid.org/0000-0001-9749-2520
https://aip.scitation.org/author/Sevilla%2C+A
https://doi.org/10.1063/5.0031430
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0031430
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0031430&domain=aip.scitation.org&date_stamp=2020-11-24
https://aip.scitation.org/doi/10.1063/5.0027115
https://doi.org/10.1063/5.0027115
https://aip.scitation.org/doi/10.1063/5.0029767
https://aip.scitation.org/doi/10.1063/5.0029767
https://doi.org/10.1063/5.0029767
https://aip.scitation.org/doi/10.1063/5.0033306
https://doi.org/10.1063/5.0033306

scitation.org/journal/phf

Physics of Fluids ARTICLE

The role of inertia in the rupture of ultrathin
liquid films

Cite as: Phys. Fluids 32, 112114 (2020); doi: 10.1063/5.0031430
Submitted: 30 September 2020 + Accepted: 3 November 2020
Published Online: 24 November 2020

D. Moreno-Boza,” "' A. Martinez-Calvo,” "*' and A. Sevilla®

AFFILIATIONS

Grupo de Mecanica de Fluidos, Departamento de Ingenieria Térmica y de Fluidos, Universidad Carlos Il de Madrid,
Av. Universidad 30, 28911 Leganés, Madrid, Spain

2 Author to whom correspondence should be addressed: damoreno@pa.uc3m.es
P Electronic mail: amcalvo@ing.uc3m.es
< Electronic mail: asevilla@ing.uc3m.es

ABSTRACT

Theory and numerical simulations of the Navier-Stokes equations are used to unravel the influence of inertia on the dewetting dynamics
of an ultrathin film of Newtonian liquid deposited on a solid substrate. A classification of the self-similar film thinning regimes at finite
Ohnesorge numbers is provided, unifying previous findings. We reveal that, for Ohnesorge numbers smaller than one, the structure of the
rupture singularity close to the molecular scales is controlled by a balance between liquid inertia and van der Waals forces, leading to a self-
similar asymptotic regime with Ay o< 2% as 7 — 0, where i, is the minimum film thickness and 7 is the time remaining before rupture.
The flow exhibits a three-region structure comprising an irrotational core delimited by a pair of boundary layers at the wall and at the free
surface. A potential-flow description of the irrotational core is provided, which is matched with the vortical layers, allowing us to present a

complete parameter-free asymptotic description of inertia-dominated film rupture.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0031430

I. INTRODUCTION

A growing number of emerging technologies involve the
manipulation of liquid metals from millimeter to sub-micron
scales.””"” For instance, in additive manufacturing and electron-
ics, liquid gallium has received special attention mainly due to its
non-toxic character and its low melting point, just slightly above
room temperature. In addition, plasmonic devices and many pat-
terning and coating processes rely on metal or metal-like materials
such as silver and gold. Many of these applications involve the pres-
ence of liquid jets, liquid droplets, and thin liquid films in critical
intermediate stages. In particular, thin liquid films have been exten-
sively studied due to their central role in many engineering devices,
as well as in geological and physiological flows (see Refs.4—6 and
Ref. 20 for thorough and excellent reviews). In most of the previ-
ous theoretical studies of liquid film dynamics, the effect of liquid
inertia has been neglected, an approximation that is highly accurate
when the characteristic length scale is small and the liquid viscosity
is large. In contrast, inertia cannot be neglected when the working
fluid is a liquefied metal, as clearly pointed out in a number of recent
investigations,' ">

In the present work, we report a theoretical and numerical
study of the influence of liquid inertia on the instability, nonlin-
ear dynamics, and rupture of ultra-thin liquid films placed on a
solid impermeable substrate, which are known to become unstable
in the non-wetting case due to the action of the long-range van der
Waals (vdW) forces. In particular, we study and classify the self-
similar regimes that are transiently achieved as gas-solid contact is
approached, allowing us to provide a unified description of all previ-
ous theoretical findings. We also deduce a new non-slender inertial
regime in which the minimum film thickness scales with the time
to contact as hmin o< 7°°, stemming from a balance between liquid
inertia and vdW forces, the capillary force being asymptotically sub-
dominant. The latter result complements the existing descriptions
of the inertial limit, which predict /imin oc 7% from a balance of
liquid inertia with capillary and vdW forces,'””” in that the latter
slender flow regimes experience a crossover to the newly found solu-
tion due to the breakdown of slenderness when the molecular scale
is approached.

This paper is organized as follows: In Sec. II, we present the
mathematical model used to describe the inertial dewetting flow, and
we present numerical integrations of the Navier-Stokes equations
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aimed at establishing its main dynamical features. In Sec. 111, we first
provide an exhaustive classification of the asymptotic self-similar
regimes during film thinning at finite Ohnesorge numbers. We then
focus on the inertial near-rupture flow in Sec. I'V, including the uni-
versal self-similar potential flow in the bulk of the liquid film, as
well as the wall and free-surface boundary layers. Some concluding
remarks are finally presented in Sec. V.

Il. GOVERNING EQUATIONS AND NUMERICAL
RESULTS

A. Navier-Stokes equations

We consider the incompressible flow resulting from the thin-
ning of a dewetting two-dimensional thin liquid film of density p,
viscosity g, and initial thickness 4, , initially resting on a solid sub-
strate and separated from a passive immiscible ambient by an inter-
face of constant surface tension coefficient ¢. Such films are known
to become unstable to infinitesimal perturbations due to long-range
intermolecular forces when the film thickness lies below a thick-
ness threshold of about the 100 nm.””’ The overall actions of such
forces are modeled through a disjoining pressure term with the asso-
ciated potential per unit volume A/(67h’), where A is the Hamaker
constant'’ reflecting the strength of the intermolecular interactions.
Note that this potential is derived for the particular case of the vdW
force between two parallel surfaces. Although the rigorous way to
compute these long-range forces would imply the need to solve an
integro-differential problem for the coupled evolution of these forces
and the flow, the latter task has never been attempted to study thin-
film rupture, at least as far as we know. The simplification used in
all hydrodynamic studies consists in substituting the exact integral
of the vdW potential, either by the parallel-plane approximation
used in the present manuscript, in most cases, or by introducing
corrections to the disjoining pressure that take into account non-
parallelism.' It should be pointed out that the local flow in the imme-
diate vicinity of the minimum interface radius could be very similar
using the exact representation, since by definition, the local slope of
the interface is zero at the minimum. However, the only way to check
the latter hypothesis is performing an actual calculation of the full
integro-differential description, a formidable task that we have not
attempted. To describe the resulting unstable dynamics, we make use
of the so-called augmented incompressible Navier-Stokes equations,
which are non-dimensionalized upon taking
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as the characteristic length, velocity, time, pressure, and intermolec-
ular potential scales, respectively, where a is the molecular length
scale and v, is a characteristic velocity straightforwardly derived
from a balance between liquid inertia and vdW forces (see Sec. I1I).
Note also that ¢, can be interpreted as the capillary time based on a.
We would like to point out that the reason for our selection of a as
the relevant length scale, instead of the more common choice of A},

scitation.org/journal/phf

is due to the fact that, here, we focus on the film thinning dynamics
near its rupture. Thus, we expect that the local flow close to the sin-
gularity loses memory of the initial conditions, and in particular, the
initial thickness h, should become irrelevant during the last stages.
The use of the scales (1) yields

V-v=0, x¢V, (3a)

L

D xe, (3b)

as the relevant equations of motion, where T = —p/ + Oh(Vv + Vo)
is the stress tensor of the fluid, D/Dt = 9; + v - V is the substan-
tial derivative, Oh = u/./pac = ul67/(p*Ac)]"/* is the Ohnesorge
number based on g, Vis the liquid film domain, x = (x, y) are Carte-
sian coordinates, and v = (u, v) is the velocity field, assumed to
be two-dimensional. We note here that the first authors to include
the disjoining pressure as an augmented pressure in the full Navier-
Stokes equations were Ruckenstein and Jain,” followed later on by
many investigators such as Oron et al.,”’ Craster and Matar,” and
Blossey.” Note also that the exploring the equivalent axisymmetric
configuration, leading to film breakup modes of hole or ring type,”
is certainly interesting but is out of the scope of the present study.
At the free surface 0V, we impose the kinematic and stress balance
boundary conditions, which read

ne(Oxs—v)=0, x€dV, (4a)

T-n=-n(V-n), xedV, (4b)

respectively, where x; is the parameterization of the interface,
located at y = h(x, t), and n is the unit normal vector to the interface.
At the solid substrate, y = 0, the no-slip and no-penetration bound-
ary condition is enforced, v = 0. As for the initial conditions, in the
numerical simulations, we consider half wavelength of a spatially
periodic liquid film, and thus, we impose the symmetry condition,
that is, # = 0 and no shear stress T-e, = 0 at x = 0 and x = n/k,
where k < k. = /3 / h(z, is the dimensionless wavenumber of the ini-
tially perturbed interface x; = [x, h, (1 — ecoskx)] imposed at ¢ = 0.
Here, k. is the dimensionless cut-off wavenumber predicted by lin-
ear instability theory” (also Appendix A), b, = h} /a is the initial
film thickness normalized with the molecular length scale, and ¢ is
a small positive constant that triggers the instability and induces the
rupture of the liquid film at x =0 and ¢ = tg.

Two non-dimensional parameters govern the flow at hand,
namely, the dimensionless initial film thickness, h,, and the molec-
ular Ohnesorge number, Oh. These two parameters can be writ-
ten in terms of the Weber and Ohnesorge numbers defined when
taking the global scales, thus the appropriate ones to describe the
initial linear regime of the thinning. These are the same scales as
in (1) but substitute a by h; everywhere. In particular, the corre-
sponding characteristic velocity v, is given by the balance pv’/h}
~ Af(67h}*) = v, = AJ(6mpahy?) (see Appendix A). Using these
global scales, the corresponding Weber and Ohnesorge numbers are
We = pvih! /o = h;* and Oh; = Ohw/h, = OhWe '/*. Note that
none of these Ohnesorge numbers are the most commonly used,
Oh, = u/\/pohi = Oh/\/h, = OhWe'/%, and thus Ok = Oh,Oh,,
which, henceforth, will be called global Ohnesorge number.
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B. Numerical simulations of the flow evolution
toward the singularity

The finite-element method recently employed by Ref. 19 was
slightly modified to integrate (3) and (4) for a wide range of values
of Oh and h,. More details about the numerical method can be found
in Appendix C. As the film evolved toward rupture, we tracked the
minimum film thickness hnin = 4(0, t), the maximum streamwise
velocity, Umax, and the maximum wall shear stress, 7., = Byu\yzo.

Note that the existence of a power law hmin o< 7" for some value of
n > 0, where 7 = tg — t is the time remaining to rupture, is a local
self-similarity test that can be easily extracted from the numerical
simulations. Figure 1 shows several representative film evolutions
revealing that (Amin, Umax> Txy) o< (12/5, 1_3/5, 1_11/10) as T — 0 for
all the values of h, and sufficiently small values of Oh. However, it is

ARTICLE scitation.org/journal/phf

important to emphasize that the latter universal behavior is achieved
for (7, hmin) < (0.01, 0.16), for which the continuum approximation
is compromised. We thus conclude that the 2/5 power law would
never be fully established under realistic conditions. For 7 2 0.01
and h, < 30, the results of Fig. 1 show no sign of sustained power-
law behavior for Oh < 1, as revealed by the instantaneous exponents
n(t) = dlog 10hmin/d log 107 plotted in Figs. 1(b) and 1(c).

In particular, Fig. 1(b) reveals that, for all the cases where Oh
<« 1, the value of n increases monotonically with n(r) — 2/5 as
7 — 0 independently of h,. It is also deduced that the function n(r)
has no inflection points for the smallest values of h,, namely, h, = 1
and h, = 3.16, indicating the absence of intermediate self-similarity
other than the 2/5 power law, which, as shown in Sec. I, is due to
a balance between liquid inertia and vdW forces with negligible sur-
face tension and viscous forces (regime IV of Table I). However, for

h, Oh on,
(a) — 316 0.0018 0.0003 (b) ’1%0 g{b 2 %1
—— 10 0.0032 0.001 30 548 .00
3.16 0.0056 0.014 10 1'58 0'5
£ oo %01 R 10 032 01
< 4 -11/10 o N 10 0.032 0.01 .
bB 2 ks Q\\\‘
.—«O 1 _ 09 -3/5
-2
—4 T T T T
-5 —4 -3 -2 -1 0
0 -
1og (A, )
0
w//‘ -1
—1 4 \.\
N\ -
\\\\\ _3
o ] -4 —2 0 2 logyt
A
log,, T
-4 -2 0 2 4 60810
(c) L (@
n 0.4 ,\ 2/5
0.3 1 2/1
0.2 1
0.1 1
0- MELELELELELN BLELELELE BLELELELE BLALEL AL LA B B |
-2 =1 0 1 2 3 4 5
logy 7 logy, 7

FIG. 1. (a)-(b) The function log 1ohmin(l0g 197) for different values of h, and Oh indicated in the legend. The gray dashed lines show the self-similar thinning laws associated

with regimes I-IV in Table |. The top inset displays the maximum streamwise velocity,

Umax, and the maximum shear stress at the wall T;’; for ho = 1 and Oh = 10~2. The

bottom inset shows the curvature at the minimum normalized with the minimum thickness, hnminx, for the different cases indicated in the legend (solid lines), together with the
scaling law hyinxc o< 747 (dashed line), deduced from the scales of regime III.'” The instantaneous exponent n(z): (c)(d) influence of h, for Oh < 1 and influence of Oh for

ho = (10, 30).
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TABLE 1. The four thinning regimes during the rupture of ultrathin liquid films. In the balances, p, u, and ¢ stand for
the liquid inertia, the viscous forces, and the capillary forces, respectively. The references stand for Zhang and Lister”®
(2L99), Moreno-Boza et al."® (MB20), and Garg et al.'’ (GA17).

Regime Validity Balance Realisability Hmin (T) K(T) hmin () References

I gRe < l,e<1 vdW-p-o Ohzh*  (z/OW)">  (/Oh) 7199

1 eRe < Lg~1 vdW-p Ohzh**  (zioW)"? ~1 MB20

111 gRe; > 1,6 <1 vdW-p-¢  Ohs1 7 7 GA17

v gRe; > 1, ~1  vdW-p Ohs1 72 ~1 Present work

(a) Self-similar computation  Time-dependent integrations  (b)
or

-4
||t 10
-3 3

2

2/5
/T

FIG. 2. (a) Contours of longitudinal velocity, ®:(¢, #), obtained from the self-similar potential flow. The free surface is wedge-shaped, with an angle 6,
= 45° off the solid wall. (b) Snapshot of a numerical simulation performed for Oh = 0.01 and h, = 1 at 7 = 4.41 x 105, with £ = 0.01 and k = 0.3k.. Solid lines
represent contours of longitudinal velocity, and colors represent contours of normalized vorticity, |w|7'"°. The inset shows instantaneous re-scaled film shapes for
7= (0.027,6.98 x 1073,2.98 x 107%,9.81 x 107,8.13 x 107°,6.13 x 107°,4.13 x 107°,2.13 x 107>, 4.41 x 10~°) illustrating the self-similar collapse.

h, = 10 and h, = 31.6, an inflection point appears in the evo-
lution of n(7) near the value n = 2/7, which corresponds to the
regime described by Garg et al.'’ as a local balance between lig-
uid inertia, vdW forces, and surface tension forces (regime IIT of
Table I). Although for h, < 31.6, the 2/7-regime is only established
for less than a decade, its range of validity increases with increasing
ho. Indeed, Garg et al. 10 reported Navier-Stokes simulations for A,
= 1165, the case in which the 2/7 regime is established for several
decades for a shear-thinning liquid.

The effect of liquid viscosity on the rupture regimes is deduced
from Fig. 1(c), where n(7) is plotted for several values of Oh and h,
= (10, 30). As the value of Oh increases, the film is seen to pass
through a number of intermediate self-similar regimes described
in previous studies, although none of them are clearly established
except in the limit 7 — 0. As 7 decreases, the 1/5 power law described
by Zhang and Lister”” (regime I of Table I) is first observed during
a brief transient, followed by the 2/7-law for small enough values of

Oh. For smaller values of 7, the 1/3-law described by Moreno-Boza
et al."” (regime II in Table 1) is clearly observed, holding until the
singularity for Oh = 31.62. Finally, regime IV is reached as 7 — 0 for
Ohs1.

As shown in Fig. 2(a) for Oh = 10™* and h, = 1, the local rup-
ture flow presents a distinctive multi-scale structure. The vorticity
concentrates in boundary layers at the wall and at the free surface,
surrounding a central irrotational core. The self-similar potential
flow and the relevant scalings of the boundary layers are described
in Sec. I'V.

Ill. THE FILM THINNING REGIMES AT FINITE
OHNESORGE NUMBERS

The results of Fig. 1 reveal the existence of different regimes
during the thinning of the liquid film for finite values of Oh, which
will now be explained using order-of-magnitude estimations of the
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governing equations (3) and (4). Hereinafter, the dimensional vari-
ables with a non-dimensional counterpart will be denoted with an
asterisk. We begin by defining two key variables, namely, the local
slenderness and the local reduced Reynolds number,

hr,:lin
81(‘!’*) = 7, (Sa)
*h*2- *h*- hx—2
SIREI(T*) _ Pu‘;x:nn o Pvc‘umm o P//l;mn’ (Sb)

respectively, where x; (7+) and u; (7+) are the characteristic longi-
tudinal length scale and velocity, respectively. Note that, in the last
two estimations of Eq. (5b), the continuity Eq. (3a) has been used,
providing the estimate v, ~ u ¢, where v} ~ h};. /7« is the charac-
teristic transverse velocity. Note also that the local curvature at the
minimum film thickness, €* = 8*h* /9x*?|,+=¢, can be estimated as

*

K (1) ~ 25 = K ~ (6)
(4

and thus, the local curvature, measured with the instantaneous film
thickness, is just the square of the slenderness parameter.

The momentum Eq. (3b) admits two limiting dominant
balances depending on the value of gRej;, namely, the vdW-
viscous balance when gRe; < 1 and the vdW-inertia balance
when ¢Re; > 1. These two limiting cases will be explained in
Subsections IT1 A-ITI D.

A. Regimes under dominant viscous forces

The viscous regime prevails when €;Re; < 1, leading to the
vdW-viscous balance

* - 1/2 1/2
Al pvix =>x*~(é) ( Ty ) .
U

h*3 x* h*2 h*3 < h*

min "¢ min min min

with an associated local slenderness

1/2 Jy*3/2
e (1) ®
A 7/

Assuming the similarity ansatz hjy;, o< 7%, it is deduced that

g o 700D ©)
so that asymptotic slenderness as 7 — 0 requires that o > 1/3.
Two different values of « leading to self-similar regimes are pos-
sible depending on the value of ¢, as described in Secs. III A 1
and 1T A 2.

1. The slender viscous regime

When €; < 1, the local flow is slender, x} > k..., and thus, the
capillary pressure gradient is written as
8K* *

G—— ~ g (10)
Ox* x5

and its relative importance over the driving vdW force is
O[(o/A)hia, [x22] ~ (uo/A®)him/Te o 727!, implying that

scitation.org/journal/phf

> 1/5. Note that vdW, viscous, and surface tension forces are in
balance when « = 1/5, leading to the rupture law

2\ 1/5
h;in ~ (%) T}e/s) (11)

discovered by Zhang and Lister.”” In the latter regime, which is
referred to as Regime I in Table I, the local slenderness and the local

Reynolds number scale correspondingly as

24 1/5 B
()

p (12a)

A -3/5
Wilsg?ls

&Re; ~ (12b)

2. The non-slender viscous regime

The self-similar solution (11) fails when ¢; ~ 1 due to the break-
down of slenderness.”” The latter condition holds at the crossover
time,

1/2
_p A
Te = Txe ™ W> (13)
with the associated minimum thickness
. AN
B (Tac) ~ (;) ~ 0= hin(70) ~ 1. (14)

Equation (14) implies a breakdown of the 1/5 power law close to
the molecular scale, as studied in detail by Moreno-Boza et al”’
Indeed, note that the breakdown of slenderness that occurs when ¢;
~ 1 gives rise to a regime given by the balance A/(hki,) ~ pul /s,
~ uf (hpinTx ), vielding the asymptotic thinning law

1/3
Binin ~ (é) o/, (15)
U

discovered by Moreno-Boza et al."” where a detailed description is
given in their work.

B. The viscous-inertial crossover

Apart from the breakdown of slenderness described in
Sec. I1I A 2, the self-similar solution (11) may also fail when & Re,
~ 1 due to the onset of inertial effects at a crossover time given by

5/3 44/3
prA
* = Tap ™~ —— 7 16
T = Txp #7/302/3 (16)
with the associated minimum thickness
1/3 42/3
* prA -2/3
hmin(T*p) ~ ”2/301/3 = hmin(Tp) ~ Oh / . (17)

Equation (17) determines an inertial crossover at a length scale that
depends on Oh with two relevant limiting cases. When hmin (7))
> h, = 0Oh S h, 3/ 2, liquid inertia is important from the onset film

thinning, the case in which the 1/5 power law (11) is never estab-
lished. On the other hand, when hnin(7,) $ 1 =0h 2 1, liquid inertia
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becomes important at molecular scales, and the 1/5-law holds until
Bmin ~ 1, when slenderness breaks down and Eq. (15) holds. In the
intermediate case h0_3/ 2 < Oh 5 1, the 1/5 law experiences the inertial
crossover at hpi, ~ O™ %3,

C. Regimes under dominant inertia

As happened in the viscous case, the possible self-similar iner-
tial regimes that are established when & Re; > 1 depend on the local
slenderness. Let us now describe the two corresponding limiting
cases separately.

1. The slender inertial regime

We consider first the case with ¢ < 1 for which the balance of
liquid inertia and vdW forces yields

A
= W3 x . ;Ti. (18)

A
h*S

min

*2
puc ~

The ratio between the capillary pressure gradient, O(oh, /x>),
and the inertial force, O(pu}®), is O[(po/A*)hiinT57]
o< (po/A*)7.*2, implying that & > 2/7. The case with « = 2/7 cor-
responds to a balance of liquid inertia with vdW and surface tension
forces and leads to the thinning law

. A2 1/7
hmin ~ (P?) T>2«-/7) (19)
discovered by Garg et al."’ in their analysis of shear-thinning lig-

uids undergoing vdW-induced rupture. During this regime, the
slenderness parameter is

1/7 43/14
prAT e (20)

g~ ——
! oS/ *

so that the long-wave approximation breaks down when
124304

Te = Tye ¥ —————
* *E 05/4

" A 1/2
:>hmin(T*€) ~ (*) ~ a, (21)
o
implying that the slender inertial self-similar regime described by
Eq. (19) fails when the molecular scales are approached, as happened
in the viscous case explained in Sec. ITI A 2.

2. The non-slender inertial regime

As occurs in the viscous case, the slender inertial regime crosses
over to a non-slender inertial regime when the molecular scales are
approached, namely, fimin ~ 1, the case in which the inertia-vdW bal-

ance transforms into phi, /72 ~ A/hiy,, leading to the asymptotic

thinning law
1/5
Binin ~ (é) L (22)
p

described here for the first time. It is interesting to note that a
straightforward application of dimensional analysis naturally leads
to Eq. (22) as a self-similar solution of the first kind for the vdW-
Navier-Stokes system (see Appendix B). Finally, in the latter regime,
the relative importance of the capillary pressure gradient compared
with liquid inertia is [010/7/(p4/7A6/7)]1i/7 — 0as 7« — 0 so that the
ultimate regime reached just prior to rupture is a consistent domi-
nant balance between inertia and vdW forces with asymptotically
negligible surface tension forces.
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D. Classification of the self-similar film
thinning regimes

The previous development demonstrates the existence of four
possible self-similar regimes during the vdW-induced rupture of the
film at finite values of Oh, which are summarized in Table I. In
dimensionless terms, these regimes are as follows: (I) When ¢jRe;
« 1 and ¢; « 1, the slender viscous regime discovered by Zhang and
Lister”” holds, with a minimum thickness fmin ~ (z/Oh)""° and a local
curvature x ~ (t/Oh)~>*. (II) When ¢;Re; << 1 and € ~ 1, the non-
slender Stokes flow described by Moreno-Boza et al."” takes place,
with Fimin ~ (7/0h)"* and « ~ hl .. (III) When gRe; > 1 and ¢ <
1, the slender inertial regime reported by Garg et al.'’ prevails, with
Bonin ~ 727 and x ~ 7%, (IV) Finally, when €;Re; > 1 and ¢ ~ 1,
an ultimate non-slender inertial regime takes over, with iy ~ 2P
and « ~ h. Since the latter regime is reported for the first time in
the present paper, Sec. IV will be devoted to a detailed analysis of its
main features.

Finally, let us provide a simple argument for the asymptotic
sub-dominance of surface tension forces in the non-slender regimes
IT and IV. The intuition behind the latter fact is simply that, in
these regimes, there is only one characteristic length scale, namely,
xf ~ y& ~ Wi Thus, the local curvature k* ~ (hh,)™' — oo
as 7+ — 0, which diverges as the singularity is approached. What
remains finite, however, is the local curvature scaled with the instan-
taneous minimum thickness, i.e., k" ko, ~ 1 as T« — 0, explaining
the fact that, in regimes II and IV, the shape of the interface is self-
similar when appropriate variables are used to describe the local
flow. Although surface tension forces diverge as (h;,) > toward the
singularity, their sub-dominance is simply explained by the fact that
vdW forces diverge as (k)™ as 7. — 0 and thus become much
larger than surface tension forces in the last stages of the collapse
close to the continuum limit.

IV. THE UNIVERSAL SELF-SIMILAR INERTIAL REGIME

Suggested by the flow evolution shown in Fig. 1 and by the
order-of-magnitude analysis presented in Sec. III, the universal
behavior A, = 1.1 727 associated with regime IV in Table I will
now be unveiled using similarity theory.

A. The self-similar potential flow

Letting x = 7°&, y = %7, u = U, v = 7PV, p = 773%P, and
h =1"f(£), where a, 3, and y are real numbers, a consistent leading-
order dominant balance between inertia and vdW forces can indeed
be found by substituting the similarity test into (3) and (4) and per-
forming the limit T — 0, yielding the exponents « = # = 2/5 and
y =B —1=-3/5,in agreement with the results of Sec. I11. To unravel
the structure of the leading-order potential flow as 7 — 0, we make
use of the velocity potential ® such that U = ®; and V = @, reducing
the description to the integration of the Laplace equation,

Dge + D,y = 0, (23)
in0< &< oo and 0 < 5 < f(&), where f(£) is the a priori unknown

shape of the free surface. Note that our strategy to unravel the non-
slender inertial regime resembles that employed by Moreno-Boza
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et al.” in the viscous case, where the biharmonic equation sub-
stitutes the Laplace equation. Hereinafter, subscripts denote partial
derivatives unless stated otherwise. The leading-order contribution
of the stress balance at the interface reduces to an Euler-Bernoulli-
like boundary condition to be imposed together with the kinematic
condition,

1 + %CD+ %(f®g+ ndy,) + %((D% +<D$) =0,

7 (24a)

2+, f 264 0g) =0, (24b)
along # = f, together with the no-penetration condition n-vV®
=0 at 4 = 0 and & = 0, where the gradient operator is applied
with respect to & and #. The far-field boundary condition at & > 1
and 0 < 7 < f would require uniform matching with the inner flow
solution for x/7%° « 1 and therefore is replaced by (242) with the
Hamaker term, i.e., 1/f°, switched off, which may alternatively be
interpreted as a zero-pressure boundary condition. This enables us
to give a fairly reasonable approximation to the real flow that is
to be expected in the vicinity of the singularity. Problems of sim-
ilar mathematical nature were derived, for instance, by Ref. 24 in
the context of jets emerging from Faraday waves and by Ref. 19
to describe the self-similar Stokes flow leading to thin-film rupture
for Oh 2 1. Equations (23)-(24b) were integrated using an algo-
rithm similar to that described in Ref. 19, providing the free surface
as part of the solution. A more comprehensive description of the

scitation.org/journal/phf

numerical techniques employed to solve the problem is detailed in
Appendix C.

The solution, shown in Fig. 2, exhibits a wedge-shaped film
f~ (& - &)tan 6, for some value of &,, as r - oo characterized by
an opening angle 6, =~ 45° off the substrate, where * = (§ - &)* + 7
and 0 = arctan 7/¢ are polar coordinates. Examination of the far-
field revealed that &, ~ 0 and f(0) ~ 1.08. Also, a consistent radial
decay of the potential of the form ® ~ r~* along the ray 6 = 6, was
observed. The value of A was seen to adjust quite well to 1/2 from
the numerical computation [see the inset of Fig. 3(a)]. This is indeed
the only value of A that ensures compatibility in terms of powers of
r in (24a). A noteworthy aspect of the result shown in Fig. 2 is the
displacement effect of the wall boundary layer on the outer irrota-
tional core. Indeed, the Navier-Stokes solution of Fig. 2(b) is seen
to be slightly displaced in the positive y-direction with respect to the
potential flow of Fig. 2(a).

The non-slender universal regime described in the present
section is the inertial counterpart of the self-similar Stokes flow
reported by Moreno-Boza et al.,"” classified as regimes IV and II in
Table I. It is noteworthy that the local interface shape in the Stokes
case is also a wedge, but with an opening angle of 37° instead of the
larger angle of 45° associated with inertial breakup.

B. The boundary layers

The potential solution described in Sec. [V A constitutes the
outer flow for two vortical boundary layers sitting at the wall and at
the free surface, briefly described in Secs. IV B 1 and IV B 2.

a 10
()-@Tﬂ' e
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FIG. 3. (a) Velocity potential at the free surface (solid line) and its asymptotic behavior —®|,=¢ — &="2 for & > 1 (inset). (b) Wall slip velocity, ®¢|,=o (right axis), and
wall pressure gradient, Pe|,=o (left axis). (c) Wall-boundary-layer velocity profiles at & = (0.1, 0.2, 0.5, 1, .. ., 10) (solid lines) and self-similar profile £G’(#) at & = 0.1 (o).
Accompanying numerical computations for Oh = 0.01, h, = 1, and 7 = 2.13 x 10~ (data from Fig. 2) are also shown to illustrate agreement (dashed lines).
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1. The wall boundary layer

The slipping velocity at the wall <I>5|;1=0 and the streamwise
pressure gradient P¢| _ , evaluated numerically and presented in
n=0

Fig. 3(b), serve as boundary conditions for the viscous wall boundary
layer (WBL). The thickness of the WBL, o, is given by the balance
pul? [x} ~ uuk |85, whence

o~ BT 5, ~ OB (25)
p

The wall shear stress (WSS) 73, ~ pu/ /8, yielding
218 o

Ty ~ DI ATTS T, = Tyy ~ On™'/2y~ 1110, (26)

as confirmed by the evolution of the shear stress in Fig. 1.
The substitution into (3) of the standard boundary-layer
change in variables,”' namely,

x=7%  y=(0nr)"*,
v = (Oh/7)'?V, 27)
p=1"°"B, h=(0ht)"?h(¢),

u= TﬁS/SU,

yields the leading-order problem

Uf+\7(=0, (28a)
3.0 (28 .\ -\ 5. 17
gU+(§+U)Ug+(g+V)U(:—P£+U((, (28b)

By =0, (28¢)

describing the WBL so that the pressure gradient is given by the
external potential flow as Py = [(®¢ + 2£/5) gz + 3D¢/5] ‘*1:0' The

boundary conditions accompanying the system (28) are U = V = 0
at (=0, U — ®g as { - oo, and U = 0 at & = 0. The parabolic sys-
tem (28) is integrated using the method of lines, whose details are
described in Appendix C. To obtain the initial condition, we take
advantage of the self-similar nature of the boundary layer for £ «< 1.
Indeed, the substitution of a stream function ¢G({) into (282a) and
(28b) yields

G"+(G-{/2)G" -G (G +1) =& Py, (29)

with the boundary conditions G=G' =0at{=0and G’ — 571®E
as { - oo. Equation (29) admits a self-similar solution for £ < 1 in
which £7'P; — ~0.3802 and &' ®; — 0.2965, which was computed
using a pseudospectral collocation technique.’

2. The free-surface boundary layer

Finally, for conciseness, let us just provide the characteristic
scales of the free-surface boundary layer (FSBL). Its thickness, J7
can be estimated by taking into account that the free-surface vortic-
ity is w; = —200{ + 2u{ k" in a two-dimensional unsteady flow,'’
where 9 is the derivative along the interface, u; and v; are the tan-
gential and normal velocity components at the interface, and x™ is
the twice the mean curvature. We now take into account that, in

regime IV, uy ~ v{ ~ u} ~ hy /7« and &5 ~ ¥ ~ 1/a, providing

scitation.org/journal/phf

wf ~ hyin/(ats). Since, by definition, the vorticity is wf ~ Aug' /57,
we deduce that 6 ~ ar.Aug /hy;,, where Aug is the characteristic
velocity increment across the FSBL. In turn, the value of Au; may be
estimated by balancing the convective acceleration with the capillary
pressure gradient, pu Aug [Ax* ~ ok™ [Ax" = Aui ~ o/(pau;).
Thus, we deduce that &7 ~ o/ (pu; %), finally yielding
. o
57 ~ 6/5

6/5
IWT* = 8f ~T ", (30)

for the FSBL thickness that, as deduced from Eq. (30), does not
depend on Oh in contrast with the WBL thickness (25). We finally
note that §; — 0 as T — 0 much faster than the WBL, in agreement
with the results shown in Fig. 2.

V. CONCLUDING REMARKS

New insights into the inertia-driven dewetting of unstable
ultrathin films of Newtonian liquids have been gained through the-
oretical analysis and numerical integration of the Navier-Stokes
equations. We have shown that when the Ohnesorge number
Oh 5 1, the final approach of the flow toward the rupture singularity
close to the molecular scales is self-similar, with a non-dimensional
minimum film thickness fmin = 1.1 7° due to a dominant balance
between liquid inertia and van der Waals forces, with asymptoti-
cally subdominant surface tension forces. The spatial structure of
the flow in this new regime presents a distinguished three-region
structure characterized by a potential core separated by two bound-
ary layers, namely, a vortical curvature-induced layer sitting at the
free surface and a viscous layer adhered to the solid substrate. It is
interesting to note that when Oh <« 1, the latter three-region struc-
ture is already present from the onset of the vdW-induced instability,
as demonstrated in Appendix A by making use of linearized theory.
Upon introducing appropriate self-similar variables, the irrotational
core has been described as a universal solution to the Euler equa-
tions, featuring a wedge-shaped interface with an opening angle of
45° off the solid. The latter non-slender solution applies when the
minimum film thickness approaches the molecular scale, as obtained
similarly by Moreno-Boza et al.'” in the context of viscous dewet-
ting. A parameter-free description of the viscous wall layer of non-
dimensional thickness 8,, ~ Oh"?7"* has been provided by integrat-
ing Prandtl’s equations using self-similar boundary-layer variables.
We have also explained why the free-surface vortical layer is much
thinner than the viscous wall layer, since its thickness scales as &
~ T < 8y as T 0.

For finite values of the Ohnesorge number, an order-of-
magnitude analysis allowed us to classify all the possible regimes of
dewetting of Newtonian liquids, thereby unifying previous studies.
The slender viscous regime discovered by Zhang and Lister,”” with
Hmin = 0.913 (T/Oh)”s, prevails for Oh 2 1 and hmin () > 1, provided
that the initial thickness h, 2 30. The non-slender viscous regime
reported by Moreno-Boza et al,” where hpin = 0.665 (T/Oh)m,
applies for Oh 2 1 and hmin(7) $ 4, independently of the value of
ho. The slender inertial regime described by Garg et al."’ for shear-
thinning fluids has been shown to apply also for Newtonian fluids,
but only for Oh < 1, h, 2 30, and hmin(7) > 1. The latter regime,
where hmin = 1.0 77, experiences a crossover to the inertial regime
discovered in the present work, which prevails for Oh < 1 and hmin (1)
< 4 for any value of h,.

Phys. Fluids 32, 112114 (2020); doi: 10.1063/5.0031430
Published under license by AIP Publishing

32, 112114-8


https://scitation.org/journal/phf

Physics of Fluids ARTICLE

scitation.org/journal/phf

TABLE II. Physical properties, molecular Ohnesorge number, Oh, and global Ohnesorge number Oh, = u/\/pohy

= Oh/ V', for different liquid metals at their melting temperature, T, and at a higher working temperature, T,,. A value of
hy = 40 nm has been used to compute Oh,.

Metal T,-Tm (K) a(nm)  p(mPa) p(kgm ) o(Nm ') Oh Oh,

Cu 2000-1356 0.338-0.277 1.88-4.00 7400-8020 1.20-1.78 1.09-2.01 0.1-0.167
Ag 2000-1234 0.571-0.522 1.72-5.00 8671-9346  0.78-0.93  0.88-2.35 0.105-0.268
Ni 2000-1728 0.350-0.343 3.40-4.90 6700-7810 1.65-1.71 1.73-2.29 0.162-0.212
Rb 950-312  0.913-0.775 0.18-0.67 1460  0.064-0.088 0.62-2.12 0.094-0.295
Cs 930-302  1.138-0.965 0.19-0.68 1443-1843 0.041-0.057 0.73-2.13 0.123-0.33
Si 2000-1685 0.275-0.258 0.3-0.8  2500-2570 0.7-0.8 0.43-1.09 0.036-0.088

Let us finally point out that, in contrast with polymer films, for
which Oh > 1, ultrathin liquefied metal films have associated values
of Oh < 1, as recently pointed out by Kondic et al.”” In such cases,
the inertial regimes described in the present work may well be of
practical relevance for the emergent field of liquid metal manipula-
tion at sub-micrometer scales. Indeed, although the spinodal dewet-
ting of liquefied metal films has received less attention than the
corresponding regime in polymer films, there are a few experimen-
tal studies dealing with their instability, dynamics, and control'’
(see also references therein). Table II shows the physical proper-
ties and the molecular and global Ohnesorge numbers, Oh and Oh,,
respectively, of different liquid metals at their melting temperature,
T, and at a higher working temperature, T,,. The experimental
values of A, 0, p, and p are obtained from the works of Battez-
zati and Greer,” Krishna et al.,'* McKeown et al.,'* and Gonzélez
et al,'' and in particular, the values of viscosity at T,, are obtained
from Andrade’s formula.” It is also important to note that there are
still considerable uncertainties in the measurement of the associated
Hamaker constant.'”'*"” Note that the so-called molecular Ohne-
sorge number only depends on material quantities, and it does not
involve any length as the global Ohnesorge number reported in Ref.
15. As a final but important note, it is deduced from the results of
Table II and Fig. 1 that, for liquid metals at typical working tem-
peratures, no self-similar regime is expected to be reached during
film thinning. Indeed, for values of Oh % 0.4, Fig. 1(d) reveals that
the thinning dynamics of liquefied metals always takes place in tran-
sient regimes intermediate between the different regimes of Table I,
except for the non-slender regime IV. However, as demonstrated
in the present work, the latter regime is fully established below the
molecular length scales.
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APPENDIX A: DISPERSION RELATION
AND CHARACTERISTIC RUPTURE TIME

The linear modal dynamics of the film for ¢ <« 1 are deduced
by introducing the decomposition y = y,, + ey exp (ikx + wt), where
v is a vector whose entries are the flow variables, ¥, represents the
unperturbed steady state, ¥ is a vector of complex amplitudes, k is
the disturbance wavenumber, and w is the disturbance growth rate.
Standard manipulations“1 "lead to a dispersion relation, which, in
our variables, reads

k(K - 3h;4)[cosh(hol€) sinh(hok) — % cosh(hok) sinh(holz)]
+[@” + 40Kk (K + k)] cosh(hok) cosh(hok)

- k[4Oh2k(k2 +K) + (@ + 80K’ K*KY)

(A1)

y Sinh(hok)];inh(hok):l — 0’

where k> = K + w/Oh. Figure 4 shows the rupture time, tg, obtained
from (A1) as a function of h, for different values of Oh; indicated
in the legend. As briefly explained in Sec. II, this Ohnesorge num-
ber corresponds with the appropriate scales when studying the linear
regime, namely, £ = h, p. = A/(6mh}*), and v. = \/A/(6mph??),
where v, can be obtained by balancing the inertial terms with the
disjoining pressure gradient, pv - Vv ~ V¢. Hence, this Ohnesorge
number is deduced from the ratio between viscous and inertial
terms,Ohy = u/ (pvele) = Oh/ho.

The 7/2 exponent that is slightly observed when the Ohnesorge
number takes the smallest realistic values can be deduced in the limit
Oh <« 1 of Eq. (A1), which reduces to w? = (3hg4 - kz)ktanh(kho).
This inviscid growth rate has the following small-k expansion:

w = k/(120v/3K)/*)[360 — 60K*h3(1 + k)

+ hg(19 + 10K, — 5k )k*] + O(K), (A2)
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FIG. 4. Rupture time, tg, as a function of h, for different values of Oh indi-
cated in the legend. Symbols correspond to the time extracted from the numerical
simulations, and the lines are the linear prediction.

leading to an estimated non-dimensional rupture time

_ (3+\/E)5/2 7/2 -1 3/2
IR = 24(5 1+ /19) hy“In(e™) + O(h,"), (A3)

defined by tg = In(e™")/wm, where w,, is the maximum growth rate,
obtained by applying the condition dw/0k = 0. Equation (A3) reveals
a strong dependence of the rupture time on the initial film thickness,
tR o< hz/ 2, Conversely, when Oh > 1, the result for the rupture time
obtained in Ref. 19 reads in inertial scales, tr = 4/30h hg/ 2,

The results of Garg et al."’ are obtained by taking the value of
the Weber number as We = 7.37 x 10”7 and thus h, = 1164.84. The
experimental values of the physical parameters of the film consid-
ered therein are A = 107° J, 0 = 0.05 Nm ™!, and y =356 Pasin the
Newtonian case. The latter values yield a = 0.326 nm, and thus, the
initial height of the film considered in Ref. 10 is h; = 379.43 nm. It
is important to note that the latter values of h, and h; are unrealis-
tically large, and the vdW forces may not even trigger the instabil-
ity. The values of the molecular and global Ohnesorge numbers are
Oh = 8.88 x 10° and Oh, = 7.62 x 10°. Hence, the rupture time can
be estimated by the Stokes limit reported in Refs. 19 and 23, which in
dimensional form reads t3 = (4/3)(ua/o)(h; /a)’. Taking the latter
values, one deduces the unrealistically large value of t§ = 6.63 x 10°
s~ 21 years.

APPENDIX B: DIMENSIONAL ANALYSIS

The velocity components, (u*, v*), and the pressure, p*,
depend on the set of variables (x*,y*,7.,p,u, A, 0,h; ), while the
film thickness h* depends on the same variables except for y*. Tak-
ing (7«, p, A) as the dimensional basis, the Buckingham IT theorem
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yields the reduced functional forms

[, v ] = 722 (A/p) [T, T ) (T, T, T, T, T, ), (Bla)
p* = T;G/S(Azps)l/snp(nx) Hy) I, H[n Hh0)> (Blb)
W = 2% (A)p) P11, (T, T, T, T, ), (B1c)

where [IL,IT,IT, ] = ‘rIZ/S(p/A)l/5 [x*,y",hy], I, = 13/50/
(p*°A%%), and I, = Ti/sy/(p3/5A2/5). Note that IT," and IT," can
be interpreted as the local Reynolds and Weber numbers, respec-
tively (see Sec. I1I). In the limit 7. — 0, IT, — 0, II, = 0, and
IT,, — oo, indicating that as rupture is approached, viscous and
surface tension forces become negligible and that the flow becomes
independent of h,, thereby suggesting the existence of a similarity
solution of the first kind for 7 — 0, with liquid inertia balancing vdW
forces. In addition, the fact that x* and y* have the same asymptotic
scaling indicates that the near-rupture local flow is non-slender and
that lubrication theory, which assumes that the characteristic length
in the x direction is much larger than the film thickness, necessarily
fails to describe the singularity.

APPENDIX C: NUMERICAL TECHNIQUES

We describe the numerical techniques employed to solve the
Navier-Stokes equations (3)-(4b), the self-similar potential prob-
lem (23)-(24b), and the boundary-layer problems (282), (28b), and
(29). Most of the equations were written in a weak form upon conve-
nient use of Green’s identities, rendering them amenable for the use
of finite elements for the spatial discretization. The implementation
was carried out in the finite-element solver COMSOL MULTIPHYSICS.

1. Navier-Stokes equations

The Navier-Stokes equations of motion and corresponding
boundary conditions (3) and (4b) were first written in a weak form
with the use of suitable test functions for velocity and pressure, i.e.,
D and p, yielding the bilinear form

0=f[%-iz—pV-’iJ+Oh(V’v+VUT)’V@+I~7V"U]dv
v

+/ZS(VS-1')+h73n~i;)dZ, (C1)

where the surface gradient operator is defined as V; = (I — nn) - Vv,
with | being the identity tensor, and n is the outward-pointing nor-
mal unit vector. Note that the disjoining pressure term has been con-
veniently rewritten as a surface force after judicious application of
Gauss’s theorem. A schematic of the numerical domain and bound-
ary conditions is presented in Fig. 5. Equation (C1) was discretized
using Taylor-Hood triangular elements for pressure and velocity
(also the corresponding test functions) to ensure numerical stabil-
ity. The use of an arbitrary Lagrangian-Eulerian (ALE) technique
for the tracking of the interface allowed us to impose the kinematic
boundary condition (4a) along X by prescribing the normal veloc-
ity of the mesh to that of the fluid. The displacement of the mesh

Phys. Fluids 32, 112114 (2020); doi: 10.1063/5.0031430
Published under license by AIP Publishing

32, 112114-10


https://scitation.org/journal/phf

Physics of Fluids ARTICLE

T -n+nV, - n=0
n- (dxs/dt —v) =0

n
s R
s = (z, h(z,t =0
.. @h@t) u=0
w— qQz =
Y
¢z =0
_ By  u=v=gi=g=0
- n
w/k o

FIG. 5. Sketch of the numerical domain V bounded by X, (symmetry axis at x = 0),
S (bottom wall), o (Symmetry axis at x = n/k), and 25 (free surface). The cor-
responding boundary conditions for the velocity, stresses, and mesh displacement
are also included in the schematic.

elements was computed by solving a Laplace equation for the dis-
2 . .

placement field q = (gx, g5), namely V-q = 0, with suitable boundary

conditions. The entire system is advanced in time using a variable-

order BDF technique with an adaptive time step until numerical

rupture.

2. Potential flow

The elliptic system comprised of the Laplace Eq. (23) and the
boundary conditions (24a) and (24b) were again written in a weak
form, producing

[ vo-vddY-o, (C2)
v

which is complemented with the boundary condition ® = ®; at
%, where @; is the yet-unknown value of the potential at the free
surface, leveraged as a Lagrange multiplier to solve the boundary
PDE

1 1 2 1, 5 2\ | 5

—+ =0+ =((D¢ + D)) + = (D + D} ) |DsdE =0, (C3
fzs[ﬁ S0+ 2 (E0p+ @) + 5 (0F + 0F) [a, (©3)
where @, is the test function for the potential at the free sur-
face, which effectively enforces the Euler-Bernoulli condition at the

oo
9(0)

° Initial guess

\ Converged solution
b,

o 7, «T>

scitation.org/journal/phf

interface. The ALE method was once again used for the displacement
of the mesh. This allowed us to achieve the kinematic condition
(24b) by introducing an extra degree of freedom for the vertical dis-
placement of the deformable mesh § at . The boundary condition
for the displacement of the free surface then becomes q = de, at X,
and the corresponding restriction for § may be viewed as a surface
PDE of the form

/25[§f+®’7 _ff(éf+q)g)](§d2:0, (C4)

where § is the test function for the vertical displacement 8 discretized
using first-order Lagrange elements and dX is the line element along
%,. This additional equation enabled us to use a standard Newton-
Raphson root-finding algorithm to iteratively solve all the unknowns
upon a normalized tolerance, fixed to 107°, provided a suitable
initial guess. A summary of the procedure is sketched in Fig. 6.

3. Boundary layer equations

Equations (282) and (28b) were treated using & as a tempo-
ral variable, thereby making the system parabolic. Finite elements
were employed across the transversal direction { upon writing the
corresponding weak form, namely,

+ (g+V)+P5]U+ U(U(}dfzo, (C5)

where U and V are quadratic test functions for the variables U and
V, respectively, P; is the known external pressure gradient whose
expression is given in the main text, and (e~ 60 is the numerical
infinity. The system was integrated with the boundary conditions
U = V = 0 at { = 0 and marched in time using a BDF algorithm pro-
vided the initial condition for £ << 1. Such a condition was obtained
by solving the problem (29) in terms of the local stream function
£G({) using a pseudospectral collocation technique,” as described in
the main text.

&max tan 6,

/

Emax

E max

FIG. 6. Sketch of the initial guess (left-hand side panel) for the computation of the self-similar film shape and final converged solution (right-hand side panel). Note that in

particular, f(£) and 6, are obtained as part of the solution.
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