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Abstract

In this paper a sampling theory for unitary invariant subspaces associated to
locally compact abelian (LCA) groups is deduced. Working in the LCA group
context allows to obtain, in a unified way, sampling results valid for a wide range
of problems which are interesting in practice, avoiding also cumbersome notation.
Along with LCA groups theory, the involved mathematical technique is that of
frame theory which meets matrix analysis when appropriate dual frames are com-
puted.
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1 Introduction

This paper gives a general sampling theory for abstract unitary invariant subspaces in
a Hilbert space H. These subspaces are constructed by using unitary representations
of an LCA group in H. Namely, for a fixed element a ∈ H and a unitary representation
h 7→ U(h) of a discrete LCA group H (maybe a subgroup of a more general LCA group
G), the invariant subspace Aa in H looks like

Aa =
{∑
h∈H

αhU(h)a : {αh}h∈H ∈ `2(H)
}
.
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Roughly speaking, we are looking for sampling formulas in Aa taking into account its
unitary invariant structure, i.e., having the form

x =
s∑
j=1

∑
m∈M

Ljx(m)U(m)cj in H ,

where the generalized samples Ljx(m) := 〈x, U(m)bj〉H are taken at an appropriate
subgroup M of H from s fixed elements bj ∈ H that do not necessarily belong to Aa.
The reconstruction process in Aa is carried out from s, not necessarily unique, elements
cj ∈ Aa. In case the regular unitary representation, i.e., that given by the translation
operator, the generalized samples are nothing but convolution (average) samples.

As it was pointed out in [13], the LCA group approach is not just a unified way
of dealing with the four classical groups R,Z,T,ZN : signal processing often involves
products of these groups which are also LCA groups. For example, multichannel video
signal involves the group Zd×ZN , where d is the number of channels and N the number
of pixels of each image.

Besides, the relevance of sampling theory in unitary invariant subspaces of a Hilbert
space H is a recognized fact nowadays. Indeed, shift-invariant subspaces of L2(R)
[7, 8, 9, 31] or periodic extensions of finite signals [20, 23] provide remarkable examples
where sampling theory plays a fundamental role. See, for instance, [1, 2, 3, 28, 33,
35, 36, 39] and the references therein for sampling results in shift invariant spaces. As
a consequence, the availability of an abstract sampling theory for unitary invariant
spaces becomes a useful tool to handle these problems in a unified way. Moreover, any
notational complication is avoided especially in the multidimensional setting.

As the involved samples will be identified as frame coefficients in a suitable auxiliary
Hilbert space (in our case the space L2(Ĥ)), the relevant mathematical technique is
that of frame theory, including the computation of appropriate dual frames taking care
of the unitary invariant structure of the considered subspaces. For harmonic analysis
on LCA groups we refer to the classical Refs. [16, 26, 32]. It is worth to mention also
the recent papers [4, 5, 6, 10, 13] that we have used throughout the paper.

The paper is organized as follows: In Section 2 we include some needed preliminaries
and we deduce a suitable expression for the (generalized) samples in terms of some
special sequences in L2(Ĥ); a complete characterization of these sequences is proved
in Proposition 2. Section 3 includes the main sampling result, i.e., Theorem 1. In
particular, we include an analogous of Kluvánek sampling theorem for H-shift-invariant
subspaces of L2(G). We conclude the paper with a brief note on what we call the G-
jitter error.

2 The mathematical setting

Let G be a second countable locally compact abelian (LCA) Hausdorff group with op-
eration written additively. Let M < H < G be countable (finite or countably infinite)
uniform lattices in G. Recall that a uniform lattice K in G is a discrete subgroup of G
such that the quotient group G/K is compact (see, for instance, Ref. [10]). It is known
that if M < H are uniform lattices in G then H/M is a finite group (see [11, Remark
2.2]).
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The dual group of the subgroup H < G, that is, the set of continuous characters
on H is denoted by Ĥ. Since H is discrete, its dual Ĥ is compact. We assume that
its Haar measure m

Ĥ
is normalized such that m

Ĥ
(Ĥ) = 1. The value of the character

γ ∈ Ĥ at the point h ∈ H is denoted by (h, γ) ∈ T. With this normalization of the
Haar measure the sequence {χh}h∈H defined by

Ĥ 3 γ 7→ χh(γ) = (h, γ) ∈ T

turns out to be an orthonormal basis for L2(Ĥ) (see, for instance, [16, Prop. 4.3]).
Let g ∈ G 7→ U(g) ∈ U(H) a continuous unitary representation of G in a complex

separable Hilbert space H. Therefore, the mapping h ∈ H 7→ U(h) ∈ U(H) is a unitary
representation of H in H. For a fixed a ∈ H let define the U -invariant subspace in H

Aa := span
{
U(h)a : h ∈ H

}
⊂ H .

We assume that {U(h)a}h∈H is a Riesz sequence in H; a necessary and sufficient con-
dition can be found in [5, 6, 25]. Thus, the subspace Aa can be expressed as

Aa =
{∑
h∈H

αhU(h)a : {αh}h∈H ∈ `2(H)
}
⊂ H .

As usual, {αh}h∈H ∈ `2(H) means that
∑

h∈H |αh|2 <∞.

The isomorphism TH,a
We define the isomorphism TH,a which maps the orthonormal basis {χh}h∈H for L2(Ĥ)
onto the Riesz basis {U(h)a}h∈H for Aa, that is

TH,a : L2(Ĥ) −→ Aa∑
h∈H

αhχh 7−→
∑
h∈H

αhU(h)a (1)

This isomorphism TH,a has the following simple but important shifting property with
respect to the unitary representation:

Proposition 1. For any F ∈ L2(Ĥ) and k ∈ H, we have

TH,a(Fχk) = U(k)(TH,aF ) (2)

Proof. Let F =
∑

h∈H αhχh in L2(Ĥ). Then,

TH,a(Fχk) = TH,a(
∑
h∈H

αhχhχk) =
∑
l∈H

αl−kU(l)a

=
∑
h∈H

αhU(k + h)a = U(k)(TH,aF ) ,

taking into account that χhχk = χh+k and the commutativity in the subgroup H.
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An expression for the generalized samples

For any fixed b ∈ H we define the U -system Lb as a linear operator between H and
C(G,C), the space of continuous functions defined on G taking values in C and given
by

H 3 x 7→ Lbx ∈ C(G,C) such that Lbx(g) := 〈x, U(g)b〉H, g ∈ G .

Suppose that s vectors bj ∈ H, j = 1, 2, . . . , s, are given and consider their associated
U -systems denoted as Lj := Lbj , j = 1, 2, . . . , s. Observe that {Lja(h)}h∈H ∈ `2(H)
for j = 1, . . . , s , since {U(h)a}h∈H is a Riesz sequence for H.

The main goal of this paper is the stable recovery of any x ∈ Aa from the sequence
of its samples taken at the subgroup M , that is

Ljx(m) =
〈
x, U(m)bj

〉
H, m ∈M, j = 1, 2, . . . , s.

Notice that the analyzing elements bj do not necessarily belong to Aa; see [4] and
references therein for some related work. First we obtain an alternative expression for
these samples. For x =

∑
h∈H αhU(h)a in Aa and j = 1, 2, . . . , s, we have

Ljx(h) = 〈x, U(h)bj〉H =
〈∑
l∈H

αlU(l)a, U(h)bj

〉
H

=
∑
l∈H

αl
〈
a, U(h− l)bj

〉
H

=
∑
l∈H

αl(Lja)(h− l) = (α ∗H Lja|H )(h), h ∈ H,

where α ∗H Lja|H denotes the convolution on the discrete group H of the sequences

α = {αh}h∈H and {Lja(h)}h∈H . Consider the functions in L2(Ĥ),

Gj =
∑
h∈H
Lja(h)χh , j = 1, 2, . . . , s . (3)

Hence, denoting by ̂ the Fourier transform on L2(Ĥ) and F =
∑

h∈H αhχh, we have
(see [16, Proposition 4.36])

Ljx|H = α ∗H Lja|H = F̂ ∗H Ĝj = (F ·Gj )̂

Since F ·Gj ∈ L1(Ĥ) we have that

Ljx(h) = (F ·Gj )̂ (h) =

∫
Ĥ
F (ξ)Gj(ξ)χh(ξ) dm

Ĥ
(ξ), h ∈ H.

Thus, we obtain the following expression for the samples

Ljx(m) =
〈
F,Gj χm

〉
L2(Ĥ)

, m ∈M, j = 1, 2, . . . , s , (4)

where Gj is the function defined in (3) and F is the element in L2(Ĥ) such that
TH,aF = x. As a consequence of this expression the recovery of any x ∈ Aa from the
samples (4) depends on the frame properties of the sequence

{
Gj χm

}
m∈M ; j=1,2,...,s

in

L2(Ĥ).

It is worth to mention that one could consider the samples taken at any orbit of
the subspace M , i.e., {Ljx(g0 +m)}m∈M ; j=1,2,...,s, where g0 is a fixed element in G.
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Frame properties of the system
{
Gj χm

}
m∈M ; j=1,2,...,s

The results in this section remains true for arbitrary functions Gj in L2(Ĥ), j =
1, 2, . . . , s, not necessarily those given by (3). First, we need to introduce some necessary
preliminaries. The annihilator of M in Ĥ is the closed subgroup

M⊥ = {γ ∈ Ĥ : (m, γ) = 1 for all m in M }

The annihilator of M in Ĥ is a finite subgroup of Ĥ since M⊥ is isomorphic to Ĥ/M ,
and H/M is finite. Let r be the order of M⊥ and set M⊥ =

{
µ⊥0 = 0, µ⊥1 , . . . , µ

⊥
r−1

}
.

There exists a measurable (Borel) section Ω of Ĥ/M⊥ (see the seminal Ref. [15]), i.e.,
a measurable set Ω such that

Ĥ =
r−1⋃
n=0

(µ⊥n + Ω) and (µ⊥n + Ω) ∩ (µ⊥n′ + Ω) = ∅, for n 6= n′ .

Our analysis is based in the following expression: For F,Gj ∈ L2(Ĥ), j = 1, 2, . . . , s,
we have

〈
F,Gj χm

〉
L2(Ĥ)

=

∫
Ω

r−1∑
k=0

F (ξ + µ⊥k )Gj(ξ + µ⊥k )χm(ξ) dm
Ĥ

(ξ), m ∈M. (5)

Indeed, using that Ĥ =
⋃r−1
n=0

(
µ⊥n + Ω

)
, for any m ∈M we obtain

〈
F,Gj χm

〉
L2(Ĥ)

=

∫
Ĥ
F (ξ)Gj(ξ)χm(ξ) dm

Ĥ
(ξ) =

r−1∑
n=0

∫
µ⊥n+Ω

F (ξ)Gj(ξ)χm(ξ) dm
Ĥ

(ξ)

=

∫
Ω

r−1∑
n=0

F (ξ + µ⊥n )Gj(ξ + µ⊥n )χm(ξ) dm
Ĥ

(ξ) .

For Gj ∈ L2(Ĥ), j = 1, 2, . . . , s, consider the associated s× r matrix

G(ξ) :=


G1(ξ) G1(ξ + µ⊥1 ) · · · G1(ξ + µ⊥r−1)
G2(ξ) G2(ξ + µ⊥1 ) · · · G2(ξ + µ⊥r−1)

...
...

...
Gs(ξ) Gs(ξ + µ⊥1 ) · · · Gs(ξ + µ⊥r−1)

 =

[
Gj

(
ξ + µ⊥k

)]
j=1,2,...,s

k=0,1,...,r−1

(6)

where ξ is a element of Ω and its related constants

αG := ess inf
ξ∈Ω

λmin[G∗(ξ)G(ξ)] and βG := ess sup
ξ∈Ω

λmax[G∗(ξ)G(ξ)] ,

where G∗(ξ) denotes the transpose conjugate of the matrix G(ξ), and λmin (respectively
λmax) the smallest (respectively the largest) eigenvalue of the positive semidefinite
matrix G∗(ξ)G(ξ). Observe that 0 ≤ αG ≤ βG ≤ ∞.

Proposition 2. For Gj ∈ L2(Ĥ), j = 1, 2, . . . , s, consider the associated matrix G(ξ)
given in (6). Then
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(a) {Gj χm}m∈M ; j=1,2,...,s is a complete system for L2(Ĥ) if and only if the rank of
G(w) is r, a.e. in Ω.

(b) {Gj χm}m∈M ; j=1,2,...,s is a Bessel sequence for L2(Ĥ) if and only if βG < ∞. In
this case, the optimal Bessel bound is βG/r.

(c) {Gj χm}m∈M ; j=1,2,...,s is a frame for L2(Ĥ) if and only if 0 < αG ≤ βG < ∞. In
this case, the optimal frame bounds are αG/r and βG/r.

(d) {Gj χm}m∈M ; j=1,2,...,s is a Riesz basis for L2(Ĥ) if and only if it is a frame and
s = r.

Proof. Let L2
s(Ω) denotes the space of functions H = [H1, H2, . . . ,Hs]

> such that

‖H‖2L2
s(Ω) :=

∫
Ω
|H(ξ)|2 dm

Ĥ
(ξ) =

s∑
j=1

‖Hj‖2L2(Ω) <∞ .

Analogously we define the space L2
r(Ω). For F , Gj in L2(Ĥ), set

F(ξ) =
[
F (ξ + µ⊥0 ), F (ξ + µ⊥1 ), . . . , F (ξ + µ⊥r−1)

]>
,

Gj(ξ) =
[
Gj(ξ + µ⊥0 ), Gj(ξ + µ⊥1 ), . . . , Gj(ξ + µ⊥r−1)

]>
, ξ ∈ Ω .

Notice that ‖χm‖2L2(Ω) = m
Ĥ

(Ω) = 1/r. Besides, the sequence {χm}m∈M is an orthog-

onal basis for L2(Ω) (see [10, Prop. 2.16]). If the function
∑r−1

k=0 F (ξ + µ⊥k )Gj(ξ + µ⊥k )
belongs to L2(Ω), from (5), its Fourier coefficients with respect to this orthogonal basis
are

{
r
〈
F,Gj χm

〉
L2(Ĥ)

}
m∈M and therefore

∑
m∈M

∣∣∣〈F,Gj χm〉L2(Ĥ)

∣∣∣2 =
1

r

∫
Ω

∣∣∣ r−1∑
k=0

F (ξ + µ⊥k )Gj(ξ + µ⊥k )
∣∣∣2 dmĤ

(ξ).

Hence, if G(ξ)F(ξ) belongs to L2
s(Ω), then

s∑
j=1

∑
m∈M

∣∣〈F,Gj χm〉L2(Ĥ)

∣∣2 =
1

r
‖GF‖2L2

s(Ω) . (7)

From representation (7) one can easily deduce (a). On the other hand,

αG‖F‖2L2
r(Ω) ≤ ‖GF‖2L2

s(Ω) =

∫
Ω
F∗(ξ)G∗(ξ)G(ξ)F(ξ) dm

Ĥ
(ξ) ≤ βG‖F‖2L2

r(Ω).

Besides, βG (αG) is the smallest (largest) constant satisfying the above inequalities.
Indeed, for anyK < βG take ε > 0 such thatK < K+ε < βG; there exists a set Λ ⊂ Ω of
positive measure such that λmax[G∗(ξ)G(ξ)] > K+ε for all ξ ∈ Λ. Choosing F ∈ L2(Ĥ)
such that F(ξ) is 0 if ξ ∈ Ω\Λ and F(ξ) is an eigenvector of norm 1 associated with the
largest eigenvalue of G∗(ξ)G(ξ) if ξ ∈ Λ, we have

∫
Λ F∗(ξ)G∗(ξ)G(ξ)F(ξ) dm

Ĥ
(ξ) ≥

(K + ε)‖F‖2L2
r(Ω) > K‖F‖2L2

r(Ω).
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From (7), we get sup‖F‖
L2(Ĥ)

=1

∑s
j=1

∑
m∈M

∣∣〈F,Gj χm〉L2(Ĥ)

∣∣2 = βG/r; observe that

‖F‖
L2(Ĥ)

= ‖F‖2L2
r(Ω).

Analogously, we prove inf‖F‖
L2(Ĥ)

=1

∑s
j=1

∑
m∈M

∣∣〈F,Gj χm〉L2(Ĥ)

∣∣2 = αG/r. These

equalities prove (b) and (c).
To prove (d) assume first that {Gj χm}m∈M ; j=1,2,...,s is a frame and s = r. From (c),

and having in mind that in this case G is a square matrix, we deduce that G has a inverse
matrix with entries in L2(Ĥ). Let F1(ξ), . . . ,Fs(ξ) denote the columns of G−1(ξ) and

let Fj ∈ L2(Ĥ) be such that Fj(ξ) =
[
Fj(ξ+µ⊥0 ), Fj(ξ+µ⊥1 ), . . . , Fj(ξ+µ⊥r−1)

]>
, ξ ∈ Ω.

Using (5), we obtain

〈
rFj′ χm′ , Gj χm

〉
L2(Ĥ)

=
〈
rFj′ , Gj χm−m′

〉
L2(Ĥ)

=

∫
Ω
rG>j (ξ)Fj′(ξ)χm−m′(ξ) dmĤ

(ξ)

= δj,j′

∫
Ω
r χm−m′(ξ) dmĤ

(ξ) = δj,j′δm,m′ , m,m′ ∈M, j, j′ = 1, 2, . . . , s .

Hence, {Gj χm}m∈M ; j=1,2,...,s has a biorthogonal sequence and, as a consequence, it is

a Riesz basis for L2(Ĥ) (see [12, Theorem 6.1.1]).

To prove the reciprocal, assume that {Gj χm}m∈M ; j=1,2,...,s is a Riesz basis. Then
it is a frame and has a biorthogonal sequence denoted by {Fj,m}m∈M ; j=1,2,...,s. For

j = 1, 2, . . . , s, set Fj(ξ) =
[
Fj,0(ξ + µ⊥0 ), Fj,0(ξ + µ⊥1 ), . . . , Fj,0(ξ + µ⊥r−1)

]>
. Using (5),

we obtain ∫
Ω
G>j (ξ)Fj′(ξ)(m, ξ) dmĤ

(ξ) = 〈Fj′,0 , Gj χm
〉
L2(Ĥ)

= δj,j′δm ,

for m ∈M and j, j′ = 1, 2, . . . , s. Since {χm}m∈M is an orthogonal basis for L2(Ω), we
get

G>j (ξ)Fj′(ξ) = δj,j′ , a.e. ξ ∈ Ω , j, j′ = 1, 2, . . . , s .

Hence matrix G(ξ) has a right-inverse a.e ξ ∈ Ω. Since it is a frame, from (c), we have
αG > 0, and thus it also has a left-inverse a.e ξ ∈ Ω (for example, [G∗(ξ)G(ξ)]−1G∗(ξ)).
As a consequence, G(ξ) is a square matrix and s = r.

It is worth to mention that, in Ref. [13], Christensen and Goh have analyzed se-
quences of the type

{
Gj χm

}
m∈Mj ; j∈J

in L2(Ĥ) where H is a LCA group, J is a

countable set of index, and Mj is a uniform lattice that depends on j. Thus, Proposi-
tion 2 corresponds to the simpler case in which H is discrete, J is finite and Mj = M ,
but our result provides more information on the sequence

{
Gj χm

}
m∈Mj ; j∈J

than those

included in [13]; this extra information will be needed to deduce our sampling results
in next section.

Notice that as a consequence of the equivalence between the spectral and the Frobe-
nius norms (see, for instance, [27]), it follows that βG <∞ if and only if the functions
Gj ∈ L∞(Ĥ), j = 1, 2, . . . , s. Under this circumstance we have:
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Proposition 3. Assume that the functions Gj, j = 1, 2, . . . , s, belong to L∞(Ĥ). Then,

the sequence
{
Gj χm

}
m∈M ; j=1,2,...,s

is a frame for L2(Ĥ) if and only if

ess inf
ξ∈Ω

det
[
G∗(ξ)G(ξ)

]
> 0.

Moreover, provided that the functions Gj, j = 1, 2, . . . , s, are continuous on Ĥ, the

sequence {Gj χm}m∈M ; j=1,2,...,s is a frame for L2(Ĥ) if and only if

rankG(ξ) = r for all ξ ∈ Ĥ.

Proof. Since det
[
G∗(ξ)G(ξ)

]
is the product of its eigenvalues, we get

αrG ≤ det[G∗(ξ)G(ξ)] ≤ βr−1
G λmin[G∗(ξ)G(ξ)] .

Hence, αG > 0 if and only if ess infξ∈Ω det[G∗(ξ)G(ξ)] > 0. Whenever the functions

Gj are continuous on Ĥ, this condition is equivalent to det
[
G∗(ξ)G(ξ)

]
6= 0 for all

ξ ∈ Ĥ.

Concerning the appropriate dual frames of the sequence {Gj χm}m∈M ; j=1,2,...,s, hav-
ing in mind Proposition 2(b) and Proposition 3.13 in [13] we have the following result:

Proposition 4. Assume that the functions Gj , Hj ∈ L∞(Ĥ), j = 1, 2, . . . , s, satisfy

H(ξ)>G(ξ) = [1, 0, . . . , 0] , a.e. ξ ∈ Ĥ , (8)

where H(ξ) = [H1(ξ), H2(ξ), . . . ,Hs(ξ)]
>. Then, the sequences {Gj χm}m∈M ; j=1,2,...,s

and {rHj χm}m∈M ; j=1,2,...,s form a pair of dual frames for L2(Ĥ).

Concerning the existence of a vector H(ξ) = [H1(ξ), H2(ξ), . . . ,Hs(ξ)]
> with entries

in L∞(Ĥ) and satisfying (8) we prove the following result:

Proposition 5. Assume that the functions Gj ∈ L∞(Ĥ), j = 1, . . . , s, and also that
ess infξ∈Ω det [G∗(ξ)G(ξ)] > 0. Then all the possible vectors H(ξ) satisfying (8) with

entries in L∞(Ĥ) are given by the first row of the r × s matrices

G†(ξ) + U(ξ)
[
Is −G(ξ)G†(ξ)

]
(9)

where G†(ξ) =
[
G∗(ξ)G(ξ)

]−1 G∗(ξ) denotes the Moore-Penrose pseudo-inverse of
G(ξ), Is is the identity matrix, and U(ξ) denotes any r × s matrix with entries in
L∞(Ĥ).

Proof. It is easy to check that the first row H(ξ)> of G†(ξ) + U(ξ)
[
Is − G(ξ)G†(ξ)

]
satisfies (8) having entries in L∞(Ĥ). Reciprocally, for any µ⊥i , µ

⊥
j in the subgroup M⊥,

there exist l such that µ⊥l = µ⊥j − µ⊥i . From (8) we have
∑s

j=1Hj(ξ)Gj(ξ + µ⊥l ) = δl,

a.e. ξ ∈ Ĥ. Thus
∑s

j=1Hj(ξ + µ⊥i )Gj(ξ + µ⊥j ) = δi,j , a.e. ξ ∈ Ĥ. Then, the matrix

H>(ξ), where H(ξ) is defined as in (6), is a left-inverse of G(ξ), and it can be written
as in (9) taking U(ξ) = H>(ξ) which has entries in L∞(Ĥ).
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3 Generalized sampling formulas in Aa
Having in mind expression (4) for the samples, as a consequence of Proposition 2(a)
the sequence of samples {Ljx(m)}m∈M ; j=1,2,...,s determines uniquely each x ∈ Aa if
and only if rankG(ξ) = r, a.e. ξ ∈ Ω.

Furthermore, from Proposition 3 stable recovery is possible provided that the func-
tions Gj ∈ L∞(Ĥ), j = 1, 2, . . . , s, and ess infξ∈Ω det [G∗(ξ)G(ξ)] > 0. Next we prove
that each dual frame of {Gj χm}m∈M ; j=1,2,...,s provided by Proposition 4 gives a sam-
pling formula performing this recovery.

Let assume that Gj , Hj ∈ L∞(Ĥ), j = 1, 2, . . . , s, such that (8) holds. By using
Proposition 4, the sequences {Gj χm}m∈M ; j=1,2,...,s and {rHj χm}m∈M ; j=1,2,...,s are dual

frames for L2(Ĥ). Hence, for any F ∈ L2(Ĥ)

F (γ) = r
∑
m∈M

s∑
j=1

〈
F,Gj χm

〉
L2(Ĥ)

Hj(γ)χm(γ) in L2(Ĥ).

Since Ljx(m) =
〈
F,Gj χm

〉
L2(Ĥ)

, where x = TH,aF , we get

F (γ) = r
∑
m∈M

s∑
j=1

Ljx(m)Hj(γ)χm(γ) in L2(Ĥ).

Finally, the isomorphism TH,a and the shifting property (2) give, for any x ∈ Aa, the
sampling formula

x =
∑
m∈M

s∑
j=1

Ljx(m)TH,a
[
rHj(·)χm(·)

]
=
∑
m∈M

s∑
j=1

Ljx(m)U(m)TH,a[rHj(·)]

=
∑
m∈M

s∑
j=1

Ljx(m)U(m)cj,h ,

(10)

where cj,h := TH,a(rHj) ∈ Aa, j = 1, 2, . . . , s. Besides,
{
U(m)cj,h

}
m∈M ; j=1,2,...,s

is a
frame for Aa.

Note that, in the oversampling setting, i.e., whenever s > r, according to (9) there
exist infinitely many sampling functions U(m)cj,h, j = 1, 2, . . . , s, for which sampling
formula (10) holds. This remarkable fact could be used to obtain sampling functions
with prescribed properties.

Collecting all the pieces that we have obtained until now we prove the following
result:

Theorem 1. Let bj ∈ H and let Lj be its associated U -system for j = 1, 2, . . . , s.

Assume that the functions Gj, j = 1, 2, . . . , s, given in (3) belong to L∞(Ĥ); or equiv-
alently, that βG < ∞ for the associated s× r matrix G(ξ) given in (6). The following
statements are equivalent:

(a) ess inf
ξ∈Ω

det [G∗(ξ)G(ξ)] > 0.

(b) αG > 0.
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(c) There exists a vector
[
H1(ξ), H2(ξ), . . . ,Hs(ξ)

]
with entries in L∞(Ĥ) satisfying[

H1(ξ), H2(ξ), . . . ,Hs(ξ)
]
G(ξ) = [1, 0, . . . , 0] a.e. ξ in Ĥ . (11)

(d) There exist cj ∈ Aa, j = 1, 2, . . . , s, such that the sequence
{
U(m)cj

}
m∈Z; j=1,2,...s

is a frame for Aa, and for any x ∈ Aa the expansion

x =

s∑
j=1

∑
m∈M

Ljx(m)U(m)cj in H , (12)

holds.

(e) There exists a frame
{
Cj,m

}
m∈M ; j=1,2,...s

for Aa such that, for each x ∈ Aa the
expansion

x =

s∑
j=1

∑
m∈M

Ljx(m)Cj,m in H ,

holds.

In case the equivalent conditions are satisfied, for the elements cj in (d) we have cj =

TH,a(rHj), for some functions Hj in L∞(Ĥ), j = 1, 2, . . . , s, and satisfying (11).

Proof. Propositions 3 and 2 (c) prove that conditions (a) and (b) are equivalents. Propo-
sition 5 proves that condition (a) implies condition (c). We have proved above that
condition (c) implies condition (d). Obviously, condition (d) implies condition (e). As a
consequence, we only need to prove that condition (e) implies condition (a). Applying
the isomorphism T −1

H,a to the expansion in (e), and taking into account (4) we obtain

F = T −1
H,ax =

s∑
j=1

∑
m∈M

Ljx(m) T −1
H,a

(
Cj,m

)
=

s∑
j=1

∑
m∈M

〈
F,Gj χm

〉
L2(Ĥ)

T −1
H,a

(
Cj,m

)
in L2(Ĥ) ,

where the sequence
{
T −1
H,a

(
Cj,m

)}
m∈M ; j=1,2,...s

is a frame for L2(Ĥ). The sequence{
Gj χm

}
m∈M ; j=1,2,...s

is a Bessel sequence in L2(Ĥ) since βG < ∞, and it satisfies

the above expansion in L2(Ĥ). As a consequence, according to [12, Lemma 5.6.2]
the sequences

{
Gj χm

}
m∈M ; j=1,2,...s

and
{
T −1
H,a(Cj,m)

}
m∈M ; j=1,2,...s

form a pair of dual

frames in L2(Ĥ). In particular, by using Proposition 3 we obtain that condition (a)
holds, which concludes the proof.

Whenever r equals the number of U -systems s we are in the presence of Riesz bases,
and there exists a unique sampling expansion in Theorem 1:

Corollary 2. Let bj ∈ H for j = 1, 2, . . . , r, i.e., r = s in Theorem 1. Let Lj be its
associated U -system for j = 1, 2, . . . , r. Consider the associated r×r matrix G(ξ) given
in (6). The following statements are equivalent:
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(a) 0 < αG ≤ βG <∞.

(b) There exist r unique elements cj ∈ Aa, j = 1, 2, . . . , r, such that the sequence{
U(m)cj

}
m∈Z; j=1,2,...r

is a Riesz basis for Aa, and for any x ∈ Aa the expansion

x =
r∑
j=1

∑
m∈M

Ljx(m)U(m)cj in H , (13)

holds.

In case the equivalent conditions are satisfied, the interpolation property Lj′cj(m) =
δj,j′ δm,0, where m ∈M and j, j′ = 1, 2, . . . , r, holds.

Proof. Assume that 0 < αG ≤ βG <∞; since G(ξ) is a square matrix, this implies that

ess inf
ξ∈Ω

|detG(ξ)| > 0 .

Therefore, the first row of G−1(ξ) gives the unique solution [H1(ξ), H2(ξ), . . . ,Hr(ξ)] of
(8) with Hj ∈ L∞(Ĥ) for j = 1, 2, . . . , r. Indeed, other vector [H̃1(ξ), H̃2(ξ), . . . , H̃r(ξ)]
satisfying (8) would give, by defining H̃(ξ) as in (6), another inverse of G(ξ).

Due to Theorem 1, the sequence {U(m)cj}m∈M ; j=1,2,...,r, with cj = TH,a(rHj), sat-
isfies the sampling formula (13). Moreover, the sequence {rHj(w)χm}m∈M ; j=1,2,...,r =

{T −1
H,a

(
U(m)cj

)
}m∈M ; j=1,2,...,r is a frame for L2(Ĥ). Since r = s, according to Proposi-

tion 2(d), it is a Riesz basis. Hence, {U(m)cj}m∈M ; j=1,2,...,r is a Riesz basis for Aa. It
is straightforward to prove the uniqueness of cj , j = 1, 2, . . . , r.

For the converse result, the isomorphism T −1
H,a in (13) gives the Riesz basis expansion

F =
r∑
j=1

∑
m∈M

〈
F,Gj χm

〉
L2(Ĥ)

T −1
H,a

[
U(m)cj

]
in L2(Ĥ) .

Moreover, due to the uniqueness of the coefficients in a Riesz basis, the sequence{
Gj χm

}
m∈H; j=1,2,...,r

must be the dual Riesz basis of
{
T −1
H,a[U(m)cj ]

}
m∈H; j=1,2,...,r

.

According to Proposition 2(d), condition (a) holds.
From the uniqueness of the coefficients in a Riesz basis, we get the interpolatory

condition (Lj′cj)(m) = δj,j′δm,0 for j, j′ = 1, 2, . . . , r and m ∈M .

Some illustrative examples

The general sampling theory obtained in Section 3 englobes some previous work in the
topic. Namely:

• The case G = R, H = Z and M = rZ (r ∈ N), with unitary representation
U(n) = Un, n ∈ Z, where U : H → H is a unitary operator on an abstract
Hilbert space H, can be found in Refs. [18, 19, 30]. In particular, whenever
U : f(t) 7→ f(t− 1) is the shift operator in L2(R), see [21].

• The case G = Rd, H = Zd and M = AZd, where A denotes a d× d matrix with
integer entries and positive determinant, with unitary representation in L2(Rd)
given by U(α) : f(t) 7→ f(t− α), α ∈ Zd, can be found in [22].
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• The case H = ZN and M = rZN (r|N), with unitary representation U(n) = Un,
n ∈ ZN , where U : H → H is a unitary operator on a Hilbert space H can be
found in [23]. In particular, it includes the case where U is the cyclic shift in
`2N (Z); see also Ref. [20].

• The case of the product group H = Z × ZN and M = rZ × r̄ZN (r ∈ N and
r̄|N), with unitary representation U(n,m) = Un ⊗ V m, (n,m) ∈ Z× ZN , in the
tensorial product H1 ⊗ H2, where U : H1 → H1 and V : H2 → H2 are unitary
operators on the Hilbert spaces H1 and H2 respectively, can be found in [24]. See
also the case H = ZN × ZM and M = rZN × r̄ZM (r|N and r̄|M).

Kluvánek’s sampling theorem for H-shift-invariant subspaces in L2(G)

A similar technique to those used in Section 3 allows to derive a generalization of
Kluvánek sampling theorem for H-shift-invariant subspaces of L2(G). In [29] Kluvánek
obtained a generalization of the classical Shannon sampling theorem in terms of abstract
harmonic analysis (see also [14]). On the other hand, classical Paley-Wiener spaces are,
in particular, shift-invariant subspaces in L2(R); thus Walter proved in [37], for the first
time, a sampling theorem for shift-invariant subspaces of L2(R). Here we reproduce
the same result in the context of abstract harmonic analysis. As before, G denotes
a LCA group and H < G is a uniform lattice in G. We take H = L2(G) and we
consider the (left regular) unitary representation of G given by g ∈ G 7→ Lg, where
Lgx(g′) = x(g′− g) for any g′ ∈ G and x ∈ L2(G). For a fixed a ∈ L2(G) we define the
H-shift-invariant subspace Aa := span

{
Lha : h ∈ H

}
. In case the sequence {Lha}h∈H

is a Riesz sequence in L2(G) (see Ref. [10]), this subspace can be described as

Aa =
{∑
h∈H

αh a(g − h) : {αh} ∈ `2(H)
}
⊂ L2(G) .

Assuming that a ∈ C(G) and
∑

h∈H |a(g − h)|2 < ∞ uniformly in G, one can easily
derive that the subspace Aa constitutes a reproducing kernel Hilbert space (RKHS)
of continuous functions on G. Thus, convergence in L2(G)-sense implies pointwise
convergence which is, in this case, uniform on G. Besides, each x ∈ Aa can be described
as the pointwise sum x(g) =

∑
h∈H αh a(g − h), g ∈ G.

Following Ref. [34] it can be proved, by using the Banach-Steinhaus theorem, that
a ∈ C(G) and

∑
h∈H |a(g − h)|2 < ∞ uniformly in G is also a necessary condition in

order to be Aa a H-shift-invariant space of continuous functions on G.
The aim in this section is to recover any x ∈ Aa from the sequence of its samples

taken at an orbit of the subgroup H, i.e., {x(g0 + m)}m∈H where g0 denotes a fixed
element in G. In this context, the isomorphism TH,a in (1) reads:

TH,a : L2(Ĥ) 3 F =
∑
h∈H

αh χh 7−→ x(g) =
∑
h∈H

αh a(g − h) ∈ Aa ,

which satisfies the shifting property TH,a(Fχm) = Lm(TH,aF ), for F ∈ L2(Ĥ) and
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m ∈ H. We obtain the following expression for the samples of x = TH,aF ∈ Aa:

x(g0 +m) =
∑
h∈H
〈F, χh〉 a(g0 +m− h) =

〈
F,
∑
h∈H

a(g0 +m− h)χh
〉
L2(Ĥ)

=
〈
F,
∑
h′∈H

a(g0 + h′)χm−h′
〉
L2(Ĥ)

=
〈
F,
( ∑
h′∈H

a(g0 + h′)χh′
)
χm
〉
L2(Ĥ)

= 〈F,Gg0 χm〉L2(Ĥ)
,

where Gg0 denotes the function

Gg0 :=
∑
h∈H

a(g0 + h)χh ∈ L2(Ĥ) . (14)

Having in mind Proposition 2(d), the sequence
{
Gg0 χm

}
m∈H is a Riesz basis for L2(Ĥ)

if and only if
0 < ess inf

γ∈Ĥ
|Gg0(γ)| ≤ ess sup

γ∈Ĥ
|Gg0(γ)| < +∞ . (15)

Note that taking M = H in Proposition 2 we have Ω = Ĥ. Moreover, its dual Riesz
basis is

{(
1/Gg0

)
χm
}
m∈H . Assuming (15), we obtain a sampling formula in Aa as

follows: For each x = T −1
H,aF ∈ Aa, we expand F in L2(Ĥ) as

F =
∑
m∈H
〈F,Gg0 χm〉

1

Gg0
χm =

∑
m∈H

x(g0 +m)
1

Gg0
χm .

Then, applying the isomorphism TH,a and the shifting property we get in Aa the sam-
pling formula

x(g) =
∑
m∈H

x(g0 +m) TH,a
( 1

Gg0
χm
)
(g) =

∑
m∈H

x(g0 +m)
(
LmSg0

)
(g)

=
∑
m∈H

x(g0 +m)Sg0(g −m) , g ∈ G ,

where the sampling function Sg0 = TH,a
(
1/Gg0

)
belongs to Aa. The convergence of the

series is in the L2(G)-sense, absolute (due to the unconditional convergence of a Riesz
basis) and uniform on G. In fact, the following result holds:

Theorem 3. Let Aa be a H-shift-invariant subspace of continuous functions on G
generated by a function a ∈ L2(G). For a fixed g0 ∈ G, consider the function Gg0 ∈
L2(Ĥ) given in (14). The following statements are equivalent:

(i) 0 < ess inf
γ∈Ĥ |Gg0(γ)| ≤ ess sup

γ∈Ĥ |Gg0(γ)| < +∞.

(ii) There exists a unique function Sg0 ∈ Aa such that the sequence
{
Sg0(· −m)

}
m∈H

is a Riesz basis for Aa, and the following sampling formula holds in Aa:

x(g) =
∑
m∈H

x(g0 +m)Sg0(g −m) in L2(G) .
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Moreover, in case of equivalent conditions the convergence of the above series is absolute
and uniform on G.

Proof. We have proved that condition (i) implies condition (ii). Reciprocally, applying
the isomorphism T −1

H,a in the sampling formula one gets the expansion

F =
∑
m∈H
〈F,Gg0 χm〉L2(Ĥ)

T −1
H,a

[
Sg0(· −m)

]
in L2(Ĥ) ,

where the sequence
{
T −1
H,a

[
Sg0(· − m)

]}
m∈H is a Riesz basis for L2(Ĥ). Due to the

uniqueness of the coefficients in a Riesz basis, necessarily the sequence
{
Gg0 χm

}
m∈H

is its dual Riesz basis. According to Proposition 2(d), condition (i) holds.

Note that, in case the sequence {Lha}h∈H is only a Bessel sequence for L2(G)
condition (i), in the above theorem, implies that the sampling formula holds for every
x =

∑
h∈H αh Lha with {αh} ∈ `2(H).

A note on the G-jitter error

In the classical Paley-Wiener space PWπ, the time-jitter error arises when one samples
at instants tn = n + εn which differ from the Nyquist sampling instants n ∈ Z by εn
(see, for instance, the classical Ref. [38]). Its counterpart here consists of taking the
generalized samples at m+ εm where m ∈M and εm ∈ G stands for what we shall call
a G-jitter error. In what follows, we assume G to be a non-compact continuous group,
and M < H < G two countably infinite uniform lattices in G.

Given an error sequence ε := {εmj}m∈M ; j=1,2,...,s in G, proceeding as in (4), the
perturbed samples in

{
Ljx(m+ εmj)

}
m∈M ; j=1,2,...,s

can be expressed as

Ljx(m+ εmj) =
〈
F,Gj,m χm

〉
L2(Ĥ)

for m ∈M and j = 1, 2, . . . , s ,

where the function Gj,m :=
∑

h∈H Lja(h + εmj)χh belongs to L2(Ĥ) for m ∈ M and
j = 1, 2, . . . , s. The idea consists of consider the new sequence

{
Gj,m χm

}
m∈M as a

perturbation of the frame {Gj χm}m∈M ; j=1,2,...,s in L2(Ĥ). For instance, if we prove
that ∑

m∈M

s∑
j=1

∣∣〈Gj,m χm −Gj χm, F〉L2(Ĥ)

∣∣2 ≤ R ‖F‖2 for each F ∈ L2(Ĥ)

with R < αG/r, the optimal lower frame bound of the frame {Gj χm}m∈M ; j=1,2,...,s,
from Corollary 15.1.5 in [12] we obtain that the sequence

{
Gj,m χm

}
m∈M ; j=1,2,...,s

is

also a frame for L2(Ĥ). In so doing, assume that the operator

Dε : `2(H) −→ `2s(M)
c = {ch}h∈H 7−→ Dε c :=

(
Dε,1 c, . . . ,Dε,s c

)
,

is well-defined, where, for j = 1, 2, . . . , s,

Dε,j c :=
{∑
h∈H

[
Lja(m− h+ εmj)− Lja(m− h)

]
ch

}
m∈M

. (16)
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The operator norm (it could be infinity) is defined as usual

‖Dε‖ := sup
c∈`2(H)\{0}

‖Dε c ‖`2s(M)

‖c ‖`2(H)
,

where ‖Dε c ‖2`2s(M) :=
∑s

j=1 ‖Dε,j c ‖2`2(M) for each c ∈ `2(H).

Proposition 6. Assume that for the functions Gj, j = 1, 2, . . . , s, given in (3) we have
0 < αG ≤ βG < ∞. Let ε := {εmj}m∈M ; j=1,2,...,s be an error sequence in G satisfying
the inequality ‖Dε‖2 < αG/r. Then, there exists a frame {Cε

m,j}m∈M ; j=1,2,...,s for Aa
such that, for any x ∈ Aa, the sampling expansion

x =
s∑
j=1

∑
m∈M

Ljx(m+ εmj)C
ε
m,j in Aa , (17)

holds. Moreover, when r = s the sequence {Cε
m,j}m∈M ; j=1,2,...,s is a Riesz basis for Aa,

and the interpolation property (Ll Cε
n,j)(m+ εmj) = δj,l δn,m holds.

Proof. The sequence
{
Gj χm

}
m∈M ; j=1,2,...,s

is a frame (a Riesz basis if r = s) for L2(Ĥ)

with optimal frame (Riesz) bounds αG/r and βG/r. For any F =
∑

h∈H αh χh in L2(Ĥ),
a straightforward calculation gives∑

m∈M

s∑
j=1

∣∣〈Gj,m χm −Gj χm, F〉L2(Ĥ)

∣∣2
=
∑
m∈M

s∑
j=1

∣∣〈∑
k∈H

(
Lja(k + εmj)− Lja(k)

)
χ−kχm, F

〉
L2(Ĥ)

∣∣2
=
∑
m∈M

s∑
j=1

∣∣〈∑
h∈H

(
Lja(m− h+ εmj)− Lja(m− h)

)
χh, F

〉
L2(Ĥ)

∣∣2
=
∑
m∈M

s∑
j=1

∣∣ ∑
h∈H

(
Lja(m− h+ εmj)− Lja(m− h)

)
αh
∣∣2

=
s∑
j=1

‖Dε,j{αh}h∈H‖2`2(M) ≤ ‖Dε‖2‖{αh}h∈H‖2`2(H) = ‖Dε‖2‖F‖2L2(Ĥ)
.

(18)

By using Corollary 15.1.5 in [12] we obtain that the sequence
{
Gj,m χm

}
m∈M ; j=1,2,...,s

is a frame for L2(Ĥ) (a Riesz basis if r = s). Let {Hε
m,j}m∈M ; j=1,2,...,s be, for instance,

its canonical dual frame. Hence, for any F ∈ L2(Ĥ)

F =
∑
m∈M

s∑
j=1

〈
F,Gj,m χm

〉
L2(Ĥ)

Hε
m,j =

∑
m∈M

s∑
j=1

Ljx(m+ εmj)H
ε
m,j in L2(Ĥ) .

Applying the isomorphism TH,a, one gets (17), where Cε
m,j := TH,a

(
Hε
m,j

)
for m ∈ M

and j = 1, 2, . . . , s. Since TH,a is an isomorphism between L2(Ĥ) and Aa, the sequence
{Cε

m,j}m∈M ; j=1,2,...,s is a frame for Aa (a Riesz basis if r = s). The interpolatory
property in the case r = s follows from the uniqueness of the coefficients with respect
to a Riesz basis.

15



Sampling formula (17) is useless from a practical point of view: it is impossible
to determine the involved frame {Cε

m,j}m∈M ; j=1,2,...,s. As a consequence, in order to

recover x ∈ Aa from the sequence of samples
{

(Ljx)(m + εmj)
}
m∈M ; j=1,2,...,s

a frame

algorithm in `2(H) should be implemented.

On the existence of sequences ε in G satisfying ‖Dε‖2 < αG/r

Given an error sequence ε := {εmj}m∈M ; j=1,2,...,s in G, for j = 1, 2, . . . , s, m ∈ M and
h ∈ H we denote

q
(j)
m,h := Lja(m− h+ εmj)− Lja(m− h) ∈ C .

Taking into account (16) and proceeding as in Ref [19], for any sequence c = {ch}h∈H
in `2(H) we have

‖Dε‖2`2s(M) =
s∑
j=1

∑
m∈M

∣∣∣ ∑
h∈H

q
(j)
m,h ch

∣∣∣2 ≤ s∑
j=1

∑
l∈H
|cl|2

∑
(m,h)∈M×H

|q(j)
m,l q

(j)
m,h| . (19)

Let d : G×G→ [0,+∞) denote an invariant metric in G compatible with its topology.
Since H is a uniform lattice of G the infimun of the set

{
d(h, h′) : h, h′ ∈ H,h 6= h′

}
is greater than zero. Let 0 < η < inf{d(h, h′) : h, h′ ∈ H,h 6= h′} and such that B̄η(0),
the closed ball with radius η and centered at 0, the identity in G, is a compact set of
G. Recall that the so-called oscillation of the function Lja in a compact set U is given
by (see, for instance, [17]):

osc
U

(Lja)(h) := max
k∈U
|Lja(h+ k)− Lja(h)| .

For 0 ≤ δ ≤ η we define the functions:

Ma,bj (δ) :=
∑
h∈H

osc
B̄δ(0)

(Lja)(h) ,

and
Na,bj (δ) := max

l∈Θ

∑
m∈M

osc
B̄δ(0)

(Lja)(m− l) ,

where Θ is a section of the quotient group H/M . Notice that Na,bj (δ) ≤Ma,bj (δ).
If the continuous functions G 3 g 7→ Lja(g), j = 1, 2, . . . , s, satisfy a decay condition

as Lja(g) = O
(
d(0, g)−(1+τ)

)
when d(0, g) → ∞ for some τ > 0 we may deduce that

the functions Na,bj and Ma,bj are continuous near to 0. Taking into account (19) the
condition ‖Dε‖2 < αG/r in Proposition 6 could be rephrased as the condition

s∑
j=1

Na,bj (δ)Ma,bj (δ) <
αG
r
,

for some small enough δ > 0, and d(0, εmj) ≤ δ for all j = 1, 2, . . . , s and m ∈M .
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[1] A. Aldroubi and K. Gröchenig. Non-uniform sampling and reconstruction in shift-
invariant spaces. SIAM Rev., 43:585–620, 2001.

[2] A. Aldroubi. Non-uniform weighted average sampling and reconstruction in shift-
invariant and wavelet spaces. Appl. Comput. Harmon. Anal., 13:151–161, 2002.

[3] A. Aldroubi, Q. Sun and W-S. Tang. Convolution, average sampling, and a
Calderon resolution of the identity for shift-invariant spaces. J. Fourier Anal.
Appl., 11(2):215–244, 2005.

[4] M. Anastasio, C. Cabrelli and V. Paternostro. Extra invariance of shift-invariant
spaces on LCA groups. J. Math. Anal. Appl., 370:530–537, 2010.

[5] D. Barbieri, E. Hernández and J. Parcet. Riesz and frame systems generated by
unitary actions of discrete groups. Appl. Comput. Harmon. Anal., 39(3): 369–399,
2015.

[6] D. Barbieri, E. Hernández and V. Paternostro. The Zak transform and the struc-
ture of spaces invariant by the action of an LCA group. J. Funct. Anal., 269:
1327–1358, 2015.

[7] C. Boor, R. DeVore and A. Ron. Approximation from shift-invariant subspaces in
L2(Rd). Trans. Amer. Math. Soc., 341:787–806, 1994.

[8] C. Boor, R. DeVore and A. Ron. The structure of finitely generated shift-invariant
spaces in L2(Rd). J. Funct. Anal., 119:37–78, 1994.

[9] M. Bownik. The structure of shift-invariant subspaces in L2(Rn). J. Funct. Anal.,
177:282–309, 2000.

[10] C. Cabrelli and V. Paternostro. Shift-invariant spaces on LCA groups. J. Funct.
Anal., 258(6): 2034–2059, 2010.

[11] C. Cabrelli and V. Paternostro. Shift-modulation invariant spaces on LCA groups.
Studia Math., 211:1–19, 2012.

[12] O. Christensen. An Introduction to Frames and Riesz Bases. Birkhäuser, Boston,
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[22] A. G. Garćıa and G. Pérez-Villalón. Multivariate generalized sampling in shift-
invariant spaces and its approximation properties. J. Math. Anal. Appl., 355:397–
413, 2009.
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