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Résumé

Cette thése est consacrée a l'investigation de propriétés de systémes ou les entrées
et sorties sont des fonctions partielles sur le domaine temporel. Dans nos travaux, des
systemes de ce genre sont mappés vers des abstractions appelées "blocs". La notion de
bloc peut étre considérée comme une extension spécifique des notions de systémes avec
entrées et sorties qui ont ét¢ étudiés, en plusieurs variantes, en théorie des systémes. Les
aspects essentiels des blocs sont leurs non-déterminisme; partialité des entrées - sorties; et
le domaine temps-réel.

Les résultats originaux suivants ont été établis dans cette these:

(1) Les notions de non-anticipation faible et forte considérées dans les travaux de la
théorie des systemes de T. Windeknecht, M. Mesarovic, Y. Takahara pour différentes
classes de systemes ont €t€ comparées et étendues aux blocs.

(2) Un théoréme de représentation de blocs fortement non-anticipatifs a été prouvé.
Il a ét¢ montré que de tels blocs peuvent étre représentés par une classe de systémes
abstraits dynamiques appelés Systémes Markoviens Non-déterministes Complets
(NCMS). Ces derniers s'appuient sur la notion de systéme de solution introduit dans la
Théorie des Processus de O. Hajek.

(3) Des criteres généraux pour l'existence de couples d'entrées - sorties totaux de
blocs fortement non-anticipatifs et 1'existence de sorties totales pour des entrées totales
d'un bloc fortement non-anticipatif.

Les résultats obtenus sont utiles pour la formalisation et 1'analyse de langages de
spécification basés sur des diagrammes de blocs, ainsi que pour des langages de
développement pour des systémes cyber-physiques et des systémes de traitement de
données temps-réel.
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Abstract

The thesis is devoted to investigation of properties of systems with inputs and
outputs as partial functions on the real time domain. In our work systems of this kind are
mapped to abstractions called blocks. The notion of a block can be considered as a specific
extension of the notions of a system with inputs and outputs which were studied in various
variants of mathematical systems theory. The main aspects of blocks are nondeterminism,
partiality of inputs/outputs, real time domain.

The following novel results concerning blocks were obtained in the thesis:

(1) Weak and strong notions of nonanticipation considered in the works on
mathematical systems theory by T. Windeknecht, M. Mesarovic, Y. Takahara for different
classes of systems were extended to blocks and compared.

(2) A representation theorem for strongly nonanticipative blocks was proved. It was
shown that such blocks can be represented using an introduced class of abstract dynamical
systems called Nondeterministic Complete Markovian Systems (NCMS) which is based
on the notion of a solution system introduced in the Theory of Processes by O. Hajek.

(3) General criteria for the existence of total input-output pairs of a strongly
nonanticipative block and the existence of a total output for a given total input of a
strongly nonanticipative block.

The obtained results are useful in formalization and analysis of block diagram-
based specification and development languages for cyber-physical systems and real-time
information processing systems.
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INTRODUCTION

Relevance of the topic of research. An abstract view of a computing system
as a transformation of data, a function, or an input-output relation is rather common
in computer science. In fact, this view is rooted in foundations of computing and is
notable in the works of A. Turing and A. Church.

Nevertheless, a large amount of computing systems used today act not as pure
data transformers, but as agents interacting with physical processes. Such systems
are now frequently called cyber-physical systems [9, 62]. Examples include
autonomous automotive systems, robotics, medical devices, energy conservation
systems, etc. [104].

As was stressed in [61], an important aspect that cyber-physical systems must
take into account is the passage of (physical) time. The actions of such systems
must be properly timed. Besides, the computational aspect of a system must be
understood and modeled in a close relation with physical processes. However, this
is not taken into account when a system is viewed as an input-output relation on
data.

One way to resolve this issue is to consider a system as an input-output
relation on time-varying quantities (signals). A view of this kind is extensively used
in signal processing and control theory [86, 64], but the kinds of mathematical
models of systems usually considered in these fields (e.g. difference or differential
equations [86]) do not provide high-level abstractions of processes that take place in
cyber-physical systems [9]. In contrast, modeling and specification languages like
Simulink [102], AADL [25], SysML [41] and others which have applications in the
domain of cyber-physical systems employ high-level abstractions to deal with
complexity of large systems.

High-level mathematical models that take into account the aspect of time can

be found in the mathematical systems theory. During the second half of the XX

11



century a large number of works that dealt with a mathematical theory of systems
were published by L. Zadeh [117, 119, 118], R. Kalman [55], M. Arbib [6, 89], G.
Klir [56], W. Wymore [115, 116], M. Mesarovic, [73, 74], B.P. Zeigler [121], A.L
Kuhtenko [59], N.P. Buslenko [16], V.M. Matrosov [71], and others [40, 87, 47,
111, 90, 66, 114, 44]. Many of these works were inspired and influenced by the
General Systems Theory by L. Bertalanffy [107, 22, 108], Cybemetics introduced
by N. Wiener [110], information theory introduced by C. Shannon [101], circuit
theory in electrical engineering, automata theory, control theory. A historical
account on the mutual influence between these fields is given in [99, 56]. In
particular, the approach developed by M. Mesarovic and Y. Takahara [74] is based
on a formalization of a system as a relation on objects. Other approaches such as
those developed by M. Arbib [6, 89], W. Wymore [115], B.P. Zeigler [121] resulted
from unification of the theory of systems described by differential equations and the
automata theory.

Most of the mentioned works introduce a certain kind of abstraction of a
system as an input-output relation on time-varying quantities (e.g. a general time
system [74, Section 2.5], an external behavior of a dynamical system [55, Section
1.1], an oriented abstract object [119, Chapter 1, Paragraph 4], an I/O observational
frame [121, Section 5.3]) and consider such a relation as a mathematical
representation of the system’s observable behavior. The most basic example is the
definition of a Mesarovic time system [74] as a binary relation S < I/ xO, where [
and O are sets of input and output functions on a time domain 7 (/c A,
O cB").

However, one aspect that is not sufficiently investigated in works on
mathematical systems theory with regard to time systems is partiality of input and
output signals as functions of time. For example, in a Mesarovic time system inputs
and outputs are always total functions of time. In other theories, where analogous

models are considered [119, 118, 121], partial inputs and outputs are allowed, but
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an additional assumption about the equality of the domains of the corresponding
inputs and outputs is usually made.

However, the aspect of partiality of inputs and outputs becomes important,
when a high-level input-output model of a real-world system is considered as an
abstraction of a lower level mathematical model of this system.

Various concrete mathematical models of systems (e.g. those described by
differential equations, hybrid automata [33], etc.) admit a situation, when the inputs
of a system (e.g. input control signals), if there are any, are defined on the entire
time domain, but the system’s behavior (a solution of an equation, execution, etc.)
and its outputs are not defined on the entire time domain. This can indicate a real
phenomenon (e.g. termination or destruction of a real system) or inadequacy of a
mathematical model [10].

An example of such a situation is the phenomenon of a finite time blow-up in
differential equations [10, 31]. It is characterized by the unbounded growth of the
value of one or several system variables during a bounded time interval. This can be

illustrated by a (non-zero) solution x(¢)=1/(c—t), c=const of the differential
equation jtx(t)zxz(t), for which |x(¢) >+, when t—>c. A survey of the

respective results and applications can be found in [35, 10, 31, 63, 21, 13, 53].

Another kind of a situation when a mathematical model does not define a
system’s behavior on the entire time domain is a Zeno behavior [1, 122, 4, 103] of a
hybrid (discrete-continuous) system [33, 42]. In this case, a hybrid system performs
an infinite sequence of discrete steps during a bounded total time, but each step
takes a non-zero time. A simple example in which this behavior arises is a hybrid
automaton [42] which models a bouncing ball [122].

It should be noted that in either case, the problems of detection of finite time
blow-ups or Zeno behaviors in a mathematical model, their physical interpretation,

and if necessary, adjustment of a model to avoid such behaviors are non-trivial. For
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this reason, generally, one cannot assume that any available and useful model of a
real-world system would be free of such behaviors.

This dictates that an input-output abstraction of a real system which is based
on concrete mathematical models of this system must take into account the
possibility of partial input and outputs.

The arguments mentioned above show that a study of abstract system models
which take into account partiality of inputs and outputs as functions of time is an
important topic of theoretical research.

Connection of the work with scientific programs, plans, topics. The work
is a part of the scientific research conducted at the department of Theory and
Technology of Programming of the Faculty of Cybernetics of Taras Shevchenko
National University of Kyiv devoted to the following fundamental and applied
themes: “Development of constructive mathematical formalisms for intelligent
decision support systems, knowledge processing, and standardization of modern
DBMS and CASE tools” (Ne 0106U005856, 2006-2010), “Formal specifications
and methods of development of reliable software systems” (Ne 01110007052, 2011-
2015).

The work was supported in part by the project Verisync (ANR-10-BLAN-
0310) of Institut de Recherche en Informatique de Toulouse (IRIT), France, devoted
to development of methods for ensuring safety and reliability of embedded
software.

Aim and objectives of the thesis. The aim of the work is formalization and
analysis of systems that admit inputs and outputs which are partial functions of
time. The main objectives of the research are listed below.

1) Give a definition of an abstract system which admits partial inputs and
outputs.

2) Give an adequate definition of the notion of causality (nonanticipation) for

abstract systems with partial inputs and outputs. Informally, this property means
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that the current output values of a system do not depend on the future values of the
inputs [86, 112, 28, 72].

3) Find a relation between causality (nonanticipation) and the existence of a
representation in the form of a dynamical system for abstract systems with partial
inputs and outputs. A connection between the existence of a state-space (dynamical
system) representation of a system with inputs an outputs and nonanticipation was
studied in the works on mathematical systems theory [112, 74, 56]. For example, in
the theory by M. Mesarovic and Y. Takahara [74], a time system is causal if and
only if it has a state space representation [74, Proposition 2.8]. The aim is to
establish an analogous result for the systems considered in this work.

4) Obtain criteria that allow one to determine the existence of pairs of the
corresponding total inputs and total outputs (total input-output pairs) and the
existence of a total output for a given total input for abstract systems with partial
inputs and outputs (here “total” means “defined on the entire time domain™).

The object of the research is a class of abstract systems with inputs and
outputs which are partial functions on the real time domain.

The subjects of the research are the aspects of causality (nonanticipation),
representation, and the existence of total input-output pairs of abstract systems with
inputs and outputs which are partial functions on the real time domain.

Research methods. The research is based on methodological principles of the
composition-nominative approach [84] which aims to construct a hierarchy of
program and system models of various abstraction levels and generality. This
approach is a development of the compositional programming by V.N. Red’ko [92,
91] of Kyiv school of cybernetics which was inspired by the principle of
composition by G. Frege and investigations of A.A. Lyapunov, Yu.l. Yanov, A.P.
Ershov, V.M. Glushkov and others.

Scientific novelty of the obtained results. The following novel results were

obtained in the thesis.
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1) A new class of abstract systems with partially defined inputs and outputs
called blocks was introduced. Basic properties of the systems of this class were
studied.

2) Weak and strong notions of nonanticipation considered in [112, 74] were
improved. These notions were extended to blocks and compared.

3) For the first time a representation theorem for strongly nonanticipative
blocks was proved. It was shown that such blocks can be represented using an
introduced class of abstract dynamical systems called initial Nondeterministic
Complete Markovian Systems (NCMS) which is based on the notion of a solution
system by O. Hajek [37].

4) For the first time general criteria for the existence of total input-output
pairs of a strongly nonanticipative block (i.e. input-output pairs (7,0) such that both
i and o are total functions of time) and the existence of a total output for a given
total input of a strongly nonanticipative block were proved.

5) For the first time a general criterion for the existence of global trajectories
of NCMS was obtained. This criterion expresses the existence of global trajectories
in terms of conditions of the existence of locally defined trajectories of NCMS.

Theoretical and practical significance of the obtained results. The work is
theoretical. The obtained results can be used for constructing high-level abstractions
of cyber-physical, real-time information processing and other similar systems or
their components.

The results of the thesis were used in the course “Formal methods of program
development” at the Faculty of Cybernetics of Taras Shevchenko National
University of Kyiv.

Personal contribution of the applicant. All results present in this thesis
were obtained personally by the applicant. In the works published in co-authorship:

— 1in the article [17] the following sections belong to the applicant:

“3. Uncertain Markov processes”, “4. Systems with uncertain structure”;
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— in the article [81] the following sections belong to the applicant: “2.
Nominative data”, “5. Nominative equivalence”, “7. Nominative stability
of programs of SCION,”;

— in the article [83] the following sections belong to the applicant: “Il.
Nominative and complex-named data”, “2. Properties of complex-named
data”, “3. Monotonicity of the operations on complex-named data”;

— 1in the article [52] the following sections belong to the applicant: “2.
Motivating example”, “3 Possibility theory and Markov-like processes”,
“4. Simple systems with uncertain switching”.

Approbation of the results of the thesis. The main results of this work were

presented at the following scientific conferences and workshops:

1) XVI All-Ukrainian Scientific Conference “Modern problems in applied

mathematics and informatics”, October 8-9, 2009, Lviv, Ukraine.
2) The 6™ International Conference “Theoretical and Applied Aspects of
Program Systems Development”, December 8-10, 2009, Kyiv, Ukraine.

3) International Scientific Conference “Simulation-2010”, May 12-14, 2010,
Kyiv, Ukraine.

4) The 7™ International Scientific and Practical Conference on Programming
UkrPROG’2010, May 25-27, 2010, Kiev, Ukraine.

5) International Scientific Conference on Computer Science and Engineering
(CSE’2010), September 20-22, 2010, KoSice, Slovakia.

6) The Third International Conference “Nonlinear Dynamics — 20107,
September, 21-24, 2010, Kharkiv, Ukraine.

7) XV International Conference “Dynamical system modeling and stability

investigation” (DSMSI-2011), May 24-27, 2011, Kyiv, Ukraine.

8) The 8" International Conference “Theoretical and Applied Aspects of

Program Systems Development”, September 19-23, 2011, Kyiv, Ukraine.
9) International Scientific Conference INFORMATICS’2011, November 16-
18, 2011, Roznava, Slovakia.
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10) International Workshop on Algebraic, Logical, and Algorithmic Methods
of System Modeling, Specification and Verification (SMSV), June 6-10, 2012,
Kherson, Ukraine.
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CHAPTER 1
ABSTRACT SYSTEMS WITH PARTIAL INPUTS AND OUTPUTS

1.1 Overview

As we have noted in the introduction, a large amount of computing systems
used today act as agents interacting with physical processes. They are now
frequently called cyber-physical systems [9, 62]. Modeling and specification of
such systems requires taking into account the passage of (physical) time, so they
cannot be viewed as pure data transformations or pure input-output relations on
data.

Let us give some quotes from the Cyber-Physical Systems (CPS) concept
map [20] by S.S. Sunder of NIST (USA), E.A. Lee of UC Berkeley (USA) and
others:

“CPS integrates the dynamics of the physical processes with those of the
software and networking, providing abstractions and modeling, design, and analysis
techniques for the integrated whole.” [20]

“Classical models of computation in computer science, rooted in Turing-
Church theories for non-concurrent systems, and in nondeterministic transition
systems and process algebras for concurrent systems, do not handle temporal
dynamics well.” [20]

“A key CPS challenge is to conjoin the engineering abstractions for
continuous dynamics (such as differential equations) with computer science
abstractions (such as algorithms).” [20]

Besides, the following research needs in CPS are outlined in [9]: Abstraction
and Architectures, Distributed Computations and Networked Control, and
Verification and Validation. With regard to the first aspect (Abstraction and
Architectures) it is stated that
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“Innovative approaches to abstraction and architectures that enable seamless
integration of control, communication, and computation must be developed for
rapid design and deployment of CPS.” [9].

The mentioned challenges imply the importance of development of adequate
system models of various levels of abstraction and generality with the emphasis on
the temporal behavior of a system (which should not be restricted to a purely
discrete or purely continuous evolution).

It should be noted that the essential role of mathematical modeling in systems
engineering was already recognized in early works in that field [34, 39, 115, 16].

Although not aimed specifically at solving the mentioned challenges, many
concrete models that combine a discrete and continuous behavior in some way were
and are studied in control theory, theory of differential equations, and computer
science, e.g. variable structure systems [11, 23, 106], impulsive differential
equations [96, 60], differential equations with discontinuous right hand sides [26],
switched systems [65], hybrid control systems [113, 105, 79, 14, 33], hybrid
automata [46, 2, 42], phase transition systems [69], hybrid reactive modules [3],
hybrid I/O automata [68]. It is reasonable to assume that on some level of
abstraction models of these kinds would be useful in the context of CPS.

A more general treatment of models that can combine discrete and continuous
behavior (including studies of model hierarchies) can be found in many variants of
mathematical systems theory [119, 6, 55, 74, 89, 121, 87, 88, 16, 71, 90, 66, 114,
44]. With regard to the way of modeling system’s behavior, these variants of
mathematical systems theory can be roughly classified into those which on the most
abstract level consider a system as a “black box” which interacts with the
environment and those which on the most abstract level describe the behavior of a
system using the notion of state.

We consider the approaches of the former kind preferable. For example,
consider the Architecture Analysis and Design Language (AADL) standardized by
the Society of Automotive Engineers (SAE) [25, 24, 45] which is applicable to the
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domains related to cyber-physical systems. The following quote gives a general
description of this langauge [24, p. 13]:

“The language employs formal modeling concepts for the description and
analysis of application system architectures in terms of distinct components and
their interactions. It includes abstractions of software, computational hardware, and
system components for (a) specifying and analyzing real-time embedded and high
dependability systems, complex systems of systems, and specialized performance
capability systems and (b) mapping of software onto computational hardware
elements.”

The core AADL language concepts include a Component Type which defines
interface elements and externally observable attributes of a component and a
Component Implementation which defines a component’s internal structure in terms
of interconnections of subcomponents, subprogram call sequences, etc. One
component type can have several corresponding implementations. A system is also
viewed as a kind of (composite) component. A component type can be considered
as a high-level (“black box) model and a component implementation as its
refinement.

The description given above supports a view that approaches which on the
abstract level consider a system as a “black box™ are preferable (this still allows one
to take into account the internal organization of a system on lower levels).

Let us consider several variants of mathematical systems theory of this kind.

— System theory by L. Zadeh [119, 118]. In this theory an oriented abstract

object 1s defined as a family {R[fo’ﬁ]} of sets indexed by segments of time [7,,¢,],

where each set R consists of pairs (u, y) (called input-output pairs) of functions

[ig+]
of time u, y (called segments) defined on a common domain [¢,]. The family

must satisfy a consistency condition: if a pair (u, ) belongs to R[fo»ﬁ]’ then any pair
(u |[,Oafl], v |[To’71]) with [7,,7,] < [¢,,t,] also belongs to some member of this family.

A system is defined as a combination of abstract objects which can be represented
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as a block diagram. Links between abstract objects mean equality constraints.
Although it is noted that in general an input-output pair does not need to be
extendable to (be a restriction of) some input-output pair defined on 7' (i.e. globally
in time), this case does not receive much attention. Instead, a special class of
oriented abstract objects (oriented objects) is introduced in which for each pair

(u,y) there i1s an input-output pair (u,,y,) such that «, y are restrictions of u,,
yr respectively and both u, and y, are defined on 7. This class is then

considered. In particular, a kind of state-state representation is introduced
(following an informal principle that a state at a certain time is an information that
is needed to determine the future behavior of a system [118]), the problems of
identification and input-output analysis are considered, and further subclasses
(linear systems) are studied.

— Abstract systems theory by M. Mesarovic and Y. Takahara [73, 74]. A

system is defined on the abstract level as a relation on sets S <V, xV, x..xV,

(meaning a relation among objects). As a special case, an input/output system

(“terminal system™) is obtained by partitioning {/,,...,V, } into inputs (causes) and
outputs (effects). A special case of an input/output system, a time system, is defined

as a relation Sc X xY, where X c A" and Y < B” are called time objects and
their elements are called abstract time functions (total functions of time). Besides
other classes of systems, the class of time systems receives much attention [74,
Chapter 5]. In particular, the topics of state-space representation, causality,
feedback are considered.

— Systems theory by B.P. Zeigler [120, 121]. In this theory a hierarchy of
system specifications is defined (it is noted in [121] that the levels of this hierarchy
are close to epistemological levels defined by G. Klir [56] with the difference that
Zeigler makes emphasis on time and dynamics). The initial level 0 (observational
frame) of this hierarchy corresponds to knowledge of how to stimulate a system
with inputs, which variables to measure, and how to observe them. The level 1 (I/O
behavior) corresponds to knowledge of a set of time-indexed collections of input
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and output data (input/output pairs of a system, pairs of input and output
trajectories). Subsequent levels include knowledge of the state and structure of a
system. On the initial level a system is formalized as an I/O observation frame
10=(T,X,Y), where T i1s a time domain (time base) and X, Y are input and
output value sets. On the level 1 (I/O relation observation) a system is formalized as
a tuple IORO=(T,X,Q,Y,R), where T, X,Y are defined as in I/O observation
frame, Q) is a set of allowable input segments, i.e. functions defined on a time
interval which take values in X', and R is an I/O relation consisting of pairs of
input segments and output segments (function from a time interval to Y ) such that
dom(w)=dom(p) for all (w,p)eR.

— Behavioral approach to systems theory by J.C. Willems [111, 90]. A
mathematical model is defined as a pair (U, B), where U is a set of outcomes and
B < U is a behavior. Informally, a model defines a subset of possible outcomes of a

set of all outcomes. A (dynamical) system is defined as a triple (T,W,B), where

T c R is a time domain, W is a signal space, and B W" is a behavior. Thus the
behavior of system is a set of trajectories which have a common domain. An I/O

dynamical system is defined as a tuple (T,U,Y,B), where T is a time domain, U

and Y are input and output signal spaces, and B < (UxY)" is a behavior. Thus the
behavior is a set of total functions of time which determine input-output value pairs.
Additional constraints are imposed that guarantee that the input is “free”, i.e. is not
restricted by the system, and that for any given input signal, any two corresponding
output signals which have a common prefix (till some time ¢ ) coincide.

Some works in the field of computer science provide abstract models close to
the models described above. Examples are given below.

— An approach to functional specification of real-time and hybrid

systems proposed in [79]. In this work a notion of a stream processing function is

defined as a function f: (M IR "> (M ;R *)", where M,,M, are sets of input and

output values, i.e. a mapping from tuples of total signals to tuples of total signals. It
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1s considered as a functional specification that describes the behavior of a
component/system. The problems of composition and feedback are studied.

— An approach to modeling timed concurrent systems proposed in [67,
72]. A signal is considered as a partial function s:7 =V from a time domain to a
set of values, or as a set of pairs (¢,v), teT, velV (called events) which is a graph
of a partial function. The set of all such signals is denoted as S(7,V) and is
equipped with a set-valued distance-like function. A (partial) function F from
S(T,V) to S(T,V) is considered as a model of a component/system. The question
of feedback composition of such functions is studied for a special subclass of causal
functions (strictly contracting functions [72]).

We see that the approaches described above provide abstract input-output
models of a system. These models can capture a temporal behavior of a system and
do not restrict it to purely discrete or purely continuous evolutions. At the same
time, we see an aspect that is not sufficiently investigated. Namely, the case when
the components of an input-output pair are partial functions of time which do not
necessarily have equal domains. Among the approaches described above, this case
1s explicitly considered in [67, 72], but only for a special subclass of deterministic
(functional) systems.

We will investigate not necessarily deterministic abstract systems with partial
inputs and outputs (as functions of time) in this thesis. We will define a class of
such systems which we call blocks. A block can be seen as a generalization of the
notion of a Mesarovic time systems [74]. It maps a collection of input signals (input
signal bunch) to one or more collections of output signals (output signal bunches).
Then we will study the main aspects of blocks such as nonanticipation,
representation, and existence of total input-output pairs.

We use the term block, because the notion of a system is already very
overloaded and in order to stress that regardless of the way of its actual
specification, a block is viewed abstractly as a black box which receives input

signals and produces output signals.
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1.2 Preliminaries

In this section we describe general methodological aspects of our work and

general aspects of the mathematical framework which we use.

1.2.1 Methodological aspects

In the thesis we use some principles of the composition-nominative approach

to program and system formalization [84]. The main principles of this approach are:

Development principle (from abstract to concrete): notions should be
introduced as a process of their development that starts from abstract
understanding and proceeds to more concrete considerations.

Principle of priority of semantics over syntax: program or system semantic
and syntactical aspects should be first studied separately, then in their
integrity in which semantic aspects prevail over syntactical ones.
Compositionality principle: programs or systems can be constructed from
simpler programs or systems with the help of special operations, called
compositions, which form a kernel of semantics structures.

Nominativity principle: nominative (naming) relations are the basic ones

in constructing data.

In accordance with the Development principle, we start our study with an

abstract view of an input-output system in Chapter 1, and later in Chapter 2 and

Chapter 3 we consider such systems on a more concrete level. In accordance with

the Principle of priority of semantics over syntax, we focus on semantic properties

of blocks, although we define blocks in a way that admits development of the

syntactic aspect. We use the principles of Compositionality and Nominativity in

Chapter 1 when we define block compositions and represent input and output data

of blocks as named sets [84, 82, 81].
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1.2.2 Mathematical aspects

1.2.2.1 Binary relations and functions

We consider a binary relation as a subset of the Cartesian product of two sets
and do not distinguish formally the notions of a binary relation R and the graph of
R . We do not distinguish formally the notion of a function and a functional binary
relation. However, generally, we do not apply set membership notation to functions
((x,y) e f) and instead use a functional notation (y = f(x)).

The notation f:4— B (or f: A B) indicates that f is defined on a set
A (or subset of A) and takes values in B. When we write that a function
f:A> B is total or surjective, we mean that f is total on the set 4 specifically
(f(x) is defined for all x € 4) or, respectively, is onto B (for each y € B there
exists x € dom( f') such that f(x)=y).

We will write f(x)4 to indicate that a function f is defined on a given
argument x, and f(x){=y to indicate that f is defined on x and takes the value
y on x. To indicate that ' is undefined on x, we will write 7(x)T. We will write
f(x)=g(x) to indicate that f(x){ if and only if g(x)¥, and f(x)4 implies

f(x)=g(x).

1.2.2.2 Multi-valued functions

A multi-valued function (multifunction) [84] associates one or more resulting
values with each argument value.

Definition 1.1. A (total) multi-valued function from a set 4 to a set B
(denoted as f: A—™ B)is a function f:4—2°\{@}.
An inclusion y € f(x) means that y is one of possible values of f on x.

1.2.2.3 Named sets

We will use the notion of a named set [84] to formalize an assignment of
values to variable names.

Definition 1.2. A named set is a partial function d:V =W from a non-

empty set of names V' to a set of values W'.
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A named set can be considered as a special case of more general notions of
nominative data and complex-named data [84, 82, 81, 83, 80, 48, 49, 75, 50] which

reflect hierarchical data organizations. Operations on such data were described in
[82]. We will use a special notation for the set of named sets: " W denotes the set of
all named sets d : ¥V = W (this only emphasises that } is a set of names).

An expression of the form [n, — a,,n, > a,,...] (where n,n,,... are distinct
names) denotes a named set d such that dom(d) = {n,,n,,...} and d(n;)=a,.

The unique named set with empty domain is called the empty named set and
1s denoted as [].

For any named sets d,,d, we write d, cd, (named set inclusion), if (the
graph of) d, is a subset of (the graph of) d,.

We give a special meaning to the operations of union U, intersection N and
difference \ of named sets: if d,,d, are named sets and the union of (graphs of) d,
and d, i1s a named set d, then d, Ud, =d. Otherwise (i.e. the union of graphs of
d,, d, s not functional), d, U d, is undefined.

The union of more than two named sets and the intersection of named sets are
defined similarly.

1.2.2.4 Axiom of choice

We assume the axiom of choice [43] throughout the thesis and use it or

equivalent statements (Zorn’s lemma [43]) without special mentioning.

1.3 An abstract block

Informally, a block is an abstract model of a system which receives input
signals and produces output signals (Fig. 1.1). The input signals can be thought of
as certain time-varying characteristics (attributes) of the external environment of the
system which are relevant for (the operation of) this system. Each instance of an

input signal has a certain time domain on which it is defined (present).
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are not necessarily finite and
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Fig. 1.1. An illustration of a block with input signals x,, x,, ... and output
signals y,, »,, ... . The plot displays example evolutions of input and output
signals. Solid lines represent (present) signal values. Dashed horizontal segments
indicate signal absence. Dashed vertical lines indicate the right boundaries of the

domains of signal bunches.

An input signal bunch, or simply an input of the block, can be thought of as a
collection of instances of input signals of the system. Each input signal bunch i has
an associated domain of the existence (dom(i)) which is a superset of the union of
the domains of signals contained in i. The domain of an input signal bunch can be
thought of as a time span of the existence of the external environment of the system.

The output signals can be considered as effects (results) of the system’s

operation. An output signal bunch, or simply an output of the block, can be thought
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of as a collection of instances of output signals of the system. The output signals
have domains of definition (presence) and each output signal bunch o has an
associated domain of the existence (dom(o)) which is a superset of the union of the
domains of signals contained in o. The domain of an output signal bunch can be
thought of as a time span during which the system operates.

It is assumed that for an output signal bunch o which corresponds to a given
input signal bunch i the inclusion dom(o) < dom(i) holds (i.e. the system does not
operate when the environment does not exist). However, in the general case, the
presence of a given input signal at a given time does not imply the presence of a
certain output signal at the same or any other time moment.

A block may operate nondeterministically, 1.e. for one input signal bunch it
may choose an output signal bunch from a set of possible variants. But for any input
signal bunch there exists at least one corresponding output signal bunch (although
the values of all signals in it may be absent at all times, which means that the block
does not produce any output values).

Normally, a block processes the whole input signal bunch, and does or does
not produce output values. However, in the general case, a block may not process
the whole input signal bunch and may terminate at some time moment before its
end. This is interpreted as an abnormal termination.

Let us give formal definitions. Let 7 =R, denote a time scale. We will use
the same time scale 7' throughout the thesis. We assume that 7' is equipped with
the topology induced by the standard topology on R [77], i.e. the open sets in T

have the form 7'M Uj where (/;);., is an indexed family of open intervals in

eJI J?
R. Let us define the following class of sets:

T,={3,T}U{[0,0) |teT\{0}}L{[0,¢]|teT},
1.e. 7, is the set of all (bounded or unbounded) intervals with the left end 0 together
with the empty set. Obviously, 7, is closed under arbitrary unions and

intersections, and thus is a complete lattice of sets [93].
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Let W be a fixed non-empty set of values.
Definition 1.3.
1) A signal is a partial function from 7 to W (f:T S W ).

2) A V -signal bunch (where V' is a set of names) is a function sb: T =" W
such that dom(sb)eT,. The set of all V -signal bunches is denoted as
Sb(V.,w).

3) A signal bunch is a V" -signal bunch for some V.

4) A signal bunch sb is called trivial, if dom(sb) =, and is called total, if
dom(sb) =T . The trivial signal bunch is denoted as L.

5) For a V -signal bunch sb, a signal corresponding to a name x€V is a
function sb[x]: dom(sb) = W such that sb[x](?) = (sb(¢))(x) for all ¢.

6) A signal bunch sb, is a prefix of a signal bunch sb, (denoted as sb,<sb, ),
if sb, =sb, |, forsome AeT,.

Note that a signal is not considered as a special case of a signal bunch.

Lemma 1.1. If sb, = sb, |, for some signal bunches sb,,sb, and A€ 7, then
either 4 =dom(sb,), or sb, = sb, .

Proof. Assume sb, =sb,|,. Then dom(sh)=dom(sb,)NA. Because
dom(sb,) and A4 belong to 7, they are comparable with respect to inclusion <, so
we have either dom(sb))= A, or dom(sb,)=dom(sb,). In the latter case we have
sb, = sb, , because sb, =sb, |,. [

Lemma 1.2. < is a partial order on } -signal bunches.

Proof. Reflexivity of =< follows from the fact that sb=sb|,,,, and
dom(sb) e T, for any V -signal bunch sb.

If sb<sb, and sb,<sb,, then sb =sb,|, and sb,=sb |, for some
A,A'eT,, whence dom(sb)cdom(sb,) and dom(sb,)cdom(sb;). Then
dom(sb,) = dom(sb,). Moreover, dom(sb,)=dom(sh,)< A, because sb, =sb,|,.

Then sb, = sb,. Thus < 1s antisymmetric.
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If sb,=<sb,, sb,=<sb,, then sb, =sb, |,, sb, =sb; |, for some 4,4 €T,. Then
sb,=sb,, because sb, =sb, |, ., and AN A"eT,. Thus < is transitive. [

Later we will need a generalized version of the prefix relation < for pairs of
signal bunches.

For any signal bunches sb,,sb,,sb;,sb; let denote (sb,,sb,)=<>(sb|,sb}), if

there exists 4 € 7, such that sb, =sb| |, and sb, =sb, |, .

It is easy to see that <* is a partial order on pairs of ¥ -signal bunches (note

that this is not a product order [93]). The notation <* is not to be confused with the
composition of a binary relation with itself.

Now let us give the definition of a block. A block has a syntactic aspect (e.g.
a description in some specification language) and a semantic aspect — a partial
multi-valued function on signal bunches.

Definition 1.4.

1) A block is an object B (syntactic aspect) together with an associated set of

input names I/n(B), a set of output names Out(B), and a total multi-
valued function Op(B):Sb(In(B),W)—" Sb(Out(B),W) (operation,
semantic aspect) such that the membership oe€Op(B)(i) implies
dom(o) < dom(i).

2) Two blocks B,, B, are semantically identical, if In(B))=In(B,),

Out(B,) = Out(B,), and Op(B,) =Op(B,).

A membership o € Op(B)(i) means that o is a possible output of a block B
on the input i . For each input signal bunch i there exists some output signal bunch
o. The domain of o is a subset of the domain of i. A situation when o becomes
undefined at some time ¢, but i is still defined at ¢ we interpret as an error during
the operation of the block B (the block cannot resume its operation after ¢ ).

If there is only one possible output signal bunch for each input signal bunch,

we call a block deterministic.
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Definition 1.5. A block B is deterministic, if Op(B)(i) is a singleton set for
each In(B)-signal bunch i.

Definition 1.6.
1) An input/output (I/O) pair of a block B is a pair of signal bunches (i,0)

such that 0 € Op(B)(i). In such a pair i is called the input signal bunch
and o is called the output signal bunch.

2) The I/O relation of a block B is the set of all I/O pairs of B, i.e. is the
graph of the multifunction Op(B). The I/O relation of B is denoted as
10(B).

3) The input data space of a block B is the set IDS(B)=""®) W and the

output data space of B is the set ODS(B) =""® w .

As the inclusions (i,0) € IO(B) and o € Op(B)(i) are equivalent, we will use
the one which is more convenient in a given context.

From Definition 1.6 we have that if (i,0) e IO(B), then i takes values in
IDS(B) and o takes values in ODS(B).

Definition 1.7. A block B is a sub-block of a block B’ (denoted as B<IB'), if
In(B)=In(B'"), Out(B)=Out(B"), and IO(B)c IO(B').

Obviously, the sub-block relation < on blocks is reflexive and transitive, so
it is a preorder. It can be interpreted as a kind of refinement of models, in particular,
if a block B is considered as a model of a real system and B’ is considered as a
specification of requirements to the behavior of this system, the relation B<B' can
be interpreted as a statement that the system satisfies the specification.

Definition 1.8. An I/O pair (i,0) of a block B is called

1) trivial, if (i,0)=(L,1);

2) non-trivial, if (i,0)#(L,1);

3) normal, dom(i) =dom(o);

4) total, if dom(i)=dom(o)=T ;
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5) abnormal, if dom(o) < dom(i).

From Definition 1.4 we immediately have that the trivial pair (L, 1) is an I/O
pair of any block. This pair means that a block does not output any value when it
has no available input. A normal I/O pair corresponds to the case when a block
operates normally and processes the whole available input. An abnormal I/O pair
corresponds to the case when a block terminates before the end of the available
input signal bunch, which we interpret as an error during its operation.

The output signal bunch of an abnormal I/O pair is in some sense non-
continuable. Formally, this is expressed by the following lemma.

Lemma 1.3. Let (i,0) be an abnormal I/O pair of some block and i’,0" be
signal bunches such that (i,0)<*(i,0"). Then o =0".

Proof. Assume that (i,0)<*(i’,0'). Then i=i'|, and o=0'|, for some
Ae7,. By Lemma 1.1, either 4=dom(o), or o=0'. In the latter case the
proposition holds, so consider the former case, i.e. A=dom(o). We have
dom(i) < A=dom(o), because i =i'|,. This contradicts the assumption that (7,0) is

abnormal, because dom(o) < dom(i). Thus o=0". []

1.4 Composition of blocks

The usual ways in which input-output systems like blocks can be combined
include the sequential and parallel composition. Other ways of combining such
systems are also possible (e.g. a composition involving a feedback [74, 118]), but
we do not consider them in the thesis. Formally, we define the compositions of
blocks as follows.

Definition 1.9. If B,,B, are blocks such that Out(B,) = In(B,), then a block

B is called a sequential composition of B, and B, (Fig. 1.2), if In(B)=In(B,),

Out(B) = Out(B,), and Op(B)(i) =, o5 vy OP(B2)(0).
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Definition 1.10. If (B,),_, is an indexed family of blocks, where J #J is a
set of indices, such that /n(B;)"In(B;) =< and Out(B;) "Out(B,;) = for all
j,j €J such that j = j', then a block B is called a direct product (or a parallel
composition with independent inputs) of (B,);_, (Fig. 1.3), if In(B) = U].EJ In(B)),
Out(B) = UjeJ Out(B,), and Op(B)(i) is the set of all 0 € Sb(Out(B),W) such that
there exists an indexed family (o0,),., such that

1) o0,€0p(B;)(f;°i) for all jeJ, where for each jeJ
£, " w "D W s a function such that f(d) =d s, forall d " W

2) dom(o) = ﬂjej dom(o;);

3) o(t) = Ujejoj(t) for each teﬂjejdom(oj), where | J is the union of

named sets (note that Uje ,0;(#) is defined, because the sets Out(B;), jeJ are

disjoint).
Sequential composition of B1 and B2
. T A
x]l —> vl vl ‘I_>I zl
x2 —L>|  BlockBl 2 Y21 BlockB2 f+—> 22
...... X [T
1

Fig. 1.2. An illustration of a sequential composition of blocks.

Parallel composition of B1, B2, ...

72 —l— Block B2 s 2

Fig. 1.3. An illustration of a direct product of blocks.
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Proposition 1.1. Let B,, B, be blocks such that Out(B,) = In(B,). Then

1) a sequential composition of B, and B, exists;

2) if each of B and B’ is a sequential composition of B, and B,, then B and
B’ are semantically identical.

Proof. 1) For each i € Sb(In(B,),W) denote O(i) =, _,5 ;) OP(B2)(0).

Let ieSb(In(B)),W). Then Op(B,)(i)#<, so there exists some
o' € Op(B,)(i), and because Op(B,)(0") =, we have O(i) = J .

Moreover, if o€ O(i), then o€ Op(B,)(0") for some o' e€Op(B,)(i), so
dom(o) < dom(o") < dom(i). Thus dom(o) < dom(i) for all o € O(i).

Let B be the triple (in(B,),0ut(B,),(O()),csp s, )w)) - Let us associate with
B the sets In(B)=1In(B)), Out(B)=0Out(B,), and a function
Op(B): Sb(In(B),W) —™ Sb(Out(B),W) such that Op(B)(i) = O(i) for all i . Then
B is a block and is a sequential composition of B, and B, by Definition 1.9.

2) Follows immediately from Definition 1.9. []

Proposition 1.2. Let (B,),., be an indexed family of blocks, where J # < is

jeJ
a set of indices, such that /n(B;) N In(B ;)= and Out(B;)NOut(B;) =< for all
j,j' €J suchthat j= j'. Then

1) a direct product of (B;),., exists;

2) if each of B and B’ is a direct product of (B)) then B and B’ are

jeJ»
semantically identical.

Proof. 1) Denote IN = Ujejln(Bj), OUT = U_}.EJOut(Bj). Foreach jeJ
£ w —")  is a function such that f,(d)=d (s forall d €™ w.

For each i € Sb(IN, W) let O(i) be the set of all 0 € SH(OUT, W) such that

there exists an indexed family (0,),., such that o, € Op(B,)(f; oi) forall jeJ,

dom(o) = ﬂjejdom(oj) ,and o(¢) = Ujejoj(t) for each ¢ ﬂjejdom(oj) .
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Let i e Sb(IN,W). Then for each jeJ, f;oieSb(In(B;),W) and there
exists some o; € Op(B,)(f;°i). Let 4= ﬂjej dom(o;) and o:4 ST W be a
function such that o(¢) = Ujejoj(t) forall e A. Then A€7, so o eSh(OUT,W).

Thus o € O(i). So we have O(i) # D for all i € SB(IN,W).

Moreover, for each o€ O(i) we have dom(o)= ﬂje ,dom(o;) for some
(0;) e, such that o, €Op(B;)(f;°i) for all jeJ, so because J #J, we have
dom(o) ﬂjEJ dom(f; oi) = dom(i).

Let B be the triple (IN,OUT,(O@)),cspv ) - Let us associate with B the
sets In(B)=IN and Out(B)=OUT , and Op(B): Sb(In(B),W) —=" Sb(Out(B),W)
such that Op(B)(i) = O(i) for all i. Then B is a block and is a direct product of
(B;) jc; by Definition 1.10.

2) Follows immediately from Definition 1.10. [
1.5 Causality in input-output systems

In the case of input-output systems, causality (or nonanticipation) basically
means the output does not depend on future values of the input. This notion
frequently appears in mathematical systems theory [112, 74, 28, 66] and signal
processing [86]. Systems that work in real (physical) time satisfy this condition.
However, the details of a formal definition for different classes of systems vary.

In signal processing, electrical engineering, control theory the following

definition 1s frequently used [86, 64]: if a system maps signals x,, x, to signals y,,
v, and x,(¢)= x,(t) for all 1<¢,, then y,(¢t)= y,(¢) for all £<¢,. It is presupposed

that a system is deterministic. We can reformulate it for blocks as follows.
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Definition 1.11. A deterministic block B 1is causal, if for each
iy, i, € Sb(In(B),W) and t €T , if i, [ 1= 1, |o.9» 01 € Op(B)(i,) , and o, € Op(B)(i,),
then o, [y 1= 0, |o.-

The following lemma shows that in this definition one can consider signal
bunches which coincide not only on a segment of the form [0,7], but on any
AeT,.

Lemma 1.4. A deterministic block B is causal if and only if for all signal
bunches i,,i,,0,,0, and Ae7, such that o, € Op(B)(i,), o0, <O0p(B)(i,), the
equality i, | ,=1i, |, implies o, | ,=o, |,.

Proof. The “if” part of the statement follows immediately from Definition
1.11, because [0,¢]€ 7T ,. Consider the “only if” part of the statement. Assume that
B is deterministic. Let 4€7, and i,i,,0,,0, be signal bunches such that
0, € Op(B)(i,), 0, €Op(B)(i,), and i |,=i,|,. If A=[0,¢] for some teT, then

oy 4= 0, |, by Definition 1.11. Otherwise, 4={J_,_,, [0.t], whence o, |,=o0,|,,

because o [y 1= 0, |o,q for each €T by Definition 1.11. [

The condition for causality is illustrated in Fig. 1.4.

il] A i2|A
Value ’ | il
’ I
V4 1 /
I
| 2
ol| = 02| I
A/ A ol
, I
y I /
1
| 02
I
-~ = l
A Time

Fig. 1.4. An illustration of Lemma 1.4.

The graphs of signal bunches are depicted as solid lines.
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Some works in the domain of mathematical systems theory [112, 74, 28, 66]
extend this notion of causality to the nondeterministic case. However, there is no
unified approach to an extension of such kind.

For example, in the work [112] a notion of a non-anticipatory system of the
form S < A" x BT, where T is a time domain (in[112] T 1is denoted as T, but we
changed this symbol here to avoid a conflict with our notation). When T = (z,,+o0)
with the standard ordering, where ¢, € R, this notion can be described as follows
[112, Definition 2.4]:

— If S is a functional relation, S is called non-anticipatory, if for all teT

and x,x" e dom(S), if x |(t0,,]= x' |(t0,,], then S(x)(¢)=S(x")(?).
— Otherwise, S 1is called non-anticipatory, if there exists a set
dom(S)

F crange(S)

S=Ule»)IEf) feF ay=f(x)}.
In the theory [74], a time system S < X xY, where X and Y are sets of

of functional non-anticipatory systems such that

(total) functions on a time domain is called causal [74, Chapter 3, Definition 2.2], if
it has a causal initial response function, which means [74, Chapter 3, Definition 1.1

and Definition 2.1] a function p,:Cx X — Y, where C is an arbitrary set, such that
(x,y)eS§ if and only if Jc(y=p,(c,x)), and for any x,x'e X and c,¢, if
Xy = X Nrpery > then po(e,X) |pen= Po(€,X") i<y - The idea here is essentially
similar to the definition given in [112]. In the same work a number of related

notions are defined. In particular, a notion of a pre-causal system Sc X xY is

defined as follows [74, Chapter 3, Definition 2.4]: for any x,x'e X and ¢, if
X |{t’:t’st}: x' |{t':t'$t}’ then S(x) |{t':t'£t}:S(x') |{t':t'£t}’ where S(x)={y|(x,y)e S} and
S(x)|, means {y|,|y€S(x)}. It it shown that the notions of a pre-causal and

causal system are equivalent on a special class of time systems (the class of output-
complete systems [74, Chapter 3, Definition 2.5 and Proposition 2.1]). Other

notions defined in [74] include strongly causal, past-determined, and strongly past-
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determined systems [74, Chapter 3]. They are shown to be stronger than the notion
of a causal system.

In the theory [66] a notion of a precausal system is defined in the same way
as the notion of a pre-causal system is defined in [74], but is used for a special class
of linear time systems [66, p. 276].

In [28] the authors define another notion of a causal or non-anticipatory

system. They consider a function F:Q —»2* (i-o function), where Q and ¥ are
sets of (total) input and output functions on a time domain 7ime which is assumed
to be N, and define [28, Definition 7] that F' is causal (or non-anticipatory), if for
any f, g suchthat f(¢)=g(¢) forall t<k, F(f)|,=F(g)|,, where F(f)], isthe
set of restrictions of F'(f) on time moments ¢ < k. The idea here is essentially the
same as in pre-causal systems in the sense of [74].

Considering the definitions mentioned above, we can distinguish two
recurring ideas: a non-anticipatory system in the sense of [112] (or causal system in
the sense of [74]) and a pre-causal time system in the sense of [74]. We will apply
both ideas to blocks. To avoid clash with terminology used in different works, we
will introduce the notions of a strongly nonanticipative and weakly nonanticipative
block on the basis of ideas of a non-anticipatory system in the sense of [112] and
pre-causal system in the sense of [74].

Definition 1.12. A block B 1is strongly nonanticipative, if for each
(i,0)€ IO(B) there exists a deterministic causal sub-block B'<B such that
(i,0) e IO(B').

Definition 1.13. A block B is weakly nonanticipative, if for each 4€ 7, and
iy,i, € Sb(In(B),W),if i |,=i, |,, then

{ol,lo€Op(B)(iy)} ={ol|, o €Op(B)(i,)}-
These notions can be considered as adaptations of the notions of
causality/nonanticipation which were considered in [74] and [112] for certain

classes of systems with total inputs and outputs to blocks.
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1.6 Deterministic causal, weakly nonanticipative, and strongly

nonanticipative blocks

Let us compare the introduced notions of nonanticipation. Firstly, note that
the notions of a weakly and strongly nonanticipative block indeed can be considered
as generalizations of the notion of a deterministic causal block (Definition 1.11).

Lemma 1.5. Let B be a deterministic block. Then:

1) B is causal if and only if B is weakly nonanticipative.

2) B is causal if and only if B is strongly nonanticipative.

Proof. The item 1 follows immediately from Lemma 1.4 and Definition 1.13,

while the item 2 follows from the fact that /O(B) = and that B'<IB if and only if

B'= B for a deterministic block B. []

By Definition 1.12, informally, the operation of a strongly nonanticipative
block B can be interpreted as a two-step process:

1) before receiving input signals, the block B chooses an arbitrary
deterministic causal sub-block B'<B (one can call this a response
strategy);

2) the block B’ receives the input signals of B and produces the
corresponding output signals (response) which become the output signals
of B.

Intuitively, it is clear that in this scheme at any time the block B does not
need a knowledge of the future of its input signals in order produce the
corresponding output signals.

Let us prove the following (alternative) characterization of weakly
nonanticipative blocks which does not rely on comparison of sets of signal bunches.

Theorem 1.1. A block B is weakly nonanticipative if and only if the

following conditions are satisfied:
1) if (i,0) € IO(B) and (i',0")="(i,0), then (i',0") € IO(B);
2) if 0 € Op(B)(i) and i=i’, then (i,0)=>(i",0") for some o' € Op(B)(i’).
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Proof.
Let us prove the “if” part of the theorem. Assume that the conditions 1 and 2

of the theorem are satisfied. Assume that Ae7,, i,i, € Sb(In(B),W), and
i, |,=1i,1],. Let 0o € Op(B)(i,) . Then from the condition 1 we have o |,€ Op(B)(i, |,),
because (i, |,,0|,)=<*(i;,0). Moreover, i, |, =<i,, because i |,=i,|,. Thus
(i, |;,01,)="(i,,0") for some o' € Op(B)(i,) by the condition 2.

If (i |,,0|,) 1s an abnormal I/O pair of B, then o|,=0" by Lemma 1.3 and

o|,=o'|,, whence o|,€{0"|,]0" € Op(B)(i,)}.

Now consider the case when (i, |,,0|,) 1s a normal I/O pair of B. Because

{4,dom(0)} = T,, only the following two cases are possible:

— Acdom(o). We have o|,=0"|, for some A'e7,. By Lemma 1.1, either
o|,=0", or A'=dom(o|,)=A4. In both cases, o|,=o'|,, whence
ol e (0" |, 10" € Op(B)(i,)} .

— A>dom(o). Then o|,=o and dom(i, |,)=dom(i;) " A=dom(o). Then
dom(i,) = dom(o), because dom(i}),A€7T,. Then i, |,=i,|,=i . Because
A#dom(i;), we have i =i, by Lemma 1.I. Then
ol,€{0”|, 10" € Op(B)(i,)} -

Thus we have proved that for any A€7,, i,i, € Sb(In(B),W) such that

i1=il if 0€0p(B)(i), then o|,e{o"|,]0" €Op(B)(i,)}. This immediately
implies that B is weakly nonanticipative by Definition 1.13.

Now let us prove the “only if” part of the theorem.

Assume that B is weakly nonanticipative.
Assume that (i,0) € IO(B) and (i',0')<*(i,0). Then i'=i|, and o'=0|, for
some A€7,.Theni'|,=(i|,)|,=il|,, whence

o'=ol|,et0"|, 10" €Op(B)i)} ={0"|,|0" € Op(B)(i)}
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by Definition 1.13. Then o'=0"|, for some o"eOp(B)(i'). Moreover,
dom(o") < dom(i"y — A. Thus o'=0" and (i",0") e IO(B).
Assume that o€ Op(B)(i) and i=i'. Then i=i"|, for some Ae7,. Then
il,=(',)],=i'l,, whence
ol,e {0 |, 10" € Op(BY(i)} ={0" |, |0" € Op(B)(i")}
by Definition 1.13. Then o|,=0'|, for some o' €Op(B)(i'). Moveover,
dom(o) < dom(i) < A, whence o =o0|,=0'|,. Thus (i,0)=(i',0"). []

The conditions of Theorem 1.1 are illustrated in Fig. 1.5 and Fig. 1.6 below.

an 1/0O pair (1,0)
Value _-

——————————— “
: - - - - - -- 1 !
Input signal bunch 7 1
1 |
Output signal bunch L :
T T T T ~ ~ 1

S an /O pair (1',0")

Time
Fig. 1.5. An illustration of the condition 1 of Theorem 1.1.

Dashed rectangles enclose 1/0 pairs.

an [/O pair (1,0)
Value -7
—————— ;3 - : . a continuation i'of i
Input signal bunch a 1 i
| 1
Output signal bunch : :
- — — -
|

~ < an /O pair (1,0'
(for some continuation o' of 0)

Time
Fig. 1.6. An illustration of the condition 2 of Theorem 1.1.

Dashed rectangles enclose I/O pairs.
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This theorem has the following corollary.

Lemma 1.6. Let B be a non-empty set of weakly nonanticipative blocks and
B be a block such that JO(B) =, s[0(B"). Then B is weakly nonanticipative.

Proof. Let us check that the condition 1 of Theorem 1.1 holds for B. Let
(i,0)e IO(B) and (i',0")=*(i,0). Then (i,0)eIO(B') for some B'eB. Then
(i",0')e IO(B") by Theorem 1.1 for the block B’, because B' is weakly
nonanticipative. Then (i',0") € IO(B).

Let us check that the condition 2 of Theorem 1.1 holds for B. Let
0 €Op(B)(i) and i=i'. Then (i,0) € IO(B’) for some B'e B. Then (i,0)=<*(i’,0")
for some o' € Op(B')(i") by Theorem 1.1 for the block B’, because B’ is weakly
nonanticipative. Then (i',0") € IO(B") < IO(B) and o' € Op(B)(i").

We conclude that B i1s weakly nonanticipative by Theorem 1.1. [

Lemma 1.7. Let B be a weakly nonanticipative block and (i,0) € IO(B).
Then there exists a weakly nonanticipative sub-block B,<B such that
Op(By)(i) = {0} .

Proof. Assume that B is weakly nonanticipative and (i,0) € IO(B). For each
i" € Sb(In(B),W) let us define a set

O(i') = {o' € Op(B)W") VAT, (i'|,=i],= 0|, =0 )}.

Let us show that O(i")#& for all i'. Let i'eSbh(In(B),W) and
A =\J{4eT,|i'|,=i|,}. Then A eT, and ' |A*= i |A* . Then from Definition
1.13 it follows that o |A*e {o" |A* |o" € Op(B)(i")}. Then there is some o' € Op(B)(i")

such that 0'\A*=0]A*. Then for each Ae7T,, if i'|,=i|,, then Ac A", whence

o'|,=ol,. Thus '€ O(i") and O(@{") =D .
Obviously, O(i") c Op(B)(i") for each i’', and because O(i") #<J for all ',

we conclude that O is an operation of some sub-block of B, i.e. there is a sub-
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block B,<B with Op(B,)(i") = O(i") for all i'. Moreover, Op(B,)(i) = O(i) = {o} by
the definition of O.

Let us show that B, is weakly nonanticipative. Indeed, let
i\,i, € Sb(In(By),W)=Sb(In(B),W), AeT,, and i |,=i,|,. For j=12 let us
denote

U;={0"|4|0"€ Op(B)(i,)}
V,=1{0"|,]0" € Sb(Out(B),W),vA' €T, (i;|,=i|, =0 |y=0l4)}.
Then for j=1,2 we have
{0']410" € Op(By)(i )} =10"|410"€ OG))} =
={0'|4]0"€ OP(B)(ij) AVA' €T, (ij L =ily=0 =0l =
=U;nV,.
We have U, = U, by Definition 1.13, because B is weakly nonanticipative.

Now let us check that 7} < V,. Assume that o'|,e ¥, for some o' such that
i|,=i|ly=0"|,=0]|, for each 4'€7T,. Two cases are possible: i |,=i|, and
i|,#1i],. Consider the first case (i, |,=i|,). Let 0" be an arbitrary element of O(i,)
(which exists as we have shown above). Then i, |,=i|,= 0" |,=0|, for each
A'eT,, whence o"|,eV,. Then o"|,=o0|,=0'|,, because i,|,=i |,=i|,. Thus
o'|,eV,.

Consider the second case (i |,#1, |,). Then i, |,=i, |,#i|, and the equality
i |,=i|, implies A'cA. Then i |,=i|,=1i|,=i|,=0 |,=0], for each
A'eT,. Thus o'|,€V, by the definition of V.

So in both cases, o'|,eV,, and because o' is arbitrary, we conclude that
V, cV,. By exchanging indices 1, 2 in the proof above we can show that V, c V.
Thus ¥} =V,. Then we have

10" 110" €Op(By)(i))y =U, \ IV, =U, NV, = (0’|, [0’ € Op(By )iy}

Thus B, is weakly nonanticipative by Definition 1.13. [J
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Although Definition 1.13 can seem to be a natural generalization of the
notion of a causal deterministic block, it has certain more or less counter-intuitive
consequences which we will describe below.

Example 1.1 ( f -limit block). Assume that W =R. We will call a block B
an f -limit block, where f:R — R is a function, if /n(B)={x} and Out(B)={y}
for some names x, y, and for each i € Sb(In(B),R), Op(B)(i) is defined as follows:

— if dom(i[x])=T and lim,_,.»i[x](?) exists and finite, then Op(B)(7) is the

set of all {y}-signal bunches o such that dom(o)=dom(o[y])=T and

lim o[¥1(t) = f ( lim i[x](t)j;

t—+0 —>+o0

— otherwise, Op(B)(i) is the set of all {y}-signal bunches o such that

dom(o)=dom(o[ y]) = U{A €T,|Acdom(i[x])}.

Obviously, in this definition Op(B)(i)#< (because 7, is closed under
unions) and dom(o) < dom(i) for each o € Op(B)(i). This implies that an f -limit
block exists for each f:R—>R. [

Informally, for a given real-valued input signal (i[x]) of infinite duration
(dom(i[x])=T ) which converges to some finite limit L as ¢ — 4o, an f -limit
block produces an output signal (o[ y]) which converges to the value f(L). If the
input signal does not converge or has a bounded duration, the block outputs an
arbitrary signal while the value of the input signal is defined.

The following proposition shows that f-limit blocks are weakly
nonanticipative.

Proposition 1.3. Let B be an f -limit block for some f:R—R. Then B is
weakly nonanticipative.

Proof. Assume that In(B)={x} and Out(B)={y}.

Let us check the condition 1 of Theorem 1.1 for B. Let (i,0) € IO(B) and

(i",0)=*(i,0). Then i'=i|, and o'= 0|, for some 4’ €T,.
If dom(i'[x])=T ,then A'=T , whence i'"=i and 0o'=0 and (i',0") € IO(B).
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Consider the case when dom(i'[x])# T . The definition of an f -limit block
implies that dom(o) =dom(o[y])=|J{4 €T, | A < dom(i[x])}. Then
dom(o")=dom(o) " A'= dom(o[ y]) N A" =dom((0 | ,)[y]) = dom(o'[y]).

Moreover,
dom(o")=dom(o)N A'=|J{deT,|Acdom(i[x])} N A'=
=\ J{deT,|Acdom(i[x])N A"},
because 7, 1s closed under intersections. We have

dom(i[x]) N A'=dom((i|,)[x]) =dom(i'[x]). From this and the equalities given
above, dom(o")=dom(o'[y])=\J{4de€T,|Acdom(i'[x])}. Then (i",0o")elO(B),
because dom(i'[x])=T .

Thus the condition 1 of Theorem 1.1 holds for B.

Let us check the condition 2 of Theorem 1.1 for B. Assume that
0 € Op(B)(i) and i=i', where i’ € Sb({x},R).

Note that we have dom(o) =dom(o[y])=|J{4€T,| A< dom(i[x])} from the
definition of an f -limit block. Consider the following cases.

a) dom(o)=T. In this case, dom(i)=T and i'=i. Then there exists
o' € Op(B)(i") such that (i,0)<*(i",0") (one can choose i'=i,0'=0).

b) dom(o)#T, dom(i'[x])=T, and a value L =1im,_.i [x](¢) exists and
finite. Let o' € Sh({y},R) be a signal bunch such that dom(o")=T, o'(t)=o0(?), if
tedom(o), and o(t)=[y— f(L)+27'], if teT\dom(o). Then
dom(o'[ y]) = dom(o[ y]) U (T \dom(0)) =T . Moreover, dom(o) is a bounded subset
of T, because dom(o) =T , whence lim,—+-0[y](¢) = f(L) and thus o' € Op(B)(i")
by the definition of an f-limit block. Because dom(i[x])=T, we have

dom(i[x]) =dom(i). Then because o € Op(B)(i), the definition of an f -limit block

implies that dom(o) = dom(i). Then (i,0)=<*(i’,0").
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¢) Either dom(i'[x])# T, or lim,_,..i[x](¢) does not exist, or is infinite. Let
us define A4"=|J{4eT,|4Acdom(i[x])}eT,. Because i=i’, we have
dom(i[x]) c dom(i'[x]), whence dom(o)c A”. Let o'eSb({y},R) be a signal
bunch such that dom(o")= A", o'(t)=o0(t), if t edom(o), and o'(t)=[y 0], if
te A" \dom(o) (o' is correctly defined, because dom(o)c A" and A" €7 ). Then
dom(o")=dom(o'[y])= A", because dom(o)=dom(o[y]). Then from the definition
of f -limit block and of A" it follows that o' € Op(B)(i"). If dom(o)= dom(i), then

0" liom=0 and i'|s,,) =1, whence (1,0)=*(i",0"). Now let us assume that
dom(o) c dom(i). Then dom(i[x])cdom(i), because oeOp(B)(i). We have
i Nomy=1, Whence dom(i[x]) = dom((i'| s, [x]) = dom(i'[x]) " dom(i) . Then for
each A€ 7, such that 4 c dom(i'[x]) we have AN dom(i) < dom(i[x]) c dom(i),
whence Acdom(i) (because A,dom(i)eT,), and thus Acdom(i[x]). Then
dom(o") = A" < dom(o). This implies that o'=o. Then i'|,,,,,=i and 0'|,,nH=0,
whence (i,0)=<*(i",0").

In all cases a)-c) there exists o’ € Op(B)(i') such that (i,0)=<*(i",0"). Thus the
condition 2 of Theorem 1.1 is satisfied. We conclude that B is weakly

nonanticipative by Theorem 1.1. [

When a function f is discontinuous, this result can be seen as rather counter-
intuitive, at least if weak nonanticipation is understood as a formalization of the
idea that at any time a block does not know the future values of the input signals
and cannot use them to determine the current output value.

For example, if f is the signum function (i.e. f(0)=0, f(x)=1, if x>0,
and f(x)=-1, if x<0), then an f -limit block B outputs a signal o[ y] which
converges to 1 (when ¢ — +oc), when the input signal i[x] converges to a positive
number (when ¢ — +oc). Moreover, it outputs a signal o[ y] which converges to 0,

when the input signal i[x] converges to 0. Then, intuitively, for each time 7, the
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knowledge of i[x][,, (i.e. a prefix of the input signal till 7) does not give B a
useful information to distinguish between the cases lim,  i[x]=0 and
lim, ., i[x]> 0, but the block still manages to output a signal which converges to
different values in each of these cases.

The following proposition clarifies the characteristics of an f -limit block for
a discontinuous f .

Proposition 1.4. Let /:R— R be a function and B be an f -limit block.
Then B has a deterministic causal sub-block if and only if f* is continuous.

Proof. Assume that In(B)={x} and Out(B) ={y}.

Let us prove the “if” part of the proposition.
Assume that f is continuous. Let B" be a block such that /n(B')={x},

Out(B")={y}, and for each ieSh({x},R), Op(B')(i) is defined as follows:
Op(B)(i)={o}, where o 1is the (unique) {y}-signal bunch such that
dom(o)=|J{deT,|Acdom(i[x])} and o(t)=[y> f(i[x]())] for each
t e dom(o). Obviously, B’ satisfies the definition of a block and is deterministic.
Let us check that B’ is causal. Let €T, o, € Op(B)(i,), 0, € Op(B)(i,),
iy o.1= 1 o.q- Then
dom(i,[x]) N[0,61= dom((iy |,)[x]) = dom((iy |y, [x]) = dom(iy[x]) A[0,1].
Then the following holds:
dom(o, |;g,)) =dom(o,) N[0,¢]= 1={4eT,|4cdom(i[x])} N[0,t] =
= J{4eT, |4 cdom(i[x]) N[0,¢]} =
=\ J{4eT,| A< dom(ir[x])N[0,1]} =
=4 Ty |4 dom(i,[x])} N[0,t]=dom(o,) N[0,t]= dom(o, |y )
Then for each ¢ e dom(o, | ;) < dom(i, |;o,1) = dom(iy | ), we have
0,(0) =1y = GO =Ly fGLxIEN]=0,(0).

Thus o, [y ;= 0; |jp,; and B is causal.
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Let us show that B'JB. Let ieSh(In(B'),R) and oeOp(B')i). If
dom(i[x])=T and lim,_,.i[x](¢) exists and is finite, then dom(o)=dom(o[y])=T
and o[ y](¢) = f(i[x](¢)) for each t €T, whence

lim o[¥1(6) = f( lim i[x]mj

1>+ t—>+o0
by continuity of f . Otherwise,
dom(o) =dom(o[y])=|J{d e T, |4 < dom(i[x])}.
Thus o€ Op(B)(i), because B is an f -limit block. Then B'JB. Thus B’ is a
deterministic causal sub-block of B.
Let us prove the “only if” part of the proposition.
Assume that B has a deterministic causal sub-block B'. Let aeR and

a, R, k=1,2,... be a sequence such that [im;_,.,a, =a.

Let us show that lim;_,. f(a,) = f(a).

Let us define sequences i, € Sb({y},R), o, € Sb({y},R), and ¢ €T,
k=1,2,... by induction as follows.

Let ij(¢)=[x+>aq,] for all teT, o, be a unique member of Op(B')(7,), and
t,=0. If i,i,,..,i, are already defined, let i, ,(¢#)=i. (), if t€[0,¢,] and
i ()=[x—a.,], if teT\[0,2,]. Let o,,, be a unique member of Op(B')(i,,,).

Because B’ is a sub-block of an f -limit block, dom(o,.,) =dom(o,,,[y])=T and

1My 100 01 [V1() = f (limy s e 1 [X1(0) = f (@) -

Then let
tey =l+max{t,inf{r eT|
1
sup{| o, [V1(1) = flap )t 27F <——}}.
k+1
We have defined sequences i,, o,, t, for k=1,2,.. . The sequence ¢,

k=1,2,... 1s a strictly increasing and unbounded from above and ¢, =0.
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Let i be a {x}-signal bunch such that dom(i)=T, i(¢,)=i(¢), and
i(t)y=i. (1), if te(t,,t,,], keN, and o be a (unique) member of Op(B')(i). We
have i, ,[x](¢)=aqa,,, for all k=1.2,... and t>¢,. Then i[x](¢) e {a,,,,q;,,,...} for
all keN and #>1,. For each ¢ >0 there exists k €N such that |a, —a|<e& forall
k'>k, whence |i[x](t)—al<e for all ¢#>¢ . Thus lim,,.i[x](#)=a. Then
dom(o)=dom(o[y])=T and lim,-..0[y](¢)= f(a), because B’ is a sub-block of
an f -limit block.

On the other hand, i, |[0’tk]=ik |[0’tk] for all keN. Because ¢, is an
increasing sequence, we have i, |[O,zk]:ik |[O’tk] for all £ and k'>k. Besides,

. . . _. )
l|(’k’tk+l]_lk+1 |(tk”k+]] for all k€N, whence l|(zk,tk+]]_lk’ |(tk’tk+l] for all k' >2k+1.

Also, i, (¢,)=1i,(¢,) forall ke N. Then

l |[0’tk]:l |{l‘1 }U([l ’ZZ]U“‘U(ZI{—]J]{]: lk |[0’tk] fOI' all k = 2,3,... )

whence o |[0,,k]= 0 |[0Jk]’ because B’ is causal. Then o(z,)=o0,(¢,) forall k=23,...,

and from the definition of #, we have

|o[y]<rk)—f<ak>|=|ok[y](rk>—f<ak)|s,1 for all k=2.3,....

This implies that lim,_. f(a,)= f(a), because lim,.,0[y](#)= f(a). We
conclude that f* is sequentially continuous [43] and thus is continuous. [

This proposition implies that for a discontinuous function f, an f -limit
block has no deterministic causal sub-block.

Now we can show the following relation between the notions of a weakly and
strongly nonanticipative block.

Theorem 1.2 (About strongly nonanticipative block).

1) Each strongly nonanticipative block is weakly nonanticipative.

2) There exists a weakly nonanticipative block which is not strongly

nonanticipative.
Proof.
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1) Assume that B is strongly nonanticipative. Let R be the set of all
relations R < IO(B) such that R is an I/O relation of a weakly nonanticipative
block. For each ReR let us define a block B, such that /O(B;)=R,
In(Bg) = In(B), Out(By)=Out(B). Let B={B, |R € R}. Then each element of B
is weakly nonanticipative. From Definition 1.12 and Lemma 1.5 we have
10(B) < |JR =, _3/O(B"). On the other hand, /O(B") c IO(B) for any B'eR,
so I0(B)=|]J »slO(B"). Then B is weakly nonanticipative by Lemma 1.6.

2) Let f:R—>R be a discontinuous function and B be an f -limit block.

By Proposition 1.3, B is weakly nonanticipative. By Proposition 1.4, B has no

causal deterministic sub-blocks. Because [O(B)#J, B is not strongly

nonanticipative. [ |
Consider some examples. Firstly, consider an example of a strongly

nonanticipative block. Let #, y be names and W =R (W is the set of signal values).
Example 1.2. Let B be a block such that /n(B)={u}, Out(B)={y}, and for
each i, Op(B)(i)={o,(i),0,(i)}, where o,(i),0,(i) € Sb(Out(B),W) are signal
bunches such that dom(o,(i)) = dom(o,(i)) = dom(i) and for j=1,2 we have
— 0,()()=[y > j-i[u)(1)], if t € dom(i) and i[u](r){;
0;(i)(1) =[], if t e dom(i) and i[u](t) T.
Informally, this means that B is a “gain” block with a slope j which is either

1 or 2 during the whole duration of the block’s operation.
Obviously, B satisfies Definition 1.4, i.e. is indeed a block.
Let us show that B is strongly nonanticipative. For j=1,2 let B,;<B be a

sub-block such that Op(B;)(i)={o;(i)} for all ieSb(in(B),W) (i.e. B, always
selects o,(i) from Op(B)(i) and B, always selects o,(7)).

The blocks B,, B, are deterministic. Let us check that they are causal.
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Let je{l,2}. Let i,i"e Sb(In(B;),W), t €T, il =i'lo.> 0€O0p(B,)i),
and o' € Op(B)(i"). Then o(¢t)=[y+> j-i[u](t)] for all ¢t edom(i[u]), o(t)=[] for
all tedom(i)\dom(i[u]), and o(z)T, for all ¢¢dom(i). Similarly, we have
o'(t)y=[yr> j-i'Tu](t)] for t edom(i'Tu]), o'(¢)=[] for all tedom(i")\dom(i'[u]),
and o(t)T, for all tedom(i"). Then dom(i)N[0,7]=dom(i")[0,r] and
i[u] |[0J]=i'[u] lj0.c]> because i |[0’T]=i'|[0,r]. Then we conclude that o|[0,T]=0’ lf0.7-
Thus B, is causal.

Obviously, each 1/O pair (i,0) € [O(B) belongs either to [O(B,), or to
10(B,), so B is strongly nonanticipative by Definition 1.12. []

Above we have given an example of a weakly nonanticipative block which is

not strongly nonanticipative ( f -limit block for a discontinuous /). Now consider
an example of a block which is not weakly nonanticipative.

Example 1.3. Let B’ be a block such that In(B")={u}, Out(B")={y}, and
the operation is defined as follows:

— Op(B')(i)={o,}, where dom(o,)=dom(i) and o,(¢)=[y+>1] for all

t edom(i), if dom(i[u])=T;
— Op(B')(i)={0,}, where dom(o,)=dom(i) and o,(t)=[y+> 0] for all
t € dom(i), otherwise.

Informally, the block B’ decides whether its input signal « is total.

It is easy to see that B" indeed satisfies Definition 1.4 (i.e. is a block), but the
condition 1 of Theorem 1.1 is not satisfied, because (i,0)e€ IO(B'), where
i()=[u>0] for all teT, o(t)=[y+>1] forall teT, and (i|g,},0 o= (i,0),
but (i |5,17,0 [o.1)) € IO(B"). So B’ is not weakly nonanticipative.

Informally, the reason is that at each time ¢ the current value of y depends

on the entire input signal. [

52



1.7 Classes of blocks

The classes of blocks that we have introduced are illustrated in Fig. 1.7.
Arguably, the notion of a strongly nonanticipative block conforms to the informal
idea of nonanticipation as non-dependence of the current output signal values of the
block on the future of the input. However, for weakly nonanticipative blocks this is
not so clear and is debatable, because of Proposition 1.3 and Proposition 1.4. We
will consider the notion of a strongly nonanticipative block as possibly not the most
general, but adequate generalization of the notion of a causal block to the

nondeterministic setting and investigate such blocks in the next chapters.

All blocks
Weakly nonanticipative

Strongly nonanticipative

Deterministic
and causal

Fig. 1.7. Classes of blocks.

1.8 Conclusions from the chapter

We have introduced the notion of a block as an input-output system which
maps an input signal bunch to one or more output signal bunches. Input and output
signal bunches are not necessarily total functions of time. We have introduced two
notions of nonanticipation for blocks (weakly nonanticipative and strongly
nonanticipative blocks) on the basis of similar notions that appear in the literature

for different kinds of input-output systems [112, 74, 28, 66] and compared them.
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CHAPTER 2
REPRESENTATION OF STRONGLY
NONANTICIPATIVE BLOCKS

2.1 Overview

Typically, even in the variants of mathematical systems theory which on the
abstract level consider a system as a “black box™, e.g. [119, 74, 121, 111], the
concept of a system’s state is still introduced and a link between black box and
state-based models is established.

— In the work [118] by L. Zadeh the concept of state is discussed and the
following description is given:

“Roughly, a state of a system at any given time is the information needed to
determine the behavior of the system from that time on.”.

Abstractly, a system is represented by a family of pairs of time functions

2(={(u[t()m,y[to,tl])},to,t1 € (—o0,+00), where U] and Viggy] aT€ an input and

output defined on a time segment [¢,,¢] (there may be more than one pair defined

on a given time segment). It is assumed that the family is closed under segmentation
(CUS), 1.e. a restriction of an input-output pair which belongs to 20 and is defined

on [¢,,t,] onto a sub-segment of [¢,,#,] still belongs to A.

Formally, a state is defined for such a system using the following

construction. A bundle of input-output pairs is a subset of the set 2(z,) of all pairs
from 2l defined on a segment of the form [,,¢], ¢ > ¢, for a fixed ¢,. Members of a

chosen indexed family of bundles which satisfies several special conditions
(covering, closure under truncation, uniqueness, continuation [118]) are called

aggregates and their indices (tags) are called states of 2 at time ¢,. This

construction is used to represent a system as an input-output-state relation of the
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form y=A(x(t,);u), where x(z,) is an (initial) state, u edom(%[x(to)(to)),
ye range(%lx(to)(to)), le(,o)(to) 1s the aggregate corresponding to the index (tag)

x(t,) . This equality expresses a functional dependence ( 4 ) of the future output ()
of the system on the current state (x(z,)) and the future input (). Other questions

related to the notion of state are also discussed in [118], such as equivalence of
states, state equation, association of states with a system, etc.

— In the work [74] by M. Mesarovic and Y. Takahara the following
reasons for introducing the concept of state are given:

“(1) A system is, in general, a relation; i.e. the same input can lead to different
outputs. The state enables a representation of the system as a function. The idea is
that if one knows what state the system is in, he could with assurance ascertain what
the output will be. In such a way one regains “predictability” believed to be present
if a complete set of observations is available.

(i1) The state enables the determination of a future output solely on the basis
of the future input and the state the system is in. In other words, the state enables a
“decoupling” of the past from the present and future. The state embodies all past
history of the system. Knowing the state supplants knowledge of the past.
Apparently, for this role to be meaningful, the notion of past and future must be
relevant for the system considered; this leads to the notion of an abstract time
system.” [74, p. 45]

A notion of a pre-state space representation of a time system Sc X xY
(X c A", Y < B") is introduced [74, p. 80] as a pair of families of mapping (¢, 1),
=49, 19, :C,xX, >C, t,t'eT,t'2t}, u={u, |y, :C,xA—> B,teT} such that
B (csX,) = (P (Cps Xy )y X ), 1f X, 18 the concatenation of x, and x,.
(composition or semi-group property), @,(c,,x,)=c,, and (x,y)€ S if and only if
there exists ceC, such that for any reT, y(¢)=p, (4,(c,x"),x(¢)). Here x'

denotes x|,,., and x, denotes x| . . (where xeX), X, denotes
< {t <t <t}
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{x,|xeX}, C, for teT are some sets, c,€C,, ¢, is called a state-transition
function, and p, is called an output function. If C,=C forall teT, (¢, ) is called

a state-space representation of S and C is called a state space. It is shown that any
causal system has a state-space representation [74, Chapter 3, Proposition 2.8].
More general notions of a pre-dynamical system representation and a dynamical
system representation (which also use state-transition functions) are also introduced
and studied.

— In the work [121] by B. P. Zeigler two problems associated with the black
box view of a system are underscored:

“Firstly, we have the problem of going from structure to behavior: If we
know what lies inside the box, we ought to be able to describe, in one or the other
way, the behavior of the box as viewed externally. The second area relates to the
reverse situation — going from behavior to structure: the problem of trying to infer
the internal structure of a black box from external observations.” [121, p. 107].

On one of the levels (I/O system), the interior of a system is modeled using
the notion of state. In particular, it is noted:

“The state set is fundamental, as it has to have the property to summarize the
past of the system such that the future is uniquely determined by the current state
and the future input. This property of the state set is called the semigroup or
composition property.” [121, p. 109].

An I/O system is defined as a tuple S=(7,X,,Y,0,A,A) where T is a
time domain (time base), X, Y are input and output value sets, Q is a set of
allowable input segments, i.e. functions defined on a time interval which take values

in X, Q is a set of states, A:QxQ—>Q is a global state transition function,
A:OxX —>Y or A:Q—Y is an output function. This tuple must satisfy certain
constraints: QO must be closed under concatenation and so-called left segmentation,
1.e. a left segment (prefix) of an element of Q is again in QQ, and A must satisfy the
composition (semigroup) property: A(g,we ®')=A(A(g,®),®"), where e denotes a
concatenation of input segments, assuming @ and @' are contiguous (the right end
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of the domain of @ coincides with the left end of the domain of ®"). A relation of
this model to a more abstract view of a system (/O relation observation) is
considered [121].

Such views are usually consistent with understanding of state in theories
which consider it more fundamental and use it in the definition of a system. For
example, in the work [54] by R. Kalman it is noted:

“Intuitively speaking, the state is the minimal amount of information about
the past history of the system which suffices to predict the effect of the past upon
the future.”

In the same work a system is defined using the notions of a state space, space
of inputs, and transition and output functions which satisfy certain properties
(axioms).

All approaches mentioned above insist that if a state of a system is known
and fixed at a given time, then for a given future input, a future output of the system
is determined uniquely. Thus non-uniqueness of the system’s output for a given
input can be explained by the freedom of choice of an initial state.

In contrast, in many models considered in computer science (e.g. non-
deterministic automata, transition systems, etc.) the notion of state is used in a less
restricted sense. A response of a non-deterministic system which starts in a fixed
initial state and processes a given input data may not be uniquely determined.

This motivates to look for state-based representations of input/output (“black
box”) systems which support multiple variants of a state evolution for a given
(complete future history of) input and a given initial state. Other desirable features
are the ability to represent a sufficiently large class of input/output systems and to
take into account partiality of inputs/outputs as functions of time.

A representation that we are looking for is a kind of dynamical system.
Formalizations of the notion of a dynamical system of various levels of generality
were given in many works, e.g. [12, 78, 36, 11, 15, 76, 94, 37, 100, 57, 55, 74, 71,

111, 27]. Classical approaches to the definition of a dynamical system, such as
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those proposed by A.A. Markov [78], V.V. Nemytskii and V.V. Stepanov [78] and
others (a survey is given in [71]) can be considered as axiomatizations of the
properties of systems described by differential equations.

As was noted in the work [37] by O. Hajek, the following properties of
ordinary differential equations were of primary concern in various
axiomatizations:

1) local existence of solutions;

2) indefinite prolongability (global existence) of solutions;

3) unicity of solutions;

4) autonomness (the right-hand side of the equation does not depend

explicitly on time).

However, in a number of works [11, 15, 76, 94, 37, 100, 57, 71], etc., there
was a tendency to remove some of these properties from basic assumptions and
consider increasingly general classes of dynamical systems. An overview and
comparison of many such approaches is given in [71].

In particular, in [37] it was proposed to eliminate all properties 1)-4) from the
axiomatization to obtain a far-reaching generalization of dynamical systems.
Similar ideas also appeared in some other works [57, 71, 111].

More specifically, in [37, 38] the following notion was introduced: p is
called a process on P over R, if P is a set, Rc R, and pc (PxR)x(PxR)
satisfies the following properties (infix notation is used for the relation p):

- (x,a)p(y,p) implies o > 3 ;

— Initial-value property: ,p, =1 for each o € R (where [ is the identity

relation on P);

— Compositivity property: ,psop p, =, P,,if a2 2y in R, where , p,

denotes a binary relation on P such that x,p,y if and only if

(x,0)p(y. ).
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Intuitively, R means a time domain, P is called a phase-space, and a relation
(x,a)p(y, f) means that there exists a solution/trajectory which takes values x and
y attimes a and S respectively.
Formally, with a process p there is an associated notion of a solution: a
partial function s:R > P, the domain of which is a non-empty, but possibly a
singleton interval in R, is a solution of p, if s(a) ,pg s(B) for all a, € dom(s),
a=p.
The solution system S of a process p (also denoted as sol p) is the set of all
solutions of p. Solution systems have the following basic properties.
1) Each se S is a partial function s: R — P such that dom(s) is an interval
in R.

2) Partialization property: s|,€ S for each s €S and interval / in R.

3) Concatenation property: if s,,s, € S, the domains of s,,s, intersect, and
s, Us, 1s a partial function, then s, Us, € §.

4) If {s,} is a monotone family in S, then | Js; € S .

5) If I is an interval in R, s:/— P, and for each a,f €/ there exists

s"€ S such that s(a)=s"(at), s(f)=s'(B),then se§.

In [37] it is also suggested that a solution system can be defined axiomatically
without the notion of a process.

A set S 1s called a solution system in P over R < R (independently of any
process), if S satisfies the properties 1-3 mentioned above. Its members are called
solutions. One can associate a process, denoted as pr S, with such a set by letting
(x,a) prS (y,p) if and only if & >  and there exists s € S such that x =s(a) and
y=s(p).But in the general case, neither S =sol prS,nor p= prsol p holds.

If S=solprS holds, S is called process-complete. A necessary and

sufficient condition for this is the property 5 mentioned above, and a necessary

condition is the property 4.
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If p=prsolp holds, p is called solution-complete. A necessary and

sufficient condition for this is: x, psy if and only if there exists s € sol p such that

x=s(a) and y=s(p).

We conclude that the notions of process and solution system in the sense of
[37] are quite general and take into account the aspects which we are interested in
(nondeterminism, partiality, continuous time, no assumptions about the structure of
the phase-space P). Among them we prefer the notion of a solution system,
because it more explicitly represents a dynamic behavior.

In this chapter our aim is to establish a link between blocks and a notion like
solution system. However, we will not use the exact definitions and terminology of
[37] for the following main reasons:

— we would like to include the properties 1-4 of a solution system (not only

1-3) in an abstract definition of a dynamical system; we will need a
property similar to 4 in this and the next chapter;

— we prefer to use the terms “state space” and “trajectory” instead of “phase

space” and “solution” in our context.

We will introduce a notion that is close to a solution system of [37] and call it
a Nondeterministic Complete Markovian System (NCMS).

Then we will show that strongly nonanticipative blocks have a representation

in the form of NCMS.

2.2 Nondeterministic complete Markovian systems (NCMS)

As before, let T=R, . Denote by ¥ the set of all (bounded or unbounded)
intervals in 7 with cardinality greater than one, i.e. 4T if and only if AcT,
[t,,t,]< A forall ¢,,t, € A4 such that ¢, <t,, and {t/,t,} = A for some ¢ #1,.

Let O be a set (a state space) and 7r be some set of functions of the form

s:A—> Q,where 4€% . Let us call its elements trajectories.
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Definition 2.1. A set of trajectories 7r is closed under proper restrictions

(CPR), if s|,eTr for each s € Tr and 4% such that 4 < dom(s).

In order to refer to Definition 2.1 we will use phrases like “7r is CPR” or
“Tr satisties the CPR property”.

Definition 2.2.

1) A trajectory s, € Tr is a subtrajectory of s, € Tr (denoted as s,Cs,), if

dom(s,) < dom(s,) and s, =3, |d0m(sl) .

2) A trajectory s, €7r is a proper subtrajectory of s, € Tr (denoted as
5,Cs,), 1f 5,Cs, and s, #s,.

3) Trajectories s,,s, € Tr are incomparable, if neither s,Cs,, nor s,Cs, .

Lemma 2.1. (77,C) is a (possibly empty) partially ordered set (poset).

Proof. For each s,,s, € Tr, s,Cs, if and only if (the graph of) the function s,

1s a subset of (the graph of) s,. Then it is obvious that C is a partial order on 77. [

Definition 2.3. A CPR set of trajectories 7r is called

1) Markovian (see Fig. 2.1 below), if for each s,,s, € Tr and ¢, € T such that
t, =supdom(s,) = inf dom(s,), s,(t,) ¥, 5,(t,) ¥, and s,(¢,) =s,(t,), the
following function s belongs to 77 :

A s,(t), tedom(s,);
S0 = s,(t), tedom(s,)

2) complete, if each non-empty chain in (77,C) has a supremum.
Note that the property 2 differs from chain-completeness [93] in that only

non-empty chains must have a supremum.

Because of the CPR property, a supremum of a chain ¢ in the poset (7r,C)
exists if and only if s. € Tr, where S*3US€cd0m(S)—>Q is defined as follows:
s.(t)=s(t), 1f s ec and t € dom(s) (this is indeed a function, because c is a chain).

Definition 2.4. A nondeterministic complete Markovian system (NCMS) is a

triple (7,0,Tr), where Q 1is a set (state space) and 7r (trajectories) is a set of
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functions s:7 > Q with dom(s)e¥ such that Tr is CPR, complete, and

Markovian (in the sense of Definition 2.3).

Partial trajectory 1

/ Partial trajectory 2
q /

state

time

Fig. 2.1. Markovian property of a CPR set of trajectories. If one trajectory

ends and another begins in a state ¢ at a time ¢ (both are defined at ¢), then their

concatenation is a trajectory.

The notion of a NCMS is close to the notion of a solution system in the sense

of [37] (discussed in Section 2.1), but there are some differences.

The time domain T and the set of states Q correspond to the time domain

R and the phase-space P of a solution system (Section 2.1). However, for

simplicity we assume that 7" is fixed to be R, , while in [37] R can can be

any subset of R.

Trajectories correspond to the members of a solution system (solutions).
However, their domains cannot be singleton sets, while solutions can be
defined on singleton sets. This is not a principal difference, but we assume
that trajectory domains are not singleton sets for convenience.

CPR property of NCMS corresponds to the Partialization property of
solution systems (property 2). The difference is that Partialization allows
restrictions on singleton sets, while CPR does not allow them.

Markovian property of NCMS basically corresponds to the Concatenation
property (property 3) of solution systems. By themselves these properties
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are not equivalent: the formulation of the Markovian property of NCMS is
weaker in the sense that it does not allow one to make a union of two
trajectories, if the intersection of their domains is not a singleton set. But
using both CPR and Markovian properties, one can make a union of two
trajectories even if the intersection of their domains is not a singleton set.
The term “Markovian” is meant to indicate that if a system is in a given
state, the set of its possible future evolutions does not depend on its past
[51] (however, it is not meant to suggest a direct relation to Markov
processes in probability theory). The usage of this term in a similar sense
can be found in the literature, e.g. [111]. In a more general sense a similar
interpretation of a Markov property was considered in [52, 17] in the
context of the possibility theory.

Completeness property of NCMS basically corresponds to the (unnamed)

property 4 of solution systems (which are associated with processes).

The main reason for considering this notion instead of a solution system is the

Completeness property of NCMS (not assumed by default in the process-

independent definition of a solution system [37, Definition 2.1]). The results

concerning NCMS that we will obtain and use in this and the next chapter

significantly depend on it. Moreover, in our opinion, the Markovian property is

more convenient than the Concatenation property of solution systems, so we

decided to use it in the definition of NCMS.

2.3 Representation of NCMS

In this section we will give a convenient general representation of NCMS. Let

us introduce the following terminology.

Definition 2.5. Let s,,s, : 7 = Q. Then s, and s, coincide:

1) onaset AcT,if s,|,=s,|, and 4 < dom(s,)Ndom(s,) (this is denoted

as ;= 45,);
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2) in a left neighborhood of 7T, if t>0 and there exists #' €[0,¢), such
that s,=, s, (this is denoted as s,=,_s,);
3) in a right neighborhood of 7€ T, if there exists #'> ¢, such that s,=, s,

(this 1s denoted as s,=,,s,).
Let O be a set. Denote by ST(Q) the set of pairs (s,7) where s: A — Q for

some A andre 4.

Definition 2.6. A predicate p: ST (Q) — Bool is called
1) left-local, if p(s,,t) < p(s,,t) for each {(s,,1),(s,,t)} = ST(Q) such that
s,=,_s,, and, moreover, p(s,t) holds for each (s,7) such that ¢ is the least
element of dom(s);
2) right-local, if p(s,,t) < p(s,,t) for each {(s,,?),(s,,t)} = ST(Q) such
that s,=,,s,, and, moreover, p(s,t) holds for each (s,#) such that ¢ is the
greatest element of dom(s).
Let us denote by LR(Q) the set of all pairs (/,7), where /:ST(Q) — Bool is
a left-local predicate and r: ST(Q) — Bool is a right-local predicate.

Definition 2.7. A pair (/,7) € LR(Q) is called a LR representation of a NCMS
X=(T,0,Tr),if Tr={s:A—> Q| AT ANVt Al(s,t) Ar(s,1))}.

Theorem 2.1 (About LR representation)

1) Each pair (/,7) e LR(Q) is a LR representation of a NCMS with the set of
states Q.

2) Each NCMS has a LR representation.

Proof.

1) Let (/,r)e LR(Q). Let 2=(T,0,Tr), where

Tr={s:A—> Q| AeE A(NVte Al(s,t) Ar(s,t))}.
Let us show that 7r is CPR. Let seTr, s:A—>Q, A'e¥,and A C A.
Then dom(s|,)=A" and I(s,t) Ar(s,t) forall € A. If ¢ is a non-maximal element

of A', then s|, =,.s and r(s,?), whence r(s|,,?). Similarly, if # is a non-minimal
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element of A', then s|,=, s and /(s,?), whence /(s |,,t). Moreover, if 4" has a

t
minimal element ¢, then I(s|,,t), because / is left-local. Similarly, if 4" has a
maximal element ¢, then r(s|,.f), because r is right-local, Thus
I(s|y,t)Ar(s]|,,t) forall te A'=dom(s|,). Then s|,eTr.

Let us show that 7r is complete. Let ¢ < 7r be a non-empty C-chain and

s = lU,..8» i-e. the union of (graphs) of functions. Then s is a function defined on

Usecdom(s). It is sufficient to show that s e Tr. We have I(s,f) Ar(s,t) for all
sec and t € dom(s). Moreover, for each s € ¢ and ¢ in the interior of dom(s) we
have s=,_ s and s=,s . Thus I(s",t)Ar(s",t) for each ¢ in the interior of

t

dom(s") . Moreover, if dom(s") has the least element 1., then ¢ is the least element

of dom(s) for some s ec, whence /(s ,t.) Ar(s ,t.), because sit*Jrs* and r(s,t.),

while I(s",t.) holds automatically. Analogously, we have that if dom(s") has the
greatest element ¢, then I(s',t" )Ar(s’,t"). Then I(s*,t)Ar(s",¢) holds for all
tedom(s’). Thus s* e Tr.

Let us show that 77 is Markovian.

Let s,,s,eTr, t,=supdom(s,)=infdom(s,), s,(t)¥, s,(t,)¥, and
s,(ty))=5,(¢,). Let us define s:dom(s)dom(s,)—>Q as s(t)=s,(t), 1if
tedom(s,) and s(t)=s,(¢), if tedom(s,). Then for j=1,2 we have
I(s;,t) nr(s;,t) for all tedom(s;). Besides, s=,s, for all #edom(s)\{f,} and
s=,.s; for all non-minimal ¢edom(s,). Then I[(s,t)Ar(s,t) for all
tedom(s))\{t,} and I(s,t,), because [ is left-local and r is right-local.
Analogously, we have I(s,t) Ar(s,t) for all tedom(s,)\{t,} and r(s,t,). Thus
[(s,t) Ar(s,t) for all t e dom(s), whence s eTr.

Thus ¥ isa NCMS and (/,7) is a LR representation of X.
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2) Let Z=(T,0,Tr) be a NCMS. Let us define predicates /: ST(Q) — Bool
and 7:ST(Q) — Bool as follows:
— [(s,t) if and only if either ¢ is the least element of dom(s), or there exists
t'<t such that [¢',t] = dom(s) and s |, ;€ Tr;
— r(s,t) if and only if either ¢ is the greatest element of dom(s), or there
exists ¢ > such that [¢,¢'] < dom(s) and s|, ,4€ Tr.
Let Tr'={s: A> Q| AT A(Nte Al(s,t) nr(s,1))}.
It follows immediately from the CPR property of 7r that / is left-local, 7 is
right-local, and 7r < Tr'.
Let us prove the opposite inclusion 77" < Tr. Assume that 4eX, s: 4—>Q,
and I/(s,t) Ar(s,t) forall te 4.

Consider the following cases:
a) A=|a,b] for some a<b. For each te(a,b) we have I(s,t)Ar(s,t),

whence there exists #'<¢ and ¢">t such that [f,t"]c dom(s) and s|, €77,

s|,,€Tr, whence s|,neTr by the Markovian property. Denote O, =(#,t").

,0"]
Because a edom(s), a#maxdom(s), and r(s,a), there exists ¢'>a such that
la,t"]cdom(s) and s|,€Tr. Denote O,=[a,t"). Similarly, because
bedom(s), b#mindom(s), and [I(s,b), there exists ¢ <b such that
[¢',b] = dom(s) and s |, , € Tr . Denote O, = (¢',b]. Thus have we defined O, for all
te A. Then (O,),., is an open cover of A4 in the sense of the topology induced on

A from T (O, and O, are relatively open). Since A4 is compact, there exists a

finite sub-cover O, , i=1,2,...,k. Let ¢/ denote the left end of O, and ¢’ denote the
right end of O, .

Without loss of generality we can assume that a =1, <t, <...<¢, =b. By the

construction of O, s}, ., € Tr and t;<t, <t for i=1,2,....,k. Then it is easy to see
that CPR and Markovian properties of 7r imply that s |, ,,=seTr.
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b) A=[a,b) for some a<b, where aeT,beT U {+x}. We have s}, ,eTr
for all 7€ (a,b), because / is left-local and r is right-local. Then s|, ;€ Tr for all
t € (a,b) by the previous case a). By the completeness property of 77 we conclude

that s Tr.

c) A=(a,b] for some a <b. We have s|, € Tr' for all t€(a,b), because
is left-local and r is right-local. Then s, ,,e Tr for all 7€ (a,b) by the case a).

Using the completeness property of 77 we conclude that s e Tr.

d) 4=(a,b) forsome a<b (aeT,beT U{+x}). Let us choose an arbitrary

ce(a,b). We have s|,  €Tr" and s ,eTr', because [ is left-local and r is
right-local. From the two previous cases b) and ¢) we obtain that s|, ,€7r and
S |ey€ Tr. Then s € Tr by the Markovian property of 7.

We conclude that (/,r)eLR(Q) and Tr=Tr'". Thus (l,r) is a LR

representation of X. [

Informally, this theorem shows that for a NCMS, a global property “is a
trajectory” (se€7r) can be expressed as a conjunction of local properties
(I(s,t) Ar(s,t)) for each time moment.

This theorem has the following corollaries which we will use later.

Lemma 2.2. Let J #J and ((T,0,,Tr;)) ., be an indexed family of NCMS.
Then the triple £ =(T ,ﬂje JQ_].,ﬂjE Tr;) is aNCMS.

Proof. Denote Q=ﬂj€ 0, T r=ﬂje ,Tr;. Obviously, each function in 7r
takes values in Q. For each jeJ let (/;,r;) be a LR representation of (7,0 ,,7r;),
which exists by Theorem 2.1. Then

Tri={s:A—> Q| AeTA(Vte Al (s,t) nr;(s,0))}.

Then ST(Q) < ST(Q,) for all jeJ . Let predicates /:ST(Q)— Bool and

r:ST(Q) —> Bool be defined for each (s,7) € ST(Q) as I(s,t) < VjeJ[;(s,t) and

r(s,t) < VjeJri(s,t). Because, all Z_/’ jedJ are left-local, we have that if
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{(s),1),(s,,8)} = ST(Q) and s,=,_s,, then I(s,,t) < [(s,,t), and moreover, [(s,?)
whenever ¢ is the least element of dom(s). Thus [ is left-local. Similarly, because

all r;, jeJ are right-local, we have that if {(s,,7),(s,,7)} € ST(Q) and s,=,s,,

then r(s,,t) & r(s,,t), and moreover, r(s,t) whenever ¢ is the greatest element of
dom(s). This r is right-local. Then (/,7) € LR(Q) and by Theorem 2.1, it is an LR
representation of a NCMS. Then the triple
(T,0,{s : A> Q| AT A(NVte Al(s,t) nr(s,1))}
1s a NCMS. Moreover,
{s:A> Q| AT A(NVte Al(s,t) Ar(s,t))} =
={s:A>0[AeTAVie AVjeJ [,(s,0) Ar;(s,0)} = ﬂTrj =Tr.

jeJ

Thus X 1sa NCMS. [

Definition 2.8. A state-restriction of a NCMS X=(7,0,7Tr) on a set Q',
denoted as X |, is a triple (7,0 NQ',{s € Tr |Vt e dom(s) s(1) € O'}).

Lemma 2.3. X |, is a NCMS for each NCMS £ =(T,0,7r) and aset O".

Proof. Let us define

Tr'={seTr|Vtedom(s)s(t)€Q'}.

Then £, =(T,0N Q" Tr"). Let : ST(Q") — Bool and r: ST(Q') — Bool be
predicates which are true for all values of the input argument. Obviously, / is left-
local and 7 is right-local. Let us define

Tr"={s: 4> Q' | AT A(Vte Al(s,t) A1(s,1))}.
By Theorem 2.1, X'=(T,Q',Tr") is a NCMS. Moreover, Tr" is the set of all
functions of the form s: 4— Q' for all 4%, whence we have Tr'=TrnTr".
Then from Lemma 2.2 (applied to the case of a two-element indexed family of

NCMS) we have that X |, = (7,0 NQ", TrNTr") isa NCMS. [J
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2.4 Examples of sets of trajectories and NCMS

Firstly, let us consider some examples of sets of trajectories.

Let O =R. Consider the following sets of trajectories:
— Tr,, is the set of all functions s: 4 >0, 4%

- Tr

cont

1s the set of all continuous functions s € 77, .

— Tryy 1s the set of functions s €77, such that s is differentiable on the

interior of dom(s).
— Tr,, 1s the set of all functions se7r,, which are bounded on their
domains, i.e. for each seTr,, there exist a,beR, a<b such that

s(t) ela,b] for all t € dom(s).

Proposition 2.1. The following holds:
Y @, Tr,, Tr,

cont >

Tvyg s Thyngs Tryy N1, are CPR.

2y @, Tr,, Tr,

cont

are complete and Markovian.

3) Tr,. 1s complete, but 1s not Markovian.
diff p

4) Tr,,, 1s Markovian, but is not complete.

5) Tryy NI, is neither complete, nor Markovian.

Proof.

1) The empty set and T7r, are obviously CPR. The restrictions of

continuous, differentiable, bounded, differentiable and bounded functions defined
on real intervals onto real sub-intervals are still continuous, differentiable, bounded,

differentiable and bounded respectively. Thus 77,

cont >

Trygs Thyngs Tryy NI, are
CPR.
2) It follows immediately from Definition 2.3 that &, Tr,, are complete and

Markovian. To show that Tr

cont

1s complete and Markovian, consider predicates

l,r:ST(Q) — Bool defined as follows:
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— I(s,t) if and only if either mindom(s)¥=t¢, or t>inf dom(s) and s is

left-continuous at ¢;

— #(s,t) if and only if either maxdom(s)y=¢, or ¢t <supdom(s) and s is

right-continuous at ¢.

Obviously, I(s,?) is left-local, »(s,?) is right-local. Moreover, /(s,t) Ar(s,t)
for all 1 edom(s) if and only if s is continuous. Then Theorem 2.1 implies that
Tr,,, 1s complete and Markovian.

3) Consider s,:[0,1]>Q and s, :[l,40) —> Q such that s, ()=t for all
t€[0,1] and s,(1)=1 for all te[l,+0). Then s,,s,€Tr,; NTr,, and
s;(1)=s,(1). Let s(z)=s,(2), if t edom(s,), s(¢t)=s,(¢), if t edom(s,). Then s is
not differentiable at /=1, so s & 77, . Thus Tr,, is not Markovian. Completeness

of T Vaigr follows from Definition 2.3.

4) Markovian property follows immediately from Definition 2.3. Consider a

function s:7 — O, where s(¢)=¢ forall €T . Then s, €1, forall 7eT, but

seTr,,. Thus Tr,,, is not complete.

5) The same argument as we used in 3) shows that Tr,, NTr,, is not
Markovian. The same argument as we used in 4) shows that 77, NT7,, is not

complete. []

Now let us consider some examples of NCMS.

Proposition 2.2. Let d eN, 0=R?, and f/:RxR? ->R?. Let Tr be the set

of all functions s:4—>Q, 4€% such that on the interior of A4 the function s is
differentiable and satisfies 6j;s(z‘)= £(t,5(t)), and 0_s(t)¥= f(t,5(t)) holds for

t=mind, if min44, and 8,s(t) = f(¢,5(¢)) holds for r=max 4, if max A,
where 0_s(¢) and 0, s(¢) denote a left and right derivative at ¢ respectively.

Then (T,0,Tr) is a NCMS.
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Proof. Consider the predicates /,7: ST(Q) — Bool defined as follows:
— I(s,t) < (mindom(s) ¥=1) v (¢ > inf dom(s) A 0_s() = £ (1,5()));
— r(s,t) & (maxdom(s) y=1) v (t <supdom(s) AO,s(t) 4= f(t,5(1)));
Obviously, [(s,t) 1is left-local and #(s,r) is right-local. Moreover,

[(s,t) Ar(s,t) for all £ € dom(s) if and only if on the interior of dom(s) the function
s is differentiable and satisfies :;ts(t) = f(t,5(1)), and @ _s(¢) V= f(z,s(¢)) holds

for t=mindom(s), if mindom(s){, and 0 s(t)y=f(¢,s()) holds for
t = max dom(s), if maxdom(s)<¥ . Then Theorem 2.1 implies that (7,0,Tr) is a
NCMS. [

Proposition 2.3. Let (Q,—>) be a state transition system, i.e. Q is a set
(states) and > < QO xQ is a binary relation (transitions, we will write ¢, > ¢,, if
(9,,9,) €>). Suppose that Q is equipped with a discrete topology [77], i.e. open
sets are all subsets of O .

Let Tr be the set of all functions s: 4 — Q such that for each non-minimal
s(7) exists and lim_,, s(7) = s(¢), and for each non-maximal ¢ € 4,

te A, lim

T—>1—

lim__,,, s(7) exists and

{ lim,_,,, s(r)=s(¢), teN,

s(t) >lim,_,, s(r), teN,.

Then (7,0,Tr) is a NCMS (Fig. 2.2).

Proof. Indeed, consider the predicates /,7: ST(Q) — Bool such that:

— I(s,t) if and only if either mindom(s)¥=t, or ¢>infdom(s) and
lim__,, s(7) exists and lim__,, s(7)=s(¢);

— r(s,t) if and only if either max dom(s)¥=t, or ¢ <supdom(s) and a limit
lim_,, s(r) exists and lim_,,, s(r)=s(¢f), if ¢e¢N, and

s(t) > lim__,,, s(r), if teN,.
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Obviously, I(s,t) is left-local and r(s,?) is right-local. Then Theorem 2.1
implies that (7,0, Tr) is a NCMS. [

state ql 5 q3

q3

ql | ...

t-1 t t+1 time

Fig. 2.2. A trajectory which models an execution of a (discrete-time) state

transition system (Q,—). At non-negative integer time moments the system

changes its current state ¢ to a next state ¢’ such that ¢ > ¢'.

2.5 Representation of a strongly nonanticipative block

In this section we will introduce a representation of strongly nonanticipative
blocks using NCMS.
As before, let W denote a fixed non-empty set of values.

Definition 2.9. An input-output (I/O) NCMS is an NCMS (7',Q,Tr) such that
O has a form ‘W x X x° W for some sets / (set of input names), X =@ (set of

internal states), and O (set of output names). The ‘W is called an input data set and

W is called an output data set.

Informally, an I/O NCMS describes possible evolutions (trajectories) of
triples (d,,,x,d,,) of input data (d, €' W), internal state (x € X ), and output data

(d._ e w).

out
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Lemma 2.4. Each /O NCMS (7,0Q,Tr) has a unique set of input names,

internal states, and output names.

Proof. The proof  follows from the fact that if
O=""WxX xW="Wxx,x?W and X,,X, =D, then X,=X,, "W="w,
and 21w =22 W, whence I,=1, and O, =0,, because W . []

For a I/O NCMS X we will denote as /n(X) its unique set of input names, as
Out(Y) its set of output names, and as IState(Y) its internal state space.

For any I/O NCMS X =(T,0,Tr) and a state ¢ € Q0 we will denote as in(q),
istate(q), out(q) the projections of ¢ on the first, second, and third coordinate

respectively. Correspondingly, for any seTr, inos, istateos, outos, denote a
composition of the respective projection map with a trajectory.

For each i € Sb(In(X),W) let us denote
— SEi)={seTr|dom(s)eT, ninos=<i};
— S, (Z,0) 1s the set of all C-maximal (i.e. non-continuable) trajectories
from S(Z,i);
— Su(ED)=1s(0) s e S(Z0)};
— S, (Z)=1{s5(0)|seTr ndom(s)eT,}.
For each Q' Q let us denote:
Sel ,(Q',d,x)={q€Q"|3d" g =(d,x,d")},
i.e. a selection of states from Q' by the value of the first and second component.

For each Q' Q and i € Sb(In(X),W) let us denote:

{1}, O'=Dori=1;
{{0} > out(q)|q€Q'}, Q'#J and
Oall(zaQ”i) = dOl’l’l(l)= {0},

foutos|seS, (Z,i)As(0)eQt U Q'+ and
U {0} out(q)|q €'\ S, (2,0}, {0} = dom(i),

where {0} — out(q) is a function defined on {0} which takes the value out(q).
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For each O, c O let us denote:

{1}, dom(i) =,
Our(2:Q0:D =1 |J 0,/(Z,Sel, 5(0p,i(0),x),i), dom(i)#D

xelState(X)
Definition 2.10. An initial /O NCMS is a pair (X,0,) such that
2=(T,0,Tr) is a /O NCMS and @, is a set (admissible initial states) such that
Sui(X) =0y 0.
Definition 2.11. A NCMS representation of a block B is an initial /O
NCMS (Z,0,) such that
1) In(B)=1In(X) and Out(B)=O0ut(X);
2) Op(B)(i)=0,,(2,0,,i) forall i e Sb(In(B),W).
Informally, the operation of a block B represented by an initial /O NCMS
(Z,0,) on an input signal bunch i can be described as follows:
1) If i(0) is undefined, then B stops (the output signal bunch is L ).
2) Otherwise, B chooses an arbitrary internal state x € IState(X).
3) If there is no admissible initial state geQ, with in(¢q)=i(0) and
istate(q) = x (i.e. Sel, ,(Q,,i(0),x) =), then B stops.
4) Otherwise, B chooses an arbitrary g€, such that in(g)=i(0) and
istate(q) = x (i.e. g € Sel, ,(Q,,i(0),x)).
5) If dom(i) = {0} or there is no trajectory s which starts in ¢ and is defined
on some interval (of positive length) from 7, then B outputs out(g) at

time 0 and stops.
6) Otherwise, B chooses an arbitrary maximal trajectory s defined on an

interval from 7, such that s(0)=¢ and inos=i and outputs the signal

bunch outos.
Theorem 2.2 (About representation of a strongly nonanticipative block).

Each strongly nonanticipative block has a NCMS representation.
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Theorem 2.3 (Converse theorem about representation of a strongly
nonanticipative block). Each initial I/O NCMS is a NCMS representation of a
strongly nonanticipative block.

We will prove these two theorems in the next two sections.

2.6 Proof of the theorem about representation of a strongly

nonanticipative block

Firstly, let us prove several auxiliary lemmas.

Lemma 2.5. Let (7,0,7Tr) be a NCMS, Q' be a set, f:Q—> Q' be an
injective function, and 7' ={f os|s e Tr}. Then (T,Q",Tr") is a NCMS.

Proof. Let us show that 7r' is closed under proper restrictions (CPR). Let

s'eTr', Ae ¥, and A< dom(s). Then s'= fos for some s e Tr, whence s|,eTr,
because 7r is CPR and dom(s)=dom(s"). Thus s'|,= fo(s|,) e Tr.

Let wus show that 7' is Markovian. Let  s/,57 €77,
t =maxdom(s]) =mindom(s}), and s(t )=s3(¢'). Then s/ = fos,, s,=fos,
for some s,,s, € Tr. Then f(s,(¢'))= f(s,(t")), whence s,(f )=s,(¢"), because f
1s injective. Then a function s:dom(s,)Udom(s,)— Q such that s(z)=s,(z) if
tedom(s,) and s(t)=s,(¢), if t € dom(s,) belongs to Tr. Then s'= foseTr' and
s'(t)=s/(t), 1f t e dom(s|) and s'(¢t) = s,(¢), if t € dom(s}).

Let us show that 7' is complete (in the sense of Definition 2.3). Let ¢’ < TF'
be a non-empty C-chain. Let c={seTr|fosec'}cTr. If s,,s,€c, then
fos Cfos,,or fos, Cfos,whence s, Cs, or s, Cs,,because f is injective.
Thus ¢ is a C -chain. It is non-empty, because ¢’ = and for any s"e ¢’ < Tr' there
exists s Tr that fos=s". Then there exists a least upper bound s € Tr of ¢
(when Tr is viewed as poset with respect to C). Let s = fos . Then s” €T,

s'Cs” for all s'ec’, and dom(s™)=dom(s")= U, dom(s)=],._.dom(s"). Then
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the graph of 5" is the union of the graphs of the members of ¢’. Thus s” is the

least upper bound of ¢’ (when 7' is viewed as poset with respect to C). [

Lemma 2.6. Let (7,0’,Tr’), jeJ be an indexed family of NCMS such
that 0/ NQ’ =@, if j# j'. Let QZUjEJQj and TrZUjEJTrj. Then (7,0,Tr) is
a NCMS.

Proof. Firstly, let us show that 77 is closed under proper restrictions (CPR).
Let seTr, Ae¥, and Acdom(s). Then seTr’/ for some jeJ, whence
sleTr’ cTr.

Secondly, let us show that 7r 1is Markovian. Let s,5,€7r,
¢* = max dom(s,) = mindom(s,), and s,(:')=s,(t"). Then s, € Tr’ and s, € Tr’ for
some j,j'eJ. Then j= ', because otherwise, 0/ NQ’ =@ and s,(t") #s,(t").
Then a function s:dom(s,)Udom(s,)—> QO such that s(z)=s,(¢), if tedom(s,)
and s(f) = s,(¢), if t e dom(s,) belongs to Tr/ < Tr.

Finally, let us show that 7r is complete (in the sense of Definition 2.3). This

1s obvious, if 7r =, so assume that 7r #. Let ¢ < Tr be a non-empty C -chain.

For each seTr there exists an index j(s)eJ such that se7r/). For each
s,,8, € c, either 5,Cs,, or s,Cs,, and because dom(s,),dom(s,)# D and the sets O’

are disjoint for different j, we have j(s,)=j(s,). Thus all indices j(s), sec
coincide, so there exists jeJ such that ¢ < 7r/. Then there exists a least upper

bound s” € Tr/ of ¢ in the sense of the poset 77/ (with the ordering C). Then it is

easy to see that s~ is a least upper bound of ¢ in the sense of the poset 7 (with the
ordering C). []

Lemma 2.7. Let X be a /O NCMS, i e Sb(In(2),W), and s € S(Z,i). Then
there exists s'e€ S, __(Z,7) such that sCs'.

max

Proof. Consider aset G={s"eS(Z,i)|sCs"}.
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Let ¢ G be a non-empty C-chain. Then it has a least upper bound s~ in
Tr, because X is a NCMS. This implies that 4 ¢ dom(s*) for some 4€7,\{J},
whence 0edom(s"). Then dom(s’)e T,, because s € Tr. Moreover, ino s =i,

because inos”<i forall s"ec . Then s € S(Z,i). Obviously, sCs ,s0 s €G.

We conclude that each non-empty C-chain of elements of G has an upper
bound in G. Because s € G, we have G # . Then Zorn’s lemma [43] implies that
G has some T -maximal element s’. Then s'€§,,,.(Z,7) and sCs’. [

Lemma 2.8. Let X=(7,0,7r) be a I/O NCMS, Q'cQ, and
i e Sh(In(2),W) . Then

1) 0,(2.0%i) < Sb(Out(£), W)

2) dom(o) < dom(i) for each o €0,,(Z,0',i);

3) 0,(2.0.1)%D.

Proof. 1)Letoeo,,(2,0',i) be an arbitrary element.

If O'=9 or dom(i) < {0}, then o=L or o has a form {0} out(q) for
some ¢ €0, whence o € Sh(Out(2), W), because out(q) €?® W forany ¢ 0.

Consider the case when {0} — dom(i) and Q' # <. Then either o has a form

{0} > out(q) for some g€ Q, or o=outos forsome seS, (2,7).

In the former case, o0eSbhb(Out(X),W). In the latter case, seTr,
dom(s)eT,, and (outos)(t)e®® w  for all tedom(s), whence
0 =outos € Sh(Out(X),W). In all cases, 0 € Sb(Out(X),W).

2) Let oe€o,,(Z,Q',i) be an arbitrary element.

If O'=9 ori=L1,then o=1, whence dom(o) < dom(i).
If O'# O and dom(i) = {0}, then dom(o) = {0} < dom(i).
If O'#0 and {0}cdom(i), then either dom(o)={0}cdom(i), or
dom(o) = dom(out os)=dom(s) for some se€S,  (2,i). In the latter case, inos=i,

whence dom(o) =dom(s) < dom(i). In all cases, dom(o) < dom(i).
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) If 0=, o0r i=L, or Q" # and dom(i)={0}, then o,,(2Z,0i)#J
immediately from the definition of o, .

Consider the case when Q' #J and {0} < dom(i).
If there exists g€ Q'\ S, ,,(Z,7), then {0} — out(q) belongs to o,,(X,0',i).
Otherwise, Q'c S,,,(2,i). Let us choose any ge Q' (it exists because Q'#J).

Then g€ S, (X,i) and there exists s € S(X,7) such that s(0)=g¢. Then by Lemma

init
2.7, there exists s'eS, (Z,i) such that sCs', whence s'(0)=g. Then
outos' o, (£,0',i). [

Lemma 2.9. Each initial /O NCMS is a NCMS representation of a unique
(up to semantic identity) block.

Proof. Uniqueness up to semantic identity is obvious from Definition 2.11.

Let us prove that if (£,0,) is an initial I/O NCMS, where £ =(T,0,Tr), then it is a

NCMS representation of some block.
Let i € Sb(In(Z),W) . Let us show that O ,(2,0,,7) is a non-empty subset of

Sb(Out(Z),W) and dom(o) < dom(i) for all 0 €0, ,(Z,0,,i). This is obvious, if
dom(i) = . Consider the case when dom(i) #< . Then
0 (2001 = U, st Pt (Z- el 5(Qy.(0),).7) .
For each xelState(X) we have Sel ,(Q,,i(0),x)cQ, Q. Besides,

IState(X) # & . Then Lemma 2.8 implies that O_,(Z,0,,i) € 2"\ (@ and
dom(o) < dom(i) for all 0 €0,,(%,0,,i). Thus (£,0,) is a NCMS representation

of a block. [

Lemma 2.10. Let B be a deterministic causal block. Then B has a NCMS
representation.

Proof. Let us denote X ={ieSh(In(B),W)|3teT dom(i)=[0,t]} and
O="B Wx X xB W Then X =P Let in, istate, out denote projection maps

from Q on the first, second, and third coordinate respectively.
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Let 7r be the set of all functions of the form s: 4— Q, where 4%, such

that the following conditions hold:
a) for each tedom(s)\{0} we have dom(istate(s(t)))=[0,z] and

istate(s())(¢) = in(s(?)) , and if s(0) ¥, then istate(s(1))(0) = in(s(0));

b) for each ¢ e dom(s) we have t € dom(o) and out(s(t)) =o(t), where o is a
unique member of Op(B)(istate(s(t)) ;

c) if t,,t, edom(s)\{0} and t, <t,, then istate(s(t,)) C istate(s(t,)) .

Let us show that X =(7,0,Tr) is a NCMS.

Firstly, let us check that 7r is closed under proper restrictions (CPR). Let
selr, AT ,and A< dom(s). Then s satisfies a)-c). Then dom(s|,)=Ae T and

s |, satisfies a)-c), whence s|,e Tr.

Secondly, let us check that 7r 1s Markovian. Assume that s,,s, € Tr,
¢ = max dom(s,) =mindom(s,), and s,(t ) =s,(t").

Let s:dom(s,)udom(s,)—>Q be a function such that s(z)=s,(z), if
tedom(s,) and s(t)=s,(¢), 1f t e dom(s,).

Let us show that s satisfies the condition a). Let ¢ e dom(s)\{0}. Then

t edom(s,)\{0} or t edom(s,)\{0} and because s,,s, satisfy the condition a), we
have dom(istate(s(1)))=[0,¢] and istate(s(t))(t)=in(s(¢)). Assume that s(0)<.
Then s,(0) 4 . If £ e dom(s,)\ {0}, then

istate(s(1))(0) =istate(s,(1))(0) =in(s,(0)) =in(s(0)),
because s, satisfies a). Otherwise, ¢ € dom(s,) and 0<¢ <¢. Because s, satisfies
¢), we have istate(s,(t")) C istate(s,(f)). Because ¢ e dom(s,)\ {0} and s,(0){ , we
have istate(sl(t*))(O) =in(s,(0)). Then

istate(s(1))(0) = istate(s,(1))(0) = istate(s, (t))(0) = in(s,(0)) =in(s(0)).

Thus s satisfies the condition a).
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Moreover, s satisfies b), because s ldom(s)= 51> 5 laom(sy) = 52> and s,,s, satisfy

the condition b).

Let us show that s satisfies the condition c). Let ¢,¢, e dom(s)\{0} and
t,<t,. If <t <t,, then istate(s(t,))C istate(s(t ))C istate(s(t,)), then
istate(s(t,))C istate(s(t,)) . Otherwise, both #,,¢, belong to dom(s,) or dom(s,) and
istate(s(t,))C istate(s(t,)) also holds. Thus s satisfies the condition c).

We conclude that 7r is Markovian.

Thirdly, let us check that 7r is complete in the sense of Definition 2.3. Let

¢ < Tr be a non-empty C-chain. Let s : Usecdom(s) — QO be a function such that

the graph of s~ is a union of graphs of all elements of ¢ (this is indeed a function,
because ¢ is a chain). Then dom(s')eS (because ¢ #@) and s satisfies a)-c)

because each s ¢ satisfies a)-c). Thus s~ e Tr. It follows that s~ is a least upper
bound of ¢ in 7r viewed as a poset with respect to C.

We conclude that ¥ is a NCMS.

Let i € Sb(In(B),W) and o € Op(B)(i).

Let us show that outos=o|,,,, for each seS(Z,i), and if se€S§,,. (1),
then outos=o.

Let s € S(Z,i). Then dom(s)e7, and inos=i by the definition of S(,i),
and istate(s(¢))(t) =in(s(t)) =i(¢) for all ¢t € dom(s)\ {0} by the condition a).

If ¢',tedom(s) and 0<t' <t, then i(¢')=istate(s(t"))(t") = istate(s(t))(t") by
the condition c). Moreover, we have s5(0) {4, whence istate(s(£))(0) = in(s(0)) =i(0)
for each ¢edom(s)\{0} by the condition a). Then for each ¢edom(s)\{0} we

have istate(s(1)) =i, because dom(istate(s(1))) =[0,¢]. Then

Op(B)(istate(s(1))) = Op(B)(i |jg,7) = 10 o1 »
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because B is deterministic and causal. Then out(s(¢)) = (o |,)(#) and ¢ e€dom(o)
for each ¢ € dom(s) by the condition b). This implies that dom(s) < dom(o) and for
all zedom(s), out(s(¢)) =o(?). Thus outos =0,

We have {0} c dom(s)< dom(o), so dom(o)eT . Because in(s(0))=1i(0)
and out(s(0))=0(0), it follows that a function s':dom(o)—>Q such that
s'(0)=s(0) and s'(¢)=(i(?),i],0(2)) for all tedom(o)\{0} satisfies the
conditions a)-c). Moreover, s'eTr, dom(s')eT,, and inos'=i|,, ., =i. Then
s'€ S(Z,i). Besides, s'| (= S -

This implies that if s €S

(Z,i), then s'=s and outos=o.

Now let us denote
0, =1d,,,x,d,,) € Q]3(i,0) € IO(B){0} e dom(o) nd,;, =i(0) nd,,, =0(0)}.

Let us prove that §,.(2)cQ,. Let (d,,,x,d,)eS,;,(Z). Then

d,,,x,d,,)=s(0) for some seTr such that dom(s)eT,, then seS(Z,inos),
whence outos =0, where o is the unique member of Op(B)(inos). Then
(ines,0)e I0(B), {0} e dom(o), and d,, =in(s(0))=(in-s)(0), and
d,,, =out(s(0))=0(0). Thus (d,,,x.d,,)€Q,.

We conclude that (£,0,) 1s an initial I/O NCMS. Obviously, In(X)= In(B)
and Out(X)= Out(B).

Now let us prove the following property of Q,, :

d) if (7,00elO(B), q€Q,, i#L, and in(q)=i(0), then o#Ll and
out(q)=o0(0).

Indeed, if (i,0) € IO(B), i #L, and g €(Q,, then there exists (i’,0") € IO(B)
such that {0} € dom(o") = dom(i"), in(q) =i'(0), out(q) =0'(0). Because i'|,(,= i,
and B is deterministic and causal, we have o'[=o0l,,, whence o=l and
0(0)=0'(0)=out(q).

Now let us show that (Z,0,) 1s a NCMS representation of B.
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It is sufficient to show that Op(B)(i)=0,,(Z,0,.i) for all i € Sb(In(B),W).
This is obvious, if i =1.

Let i e Sb(In(B),W)\{L} and o € Op(B)(i) be arbitrary elements. Then
Oall (29 QO al) = Uxe]State(E)Oa” (29 Sell,z (QO) l(O), X), l) .

Consider the following cases:

Sel, ,(Qy,i(0),x) =< for some x e IState(X). Then there is no pair
(i',0") € IO(B) such that i'(0)=i(0) and 0'(0){. For all x e IState(2),
o=1 and Sel, ,(Q,,i(0),x) =&. Then O, (Z,0,,i) = {1} = Op(B)(i).

— Sel, ,(Qy,i(0),x) =< for all x € IState(X) and dom(i) ={0}. Then 0(0) \2
and out(q)=o0(0) for each g e Sel,,(Q,,i(0),x) = Q, by the property d).
Then o,,(Z, Sel, ,(0,,i(0),x),i) = {{0} = 0(0)} = {o} for all x € IState(),
whence O, (2,0,,i) = Op(B)(i).

— Sel, ,(0y,i(0),x) 2 for all xelState(¥), {0}cdom(i), and
dom(o) < {0}. If in(q)=i(0) for some ge€S,,, (%,i), then g=s(0) for
some s e S(Z,i), whence outos=o0l,, as we have shown above, but
this is impossible, because {0} cdom(s) and dom(o)<{0}. Thus
in(q) #i(0) for each ¢geS,,(Z,i). Then for each xe IState(X)
5(0) ¢ Sel, ,(0,,i(0),x) holds for all S€ S, (Z,0) and
Sel, 5(0y,i(0),x) N S,,;(2,i)=D. Then for each xelState(T),

14

0,1(Z,8el; ,(0y,i(0),x),i) = {{0} = out(q) | q € Sel, ,(Q,,i(0),x)}, whence
O0,,(2,0,,0))={{0} > out(q)|q € Q, nin(q)=i(0)} #<J. Because for
some ge(,, in(q)=i(0) by the property d), we have 0edom(o) and
0,1(2.04.1) = { {0} 1> 0(0)} = {0} = Op(B)(i) -

— Sel, ,(0y,i(0),x) = for all xe IState(X) and {0} = dom(o). We have
dom(o)eT. Let xelState(¥) and g e Sel ,(0,,i(0),x). Then
in(q)=1i(0) and have out(g)=0(0) by the property d). It is easy to see
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that a function s':dom(o)—>Q such that s'(0)=¢g and
s'(8) = (i(2),i g 1,0(1)) for all zedom(o)\{0} satisfies a)-c). Moreover,
s'eTr, dom(s"eT,, and inos'=i|,, 3. Then s'eS(Z,i). Then

s'(0)=qeS,

init

(2,i). Because q e Sel,,(0,,i(0),x) is arbitrary, we have
Sel, ,(Qy,i(0),x) = S,,,;,(Z,0) . Then for each x € IState(Y),
0(Z,8el| 5(0y,i(0),x),i) = {0}, because outos=o for any seS§,,  (Z,i)
as we have shown above and Sel ,(Q,,i(0),x)#<. Then
0,,(2,0,,i)={o}=Op(B)(i), because IState(X)+# D .

In all possible cases we have O, ,(Z,0,,i)=0Op(B)(@). Thus (£,0,) is a

NCMS representation of the block B. [

Let %, =(7,0,,Tr,) and ZX2,=(T,0,,Tr,) be I/O NCMS such that
In(Z,)=1In(X,) and Out(%,) = Out(%,).

Let us introduce the following notions

Definition 2.12.
1) A state embedding from X, to X, is a function f:Q, - O, such that

{fos|seTr}={seTr, |Itedom(s)IqeQ, s(t)= f(q)} and there exists
an injective function g : IState(Z,) — IState(Z,) such that forall g€ Q,,
f(q) = (in(q), g (istate(q)),0ut(q)).
2) A state embedding from an initial /O NCMS (Z,,0Q,) to an initial I/O

NCMS (Z,,0;) is a state embedding f from X, to ¥, such that for each

g0, qué if and only if f(q)ng.
Note that it follows immediately from this definition that a state embedding

from Z, to X, is an injective function.
Lemma 2.11. Let X, =(7,0,,71;) and X, =(T,0,,7r,) be /O NCMS,
In(Z,)=1In(X,) and Out(X,)=0ut(X,), and f be a state embedding from X, to
Y,.LetieSbh(In(X,),W).Then S, (Z,,i)2{fcs|seS

max

(Z,,i)} and

max
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(0€8,,(22.)|3¢' €0 = F(@) =11 (@") 4" €8, (E1,0)}

Proof. Because {f os|seTn}c Ir,, we have the following:

SE,,i)={seTr, |dom(s)eT,Ainos=zi} D{fos|seln A
ANdom(fos)eT ynino(fos)Ri}={fcos|seTrn ndom(s)eT,ninos=i}=
={fos|seS(Z,,i)}.

Let seS,, (Z,,i). Then foseS(Z,,i). Suppose that fosgS,  (2,,i).
Then fosCs’ for some s'eS(Z,,i). Because dom(s)=, s'(t)e{f(q)|qe O}
for some teT. Then s'=fos" for some s"eTr, because
{fos|seTrh}={seTr |Itedom(s)IqeQ, s(t)=f(q)}. Then  fosC fos",
whence sCs”, because f is injective. Besides, dom(s")=dom(s")eT, and
inos"=inos'<i. Then s" e S(Z,,i). We get a contradiction with the assumption
seS,(Z,,i)). We conclude that foseS§, (2,,i). Thus we have
S (EasD) 24 0515 € S, (Z1D)}

Now let us show that
(9€S,(E0.D)130' €0, 4= (@)} =1/ (@")q" €S, (E1.)}

Let g€ S,,,(Z,,i) and ¢' € O, be such that ¢ = f(q"). Then g = s(0) for some
se€S(X,,i). Then s eTr, and s(0)= f(g"), where ¢' € Q,. Then there exists s' € Tr,
such that s= fos'. Moreover, dom(s")=dom(s)eT, and inos'=inos=i. Then
s'eS(X,,i) and s'(0) €S, (%,,) . Thus

g=5(0)= (5O € {/(d")q" € S, (T1,1)}

Conversely, let ¢"€S,,,(2,,i). Then ¢"=s(0) for some seS(Z,,i). Then
foseS(X,,i), whence f(q")=f(s(0)=(f-s)0)€S,, (X,,i). Then because
q" €0, wehave f(q")e{qes, (£,,i)13¢'€ 0, q= f(q)}. Thus

10€8,(0.0)13' €0, 4= F(@) =1/ (@")|q" € S,(Z10)} . [
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Lemma 2.12. For j=1,2 let (X j,Q(-)" ) be a NCMS representation of a block
B;. Assume that /n(X,)=In(X,) and Out(Z,)=Out(X,) and there exists a state
embedding f from (2,,0,) to (£,,0;). Then B,<B,.

Proof. Assume that X, =(7,0,,71) and ZX,=(T,0,,Tr,). We have
In(B)=In(Z))=In(X,)=In(B,) and Out(B))=0ut(X,)=0ut(X,)=0ut(B,).
Because f is a state embedding, there exists an injective function

g : IState(X,) — IState(%,) such that forall geQ,
f(q) = (in(q), g (istate(q)),0ut(q)) .

Let ieSb(In(B),W). Then for j=1,2, Op(B;)(i)= Oan(Zj,Q({,i) . Let us
show that O,,(2,,0;,i) 20,,(Z,,0,.i) . This is obvious, if i =1, so assume i #L .

Let us fix some x, €lState(X;). Denote Q)= Sel, (04,i(0),x;) and
0} = Sel, ,(02.i(0), g(x)) . Because g is injective and OF = {f(9)|q € O}},

05 =1{q € 0; lin(q) = i(0) nistate(q) = g(x,)} 2
D {(9)|q €0y nin(f(q))=i0) nistate( f(q)) = g(x))} =
={/(@)q €Oy Ain(q) =i(0) A g(istate(q)) = g(x)} =
={/(q)|q € Sel, 5(0pi(0),x,)} = {/(9) |g € O}

Let us show that Q) # if and only if Q] # . Indeed, if Q] #, then
Q,#, because Q,2{f(q9)lqeQ;}. Conversely, if @)=, then
(i(0),g(x,),d)eQ; for some deOut(X,), whence (i(0),x,,d)eQ, and
f((i(0),x,,d)) Qg , whence, (i(0),x,,d) e Q(l) , because f is a state embedding, and
finally, O = Sel, ,(Q,,i(0),x,) # D

Now let us show that o,,(2,,05,i) 20,,(Z,,0/,i). This is obvious, if Q] =
or O, =, because Q) # & if and only if Q] #J as we have shown above. So let

us assume that Q] #J and Q) # .
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Consider the case when dom(i) ={0}. Because O, 2 {f(q)|q €0},

0,1(25,05,0) = {{0} = out(q) |q € O3} 2 {{0} > out(f(q)) g € Oj} =

= {0} > out(q)|q € 01} = 0, (X, 01,0).

Now consider the case when {0} c dom(i). Then

0,1(25,05,0) ={outos|s €S, . (Z,,0) As(0) € 0r}

U {0} > out(q)|q € O3\ S, (2,,0)5-
By Lemma 2.11 we have S, (Z,,i))2{fecs|seS, (Z,,i)} and
{4€S,(22:0139' €0, 9= (4N} =1/ (414" € S (Z1,D)} -

Because f isinjective and Q; 2 {f(q)|q € 0;},

foutos|seS, (£,,i)Ans(0)eQ,}D{outo(fos)|seS, (Z,,i)A

A f(s(0) e Oy} o foutes|s €S, (X,0) As(0) € O}

Moreover, because Q] < O, and f is injective, we have

O\ St (2050 24/ (@) |9 € O3\ S0 (2,50) =

={/(D1ge0i}\{g €S, (2,,D) 134" €0, g = f(q)} =
={f(@Iqe0}\{f(a)]q" €S, (E1,0)} =
= {/(@)|q €0\ S, (T}

Then

{0} > out(q)|q € O3\ S, (25,0)} 2 {{0} > out(f(9)) |

q €O\ S, (21,0} = {0} > out(q)|q € O/ \ S, (2,0}
Finally, we have o_,(X,,0,,i) 2o0,,(%,,0/,i).
We conclude that for each x, € IState(X,),
041 (25, el ,(02,i(0), g(x)),) 2.0,/ (Z,, Sl 5 (0hi(0), x,), ):

Then because i #L by our assumption, we have

Op(B)(i)=0,(2,,05.0)= U 04(Z,,8el,,(05,i(0),x,),i) 2

xy€lState(Z,)

o> U ow(E,,Sel ,(07,i(0),g(x))),i) 2

x| €lState(Z)
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> U 0w(Z.8el 5(05,i0),x,),i) = 0,y (X1, Qp,1) = Op(B, (i)

x elState(=))

We conclude that B,<B,. [

Definition 2.13. A disjoint union of an indexed family of initial I/O NCMS
((Zj,Q({'))jEJ, where J #& and X, =(T,0,,Tr;) for each jeJ, isa pair (X,0,),
where £ =(7,0,Tr) and

D o="w x (U, )y x IState(Z ) U W  where IN = U,/ In(Z;), and

OUT = UJ.EJOut(Zj);

2) Tr={f,es|jeJ nselr},;

3) O =1{fi(9]je ngeOf};
where for each jeJ, f;:Q; — O is a function such that

Ji(@)=(in(q),(j,istate(q)),out(q)),q € Q.

Lemma 2.13. Let (£,0,) be a disjoint union of an indexed family of initial
/O NCMS ((ZJ,Q({ ) jes » Where J # . Then (Z,0,) is an initial I/O NCMS.

Proof. Assume £=(7,0,Tr) and £, =(T,Q,,Tr;) for each jeJ . For each
JjedJ,let f,:Q, — Q be defined as in Definition 2.13.

Let us show that ¥ is a NCMS. Let IN = Ujejln(Zj), ouTr =UjEJOut(Zj),

and for each jeJ let Q) =" W x({;} x IState(Z;))x""" W .

Then f; is an injective function from Q; to Q). Then because X, is a

NCMS, the triple (7,0',Tr;), where Tr; ={f, os|seTr;}, is a NCMS by Lemma
2.5. For each j,j'eJ such that j= ;" we have Q;NQ) =Y. Moreover,
0= UjEJQ} and Tr = UjEJTr; by Definition 2.13. Then X =(7,0,Tr) is a NCMS

by Lemma 2.6. Because UjeJ{j} x IState(Z ;) # D, ¥ is an I/O NCMS.
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For each jeJ, (Z_I.,QO") is an initial /O NCMS, so S, (X)) c0f c0;.
Then
S, (Z)={s(0)|seTrndom(s)eT,}=
—{(f,o5)O) | j € As Tr, Adom(f,o5) e Ty} =

={fi(D]jeI rgeS,,ENrc{f(@)]je] rgeQf}=0,.
Obviously, O, <0, so S,,,(2)cQ,c Q. We conclude that (£,0,) is an

init

initial I/O NCMS. [
Definition 2.14.
1) A complete set of sub-blocks of a block B is a set B of sub-blocks of B
such that JO(B)=|,,_,/O0(B").
2) A complete indexed family of sub-blocks of a block B is an indexed

family (B;),., suchthat {B,|jeJ} is a complete set of sub-blocks of B.

Lemma 2.14. Let (B,),., be a complete indexed family of sub-blocks of a

jeJ

block B, where J#O. Assume that for each jeJ, B, has a NCMS

representation (X j,Q({ ). Let (£,0,) be a disjoint union of ((£ j,Q({ ) Then

je -
(Z,0,) i1s a NCMS representation of B.
Proof. Assume that ¥, =(T,0,,Tr;) foreach jeJ and X=(T,0,Tr).
By Lemma 2.13, (Z,0,) is an initial /O NCMS, whence by Lemma 2.9,
there exists a block B’ (unique up to semantic identity) such that (%,0,) is a

NCMS  representation of B'. Because B;<B, for each jeJ we have
In(Z;)=In(B;)=In(B) and Out(X ;)= Out(B,;) = Out(B).

Because J#O, we have In(B)=In(X)= U,-GJI”(Z/') =In(B) and
Out(B")=Out(X)= UJ.EJOut(Zj) =Qut(B).

Foreach jeJ,let g, : IState(X ;) — IState(X) and f,:Q; — Q be functions

such that g, (x)=(/,x) forall x € IState(X ), and for each g€ O,
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1i(q) = (in(q), g ; (istate(q)),out(q)) .

Let us show that B<B'. Let us fix jeJ. Obviously, In(X;)=In(%),
Out(X;)=Out(¥), and the function g, 1s  injective.  Because
i @DlqeQsni{fi(@lqeQ,}=D,if j,j"eJ and j'# j", from the item 2 of
Definition 2.13 it follows that

{fies|selr,}={seTr[Itedom(s)IqeQ,;s(1)= f,(q)}.

Then f; is a state embedding from X, to X. Moreover, from the item 3 of
Definition 2.13 it follows that for each geQ,, g€ Q] if and only if Sfi(q) €0y,
because f; is injective and {f(¢)|q€Q; N {f;(q)|q€Q,;»} =D forall j', j"eJ
such that j'=# j”. Thus f; is a state embedding from (Z j,QOj ) to (£,0,). Then
B;<B' by Lemma 2.12. Because j € J is arbitrary, we conclude that BIB".

Now let us show that B'<dB. Let (i,0) e IO(B"). Then 0 € O_,(Z,0,,i) .

If i=1,then o=1 and (i,0) € IO(B) (because B is a block).

Consider the case when i#Ll. Then there exists an element
x e IState(T) = UjeJ{j} x IState(¥;) such that oe oaﬂ(Z,Sell’z(Qo,i(O),x*), Q).
Then there exists jeJ and xj. € IState(X ;) such that x =( j,xj.) .

Let O’ = s (4 x IState(X ) x4 g7 and =% \Q} . Then X' is a
NCMS by Lemma 2.3. Let us denote by 77/ the set of trajectories of £';. Obviously,
Q' is the set of states of X, and In(X',) = In(X), Out(L’;) = Out(X). Besides, ¥'; is
an [/O NCMS and

S = 5, (Ely ) € S,u(D)NQ; €0, N0} < O,
because (Z,0,) is an initial I/O NCMS. Denote Q; ; =0, N Q). Then (X',0; ;) is

an initial I/O NCMS. Moreover, x & IState(3')).

Let us prove that 0 € O, (£',,0, ;,i). Denote Q' = Sell,z(QO,i(O),x*) :
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Firstly, let us show that Sel,,(Q),.i(0),x )=Q'. Indeed, if
q€0,;, =0,NQ; and in(q)=i(0), istate(q)= x, then geQ’. Conversely, if
qeQ', then gqeQ,, in(q)=i(0),istate(q)=(j,x;), whence geQ; and
g € Sel, (05 ,,i(0).x").

Secondly, let us show that oe€o,,(X",0",i). Note that oe€o,,(X,0'i). If
QO'=8 or dom(i)c{0}, from the definiton of o, we have
oeo,(Z,0i)=0,(Z",0"i). Consider the case when Q'# (< and {0} c dom(i).
Because o €0,,(2,0',i), the following two sub-cases are possible:

a) o=outos for some seS,  (Z,7) such that s(0)eQ’'. Then seTr,

dom(s)eT,, and inos=i. Because s(0)eQ’, we have
istate(s(0))=x" =( j,x;). From the item 2 of Definition 2.13 for X it

follows that the first component of the value istate(s(¢)) is j for all

tedom(s). Then s(r)e Q) for all 7edom(s), whence seTr;. Then
s € S(Z',i). Moreover, s € Smax(Z’j,i), because otherwise, sCs’ for some
s'e S(2',i), whence s'eS(Z,i), and we get a contradiction with

S €S, (2,0). Thus 0 €0,,(X';,0',i) by definition of 0,

b) 0={0} > out(q) for some g Q'\S, ,(X,i). Then g #s(0) for all seTr
such that dom(s)e7, and inos=i. Because ¥ =% |Q}, , we have, in
particular, g #s(0) for all seTr; such that dom(s)e7, and inos=i.
Then g€ Q'\ S, (X'.,i), whence o €0_,(X",0',i).

Thus we conclude that oeo,(2),0.i), Q'=Sel ,(0;;,i(0),x ), and

x e IState(¥';), whence 0 € O, (X', 0, ;»i), because i #L by assumption.

By Lemma 2.9, there exists a block Bj such that (¥',0;;) is a NCMS

representation of B'. Let g: [State(X,) — IState(X ;) and f: Q) — O, be functions
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such that g((/,x))=x for all x e IState(X';) and f(q) = (in(q),g(istate(q)),out(q))
for all g € Q}. Obviously, In(Z’,)=In(X,), Out(X’;) =Out(X ), and g is injective.
Moreover, f is an inverse of f i whence
{fos|seTry={fos|seTraVtedom(s)s(t)eQ}} =
={fo(fyos)j e nseTr, nVtedom(s)(fos)t)eQ;}=Tr;.

Because dom(s)#< for each seTr,, and s()=f(f;(s(r)) and

f;(s(1)) € Q) for each ¢t e dom(s), we have
{fos|seTri}={seTr |3t edom(s)Iq Q] s(t)= f(q)}.

Then f is a state embedding from X’ to X ;. Moreover, for each ge(Q’,
qe Q(’)’j =0, mQ} if and only if ¢= fj(q') for some ¢'e€Q] if and only if
f(g)€Q/. Then f is a state embedding from (Z},0,) to (Zj,Q({) . Then B’ <B;
by Lemma 2.12. As we have shown above, 0€O,,(Z',0; ;,i) = Op(B))(i), so
0 € Op(B;)(i), whence (i,0) € IO(B). We conclude that B'JB.

We have shown that B<B' and B'JB. Then B and B’ are semantically
identical. Then (Z,0,) is a NCMS representation of B. [

Now we can prove Theorem 2.2.

Proof of Theorem 2.2. Let B be a strongly nonanticipative block. Let us
show that B has a NCMS representation.

Let R be the set of all relations R < /O(B) such that R is an I/O relation of

a deterministic causal block. For each ReR let us define a block B, such that
I0(By)=R, In(Bz)=In(B), Out(By)=Out(B). Then B, is a deterministic
causal block for each Re R and IO(B)=|/J,_IO(B;), because B is strongly
nonanticipative. Then (B;),.» 1s a complete indexed family of sub-blocks of B

and R =Y. By Lemma 2.10, for each R e R there exists an initial /O NCMS
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(Z4,0F) which is a NCMS representation of B, . Let (2,0,) be a disjoint union of

(Z2,08)) ger - Then by Lemma 2.14, (£,0,) is a NCMS representation of B. [

2.7 Proof of the converse theorem about representation of a strongly

nonanticipative block

In this section we give a proof of Theorem 2.3.

Lemma 2.15. Assume that a block B has a NCMS representation,
(i,0) € IO(B), and (i',0")<*(i,0) . Then (i",0") € IO(B).

Proof. Let (£,0,) be a NCMS representation of B, where £ =(7,0,7Tr).

Because (i',0')<°(i,0), we have i'=i|, an o'=o0|, for some AeT,. If
i=L or A=, theni'=0"=1,s0 (i",0") € IO(B).

Let us assume that i #1 and 4#. Then o€ Op(B)(i)=0,,(Z,0,,i) and
there exists x € IState(X) such that o €o,,(Z,0',i), where Q"= Sel, ,(Q,,i(0),x).
Moreover, i'(0) $=i(0) and Q'= Sel, ,(Qy,1'(0),x) , whence

0,1(2.0'1') € 0,(£.0,.i") = Op(B)(i").

Because o €0,,(2,0',i), the following cases are possible.

1) O'= and o=1.Then o'=Leo,,(X,0',i") € Op(B)(i").

2) dom(i)={0} and o={0}+>out(q) for some geQ'. Then i'=i and
0o'=0,because 4= . Then o'=0 e Op(B)(i)=Op(B)(i").

3) {0}cdom(i) and o={0}—>out(q) for some geQ'\S, (X,i). Then
0o'=o0,because A=J.If A={0}, then dom(i")={0} and g Q’, so

0'=0={0} > out(q)co,,(Z,0,i") < Op(B)(i').

Consider the case when A4 # {0}. Then {0} c A and {0} — dom(i"), because

{dom(i), A} = T,. Moreover, because i'<i and ¢ ¢ S,,,,(2,i), we have g ¢ S,,,,(Z,i"),

whence g€ Q'\ S, .. (Z,i"). Then o' =0={0} — out(q) €0,,(Z,0',i") < Op(B)(i").
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4) {0} c dom(i) and o =outos for some seS§,,  (2,i) such that s(0)eQ".

If 4=1{0}, then dom(i")={0} and s(0)e Q', so

0'=0|,=1{0} > out(s(0)) €0, (Z,0,i") = Op(B)(i").

Consider the case when A # {0}. Then {0} c 4. Then {0} — dom(i"), because
{dom(i), A} =T, and {0} c dom(i). By the CPR property of £, we have s|,eTr.
Besides, ino(s|,)=(inos)|, =i|,=i', because inos=i, so s|,eS(Z,i"). Denote
s'=s|,. Because s'eS(Z,i"), by Lemma 2.7 there exists §€S,,(Z,i") such that
s'Cs . Because ino$§=i'=i|,, we have dom(s) < A. Then

dom(s)N A=dom(s|,) cdom(S)cC A4.
Because  {dom(s),A}c7T,, we have either A=dom(s|,)=dom(S), or
dom(s)=dom(s|,) < dom(s). In the former case, s'=s|,=S$, because s'C 5. In the
latter case, dom(s)< A, whence s=s|,=s'C5. Moreover, s€8§,,(2,i") < S(Z,i),
because i'<i, and s€S,, (X,i), so s=s"=5. So in both cases, s'=5€S§,,,.(%,i).
Moreover, o' =0 |,=outos’ and s'(0) =s(0) e Q'. Then
o'=outos' €0, (Z,0',i") < Op(B)(i").

In all possible cases o' € Op(B)(i") . We conclude that (i',0") € IO(B). [

Lemma 2.16. Assume that a block B has a NCMS representation,
0 € Op(B)(i), and i=i". Then there exists o’ € Op(B)(i") such that (i,0)=<*(i’,0").

Proof. Let (Z£,0,) be a NCMS representation of B, where X =(7,0,7Tr).

Assume that i =1. Then o=1. We have Op(B)(i")#<. Let us choose an
arbitrary o’ € Op(B)(i"). Then (i,0)=<>(i',0").

Now let us assume that i#L. Then o€ Op(B)(i)=0,(%,0,,i) and there

exists x € IState(¥) such that oeo,,(2,0'i), where Q'=Sel ,(0Q,,i(0),x).
Moreover, i'(0) $=i(0) and Q'= Sel, ,(0,,i'(0),x) , whence
0(2,0%,1") € 0,(2,0,,1") = Op(B)(i) .

Because o € 0,,(2,0',i), the following cases are possible.
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1) O'=0 and o=L. Let o'=L. Then o' =leo, (Z,0'i) < Op(B)(i').
Moreover, i =i'|j,,;) and 0 =0 |1 SO (i,0)=*(i",0") .

2) dom(i)= {0} and o = {0} > out(q) for some g Q’.

If dom(i"y=1{0}, then i=1i', so for o'=0 we have o'eOp(B)(') and
(i,0)=*(i",0").

Consider the case when {0} — dom(i").

If g¢8,,(%i"), then o={0}+ out(q)€o,,(X,0',i'")y € Op(B)(i"), so for
o'=o0 we have i=i'|,,, and 0=0"|,, (because dom(o) < dom(i)), whence
(i,0)=*(i",0") and o' € Op(B)(i").

If ge8,,,(%,i"), then by Lemma 2.7 there exists s€S,,,. (2,i") such that

s(0)=qgeQ'. Then outeseo, ,(Z,0,i'")y cOp(B)(i'). Let o' =outos. Then
i=1"|g and 0=0"|y,, because dom(i) = {0} and 0'(0) = out(s(0)) = out(q) = 0(0),
so (i,0)=%(i",0"). Besides, o' € Op(B)(i").

3) {0} = dom(i) and o = {0} — out(q) for some q € Q'\ S, (%,i).

Let us show that g ¢ S, (2,i") . Suppose that g € S,,,,(£,i") . Then there exists
s € S(2,i") such that s(0)=gq. Then in o (s |13 liom@ny=1 and $ |4y, € Tr by
the CPR property, S0 S |spn€S(Z,0) and g =(S|spmn)0) €S, (Z,i). This
contradicts the assumption g € 9"\ S,,,(£,i). Thus ¢ ¢ S,,,,(Z,i") .

Then {0}cdom(i’)y and ¢qeQ'\S,,(%i). Let o'=o0. Then

o' ={0} > out(q) €o,,(Z,0',i") < Op(B)(i"). Moreover, 1= 0" gomi) and
0 =0 jym(iy» SO (i,0)=>(i",0").

4) {0} < dom(i) and o =outos for some s S, (Z,i) such that s(0)eQ’.

max

We have inos=<i=<i’, so seS(,i'). By Lemma 2.7 there exists
s'eS (Z,i') such that sCs'. Let o'=outos’. Then s'(0)=s(0)eQ’ and

max

{0} c dom(i"), whence o' =outos'co,(X,0,i")cOp(B)(i'). We have
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inos"|yomiy S liom@y=1 and s |, ;€ Tr by the CPR property, so s'|,,,;€ S(Z,7).

Also,  sCs'|;i), because dom(s) < dom(i). Then s=5s"|,,., because

S €8,,,(2,0). Then 0 =0'|,,,,;,- Moreover, i =i'|,,, ., SO (i,0)=*(i',0).

In all cases there exists o' € Op(B)(i") such that (i,0)=<*(i’,0"). LI

Lemma 2.17. If a block B has a NCMS representation, then it is weakly
nonanticipative.

Proof. Follows from Lemma 2.15, Lemma 2.16, and Theorem 1.1. [

Lemma 2.18. Assume that a block B is weakly nonanticipative and
dom(o) < {0} for each (i,0) = IO(B). Then B is strongly nonanticipative.

Proof. Let us fix (i,0.)€IO(B). Then (i lg,,0x ;)= (is,0.), 50
(ix l0}0x |;9y) € IO(B) by Theorem 1.1, because B is weakly nonanticipative.

Let 1={ieSb(In(B),W)|dom(i)c{0}}. We have i |,el and
0« = 0s |0, € Op(B)(ix |;p,) , because dom(o.)c{0}. For each iel we have
Op(B)(i) # J, so there exists a (selector) function f :1 — Sb(Out(B),W) such that
S(@)eOp(B)(i) forall iel and f(i [y )=o0x.

For each ieSb(In(B),W) let O()=1{f(ily)}. Then O@F)#< and if
0€0(i), then o= f (il ) €Op(B)ily,), so dom(o) = dom(ily,) < dom(i). Then
there exists a block B’ such that In(B')=In(B), Out(B")=Out(B), and
Op(B")(i)=0(i) for all i e Sb(In(B),W).

The block B’ is deterministic, because O(i) is a singleton for each i.
Moreover, if i,i, e Sb(In(B),W), teT, i loq=% o> 0 €O0p(B)i), and
0, € Op(B')(iy), then o, = (i, |,) = f (i, |p,) = 0,, Whence o, | 1= 0, |jp,;- Thus the
block B’ is causal.

Let us show that B'JB. Let (i,0)elO(B'). If i=Ll, then o=L and
(i,0) e IO(B).
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Assume that i #L. Then o= f(i|,,) € Op(B)(i|p,). We have i, =i, so by
Theorem 1.1 there exists o' € Op(B)(i) such that (i| {O},o)jz (i,0") (because B is
weakly nonanticipative). Then i|,,=i[, and 0 =0"|, for some 4€7,. Then O€ 4,
because i #1 . Then dom(o") < {0} = 4, whence o' =0"|,=0. Then (i,0) € IO(B).

Because (i,0) € IO(B') is arbitrary, B'<B.

Moreover, we have Op(B')(i) = O(ix) = {f (ix |;,)} = {0+} , 80 (ix,0.) € [O(B").

We conclude that for each (i.,o0.) € IO(B) there exists a deterministic causal

sub-block B'<B such that (ix,0.) € IO(B"). Thus B is strongly nonanticipative. [

Lemma 2.19. Assume that a block B has a NCMS representation,
(is,0+) € IO(B), {0} = dom(i.), and dom(o.)={0}. Then there exists a sub-block
B'<IB such that B' has a NCMS representation and Op(B')(i.) = {o.} .

Proof. Let (Z,0,) be a NCMS representation of B, where X =(T,0,Tr).
Then o0.€0,,(Z,0y,i+), i.#L, and there exists x.e IState(X) such that
0« €0,,(Z,04,i), where Qi =Sel, ,(0,,i-(0),x.). Because dom(o.)=1{0}, there
exists g. € 0\ S,
Let Q) ={q €Q, |in(q) #i.(0)} U ({i(0)} x IState(X) x {0.(0)}) .

On the set of all function of the form s: 4 — O, where 4T let us define a

(2,i.) such that o. = {0} > out(g-).

predicate P such that
P(s) < (range(s |{0}) cO)A(NVteT\{0}(ino(s |[0,t)) # I |[O,,)).

Foreach s: 4— Q, where 4€ %, let us define a function F(s): 4> QO

— F(s)(0)=g.,if 0 € 4 and in(s(0)) =i.(0);

— F(5)(0)=s(0),if 0 € 4 and in(s(0)) #i.(0);

— F(s)(t)=s(t) forall te A\{0}.

Let (I,r)e LR(Q) be a LR representation of ¥ (which exists by Theorem
2.1). Let ' : ST(Q) — Bool be a predicate such that

— 7'(5,0) = r(F(s5),0) A P(5),if (5,0) e ST(Q);
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r'(s,t) < r(s,t),1f (s,t) e ST(Q) and ¢ > 0.

Let us show that ' is right-local. Let (s,,7,),(s,,%)) € ST(Q) and s, =, | s,.
If ¢, > 0, then 7'(s), 1)) < r(s,,t,) < r(s,,t,) < r'(s,,t,), because r is right-local.

Consider the case when £, = 0. Then there exists ¢ >0 such that s, =, ) s,.
Let us show that —r'(s;,0) = —r'(s,,0). Assume that —r'(s;,0). Then either
—r(F(s5,),0), or —P(s,). In the former case, F(s,) =, F(s,) by the definition of
F, because s, =q, s,, whence —r(F(s,),0), because r is right-local, so
—r'(s,,0) . In the latter case, i.e. —P(s,), we have either s5,(0) ¢ Q;, or there exists
t>0 such that ino(s) |g,) =il If 5,(0)&Qq, then s,(0)=s5,(0)¢&Q;, so
—P(s,) and —r'(s,,0) . Otherwise, there exists # > 0 such that ino (s, [;y,)) =ix |jg 5,
SO e [io,min gz, = 11 © (81 [o,minte,ry)) = 72 (52 [omingr.rp) ) » 80 —P(s,) and —r'(s,,0) .

Thus —r'(s,,0) = —r'(s,,0) in all cases, so r'(s,,0) = r'(s,,0).

Thus we have shown that 7'(s,,0) = '(s;,0) whenever s, =, , s,. Then we
have 7'(s,,0) < r'(s,,0) whenever s, =, ,s,. Moreover, if (s,7)eST(Q) and
max dom(s)¥=1t, then >0 and r(s,1), so »'(s,f) holds.

We conclude that 7' is right-local.

Then (/,7") € LR(Q) is a LR representation of some NCMS X' =(7,0,Tr")
by Theorem 2.1. Then 7r' ={s: A > Q| A€ T A(Vte A I(s,t) AT'(s,1))}.
Let us show that s € Tr' < (F(s) € Tr A P(s)) holds for each function of the

form s: 4 — O, where 4 €% . Consider the following cases.

a) s(0)T. Then F(s)=s. Also, P(s), because range(s ;) =< and i.(0) !,
so r'(s,t) < r(s,t) for all 1 € dom(s), whence s € Tr' < (F(s) e Tr A P(s)).

b) s(0)¥. Then we have #(s,0)< r(F(s),0)AP(s). Moreover,
F () |rv0,= 5 0y, Whence [(F(s),1) < I(s,t) and r(F(s),1) < r(s,t) < r'(s,1)

for all t € dom(s)\ {0} . Also, I(F(s),0) and /(5,0), so [(F(s),0) < I(s,0). Then

97



(Yt edom(s)I(s,t) AT'(s,1)) < (Vt € dom(s)I(F(s),t) Ar(F(5),1)) AP(s),
whence s € Tr' < (F(s) € Tr A P(s)).
We conclude that s € Tr' < (F(s) e Tr A P(s)) foreach s: 4> Q, Ae%.

Obviously, Q; c Q. Let us show that S, (X)) c Q. Let g€ S,,,(X"). Then

s(0)4=g for some s e Tr'. Then F(s)e Tr A P(s) holds. Then range(s o) < Qo
because P(s). Then g =5(0) € Q.

We conclude that S, ,(X)c O, < O, so (£,0Q,) is an initial /O NCMS. By
Lemma 2.9, it is a NCMS representation of some block B’. Then In(B) = In(B')
and Out(B) = Out(B') .

Let us show that Op(B")(i) < Op(B)(i) for all i € Sb(In(B),W).

Assume that ieSh(In(B),W) and o0eOp(B')(i). Let us show that
0 € Op(B)(i). This is obvious, if i=1, so assume that i #1. Then there exists
x € IState(X') = IState(X) such that o € 0,,(X',0",i), where Q' = Sel, ,(Q;,i(0), x).

Then the following cases are possible.

1) Q"= and o =1. Then i(0) # i.(0), so Sel, ,(Q,,i(0),x) =< and

0 =L 0, (E, Sel, 5(0yi(0),x),) € O,y (£, 0y, i) = Op(B)(i).

2) dom(i) = {0} and o = {0} > out(q) for some g €Q’.

If i(0) # i.(0), then g € Sel, ,(Q,,i(0), x), s0

0= {0} 1 out(q) € 0, (%, Sel, 5(0y.i(0), x).1) < Op(B)(i) .

Consider the case when i(0) =i.(0). Because g € Q) and in(q) =i(0) =i, (0),
we have out(q)=0.(0), so o=o0. and i=i. |, . Because (i I{O},o*)jz(i*,o*),
(ix,0+) € IO(B), by Lemma 2.15, we have (is |, ,0+) € [O(B), s0 0 € Op(B)(i) -

3) {0} = dom(i) and o = {0} — out(q) for some g Q'\ S, . (X',i).

Consider the following sub-cases.

3.1) in(q)#i.(0). Then because ¢geQ;, we have geQ,, so
q € Sel, ,(Q,,i(0),x) . Let us show that g ¢ S, (£,i). Suppose g €S,,,(Z,i). Then
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q=s(0) for some seS(Z,i). Then in(s(0))=i.(0), so F(s)=s. Moreover,
range(s |,,) < O, because g €Oy, and (Ve T \{0}(ino(s|y,) # i |, ), because
in(s(0)) #i.(0). Then P(s) holds and F(s)=seTr, so s Tr' . Besides, inos=i,
so s € S(X',i) and g € S,,,(X',7). This contradicts the assumption g € 9"\ S, (X',7).
Thus g ¢ S,

ini

;(2,7). Then because g € Sel, ,(0,,i(0), x), we have
0 = {0} > out(q) € 0, (%, Sel, 5 (0y.i(0), x).1) < Op(B)(i)

3.2) in(q) =i.(0). Then because g € Q,, we have out(q) = 0.(0), s0 0 = 0.

Consider the case when if,; =i |o; for some 7>0. Then because
(i [0.4,0) = (ix [j0.7)» O |[0,;))jz(i*,o*) and (i.,0.) € IO(B), by Lemma 2.15, we have
(i |o.7)>0) € IO(B). Then there exists o' € Op(B)(i) such that (i |[0,;),0)52(i,0') by
Lemma 2.16. Then o =0" by Lemma 1.3, because (i|,;,0) is an abnormal I/O
pair. Then o € Op(B)(i).

Now consider the case when i | ,# s |, forall >0.

Let us show that ¢. ¢ S, ,(Z,i). Suppose that ¢. €S, (Z,i). Then g. =s(0)
for some se S(Z,i). Let s':dom(s)—> Q be a function such that s'(0)=gq,
s'(t) = s(2) for t € dom(s)\ {0} . Then in(s'(0)) =in(q) = i.(0), SO
F(s)0)=q.=5(0), F()|r0=5"lr0=5r@- Then F(s)=seTr. Also,
range(s'|,) =19} =Q;- We have inos'<i, because inos=i  and
in(s'(0)) = in(q) = i.(0) = i(0) . Because i [ ,# is |y, for all #> 0, this implies that
ino(s"l,) #ix |,y forall £>0. Then P(s") holds. So we have F(s") € Tr A P(s').
Thus s"eTr'. Then because s'(0)¥ and inos'<i, we have s'eS(Z',i). Then
qg=s'(0)e S, (X,i), which contradicts the assumption g € 9"\ S, . (Z',7).

Thus g. ¢ S,,,(2,i). Because g. € Sel,,(0,,i:(0),x.), i.(0) =in(q) =i(0),
we have {0} — out(q.) € 0,,(Z, Sel, ,(0,,i(0), x.),i) < Op(B)(i). Because q < Q,,

in(q) =1i.(0), we have out(q) = 0(0) = out(g.). Then o = {0} > out(q) € Op(B)(i).

99



4) {0} cdom(i) and o =out os for some s S, (X',7) such that s(0) e Q’.

Then s e Tr', so F(s) e Tr A P(s) holds. Also, we have in(g.) =i.(0), which
implies that ino F(s)=inos. Then ino F(s)=i,so F(s)e S(%,i).

Let us show that F(s)e S,  (Z,i). Let s"e€ S(Z,7) be any element such that
F(s)Cs'. Let s":dom(s") — O be a function such that s"(0) =s(0) and s"(z) = s'(¢)
for all £ € dom(s")\ {0}. Then F(s")(0)= F(s)(0)=s'(0) and F(s")(¢) =s"(¢) = s'(¢)
for all tedom(s")\{0}, so F(s")=s"eTr. Moreover, inos"=inos'<i holds,
because  in(s"(0)) =in(s(0)) =i(0). Because P(s) holds, we have
(inos) | # ix [0,y for all £>0. Then because inos=i and inos"=<i, we have
(inos") | % ix Ijp, for all £>0. From this and range(s”|,,) = {s(0)} = Q' < Oy,
we have P(s"). Thus F(s")eTrAP(s"). Then s"eTr’, because
dom(s")=dom(s")e¥. Then s"eS(Z',i), because inos"<i. Also,
s"(t)=s'(t) = F(s)(t) = s(t) for t edom(s)\{0} and s"(0)=s(0), so sCs”. Then

s=s",because s S (X',i). As we have shown above, F(s")=s",s0 s' = F(s).

max

We have shown that for any s'e S(X,i), if F(s)Cs', then s'= F(s). Then

because F(s) e S(Z,i), we have F(s)e S, . (2,i). Consider the following cases.

max

4.1) in(s(0)) #i.(0). Then s =F(s)e S,,,.(2,i), and because s(0) e Q' c Oy,

we have 5(0) € O, and 5(0) € Sel, ,(Q,,i(0),x). Then
0 =outos o, (Z,Sel ,(0,,i(0),x),i) = Op(B)i).
4.2) in(s(0)) =i.(0) . Because s(0) € Q', we have i(0) =in(s(0)) =i.(0). Then
F(s5)(0) = g« € Sel, ,(Q,,ix(0), x+) = Sel, ,(Qy,i(0), x:) . Then
outo F(s) €0, (Z,Sel, ,(0Qy,i(0),x.),i) = Op(B)(i).
Because s(0)eQ, and in(s(0))=i.(0), we have out(s(0))=o0.(0). Then
out(F(5)(0)) = out(g.) = out(0.(0)) = out(s(0)). Also, out(F(s)(¢)) =out(s(¢)) for
all t e dom(s)\{0}. Thus o =outos =outo F(s) € Op(B)(i).
We conclude that Op(B')(i) € Op(B)(i) forall i. Thus B'<B.
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Let us show that Op(B')(i.) < {o.}. Assume that ie Sh(In(B),W) and
0 € Op(B')(i.). Because {0} cdom(i.), there exists x e IState(X') such that
o€o,, (2,0 i), where Q"= Sel, ,(Qy,ix(0),x). Then Q" # .

Then the following cases are possible.

a) o=outos for some seS (¥,i) such that s(0)eQ’'. Then seTr',

max (
s(0) ¥, and inos=i,. Then F(s)e Tr A P(s), so Vte T \{0}(ino (s t0.0) # i [jo.0)) »
but this contradicts the relation in o s=<i,, because {0}  dom(s) and dom(s)eT,.
b) 0={0}—> out(q) for some ¢qeQ'\S,, (X,i.). Then ¢geQ; and
in(q) =1i.(0), so out(q) = 0.(0). Then o = o..
We conclude that Op(B')(i.) < {o}. Then Op(B')(i.)={o.}. Thus B’

satisfies the statement of the lemma. [
Lemma 2.20. Assume that a block B has a NCMS representation,
(ix,0.) € IO(B), and {0} c dom(o.). Then there exists a deterministic block B’

such that B' has a NCMS representation, In(B')=1In(B), Out(B')=Out(B),
Op(B")(i) < Op(B)(i) for each ieSh(In(B),W) such that i(0)=:.(0), and
(ix,0.) € IO(B").

Proof. Let (Z,0,) be a NCMS representation of B, where X =(T,0,Tr).
Then 0. € 0,,(Z,0,,ix). Then i, #L , because {0} c dom(o.) < dom(i.). Then there
exists x. € IState(¥) such that o. €o0,,(Z,Sel; ,(Qy,ix(0),x:),ix). Then because

{0} < dom(o.), there exists s. € S

max

(Z,i.) such that 5.(0) € Sel, ,(Q,,i(0), x.) and
0. =outos,. Then s, € Tr.

Let X be the set of all sets X < Tr such that

a) s.eX;

b) 0e dom(s) and s(0) = s.(0) for each s € X;

¢) foreach se X and 1eT\{0}, s, € X and s|y € X;

d) foreach s,,s, € X ,if incs, =inos,, then s, =s,.
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It follows immediately that

{ss ol 1€ T\{0}} U si [ g€ TN{O}} U {su} e X,

and | Jc € X' for each non-empty -chain ¢ < X'. Then Zorn’s lemma implies that
X has some < -maximal element X .

Let us show that each non-empty C-chain in X has a supremum in X . Let
C c X" be a non-empty C-chain. Let s, be a function (the graph of) which is a
union of (graphs of) elements of C (s, is indeed a function, because C is a C-
chain). Then s, € Tr by the completeness and CPR properties of the NCMS X.
Besides, 0 € dom(s,).

Suppose that s, ¢ X . Let X' = X" U{s,}. Then X < X', whence X'¢ X,

because X is c-maximal in X'. To get a contradiction, let us show that X' e X.

We have X' Tr, because s, € Tr. The conditions a) and b) are obviously satisfied

for X'. If ¢>0 and s [, # 59, then dom(s) N (dom(sy)\dom(s | ,))#< for
some seC (because dom(s,)= Usecdom(s) ), which implies that s, |,,CEs,
(because s(0) ¥ and dom(s) e ¥ ), whence S0 [o.n€ X ", because se X and X~
satisfies the condition ¢). Similarly, if £>0 and s, |, ,# o, then s |, 4 Es for
some seC and s, € X ". Thus X' satisfies the condition c). Then because
X'e X, this implies that X' does not satisfy the condition d), i.e. there exist
51,8, € X'=X"U{s,} such that s, #5, and inos, =inos,. Because X satisfies
the condition d), we have that one of the elements of {s,,s,} belongs to X " and
another one coincides with s,. Without loss of generality we can assume that
s;e X and s, = So. Then inos, =inos, and s, #s,. Then dom(s,) = dom(s,) and
there exists ¢edom(sy) such that s | #5o,- Then >0, because

50(0)=5:(0) =5,(0). If 54 |, # 59, then s, ,€C < X" and 81 0. € X", and
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ino (s o) =ino(sy |jo,)» Which contradicts the condition d) for the set X ", Thus
50 ljo.1= S0, and because t e dom(s,), t is the greatest element of dom(s,). Then
[0,¢] = dom(s,) :Usecdom(s), whence there exists s € C such that ¢ edom(s).
Then dom(s)=10,¢] and s is the C-greatest element of C, because C is a C-
chain. Thus s,=seC. Then s, € X, s,€ X, 5, #5,, and inos, =inos,. But
this contradicts the condition d) for the set X"

We conclude that s, € X . It follows immediately from the definition of s,

that s, is a C-supremum of C. Because C is arbitrary, it follows that each non-
empty C-chain in X~ has a supremumin X .

Let Y =IState(2)x X~ and Q'="®W xyx® B W  Then Y =, because
X #@.Foreach se X and yeY let £ :dom(s)— Q' be a function such that

13(0) = (in(s(0)), y,out(s(0))):
17 (8) = (in(s(2)), (istate(s(t)), s |jo,.)), out(s(t))), if ¢ € dom(s)\ {0}.

Note that because X~ e X, for each s € X~ we have 0 e dom(s), s e Tr, and
S lo.n€X " for all £> 0. This implies that f” indeed takes values in Q'.

Let us define the following set:

Tr'={5|3seX JyeYIdeT Ac dom(s) AT = [V ],}.

Because dom(f)=dom(s) and range(f’)c Q' for all se X" and yeY, we
have that 7' is the set of all functions of the form §: 4 — Q', where 4%, such
that there exist s € X~ and y €Y such that ¥C £

Let X' =(T,0Q',Tr"). Let us show that X' is a NCMS.

Let us show that 7' satisfies the CPR property. Let 5 e€7r', A%, and

Ac dom(3). Then there exist se X and yeY such that §C f”. Then

dom(5|,)=AeT and 5|, C ). Thus 5|, Tr'.
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Let us show that 77" satisfies the Markovian property. Assume that
5,5, €Tr' and ¢, =maxdom(s,) =mindom(s,), and 5(¢,)=75,(z). Let
S :dom(s)) wdom(s,) > Q' be a function such that §(¢)=s,(¢,), if t<¢, and
5(t)=s,(1,), if t>1,. Because 5,5, € Ir', there exist s,,5, € X and y,,y, ¥
such that §,.C fsf’ for j=1,2. Then fsff (t,) ¥=5,(t) for j=12. Then
fsflv1 (t,) = fsiz (t,). We have ¢, > 0, because ¢, = max dom(5s;) and dom(5,) € %, so
from the definition of f;” we have s, |[0,t0]: Sy |[O,t0]' Also, t, € dom(s,) " dom(s,),
because dom(fsff) =dom(s;) for j=L2. Then [0,7)]cdom(s;)dom(s,),
because s,,5, € X . Then s,(¢) = 5,(¢) forall £€[0,¢,].

Let us show that §C fsi . Because dom(5s;)c[0,¢,] < dom(s,), for all
t e dom(s))\ {0} we have

5,(0) = fsly‘ (t)= (in(s1 (1)), (istate(s, (1)), s, |[0’t]),0ut(s1 (t)))z
=(in(s (1)), (istate(s,(1)).5 |jg.g)sout(s,(1))).

Moreover, (1) = f.(0) = (in(s(0)), y,out(s(0))). Then f'(1)¥=5,(t) for all
t € dom(5;). Thus 5.C /1.

Besides, %,C f', because SCf72 and  f? |p =1 lro, and
0¢dom(s,). Thus 5C /7' and 5,C . Then ST /' by the definition of .

Moreover, dom(5)e T ,so 5 € Tr'. Thus Tr' satisfies the Markovian property.

Let us show that 77" is complete in the sense of Definition 2.3.

Let ¢’ < Tr' be a non-empty C-chain. Let 5" a function (the graph of) which
is the union of (graphs of) elements of ¢'. Then dom(5") = Ugec,dom(c') e¥.

Let us show that §° e Tr'. Because ¢’ < Tr', there exist functions @ : ¢’ — X

and y :¢'— Y such that nggg)) for each 5 e¢’.
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For each 4 €T denote ®(A4) = UTEA\{O} [0,7]. Let ¢ = {@(5) loomey |5 €€}
Then for any 4 € T, the set ®(A4) has a form [0,¢) or [0,¢] for some >0 (because

A= and A#{0}). Because range(p)c X X, this implies that cc X .

Moreover, ¢ # J, because ¢’ # .
Let us show that ¢ is a C-chain. Because ¢’ is a C-chain, it is sufficient to

show that if 5,5, ec’ and 5,55, then @(5)) o oms, ) EP(52) lo(doms, ) - Assume that
5,5,ec’ and 5L05,. Denote s,=¢(5;) and y,=y(5;) for j=12. Let
tedom(s,)N"Dd(dom(s;)). Then te[0,7r] for some 7edom(5)\{0} by the

definition of @. Because 5C5,, we have 35,(r)v=5(r). Moreover,

SEfje) =1 for j=12. Then f(r)d=5,(s) for j=12. Then

=) = s,
(@)= f2(z). Then [0,7]< dom(s;)dom(s,), and because 7>0, we have
81 o.c1= 52 ljo..- Then s,() = s,(?) . Because t € dom(s,) "®(dom(5s,)) is arbitrary,
we have sy |gom(s ) 552 Moreover, ®(dom(s;)) € ©(dom(s,)), because 55, .
Then 8, o goms; ) 552 loaom, - THUS @(51) loaoms, ) EP(52) lodom(s, ) - We conclude
that ¢ is a C -chain.

Thus ¢ is a non-empty C-chain in X . As we have shown above, this
implies that ¢ has a supremum in X . Denote this supremum as s . Then sCs~ for

all sec and s e X*. If §7(0) 4, let us denote y" = istate(3"(0)), otherwise, let y"

be an arbitrary element of ¥ (which exists, because ¥ # ).

Let us show that §°C fS Z*. It is sufficient to show that §CT fs Z* for each
§ec' . Indeed, let S ec’, s=p(3)e X ,and y =y (5). Let t e dom(5)\ {0} . Then
17 @) d=lin(s(0), (istate(s(t)), s |1g.1), out(s(£)))=5 (£).
Then 1 € ®(dom(s)) Ndom(s), whence s |ogom(zy) (7) { . Because s€ X this

implies that [0,¢] < dom(s g gom@zy)) - Moreover, @(5) ooy =5 lo(domy € €» and
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s isa supremum of ¢, so have s (r)d=s(r) forall 7 €[0,¢]. Then s (¢) = s(¢) and
s [o.1=5 0. - Then fsz* (H)d= f2(1)=5(t). Because t edom(3)\{0} is arbitrary,
we have § |7, Efsf* If5(0) T, then EEfSZ* . Let us show that ngsf* L iF5(0) 4.

Suppose that 3(0)y Then f(0)4=5(0), whence s(0)y and
5(0) = (in(s(0)), y,0ut(5(0))) . Then @(%) lo(aomesy (0)¥=35(0), so s7(0) ¥=15(0),
because @(5) g gom(z) € € - Because 5" is the union of elements of ¢’ and ¥ e ¢’, we
have 57(0) 4=5(0). Then y" = istate(5" (0)) = istate(5(0)) = y, whence

f}* (0) = (in(s™(0)),¥",0ut(s" (0))) = (in(s(0)), y,out(s(0))) = 5(0).
Then s |, EfSZ* , and because § |1\, EfSZ* , we have EEJ’SZ* .

We conclude that §C fSZ* for each §ec'. Then 3T J, Y. Because

dom(3") e T, this implies that §° € 7r'. Then it follows that ¢’ has a least upper

bound in 7+' (5 is its least upper bound).
Because ¢’ is an arbitrary non-empty C-chain, we conclude that 77 is

complete in the sense of Definition 2.3.

Thus X' is a NCMS. The definition of Q" implies that X’ is an I/O NCMS.
For each d,, € Sb(In(B),W) denote
0,d,)=1d,, |3x € IState(X)(d,,,x,d,,,) €0)};
D, ={d,, € Sb(In(B),W)|0,(d,,) #}.
Note that because s, € Tr, 5.(0) ¥, and (Z,0Q,) is an initial I/O NCMS, we have
(in(s.(0)),istate(s.(0)),out(s.(0))) =s5.(0) € §,,,,(2) < O,,
whence out(s:(0)) € O, (in(s«(0))) and in(s.(0)) € D, .
Then there exists a function n:D, — Sb(Out(B),W) (selector) such that
n(in(s.(0))) = out(s«(0)) and n(d,,) € Oy(d,,) for each d,, € D,,.

Let us define
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Q(') = {(din’y’dout) | din € DO ANV & Y /\dout = n(din)} .
Obviously, O, cQ'.
Let us show that in(q)=in(s.(0)) and out(q)=out(s.(0)) for each

geS, (). Let geS,, (). Then there exists ¥ € 7' such that §(0) 4=¢. Then

SC /Y for some seX and yeY. Then f(0)<=/(in(s(0)),y,out(s(0))=gq.
Because se X and X e X, we have s(0)=s.(0). Then in(q)=in(s.(0)) and

out(q) = out(s«(0)).

Then for each g € S,

mn

n(in(g)) ¥=n(in(5.(0))) = out(s.(0)) = out(q) ,
whence S, (Z") < Q.

+(Z") we have

Thus S,,,(2)c Q; < Q'. Then (X',Q) is an initial /O NCMS. Then by
Lemma 2.9, (X,Q,) is a NCMS representation of some block B’. Then
In(B")=In(X") = In(B), Out(B") = Out(X") = Out(B), and Op(B)(i)=0,,(X',0y,i)
for all i € Sb(In(B),W).

Let us show that the block B’ is deterministic. Suppose that there exist
i€ Sb(In(B"),W) and {0,,0,} < Op(B')(i) such that o, #0,. Then i#L, because
otherwise, o, =0, =L . Then {0,,0,} < O,,(X',0,,i) and there exist y,,y, €Y such
that o; €0,,(X',Sel, ,(0y,i(0),y,),i) for j=12. Denote Q = Sel, ,(0y,i(0),y,),
j=12. If i(0)e D,, then Q)=(i(0),y;,n(i(0))) for j=12, and otherwise,
0/=0,=. Thus Q[ = 1if and only if Q] # . Besides, because o, #0, and
0, €0,(Z,0Q;,i) for j=1,2, at least one of Q] and Q, is non-empty (otherwise,
0, =0, =1). Thus both Q] and Q; are non-empty and i(0) € D,,.

Let us show that dom(i) # {0}. Suppose that dom(i) = {0} . Because Q| #J,
0,29, and o; €0,,(2,0},i) for j=12, for each j=12 there exists ¢q; €Q;

such that o; ={0}>out(q;,). For j=12 we have g¢,e(Q’, whence
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in(q;)=1(0)e Dy. Then out(q;)=n(i(0)) for j=12, because g, Q. Then
out(q,) = out(q,) , but this contradicts the assumption o, # o, . Thus dom(i) # {0} .

Because i#l and dom(i)# {0}, we have {0} cdom(i). Then for each
Jj=12, because Q=D and o; €0,,(X',0’,i), we have either o, = {0} > out(q;)
for some ¢;€Q’\S,,(X,i), or o, =outos; for some s, €S, (Z',i) such that
5:(0) € O} Consider the following cases.

1) For both ;=12 there exist g¢,€0Q;\S,,(X,i)) such that
0;={0} > out(q;). Then for ;=12 we have in(q;)=i(0)eD,, whence
out(q,;)=n(i(0)), because g; €Q,. Then out(q,) =out(q,) and o, =0,, but this
contradicts the assumption o, # o, .

2) There exists a (single) index je€{1,2} such that o; ={0}+> out(gq;) for
some ¢, € Q} \S,,,(2,7) and 05_; =outos;_; for some 5 ;€ S .o (X',7) such that
53 ;(0)eQ;_;. Denote g =5; ;(0). Then g€ S,,,(X'), so, as we have shown above,
in(q) =in(s.(0)) and out(q) = out(s.(0)). Besides, qeQ;_; =Sel, ,(0g,i(0),;_,),
so i(0)=in(q)=in(s.(0)). Because ¢q,€Q;, we have in(q;)=i(0)=in(s:(0)).
Because ¢; €@, and in(s.(0))eD,, we have out(q;)=n(in(q;)) = out(s.(0)).
Then let 5 :dom(s;_;) —> Q' be a function such that 5(0)=¢; and 5(2) =5;_;(?), if
tedom(s;_;)\{0}. Because 5;_; eTr’, there exists se X" and yeY such that
5_,Cf. Then s(0) J and /3(0) = (in(s(0)), y,out(s(0))) =5;_;(0)=q. Let
z=istate(q;)€Y . Then f7(t) = f; (¢) forall t € dom(s)\{0} and

15 (0) = (in(s(0)), z,0ut(s(0))) = (in(q), z,0ut(q)) =
= (in(5:(0)), z,0ut(s.(0))) = (in(q ), istate(q ;),out(q ;) = q, -
Then SC /7, because 5;_,C f.. Then because dom(s)=dom(5;_ ;) €%, we have

5 eTr'. Moreover, in(5(0))=in(q,) =i(0), and in(5(¢)) =in(s;_;(¢)) =i(z) for all

108



(Z',i). Then ino5=i. Besides, dom(5)eT,,

max

tedom(s)\{0}, because §;_; €S

so 5§ €S8(2,i). Moreover, 5(0)=gq;, so g; €S,

init

(Z',i). We have a contradiction
with the assumption ¢; € 0%\ S, (Z',7).
3) For both j=12 there exist §;€S,,(Z.i) such that 5;(0)eQ’ and

0; =out°s;. Then there exist z,,z, €Y, 5,5, € X" such that Ejgfjjf for j=1.2.

Then dom(s;) c dom(s;) for j=12 and in(s;(?)) = in(fszjj (#)) =in(s (1)) for each
J=L12, tedom(s;). Also, inos,=i for j=12. Denote A=dom(s))Ndom(s,).
Then in(s,(2)) =in(5,(2)) =i(t) =in(5,(¢)) =in(s,(¢)) for all 1€ A. Moreover, either
A=T, or A has a form [0,7) or [0,t) for some ¢e7\{0}. Then because
s, €X  and X' eX, we have s|,€X and s,|,€X . Besides,
ino(s,|,)=ino(s,|,), whence s,|,=s,|, by the property d) of the set X ex.
Then for each t € A\ {0},
51(2) = 1,1 (1) = (in(s, (1)), (istate(s, (1)), 5y |o,q),0ut(s,(1))) =
= (in(s,(2)), (istate(s, (1)), 8, |9 1), 0ut(s,(2))) = ff; (H=5().

Because dom(s)),dom(5,)eT,, we have Ae{dom(s,),dom(s,)}. Then
A=dom(s}) for some k € {1,2}. Then s [\, E55 4 |70 -

Let us show that §; |7\, # 55 4 7110, - Suppose that 5, |7\, =55 4 [0, - Then
O lrvi0y= 03 lrv0y - For each  j=12 we have 5,(0)eS,,;,(2), whence
0,;(0) = out(s5,;(0)) = out(s«(0)). Then 0,(0)=0,(0) and o, =0,, so we have a
contradiction with the assumption o, # 0,. Thus s |r\,# 534 7o) -

So we have 5§} [7\0,C5; 4 I - Let us define a function §:dom(5; ;) — O
as follows: §(0)=5,(0) and §(¢)=7, ,(¢), if tedom(s;_,)\{0}. For j=12,

s,E fszj’ and Ej(O)eSl.m.,(Z’), whence in(s;(0)) =in(5;(0)) =in(s.(0)) and

out(s ;(0)) = out(5,(0)) = out(s.(0)). Then 5(0)=5,(0)=/*(0)=f7* (0) and

3k
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SO =5_40)=/7 @O=7fF @) for tedom(5)\{0}. Thus ST f* . Because
dom(5)=dom(s;_;) €T, we have §eTr’. Moreover, dom(5)eT,. Because
inos, =i and inos; , =i, we have ino5=i. Thus §eS(Z',i). Besides, §,C%s,
because 5, |70, C85 4 10y =9 lrvgoy and  5(0) =5,(0). But the relation 5,5
contradicts the assumption 5, € S, . _(¥',7).

In all cases 1)-3) we have a contradiction. Thus for each i e Sb(In(B"),W)
and {o,,0,} < Op(B')(i) we have o, =o,.

We conclude that the block B’ is deterministic.

Let us show that Op(B')(i) < Op(B)(i) for each i e Sh(In(B),W) such that

i(0) y=i.(0).

Assume that i € Sb(In(B), W), i(0)4=1.(0), and o € Op(B')(i). Let us show
that 0 € Op(B)(i). We have 0€O ,(Z',0,,i). Because i#L, there exists y. €Y
such that 0 € 0,,,,(¥',Sel, ,(Qy,1(0), y:),i) .

Let Q) =Sel ,(0,i(0),y:). Because s.€8,,(Z,i), we have
in(s.(0)) =i, (0)=i(0). Then Q= {(in(s.(0)), y«,out(s.(0)))} =<, because
n(in(s«(0))) = out(s(0)).

Besides, s.(0) € S,,;,(2) < Q,, because (X,0,) 1s an initial /O NCMS.

Let x. = istate(s.(0)) € IState(X) and O, = Sel, ,(Q,,i(0),x.). Then

5+(0) € Sel, ,(Qy,in(s+(0)),x:) = Q.
Let us show that if s.(0)€S,,,(Z,7), then geS,,,(¥,i). Assume that

5:(0)e S, (2,i). Then s5.(0) =5(0) for some 5 € S(Z,i). Let

nit

X=X US|t e T\{0}}U{S ot € T\{0}} U {5}

Then X cTr. Because X e X, we have s.eX, s(0)d=5.(0) for all

s€ X, and for each se X and 1eT\{0}, s|,,€X and s, € X, s0 X satisfies
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the properties a)-c) of the elements of X'. Because X~ is —-maximal in X', either
X does not satisfy the property d) of the elements of X', or X =X "

In the former case, there exists s,,s, € X such that inos, =inos, and s, #s,.
Because X e X and different elements of X \ X" have different domains, we have
that for some k € {1,2}, s, € X and s, , e X\ X . Then inos, =inos, ,<inos5=i,
[ eTr, dom(f.")=dom(s;), and s5;(0)¥=5.(0). Then for 5=/’ we have
Selr, 504 =fsi (0) = (in(s:(0)), y«,0ut(s:(0))) =g, because ¢geQ;, and
ino¥ =ino f)* =inos,=i.Then 5 € S(Z',i) and §(0) = g, whence g € S,,,(X',).

In the latter case, X =X, so € X, inos=i, and 5(0)¥=s.(0). Then for
§=f2 we have §eTr', 5(0)4 =712 (0)=(in(s.(0)), y.,out(s.(0))) = ¢, because
geQ;,and inos =ino " =inos=i.Then 5 € S(Z,i), 5(0)=¢q,s0 g S, (X,i).

In both cases, g€ S,,,(X,i).

We conclude that if s.(0) € S,

120

+(Z,7), then g€ S, (¥,0).

Because Q) #<J and o €0,_,(X',0Q),i), the following cases are possible.

1) dom(i)={0} and o={0}out(q) for some g¢geQ]. Then
q = (in(5.(0)), y«,0ut(s.(0))), so out(q) = out(s.(0)). Because s5.(0) € Q,, we have

0= {0} 1 0ut(5.(0)) €0, (£.0,.1) € 0,y (2. 0p.1) = Op(B)i) .

2) {0} cdom(i) and o={0}+> out(q) for some geQ/\S, (£,i). As we
have shown above, if s.(0)eS,,,(2,i), then ¢geS,,(Z,i). Then because
qges,,,(2.i), we have 5.(0) ¢S,

20

+(Z,0) . Besides, 5.(0) € Q) = Sel, ,(0,,i(0),x.) , s0
5:(00eQ\S,,;,(Z,i). Also, out(q)=out(s.(0)), because geQ/. Then because
{0} c dom(i), we have
0 =10} > out(q) = 10} - 0ut(5.(0)) €0, (£.01.1) € 0,y (£.0y.1) = Op(B)(i) .
3) o=outos for some 5eS§,,(X,i) such that 5(0)eQ;. Then
5(0) = (in(s+(0)), y«,0ut(s.(0))), ¥ € Tr', and there exists 5 € X~ such that ST 1" .
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Let 5 =5 | - Because dom(s’) either coincides with 7', or has a form [0,7] or

[0,7) for some te T\ {0}, we have s € X . Also, dom(5) = dom(s) = dom(f.") and
£ @)= f" (@) forall tedom(s), so 5= f" | =1 . Because 5 €8S, (Zi),
we have 5(0) d and inos=ino f* =ino5=i. Also, s eX cTr,so seSZ,i).
(Z,7) such that sC .

By Lemma 2.7, there exists § € S

max

Let us show that § € X" . Suppose that § ¢ X" . Let
Xy ={8 o1 € T\{0} ;{8 | 4|1 € TN{O} L {5}
and X=X UX,. We have XcTr and §(0)=s(0)=5(0)=s.(0), because
§eX".Then X satisfies the properties a)-c) of the elements of X'. Because § ¢ X~

and X is —-maximal in X, the set X does not satisfy the property d) of the

elements of X'. Then there exist s,,s, € X such that inos, =inos, and s, #s,.
Because X e X and different elements of X\ X" have different domains, for
some ke{l,2}, s,eX and s, , € X\ X .If s, Cs, then s, , either coincides

with s € X, or has a form s {01 OF S |rg,) for some ¢>0, whence s, , € X ", In both

. . . * .
cases we have a contradiction with s; , e X\ X , so sCs,; ,, because X, isa C -

chain and  s,5y , €X,. Because dom(s)cdom(s,_,), we  have
ino (S liomes)) = ° (834 ldom(s)) = i °(S lgom(s)) =ines. Then because se X" and
s,eX’, we have s, ldom(s)€ X" and s, liom(sy=5- Then sCs;, because
dom(s) < dom(s,_, ) =dom(s,). This implies that 5= f.* |:fsi , because s, € X .
Also, we have [ €Tr' and ine [ =inos; =inos,  Rino§=i, so f e S(Z',i).

This contradicts the inclusion 5 € S, _(X',i), because ST fsi "

max

We conclude that § e X~
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Then because sCs, we have §=f"Cf’*. Also, f/"eTr' and

ino f* =ino§=<i, so f" €S(Z,i). Then because 5e€S

max

(2',i), we have
§ = fY" = f . This implies that dom(s)=dom(5). Then s =§, because sC35.

We conclude that s=5€S, .(%,i). Moreover, s(0)eS,,(¥)cQ, and

in(s(0)) =in(f;"(0))=in(s5(0))=i(0), whence s(0)e Sel,,(Q,,i(0),x), where
x =istate(s(0)) . Besides, outos=outo f* =outo5 =o0. Then
o=outos €o,(Z,Sel ,(0,,i(0),x),i) € O, (2,0,,i) = Op(B)(i) .
In all cases 1)-3) above, o € Op(B)(i).
We conclude that Op(B')(i) < Op(B)(i) for each ie Sb(In(B),W) such that

i(0) y=i.(0).

Let us show that (i.,0.) € IO(B'). We have s.€ X', s.e€S, (Z,i), and

max
0. =outos.. Let yeY be an arbitrary element. Because s.€X , we have
S eTr'. Denote § = f.. Then dom(5)=dom(s.) and ino§ =ino f.) =inos.=i.,

so 5eS8(i). By Lemma 2.7, there exists §'€S

max

(X£',i) such that SCs".
Because 5’ e 77, there exists s € X~ and y' €Y such that 3'C . Then f’C f7.
This implies that dom(s.)cdom(s), y=y', and s.(¢)=s(z) for all
t € dom(s.)\ {0}. Moreover, s(0)=s.(0), because s X . Then s,Cs. Denote
A=dom(5"). Then dom(s.)=dom(s)cdom(5')=A4, so s.LCs|,. Besides,
s|,eX’, because seX . Then we have fi,Efy"- Moreover,
dom(f )=dom(s|,)=A, because A=dom(5")c dom(f?")=dom(s). Then
because S'CfY =f’ and A=dom('), we have f 1, =5". Then
ino(s|,)=ino( S‘yA):inoi’ji*. Besides, s|,e X < Tr, whence s|,eS(2,i).
Because  s.Cs5 |, and s.e€S,,.2,i), we have s.=s]|,. Then
S=fr=f7 =5"€S,,.(Z,i). We have 5(0)e S, . (X)cQ,, because (X',0,) is

S S|y max
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an initial /O NCMS. Moreover, in(5(0)) =in(s«(0))=i.(0)  and
istate(5(0)) = istate( £’ (0)) = y € IState(X"), whence  5(0)e Sel,,(Qy,i:(0),y).
Moreover, outos =outo f.” =outos. =o0.. Then

0. = 0ut o € 0,y (X', Sel, (0}, i(0), 1), i) € O, (F,04i) = Op(B)(iv)
Thus (ix,0.) € IO(B"). [

Lemma 2.21. Assume that a block B has a NCMS representation,
(i.,0.) € IO(B), and i.(0) . Then there exists a deterministic causal block B’ such
that In(B")=In(B), Out(B)=O0ut(B), Op(B")(i)cOp(B)i) for each
i € Sb(In(B),W) such that i(0) y=i.(0), and (i.,0.) € IO(B').

Proof. Consider the following cases.

1) Either dom(i.) = {0}, or o. =1, and also the inclusion dom (o) < {0} holds
for each (i,0) € IO(B) such that (i.,0.)=<>(i,0).

Let us define a function O:Sb(In(B),W)—> 25BN a5 follows:
O(L)={Ll} and O(@i)={o.}, if i#L. Then O(i) is a singleton set for each i.
Moreover, we have dom(o.) < {0}, so dom(o) < dom(i) holds for all i,0 such that
0 € O(i). Then there exists a deterministic block B’ such that n(B)= In(B'),
Out(B)=0ut(B"), and Op(B")=0. If 0, €Op(B')(i,) and o, € Op(B')(i,) for
some ij,i, such that i [ ;=1, |,y for some €7, then j; =L if and only if 7, =L,
80 0, =0,, whence o, |y ;= 0, |o,;- Thus B’ is causal.

Moreover, o. € O(i.) = Op(B')(i.), because i. #L . Then (ix,0.) € IO(B’).

Let i € Sb(In(B),W) and i(0) 4=1i.(0).

Consider the case when o.=L1l. Then because (i.,0.)€lO(B) and
(ix \{0},L)jz(z'*,0*), we have (i |y, 1) € [O(B) by Lemma 2.15. Then because
ix |, 30, by Lemma 2.16 there exists o’ € Op(B)(i) such that (i I{O},J_)jz(i,o’).

Then because i.(0) ¥, we have o' =L . Then {L} = {0.} = Op(B')(i) = Op(B)(i).
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Consider the case when o.#l. Then dom(i.)={0} and because

(ix,0.) € IO(B) and i, =i, |, =i, by Lemma 2.16 there exists o' € Op(B)(i) such
that (i.,0.)<*(i,0'). Then dom(o")c {0} and dom(o.)={0}, so o =o. and
{0.} = Op(B')(i) < Op(B)(i).

Thus B’ satisfies the statement of the lemma.

2) {0} cdom(i.), o.#L, and the inclusion dom(o) < {0} holds for each
(i,0) € IO(B) such that (i.,0.)=>(i,0).

Then {0} < dom(i.) and dom(o.) = {0}, so by Lemma 2.19 there exists a sub-
block B'<B such that B' has a NCMS representation and Op(B')(i.) = {0s} .

By Lemma 2.17, B" is weakly nonanticipative. Consider the following cases.

2.1) There exists (iy,0,) € IO(B’) such that i,(0)4=i(0) and
{0} = dom(o,). Then by Lemma 2.20 (applied to B'), there exists a deterministic
block B" which has a NCMS representation, such that /n(B") = In(B") = In(B),
Out(B")=Out(B")=0ut(B), Op(B")i) < Op(B')(i)cOp(B)(i) for each
ieShb(In(B"),W) such that i(0){= iy(0)=i.(0), and (i,,0,)€lO(B"). Then
Op(B")(i.) < Op(B')(i.) = {0}, so (is,0.)€1O0(B"). Besides, B" is causal by
Lemma 2.17 and Lemma 1.5. Then B" satisfies the statement of the lemma.

2.2) For each (i,0)c IO(B'), if i(0)4=i.(0), then {0} dom(o) is not
satisfied (which is implies the inclusion dom(o) < {0}).

Let B; be a block such that In(B))=In(B), Out(B;)=Out(B), and
Op(B})(i)=Op(B')(i), if i(0)4=1i.(0), and Op(B})(i) = {L}, otherwise. Obviously,
By 1s indeed correctly defined as a block.

Let us show that B, 1is weakly nonanticipative. Let Ae7,,
i,,i, € Sb(In(By),W),and i, | ,=i,|,.If A=C or i, =L ori, =1, then

{ols10€0p(By)(ip)} = {L}={ol,|0€Op(By)(i)}.
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Assume that 0€ Andom(i)) N"dom(i,). If i,(0)=i.(0), then #,(0)=1i.(0),
whence Op(B;)(i;) = Op(B")(i;) for j=1,2, and so
{ol410€0p(By)(i))} ={o |, |0€Op(B;)(iy)}
because B’ is weakly nonanticipative. Otherwise, i,(0)=1i(0)#(0), whence
Op(By)(i)) = Op(B)(iy) = {1} . Then
{01, 10 €Op(B)(i)} = {1} = fol, |0 € Op(B})(iy)}

We conclude that B, is weakly nonanticipative. Moreover, dom(o) c {0} for
each (i,0) € IO(B;). Then By is strongly nonanticipative by Lemma 2.18, so it has
some deterministic causal sub-block B"<B; (because [O(B))#<). Then
Op(B")(i.) < Op(By)(ix) = Op(B")(i.) ={o.}, whence (i.,0.) € IO(B"). Besides,
In(B")=In(B), Out(B")=Out(B), and for each ieSh(In(B),W) such that
i(0)4=1i.(0) we have Op(B")(i) < Op(B})(i)=O0p(B')(i) < Op(B)(i). Then B"
satisfies the statement of the lemma.

3) There exists (ij,0,)€I0(B) such that (i.,0.)=’(iy,0,) and
dom(o,) < {0} does not hold. Then {0}  dom(o,), iy(0) +=1i.(0), and by Lemma
2.20 there exists a deterministic block B" which has a NCMS representation, such
that In(B')=In(B), Out(B')=0ut(B), Op(B")i)cOp(B)i) for each
i € Sb(In(B),W) such that i(0) v=1i,(0) =i.(0), and (iy,0,) € IO(B'). Then B’ is
weakly nonanticipative by Lemma 2.17, so it is causal by Lemma 1.5. Because
(iy,0,) € IO(B") and (i.,0.)=*(iy,0,), We have (i.,0.) € IO(B') by Theorem 1.1.
Then B’ satisfies the statement of the lemma. [

Lemma 2.22. Assume that a block B has a NCMS representation. Then B is

strongly nonanticipative.

Proof. Let us fix an arbitrary (iy,0,) € IO(B).
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If i, =L, then let i, = {0} > [] and o. be an arbitrary member of Op(B)(i.).
Otherwise, 1.e. if i, #.L, then let i, =i, and o. =0,. In both cases we have defined a
pair (i.,0.) such that (i,0.) € IO(B) and i, #L.

Denote D =" W . For each each d € D let i, ={0} > d , if d #i.(0) and
i, =i, 1f d=i.(0). Then i,(0) d=d and Op(B)(i,)#< for each d e D and
0. € Op(B)(i;,(p)) - Then there exists a (selector) function f:D — Sb(Out(B), W)
such that f(d) € Op(B)(i,) for each d € D and f(i.(0)) = 0..

Then by Lemma 2.21, for each d € D let us choose a deterministic causal
block B, such that In(B,) = In(B), Out(B,) =Out(B), Op(B,)(i) < Op(B)(i) for
each i e Sh(In(B),W) such that i(0) {=1i,(0), and (i,, f(d)) € IO(B,).

Let  O:Sb(In(B),W)— 25@“®)  be a  function such that
O(i) = Op(Byp))(@) , if i #£L and O(L) = {1},

Then O(i)# < for all i and dom(o) < dom(i) whenever o€ O(i). Then
there exists a block B’ such that In(B") = In(B), Out(B") = Out(B), Op(B")=0 ;

Because for each d € D the block B, is deterministic, B" is deterministic.

Let us show that B'JB. Let (i,0)elO(B'). If i=1, then
(i,0)=(L,1) € I0(B). Otherwise, oeO(i)=O0p(B;,))(i) < Op(B)(i), because
i(0) =i,(0), whence (i,0) € IO(B) . Thus B'JB.

Let us show that B’ is causal. Let i,i"€ Sb(In(B"), W), teT, il =i o>
0€Op(B")(i), and o'e Op(B')(i"). If i=L or i'=L, then i=i"=0=0"=L, so
0 |jp.7= 0" [j0,1- Consider the case when i #1 and i'#L. Then i(0) $,i'(0) 4, and
i(0)=i'(0). Denote d=i(0). Then o0eOp(B')(i)=0p(B,)i) and
o' € Op(B')(i") = Op(B,)(i") ,whence o |, ;= o' lj0..7> because B, is causal.

We conclude that B’ is causal. Moreover,

Op(B)(i) = Op(B;, ) i) = Op(B;, ) )i, (0)) = {f (- (0)} = {o.}.
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Then (i.,0.) € IO(B"). If i, #L, this implies that (i,,0,) = (i.,0.) € [O(B').
Otherwise, i.e. if i, =L, then (iy,0,)=(L,1) € IO(B').

We conclude that for each (i,,0,) € IO(B) there exists a deterministic causal
sub-block B'<B such that (i,,0,) € IO(B"). Thus B is strongly nonanticipative. [

Now we can prove Theorem 2.3.

Proof of Theorem 2.3. Let (£,0,) be an initial /O NCMS. By Lemma 2.9, it
1s a NCMS representation of some block B. Then by Lemma 2.22, B is strongly

nonanticipative. [

2.8 Strongly nonanticipative blocks, NCMS, and predicate pairs

As we have shown above (Theorem 2.2), each strongly nonanticipative block
has a representation in the form of an initial /O NCMS (NCMS representation).
Conversely, each initial /O NCMS is a NCMS representation of a strongly
nonanticipative block (Theorem 2.3). This is illustrated in Fig. 2.3.

An initial I/O NCMS consists of an I[/O NCMS and a set of admissible initial
states. An I/O NCMS is a NCMS, in which the set of states has a special form:

"W x X x° W, where 1,0 are sets of input and output names, X is a non-empty
set of internal states, and W 1is a set of signal values.

An I/O NCMS is a kind of NCMS, so by Theorem 2.1 it can be represented
by a left-local/right-local predicate pair (LR representation). An LR representation
of a NCMS is illustrated in Fig. 2.4.

We will use the results described above in the next chapter to derive criteria

of the existence of total I/O pairs of strongly nonanticipative blocks.

118



Strongly nonanticipative block

Theorem2.3 |  NCMS representation Theorem 2.2

A 4

Initial I/O NCMS = I/O NCMS +
subset of admissible initial states

Fig. 2.3. An illustration of a NCMS representation of a block.

NCMS

Theorem 2.1 | LR representation Theorem 2.1

(item 1) : S (item 2)
A left-local and right-local

predicate pair

Fig. 2.4. An illustration of a LR representation of a NCMS.

2.9 Conclusions from the chapter

We have introduced a class of abstract dynamical systems that we called
Non-deterministic Complete Markovian Systems (NCMS) on the basis of the notion
of a solution system in the sense of [37] and investigated their basic properties (the
existence of a LR representation).

We have defined a special kind of NCMS, namely input-output (I/O) NCMS,
and also introduced a notion of an initial /O NCMS as a pair of an [/O NCMS and a
set of initial states.

We have defined a notion of a NCMS representation of a (strongly
nonanticipative) block as an initial /O NCMS. We have shown that each strongly
nonanticipative block has a NCMS representation and that each initial I/O NCMS is

a representation of a strongly nonanticipative block.
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CHAPTER 3
EXISTENCE OF TOTAL 1I/0 PAIRS OF A
STRONGLY NONANTICIPATIVE BLOCK

3.1 Overview

In Chapter 1 we defined the notion of a block which allows partially defined
iputs and outputs. The operation of a block can be described by a set of input-
output pairs (i,0) (which we denoted as /O(B)) which are partial functions of time
with possibly different domains (but such that dom(o) < dom(i)). However, as we
have mentioned in Chapter 1, several approaches to mathematical systems theory
consider the case of total input-output pairs (dom(i)=dom(o)=T) particularly
important. This motivates to investigate the properties of the set of total input-
output pairs as a subset of the set of all input-output pairs of a block.

One of the most basic questions that can be asked about total input-output
pairs of a block is their existence.

In this chapter we consider the following question:

(a) How can one prove that a given strongly nonanticipative block B has a
total I/O pair (if B indeed has a total I/O pair) ?

Using the same techniques which we will use to answer this question, in this
chapter we will also give an answer to the following question:

(b) How can one prove that for a given input signal bunch i € Sb(In(B),W),
where dom(i) =T, there exists o € Op(B)(i) with dom(o)=T ?

That is, to prove that a block admits a total output for a given total input. Due
to the fact that we interpret the case dom(o) — dom(i) as an abnormal termination of
a block on the input i, this can be interpreted as proving that it is possible for a

block to process the input i normally.
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3.2 Using the NCMS representation

The following two theorems show that the questions (a) and (b) formulated in
the previous section can be reduced to the problem of proving the existence of
global trajectories of NCMS.

Definition 3.1. A trajectory s of a NCMS X is called global, if dom(s)=T .

Theorem 3.1. Let B be a strongly nonanticipative block and (2,0,) be its
NCMS representation, where £ =(7,0,7r). Then B has a total I/O pair if and only
if ¥ has a global trajectory.

Proof.

Let us prove the “if” part. Assume that s € 7r and dom(s)=T . Let g, = s(0),
x=istate(q,), i=inos, o=outos, and Q'=Sel ,(0,,i(0),x). Then

4o €S,,(£2)cQ,, whence g,€Q’, so Q'#. Besides, s€§

max

(Z,i), because
dom(s)=T and inos=i=i. Then because s(0)eQ’, we have
o=outoseo,(X,0Q',i) by the definition of 0,,. Then 0 € O0_,(Z,0,,i) = Op(B)(i),
because i =L and (Z,0,) is a NCMS representation of B. Then (i,0) € IO(B) and
dom(i)=dom(o)=T . Thus B has a total I/O pair.

Let us prove the “only if” part. Assume that B has a total /O pair
(i,0) € IO(B) . Because (Z,0,) 1s a NCMS representation of B and i #L, we have

0€0,,(2,0,,i). Then there is x e IState(X) such that oeo,,(Z,0',i), where

Q' = Sel, ,(0,,i(0),x). Then o=outos for some seS,, (Z,i) such that 5(0)eQ’,

because dom(o)=T . Then s € Tr and dom(s)=T, so s is a global trajectory. [

Theorem 3.2. Let B be a strongly nonanticipative block and (Z,0,) be its
NCMS representation, where ~=(7,0,Tr). Let i € Sb(In(B),W) and dom(i)=T .
Let (l,r) be a LR representation of X and [':ST(Q)— Bool and
r': ST(Q) — Bool be predicates such that

1'(s,1) < I(s,t) A (mindom(s) V=1 v in(s(1)) = (1)),
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r'(s,1) < r(s,t) A(max dom(s)y=t vin(s(t)) = i(1)).

Then

1) (7,r') e LR(Q);

2) If (I',r") is a LR representation of a NCMS X'=(T,0Q,Tr"), then

{0 € Op(B)(i)|dom(0) =T} # O if and only if ¥’ has a global trajectory.

Proof.

1) Let us show that /" is left-local. Assume that (s,?),(s,,t) € ST(Q) and
s;=,_s,. Then ¢ is not the least element of either dom(s,), or dom(s,), whence
[(s,t) = (s,,t) and in(s(z))=i(¢) if and only if in(s,(¢))=i(t), because
5;(t)=s,(t). Then I'(s,,t) = I'(s,,t). Moreover, if (s,1) e ST(Q) and ¢ is the least
element of dom(s), then /(s,t), whence I'(s,¢). Thus /' is right-local.

Let us show that 7’ is right-local. Assume that (s,?),(s,,?) € ST(Q) and
s,=,,5,. Then ¢ is not the greatest element of either dom(s,), or dom(s,), whence
r(s,,t) < r(s,,t) and in(s,(¢))=i(¢) if and only 1if in(s,(¢))=i(t), because
5;(t)=s,(t). Then r'(s;,t) < r'(s,,t). Moreover, if (s,¢)eST(Q) and ¢ is the
greatest element of dom(s), then r(s,t), whence r'(s,¢). Thus ' is right-local.

2) Assume that (/',7") is a LR representation of a NCMS X'=(7,0,Tr").
Then Tr'={s: A—> Q| AT A(Vte Al'(s,t) A¥'(5,1))}.

Firstly, let us show that {s € Tr'|dom(s) e T,} = S(%,i) .

Let seTr'" and dom(s)eT,. Then I'(s,t) Ar'(s,t) for all ¢t edom(s). Then
[(s,t) Ar(s,t) for all tedom(s), whence seTr. Moreover, in(s(t))=i(¢) for all
non-minimal ¢e€dom(s) and in(s(t))=i(¢) for all non-maximal tedom(s), so
in(s(t)) =i(¢t) for all t € dom(s) (because dom(s) is not a singleton). Then in o s=i,
whence s € S(Z,i).

Conversely, let seS(Z,i). Then seTr and dom(s)e7T,, whence
[(s,t) Ar(s,t) for all t € dom(s). Moreover, in(s(t))=i(t) for all ¢ edom(s). Then
I'(s,t) A¥'(s,t) for all € dom(s), whence seTr'.
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We conclude that {s € Tr'|dom(s) € T,} = S(Z,i).

Now let us show that {0 € Op(B)(i)|dom(o)=T}# O if and only if there
exists s € Tr' such that dom(s)=T .

Let us prove the “if” part. Assume that se7r' and dom(s)=T. Then
seS(Z,i). Let g,=5(0), x=istate(q,), o=outos, and Q"= Sel ,(Q,,i(0),x).
Then g¢,€8,,(2)cS,,,(2)cQ,, whence ¢,€Q', so Q'#J. Besides,
seS, . (2,0), because dom(s)=T . Then o=outoseco,,(Z,0',i) by the definition
of o, because s(0)eQ’. Then o0€0,(%,0,,i)=Op(B)(i), because i#Ll and
(Z,0,) 1s a NCMS representation of B. Moreover, dom(o)=T. Thus
{o€Op(B)(i)|dom(o)=T}+# .

Let us prove the “only if” part. Assume that o € Op(B)(i) and dom(o)=T .
Because (X2,0,) is a NCMS representation of B and i#Ll, we have
0€0,,(Z,0,,i). Then there is x e IState(X) such that oo, (Z,0',i), where
Q' = Sel, ,(Q,,i(0),x). Then o=outos for some seS,, (Z,i) such that s(0)eQ’,
because dom(o)=T . Then se S(Z,i), whence seTr’ and dom(s)=T, so s is a

global trajectory of X'. []
Now we will focus on the problem of existence of global trajectories of a

NCMS.

3.3 Existence of globally defined trajectories of NCMS

An obvious method of proving the existence of a global trajectory of a NCMS
with a given LR representation (/,7) is to choose (guess) some global trajectory
candidate function s:7 — Q and prove that V¢ e T I(s,t) A7(s,1).

As an alternative to guessing an entire global trajectory one can try to

find/guess for each ¢ a partial trajectory s, defined in a neighborhood of ¢ which

satisfies I(s,,t) Ar(s,,t) in such a way that all s,, €T can be glued together into a
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total function. An important aspect here is that the admissible choices of s,, s, for
distant time moments ¢,¢' €T (i.e. such that s,, 5, appear as subtrajectories of some

global trajectory) can be dependent.

However, this method can be generalized: instead of guessing an exact global
trajectory or its exact locally defined subtrajectories, one can guess some “region”
(subset of trajectories) which presumably contains a global trajectory and has some
convenient representation. It is desirable that for this region the proof of the
existence of a global trajectory can be accomplished by finding/guessing locally
defined trajectories in a neighborhood of each time moment independently, or at
least so that when choosing a local trajectory in a neighborhood of a time moment ¢
one does not need to care about a choice of a local trajectory in a neighborhood of a
distant time moment.

We formalize the described generalized method of proving the existence of
global trajectories of a NCMS as follows.

Let X=(T,0,Tr) be a fixed NCMS.

Definition 3.2. ¥ satisfies

1) the local forward extensibility (LFE) property, if for each s e 7r of the
form s:[a,b]> QO (a<b) there exists a trajectory s':[a,b']—> QO such
that s"e Tr, sCs', and "> b (i.e. s’ is a continuation of s).

2) the global forward extensibility (GFE) property, if for each trajectory s of
the form s:[a,b]— QO there exists a trajectory s':[a,+oc) - O such that
sCs'.

Theorem 3.3. Let (/,r) be a LR representation of X. Then X has a global

trajectory if and only if there exists a pair (/',7") € LR(Q) such that

1) [I'(s,t)=1(s,t) and 7'(s,t) = r(s,t) for all (s,7) € ST(Q);

2) Vtel0,e]l'(s,t) Ar'(s,t) for some £ >0 and a function s:[0,6]—> Q;

3) if (/',7") is a LR representation of a NCMS X', then X' satisfies GFE.

Proof.
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Let us prove the “if” part. Assume that 1)-3) hold. By 2) there exists £ >0
and s:[0,&]— Q such that ['(s,t) A¥'(s,t) for all £ €[0,g]. Let £'=(T,0,Tr") be a
NCMS such that (/',7") 1s a LR representation of X' (which exists, because
(I',¥"ye LR(Q)). Then by 3), X' satisfies GFE. Besides, s € Tr'. Then there exists
s":[0,40) > Q such that s'eTr' and sCs'. Then ['(s,t) Ar'(s,t) for all teT,
whence s’ € Tr, because of 1), so X has a global trajectory.
Let us prove the “only if” part. Assume that ¥ has a global trajectory s e Tr.
Let I': ST(Q) — Bool and r': ST(Q) — Bool be predicates such that
I'(s,t) < I(s,t) A (mindom(s) =1 v s(1)=s" (1)),
r'(s,t) < r(s,t) A(max dom(s) I=tvs(t)= s*(t)).
In the same way as in the proof of the item 1) of Theorem 3.2, it is straightforward
to show that /" is left-local and 7’ is right-local. Then (/',7") € LR(Q). Obviously,
I'(s,t) = I(s,t) and r'(s,t) = r(s,t) for all (s,t)e ST(Q), so 1) holds. Besides, we
have I(s",f)Ar(s ,t) forall €T, because s € Tr, whence I'(s ,t) Ar'(s",t) for all
t T . Then 2) also holds. Assume that (/',7') is a LR representation of a NCMS X'.
Let us show that ¥’ satisfies GFE. Let s:[a,b] > Q (a <b) be a trajectory of X'.

Then ['(s,f) Ar'(s,t) for all tedom(s). Then s(t)=s (¢t) for all te(a,b] and
s(t)=s"(¢t) for all te[a,b), so s(t)=s"(¢) forall t€[a,b]. Then sCs . Besides, s’

is a trajectory of X'. Let s'=s" Then s' is a trajectory of X' by the CPR
.] ry [a

s+o0) *
property and sCs'. Thus X' satisfies the GFE property. [
Theorem 3.3 means that the existence of a global trajectory of a NCMS X
with a LR representation (/,7) can be proved using the following approach:
1) Choose/guess a pair (/',r')e LR(Q) such that ['(s,t)=I(s,t) and
r'(s,t) = r(s,t) for all (s,t) € ST(Q). This pair is a LR representation of a
NCMS 2'=(T,Q,Tr"), where
Tr'={s:A> Q| AT ANNte Al'(s,t) AV (s,1))}.
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The set Tr' < Tr plays the role of a region which presumably contains a
global trajectory.

2) If it is possible to find a function s on a small segment [0,&] which
satisfies ['(s,t) Ar'(s,t) for te€[0,e] (i.e. s is a trajectory of X') and
prove that ¥’ satisfies GFE, then X has a global trajectory.

To complete this method of proving the existence of a global trajectory, in the

next section we will show that the GFE property of a NCMS can be proven by
proving the existence of certain locally defined trajectories independently in a

neighborhood of each time moment.

3.4 Reduction of the GFE property to the LFE property

As above, let = (T,0,Tr) be a fixed NCMS.

Definition 3.3. A right dead-end path (in X) is a trajectory s:[a,b) > O,
where a,be T, a<b, such that there is no s':[a,b]—> Q, s' € Tr such that sCs’
(i.e. s cannot be extended to a trajectory on [a,b]).

Definition 3.4. An escape from a right dead-end path s:[a,b) > Q (in X) is
a trajectory s':[c,d)—> Q (where d e T U{+x}) or s':[c,d] > Q (where deT)
such that ce(a,b), d>b, and s(c)=s'(c). An escape s’ is called infinite, if
d =+,

Definition 3.5. A right dead-end path s:[a,b) > Q in X is called strongly
escapable, if there exists an infinite escape from s .

Lemma 3.1. If s:[a,b) > Q 1is a right dead-end path and c € (a,b), then
S |t 1s a right dead-end path.

The proof follows immediately from the CPR and Markovian properties of X.

Lemma 3.2. ¥ satisfies GFE if and only if ¥ satisfies LFE and each right

dead-end path is strongly escapable.
Proof.
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Let us prove the “if” part. Assume that X satisfies LFE and each right dead-
end path in ¥ is strongly escapable.
Let us prove that X satisfies GFE. Let s:[a,b]— Q be a trajectory. Let us

denote S ={s"eTr|sCs' Amindom(s)¥ Amindom(s)=a}. Then each nonempty

C -chain of elements of S has an upper bound in §, because of the completeness

property of £. Because S #O, Zorn’s lemma implies that S has some maximal
element s~ (with respect to C). Because of the LFE property, dom(s") cannot be a
closed bounded segment. Then either dom(s )=[a,+), or dom(s )=[a,y) for
some yeT . Consider the latter case, i.e. dom(s )=[a,y), yeT, a<y. Because
s’ is maximal in S, s cannot be extended to a trajectory on [a,y]. Hence s’ is a
right dead-end path. Moreover, y >b, because sCs . Then be(a,y) and by
Lemma 3.1, s~ lis. 18 @ right dead-end path. Then there exists some infinite escape
s, :[c,40) > O from s (p.) (Where ce(b,y), s,(c)= s (€)).

Let us define s, :[a,+) > QO as follows:

5(0)= {s*(t), tela,c]
s (1), t>c

Then s, € Tr by the CPR and Markovian properties of £. Moreover, sCs,, because
c¢>b and sCs .

We conclude that in any case, either dom(s )=[a,+) and sCs", or there
exists a trajectory s, :[a,+c)—> QO such that sCs,. Because s is arbitrary, X

satisfies the GFE property.

Let us prove the “only if” part. Assume that X satisfies the GFE property.
Then X satisfies the LFE property because of the CPR property of X.

Let us prove that each right dead-end path is strongly escapable. Let
s:[a,b) > Q (a<Db) be a right dead-end path. Let ce(a,b). Then s|, ,€Tr by

the CPR property of X. Then there exists a trajectory s':[a,+c) —> O such that
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S o1 &' by the GFE property. Let s”=s"|; Then s"” € Tr by the CPR property

c,+®)*

of ¥ and s"(c)=s(c). Then s” is an infinite escape from s. Thus each dead-end

path is strongly escapable. [
Now we will consider conditions under which each right dead-end path is
strongly escapable.

Definition 3.6. A function «:[0,40) —[0,+) is of class K_, if it is

continuous, strictly increasing, lim a(x)=+o, and a(0)=0.
X—>+0

Definition 3.7.

1) A right extensibility measure is a function f":RxR 5 R such that
A={(x,y)eTxT |x<y}cdom(f"), f(x,y)=0 for all (x,y)eAd,
f* |, is strictly decreasing in the first argument and strictly increasing in
the second argument, and for each x>0, f"(x,x)=x and
lim, , /" (x,y)=+o0.

2) A right extensibility measure f " is called normal, if /™ is continuous on

{(x,y)eT xT |x<y} and there exists a function o €K such that
a(y) <y forall y>0 and the function y — f"(a(y),y) is of class K_, .
Let us fix a right extensibility measure f'. Note that
[ (x,y)> f"(y,y)=y forall x,y>0 such that x< y.
Definition 3.8. A right dead-end path s:[a,b) — Q is called [ -escapable

(Fig. 3.1), if there exists an escape s'":[c,d]— Q from s such that d > " (c,b).
Informally, this definition means that the value of a right extensibility
measure gives a lower estimate on how long an escape from a right dead-end path
can be. The first argument of the right extensibility measure is the time at which the
escape starts (i.e. the left end of its domain) and the second argument is the time at

which the right dead-end path becomes undefined (the right end of its domain).
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state p 4 right dead-end path (cannot be extended past b)

d>=fT(c,b)

e

escape at time ¢

time

Fig. 3.1. An f™ -escapable right dead-end path s:[a,b) — O (displayed here

as a curve) and a corresponding escape s':[c,d]—Q (displayed here as a

horizontal segment) such that d > 1 (c, b).

Theorem 3.4 (About right dead-end path). Assume that X satisfies the LFE
property and /" is a normal right extensibility measure. Then each right dead-end
path is strongly escapable if and only if each right dead-end path is /" -escapable.

We will give a proof of this theorem in a separate section (Section 3.5),

because it is longer than other proofs in this section.

The following lemma gives an example of a right extensibility measure.

Lemma 3.3. For each n e N the function £, (x,y)=y+(y—x)" (x,yeR)
1s a normal right extensibility measure.

Proof. Obviously, f is defined and non-negative on the set
A={(x,y)eTxT |x<y}, f,7|, is strictly decreasing in the first argument and is
strictly ~ increasing in  the second argument, f'(x,x)=x, and
lim, .., f, (x,y) =+, so f, is a right extensibility measure. Besides, f," is

continuous on RxR. Let o :[0,+0) — [0,40) be a function a(y)=y/2. Then

aekK,, a(y)<y for all y>0, and f (a(y),y)=y+(y/2)" is a continuous,
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strictly increasing, unbounded function which takes zero value at zero, so
vy fT(a(y),y) isofclass K. So f," is a normal right extensibility measure. [

Note that for f;"(x,y)=2y—x, a right dead-end path s:[a,b) > Q is f|"-
escapable, if there exists an escape s':[¢c,d] > Q withd -b>b—c.

Now let us give a criterion for the GFE property.

Theorem 3.5. Let (/,) be an LR representation of £ and f* be a normal

right extensibility measure. Then ¥ satisfies the GFE property if and only if for

each >0 there exists ¢ €(0,¢] such that for each ¢, e[t—¢&,t) and s:[t,,t] > Q
the following holds:

1) (VT e[t,,t]1(s,7) /\?'(S,T)):> 3t >t

As":[1,6,]1 > O s' () =s(t)A(VT edom(s") I(s',7) Ar(s',T));
2) (Vr elty,t)I(s,T) A r(s,z'))/\—J(s,t) = 3¢, €(¢,,1)
3As":[t, (1, 0)] = Os'(t) =s(t,) A(VT edom(s") I(s',7) Ar(s',T)).

Proof. Let us prove the “if” part.

Assume that for each 7> 0 there exists € €(0,7] such that 1) and 2) hold for
each 7, e[t—¢,t) and s:[t,,t] > 0.

Let us show that ¥ satisfies GFE.

Firstly, let us show that ¥ satisfies LFE. Let 5:[a,b]—> Q be a trajectory of
Y (where a,beT, a<b). Then b>0. Then for 1t =5 there exists ¢ €(0,¢] such
that the property 1) holds for each ¢,e[t—¢,f) and s:[t,,t{]> Q. Let
t,=max{a,t—&} and s=5 |[t0’,]. Then seTr by the CPR property and
I(s,7) nr(s,7) for all 7 €[t,,¢], and by the property 1) there exists #, >¢=5b and
s":[t,t;,]—> O such that s'(t)=s(t)=35(¢) and I(s',7) Ar(s',7) for all 7 edom(s").
Then s"eTr. Let us define s":[a,t;,]—> QO as follows: s"(z)=5(z), if 7 €[a,b] and
s"(tr)=5s'(r), if v €[b,t;]. Then s" eTr by the Markovian property. Moreover,

sCs"” and ¢, > b. So X satisfies LFE.
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Secondly, let us show that each right dead-end path in X is f " -escapable.
Let 5:[a,b) > QO be a right dead-end path in £ (where a,beT, a<b). Then
b>0. Then for t =b there exists € €(0,¢] such that the property 2) holds for each
tyelt—e&,t) and s:[t,,t]> Q. Let t, =max{a,f—¢&} and s be some continuation
of 5 |[t07,) on [¢,,t]. Then s |[t0,t)e Tr by the CPR property and /(s,7) Ar(s,7) for all
7 €[t,,t). Besides, —I(s,t), because 5 1s a dead-end path and r(s,¢) holds. Then by
the property 2) there exists ¢, € (¢,,¢) and a function s":[¢,, f " (¢,,¢)] > Q such that
s'(¢))=s(t,) and [(s',t)Ar(s’,t) for all 7 edom(s"). Then s'eTr. Moreover,
t,e(a,b), s'(t,)=s(t)=35(t), and maxdom(s")> f*(¢,b). Thus s" is an escape
from 5. Then § is " -escapable.

Thus by Theorem 3.4, each right dead-end path in X is strongly escapable.
Then by Lemma 3.2, ¥ satisfies GFE.

Now let us prove the “Only if” part. Assume that ¥ satisfies GFE. Let 1> 0.

Let us choose an arbitrary ¢ € (0,¢]. Assume that 7, e[t —¢,¢) and s:[¢,,t] > O.
Let us prove the property 1). Assume that /(s,7) Ar(s,7) for all 7 €[¢,,¢].
Then s eTr and by GFE there exists s, :[¢,,+¢]— O such that s, € 7r and sCs,.
Let t,=¢t+1 and s'=s |[’=f1]' Then s' e Tr by the CPR property and s'(¢) = s(¢) and
[(s',T) Ar(s',T) forall T € dom(s').
Let us prove the property 2). Assume that /(s,7) Ar(s,7) for all 7 €[4),1).

Then s |[t0’t)e Tr. Consider the case when s |[t0’t) is a right dead-end path in X. Then

by Lemma 3.2 it is strongly escapable, so there exists ¢ €(#,,?) and

Then

si:lh4%) >0 such that 5,(4)=s(:) and s, €Tr. Let s'=s;| . .
& I

s'eTr by the CPR property and s'(z,)=s(¢,) and [(s",7)Ar(s’,7) for all

7 edom(s').
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Now consider the case when s o0 is not a right dead-end path. Then there
exists s, :[#,#] > QO such that s,eTr and s |[t0,t) Cs,. Then by GFE there exists

s, : [ty 4] — O such that s, € Tr and s,Cs,. Let us choose an arbitrary ¢, €(,,?)

and define s'=3, |[t ol Then s'eTr by the CPR property and
[ANCUE

s'(t)=s5,(t))=s5,(t;)=5(¢,) and I(s",7) Ar(s',7) forall 7 € dom(s").
Thus in both cases the property 2) holds. []

Note that in this theorem the first condition basically means the LFE property

and the second condition expresses the existence of an escape of a length given by
/7. This theorem means that to prove the GFE property, it is sufficient to prove the

existence of certain locally defined trajectories independently in a neighborhood of

each time moment.
3.5 Proof of the theorem about a right dead-end path

In this section we will give a proof of Theorem 3.4.

Let =(7,0,Tr) be a fixed NCMS and f* be a fixed normal right
extensibility measure. Let us introduce several auxiliary definitions and lemmas.

Definition 3.9. A right #,-bunch (in X) is a non-empty set 4 < 7r such that

min(dom(s))¥=t, foreach se 4 and s, =, , s, forall s,,5, € 4.

ZO+
For each non-empty set 4 < 7r denote

‘Ar = sup (supdom(s)).

seA

We assume that \AF = 400, if sup(dom(s)) = +oc for some se€ 4.

Definition 3.10. A (right) #,-bunch A is called bounded, if |4|" <+o0.

Otherwise it is called unbounded.

132



Lemma 3.4. There exists a function g':TxT 3T defined on

{(x,y)e T xT |x <y} such that
1) g" is strictly increasing in both arguments;
2) g'(x,x)=x and x<g"(x,y)<y forall x,y eT suchthat x< y;

3) g°(x,f (x,y))=y forall x,yeT suchthat x<y.
Proof. For each fixed x>0 let 4 :[x,40) >R be a function such that

h.(y)=f"(x,y) for all ye[x,+o). Then because f* is a normal right
extensibility measure, we have that /_ is strictly increasing, continuous, maps the

set [x,+o0) to itself, is unbounded from above, and 4 (x) = x. Therefore, it has a
strictly increasing inverse A.' which is defined on [x,+oc). Let us define
g :TxT 3T as follows: g'(x,y)=h.'(y) for all (x,y)eTxT such that
x<y. Then g" is strictly increasing in the second argument and
g (x,fT(x,y))=y for all x,yeT such that x<y. If x,x,,yeT and
X <x,<y, then f(x,g"(x;,¥)=y=/"(x8" (x2, ) < [ (x1,8" (x5, 1)),
which implies that g*(x,,»)<g"(x,,»), so g" is strictly increasing in the first
argument. Thus the condition 1 and 3 of the lemma are satisfied.

Let us prove the condition 2. Indeed, g*(x,x)=/h.'(x)=x for all x>0.
Besides, if x,yeT and x<y, then x=g"(x,x)<g"(x,))<g " (y,y)=»,
because g is strictly increasing in both arguments as we have shown above. [

Let us fix a function g which is described in Lemma 3.4.

Definition 3.11. A bounded right #,-bunch A is called g*-convergent, if for

A[") and s,,5, € 4 the following holds:

each t'e(t,,

if min{sup(dom(s,)),sup(dom(s,))}>g" (¢,

+ .
A"), then s, “lig) 52+
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We will need the following notion [58]: if X is some setand g: X —> X, a
function f: X — X which satisfies the equation fo fo..o f =g (N eN)is called

N times

an N -th order iterative root of g. The existence of iterative roots can be established

in some cases using the following theorem which was proved in [58].

Theorem 3.6 [58, Theorem 11.2.2]. Let X — R be an interval and let f be a
strictly increasing and continuous self-mapping of X . Then f possesses strictly
increasing and continuous iterative roots of all orders.

Note that here the interval X can be unbounded.

Let a € K, be a function such that a(y) <y for all y >0 and the function
¥y f(a(y),y) is of class K, (such a function exists by Definition 3.7).

Then by Theorem 3.6 there exists a continuous and strictly increasing

function & on [0,+o) such that for all x>0,

E(&(x)) = [ (a(x),x) (3.1

Lemma 3.5. & is of class K and &(x)>x forall x>0.
Proof. For all x>0 we have £(E(x))= /" (a(x),x)> " (x,x) = x, because
a(x) < x . Suppose that £(x,) < x, for some x, >0. Then x, < &E(&(x,)) < &(x,) by
monotonicity of &. This contradics the assumption &(x,) < x,. Thus &(x)>x for
all x>0. Moreover, because, E(E(0)) = f"(a(0),0)= f"(0,00=0, we have

£(0)=0. Besides, lim &(x) =+ and & is continuous and strictly increasing. We

X —>+00

conclude that & is of class K, and &(x)>x forall x>0. [J

Let ¢ be a strictly increasing and continuous function such that

P(P(x)) =S (x)
for all x >0 (it exists by Theorem 3.6).

Then ¢(x)>x for all x>0 (because otherwise, there exists x,>0 with
P#(xy) < x, and &(x,) = P(P(x,)) < P(x,) < x, — a contradiction with Lemma 3.5).

Let v be a strictly increasing and continuous function such that
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w (v (x)) =d(x)
for all x>0 (which exists by Theorem 3.6).

Then y(x)>x forall x>0, because ¢(x)> x forall x>0, whence
x <y (x) <y (x)) =d(x) < p($(x)) = &(x). (3.2)
For any set of sets S and a binary relation << S xS denote:
— Ch(S,<) is the set of all c-chains cc S (i.e. A< B or Bc A for each
A, B € ¢) such that
1) the union of elements of each non-empty bounded subset (in the sense
of <) of ¢ belongs to ¢, i.e. for each ¢'e2°\{J}, if there exists
X ec such that | J¢' < X, then | Jc' e c. Note this implies that ¢ is a
Dedekind-complete poset with resepct to < [97, p. 87] (i.e. every
nonempty bounded subset has a supremum);
2) for each non-maximal 4Aec (i.e. Ac A" for some A'ec) there exists
A'ec suchthat Ac A" and A< A4'.
— < is a binary relation on Ch(S,<) such that ¢, <¢, ifand only if ¢, c c,,
and Ac B forall Aec, and Bec, \¢,.

For each ¢, > 0 let us define:

— S;) is the set of all bounded g™ -convergent right #,-bunches (in X );

+

— <" 1is a binary relation on S% such that A<" B if and only if

AT <|B['<w(l4[").
Let us prove some general properties of Ch(S,<).
Lemma 3.6.
1) < is a partial order on Ch(S,<).
2) Each chain in the poset (Ch(S,=<),<) has an upper bound.

Proof. The statement 1. follows immediately from definition of <.
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Let us show the statement 2. Let C < Ch(S,<) be a <-chain. Let us show that
c=|JC e Ch(S,=<). 1t is straightforward to check that ¢ is a < -chain.

Let us check that for each non-empty ¢’ < c, if there exists X €c such that
Jc'c X, then |Jc'ec. Assume ¢'cc, ¢'#D, X ec and | Jc' < X . Then there
exists ¢, € C such that X ec,, because X ec=|JC. Firstly, let us show that
¢'ccy.Let Aec'. Because Aec’'cc=|]JC, there exists ¢, € C suchthat 4ec,.
Now assume that 4¢c,. Then c, £c, (otherwise 4ec, cc,). Then ¢, <c,,
because C 1s a <-chain and c,,c, €C. Then X c 4, because X ec,, Adec,\cy.
Then Ac U c¢'c X c 4. Then we have a contradiction 4=X ec, . Thus 4dec,
and we conclude that ¢’ c ¢, . Now we have that ¢'c ¢y, ¢'# and there exists
X ecy suchthat | Jc'< X . Then |Jc¢'ecy by the definition of Ch(S,<), because
cy € Cc Ch(S,<).Thus | Jc'e|JC=c.

Let us check that for each non-maximal 4 € ¢ (with respect to <) there exists

A'ec suchthat A< 4" and A< A'. Assume that 4 ¢ is non-maximal. Then there

exists B € c such that 4 — B. Then there exist c,,c; € C such that Aec,, Becy,
because ¢ =|J C. Moreover, either ¢, <c, or ¢y <c,. If Aec,, then A4 is a non-
maximal element of c¢,. Then there exists A'ec, such that Ac A" and A< 4',
because c, € Ch(S,<). Then A'eUC=c. On the other hand, if A¢c,, then
cp <c, (because otherwise Aec,) and Bc A4, because Becy and Aec, \cy.
This contradicts the inclusion 4 B given above. We conclude that there exists
A'ec suchthat Ac A" and A< A4'.

Thus ¢ € Ch(S,<) by the definition of CA(S,<). [

Lemma 3.7. Let ¢,, be a <-maximal element of Ch(S,<) and X =|Jc, €S.

Then the following holds:
1) Xec,.
2) There isno set Y €S suchthat X Y and X <Y .

136



Proof. Let us prove 1). Let ¢, =c,, U{X}.

Let us show that ¢, € Ch(S,<). We have ¢, S and Ac X forall 4ec,,
because X = Jc,,. Moreover, c,, is a c-chain. Thus ¢}, =¢, U{X} is a -chain.

Let us check that for each non-empty ¢’ < c], , if there exists X'ec] such
that |Jc'c X', then |Jc'ec),. Assume that ¢'cc),, ¢'#3. If Xec', then
XclJcdcle, =Ue,)wX=X and [Jc'ec),. Consider the case when
X ¢c'. Then ¢'cc, and because c,, is a —-chain, for each 4ec,,, either Ac B
holds for some Bec’, or Bc A4 holds for all Bec'. Then for each 4ec,,, either
AclJc or [Jc'c 4. If [Jc'c 4 for some Aec,,, then by taking into account
that ¢'c¢,,, ¢'#@ and c,, € Ch(S,<), wehave | Jc'ec, cc,,. If Ac|]c’ for all
Aec,,then X=|]Jc, c|Jc'c|J¢, =X, because ¢'cc,,. Then | Jc' ec;,. Thus
in all cases | Jc'ec),.

Let us check that for each non-maximal 4 ec/ (with respect to <) there
exists 4" ec,, such that Ac 4" and A< A'. Assume that 4 € ¢], is non-maximal.
Then A4+ X . Then Aec, . Moreover, A4 is a non-maximal element of c,,, because

otherwise X =(Jc,, = 4. Then because c,, € Ch(S,<), there exists 4'ec, cc,,
suchthat Ac 4" and A< 4'.

Thus ¢, € Ch(S,<) by definition of CA(S,<).

We have ¢, cc,, and AcB for all 4Aec, and Bec, \c,, because
ca\e,c{X} and Acl|Jc¢,=X. Then ¢,<c,. Then ¢, =c,, because
¢ € Ch(S,<) and ¢, is a <-maximal element of Ch(S,<). Thus X ec,, .

Now let us prove 2) by contradiction. Assume that there exists ¥ € S such

that X cY and X <Y .Letc,, =c, U{Y}.Letus show that ¢, € Ch(S,<).
We have ¢, cS. Also, AcY for all 4ec,, because Jc, =XV .

Moreover, c,, is a c-chain. Thus ¢, = ¢, U {Y} is a c-chain.
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Let us check that for each non-empty c¢'c ¢, , if there exists X' ec,, such
that (Jc'c X', then |Jc'ec,. Let c'c¢,, #J. If Yec, then
YcJdce,=WUe,)wY=XUY =Y and | Jc'ec],. Consider the case when
Yec'. Then ¢'cec, and | Jc'c|J¢, =X . Moreover, X ec,, by the statement 1)

of this lemma. From this and from ¢'c¢,,, ¢'#@ and ¢, € Ch(S,<), we have

¢ ec,, ), . Thus in both cases we have | J ¢ e c,.

Let us check that for each non-maximal A4 ec) (with respect to <) there
exists A'ec such that 4c 4" and A< 4. Assume Aec, is non-maximal
element. Then 4#Y , because Y is a maximal element of ¢],. Then Aec,, . If 4 is
a non-maximal element of c,,, then there exists 4" ec,, < c,, such that 4 4" and
A=< A4', because ¢, € Ch(S,<). If 4 is a maximal in ¢,, then X =|Jc, =4,
Yec, ,AcY and A<Y . Thus ¢, € Ch(S,<).

We have ¢, cc, and AcB for all 4ec, and Bec, \c,, because
a\e,c{¥Y} and AclJc,=XcY. Then ¢,<c,. Also, we have
X=c,#2Y=Jc,,because X cY . Then c, #c,,. Then ¢, isnota <-maximal

element of Ch(S,<), because ¢, <c, and c, €Ch(S,<)\{c,}. We have a
contradiction with assumptions of the lemma. Thus there is no set ¥ € § such that

XcY and X <Y .[]

Let us consider some properties of the set Ch(S,g ,<\{D} for a fixed
t, € T . Note for each element c of this set, U c#O,because I ¢ S;(r) .
Lemma 3.8. If ¢ € Ch(S; ,<")\{} and Ud" <+, then (Jce S

Proof. Let c € Ch(S; ,<")\{@}, X ={Jc, and X[ <+w. Then X Q.
Let us show that X 1is a bounded right #,-bunch. For each s € X there exists

Aec such that s e A. Then min(dom(s)) += t,, because A is a right ¢, -bunch. Let
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s;,8, € X . Then there exist 4,4, €c such that s, € 4, and s, € 4,. Then 4, c 4,
or A, < A4,, because ¢ is a <-chain. Moreover, 4,4, eSfO . If 4 < 4,, then
s;,8, € A, for i=1,2. Then s, Zip+ 525 because 4, is a right #,-bunch. Similarly, if

A, € A4, then s, =i+ 527 because 4, is a right f,-bunch. In both cases s, =i+ 52-

Thus X is a bounded right ¢,-bunch, because [X|" < +o0.

X‘Jr), s;,8, € X . Then

Let us show that X is g"-convergent. Let ¢ e (z,,

there exist 4,4, ec such that s, € 4,, s, €4,. Then 4 c 4, or 4, c A4, because

¢ is a chain. Also, 4,, 4, are bounded ¢,-bunches, because 4,, 4, € S;(r) .

x[.

Let ¢, =sup(dom(s,)), i =1,2. Assume that min{z,,2,} > g" (¢,
Let us show that s, i[,o,,) S5.
Consider the case 4, < 4,. Then s,,s, € A, and ¢,,t, <| 4, |". Then

x[H>t,

| X "2 4, [ min{t,,} > " (7,

because 4, = X and ¢’ <| X [". If ¢'€ (t,,|4,] ), then s, (1) S20 Decause 4, is g -

convergent. Otherwise, #'=|4,|". Then

+
9

A2‘+):‘A2

X[NHzgh(,

min{t;,t,} > g" (¢,

+ +
, because t,,t, <| 4, |".

by monotonicity of g*, whence #, =1, = |4,

A,[") we have

For each " € (¢,,

A[").

min{t,,t,} =|4,[" > g* (",

Then s, (i) 525 because 4, is g"-convergent. Then s, i1y S2> Decause

A7) = (8,1 is arbitrary.

t"e(t,,

In the case 4, < 4, we can show that s, Zl1g) 52 using analogous arguments.

Thus X is g"-convergent. Then X € S;(r) by the definition of S;(’) O
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Let us define a prefix relation = on 7r: s,Cs, if and only if 5.Cs, and for
each ¢, e dom(s,) and ¢, € dom(s,)\dom(s,) we have t, <t,.

Let us define a prefix closure operation pc/ on 27 :

pel(A)={seTr|3s'e AsCs'},if AcTr.

Lemma 3.9.

1) L is a partial order on 7.

2) pcl is a closure operator, ie. Ac pcl(4) (extensivity),
pcl(A) < pcl(A4'), if Ac A" (monotonicity), and pcl(pcl(A)) = pcl(A)
(idempotence).

Proof.

1) It is obvious that T is reflexive and anitsymmetric. Let us check that T is
transitive. Assume s,Cs, and s,Cs;. Then sCs,, s,Cs;, whence s,Cs,. Besides, if
t, edom(s,) and t; e dom(s;)\dom(s,), then either t, € dom(s,), whence ¢ <t,
because s,Cs,, or t, €dom(s;)\dom(s,), whence ¢ <t,, because s,Cs; and
t, e dom(s,) < dom(s,). Thus L is transitive.

2) Monotonicity of pcl follows from its definition. Moreover, pcl is
extensive and idempotent, because L is reflexive and transitive. [

Lemma 3.10. pcl(A) € S% for each A e St; :

Proof. Let Ae S;; . Then 4 is a bounded g -convergent right #,-bunch.

Let A'=pcl(A). Then Ac A'cTr,so A #. Let s A". Then there exists
s"e 4 such that sCs'. Then mindom(s')¥=1,, and because sCs' and dom(s,) is a
nonempty subset of dom(s,), we conclude that mindom(s) = t,. Then
[ty,t;1 = dom(s) for some #, >, and sCs’, whence s=, , s'. Because se 4’ is
arbitrary and s'=, , s" for all s’,s"€ 4, we have that s'=, 5" for all s',s"e 4"

Thus 4’ is a right #,-bunch.
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Because A'#J and for each s e A’ there exists s’ € 4 such that sCs’, we

A A

have |4]" <|4]". On the other hand,

A <

" because A< A'. Thus \Ar =\A'\+

and A’ is a bounded right ¢,-bunch.

Let us show that 4" is g'-convergent. Let ' e(ty,|4]")=(t,,|4") and
s;,8, € A'. Assume that
min{sup(dom(s, )),sup(dom(s,))} > g* (¢',| 4| )= g*(¢.]4]).
Then there exist s/,s, € 4 such that s,Cs/ and s,Cs)}. Then
min{sup(dom(s})),sup(dom(s}))} > g (¢,|4]"),

[ 4 5 + -
SO 81 =00 52 because A4 is g -convergent. Then s, =110 525 because

[ty,t") C[ty,g " (¢',| A[)) < dom(s,) Ndom(s,) (by the item 2 of Lemma 3.4), s,Cs/,

and s,Cs5. Thus 4’ is g*-convergent. We conclude that 4'= pcl(4) e S;(r) .0
Lemma 3.11.If c e Ch(S,z ,<"), then {pcl(A)| Aec}e Ch(S;(; <M.
Proof. Let c e Ch(S%,<+) and ¢ ={pcl(A)| Aec}.
By Lemma 3.10 we have égSfO . Besides, ¢ is a non-empty < -chain,

because ¢ is a non-empty < -chain and pc/ is monotone.

Let us show that the union of elements of each non-empty bounded subset of
¢ belongs to ¢. Assume that ¢'e€2°\{Q} and there exists X ¢ such that
|Jc'c X . Then there exists ¥ ec such that X = pc/(Y) and there exists a non-
empty set ¢”" < ¢ such that ¢'={pcl(A4)| Aec"}. Then

Uipcl(4)|Aec"t =] < X = pel(Y).
From the definition of pc/ we have
Utpel(4)| dec"y= pel(Jid| dec"}) = pel( ")

If there exists Z ec such that | J¢"'c Z (ie. ¢” is a bounded subset of c¢),

then | Jc" ec, because c e Ch(S,; ,<"). From this we have | Jc'= pcl(| Jc") e¢.

141



Otherwise, | J¢"=|]Jc, because c is a chain. Then
pel(lJe)=pcl(Jc" = c X = pcl(Y) < pcl(| ¢)
by monotonicity of pcl/, whence | J¢'= X e¢é.
In both cases, | J¢' e ¢. Thus the union of elements of a non-empty bounded

subset of ¢ belongs to ¢.

Let 4 be a non-maximal element of ¢. Then there exists B ec such that
A= pcl(B). If B is a maximal element of ¢, then B=|Jc, because ¢ is a chain,
and A= pcl(B) = pcl(|Jo) 2| J{pcl(4)| A ec} = Jé, which contradicts the
assumption that 4 is non-maximal. Thus B is a non-maximal element of c.

Then there exists B’ e ¢ such that B< B’ and B<" B'. Then pcl(B')e ¢ and

Ac pcl(B'). Moreover, |B|" <|B| <w(B["), whence |4 <|pcl(B"" <y (|4]),
because |4]" =|pcl(B)|" =|B|" and | B'['=| pcl(B")[". Thus A<" pcl(B').

We conclude that ¢ = {pcl(A)| Aec}e Ch(Sf0 ,<"). [

Lemma 3.12. If ceCh(S%ﬁ*)\ {J} and ‘U c‘+ = +o0, then there exists a

trajectory s. :[f,,+0) = Q and A4 € c such that s. ifo* s' forall s'e 4.
Proof. Let ceCh(S, ,<")\{&} and Ue| =+o. Let é={pcl(A4)| Acc}.
Because c¢# @, we have ¢ée Ch(S%,-?)\{@} by Lemma 3.11. Moreover,

IJé|"=+o0, because c = ¢.
Let us construct a —-monotone sequence 4,€¢, neN and a sequence
s, €A,, neN as follows. Lemma 3.5 implies that the function & has an inverse

function &' which is defined and strictly increasing on [0,+o0). Moreover,
E7'(x)<x forall x>0. Letus choose 4, ¢ arbitrarily and choose s, € 4, in such
a way that supdom(s))=&7'(|4, ") (this is possible, because 4 =D,
0<E(A [)<|4, |, and 4, is prefix-closed, i.e. pcl(4,)= A4,).
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Suppose that elements 4,,...,4, and s,,...,s, are already constructed. Let us
construct 4, ,,, s,,, in the following way.

Let C={4d'eé¢|A,c ArA <" A}. Then C#J, because 4, is not a -
maximal element of ¢ (¢ has no maximal elements, because || J¢| =+w). Let
A =|JC. Then | A" ['<y (|4, ") <+, because | A'|'<w(| 4, ") forall 4'eC. Let
us choose X €¢ such that | X [">|4"|". Because ¢ is a —-chain, 4'c X for all
AeCcé. Then A 'cX. Then A" e ¢, because ¢ is Dedekind-complete. Then
there exists Be¢é such that 4 = B and A" <' B, because 4° is a non-maximal

element of ¢ and éeCh(S%,<+). Let us define 4,,,=B. Then 4, c 4,,, and

A,, €¢é. Also, let us choose s,,, € 4,,, such that supdom(s,,,) =& (| 4,,,[7) (this

is possible, because 4,,, =D, E'(|4,,,[))<|4,,,|",and 4, is prefix-closed).

We have defined sequences 4, and s,, n>1. The sequence A4, is obviously

< -monotone. Let us show that for each n > 1,
|4, "<y (14, [ <|4,., <& 4,T). (3.3)

Let n>1. Like above, let C={4'eé|4, c A nd,<" A} and 4" =]C.

Then |4, [[<w(w(|4,[)), because |4 "<y (4, [") and 4" <" 4, ,,. Moreover,

A

n+1

¢C and | A ["<|4,,, [[<w(|4.[), because 4 cA4,,, and 4 <" 4,,. Then
A, *" A,,, by the definition of C, because A4,,€¢, and A, < A4,,,. Then
w( A <A, |7 or |4, |"<|A | by the definition of =<". However,

(A, [2] 4[5 4, [, because C#@. Thus y(d, )<l 4., <y, ).

n+l
From this and (3.2) we finally have (3.3).

The sequence | 4, [* is monotone. If it is bounded from above, then its limit is
a fixed point of y, because y is continuous. But y(x)>x for all x>0, whence

lim | 4, ["=+o.
n—>oo
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By the construction of s, , supdom(s,)=E'(| 4, ") forall n>1, thus

lim supdom(s, ) = +o. (3.4)

n—aoo

From (3.1) we have that for all x>0,

g (a(x),&(E(x))) =g " (a(x), " (a(x),x)) = x> a(x).

Let us prove that for each n > 1,

s, (t)=s,,,(t) forall t<a(supdom(s,)). (3.9)

Let n>1 and x=supdom(s,), a=|A, |, b=|4,,|. Then x=&'(a) and
a<b<&(a) by (3.3). Then

x2 g (a(x),5(5(x) =g  (a(x),&(a)) 2 g" (a(x),b).
by monotonicity of g*. Then
min {supdom(s,,),supdom(s,,,;)} = min{& (| 4, ['),& (| 4,01 )} =
=574, 1) =x2g" (a(x),]| 4, ).

Because xe€(0,/4,,,|") and a(x)e(0,|4,,,[), s,,5,.,€4,.,,, and 4, ,, is
g -convergent, we have s, (1)=s,,,(¢) forall t <a(x) = a(supdom(s,)).

Let us define a function s. on [f,,+o0) such that for each ¢>¢),
$:(8) = 5, (t) where m(#)=min{n e N |t e[t),a(supdom(s,)))}. Because « is
unbounded and a(y)<y for all y>0, from (3.4) it follows that s.(¢) is defined
forall 1>¢,.

The sequence supdom(s,), n>1 is monotone (by construction of s,) and o
1s monotone, therefore (3.5) implies that s,(¢)=s,(¢) for all m, n>m and
t<a(supdom(s,)). Then s.(¢)=s,(¢) for each ¢ such that  <a(sup dom(s,,,))
and n2>m(t). But ¢ <a(supdom(s,,,)) forall 12>¢,. Thus

s«(t)=s,(t) forall t>1¢, and n>m(?).
It is easy to see that the function m(#) is monotonically non-decreasing, so

for each ¢>¢, and 7elf),t+1], sd7)=s,,(7), whence s.=, s, and
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if t>1,, then s.=_ s, Let (/,r)€ LR(Q) be a LR representation of X . Because

for all n, s, € Tr and min(dom(s,)) =t, (each s, belongs to some right ¢,-bunch),

and for each 72 ¢, sup(dom(s,,,;y)) 2t +1, we have I(s HAr(s t) for all

m(t+1 m(t+1)? m(t+1)°

t 2 t,. Then because / is left-local and r is right-local, /(s.,t) Ar(s.,t) forall t>¢,.

Hence s.eTr. Moreover, s.= .5, Let dec be a set such that

A1y = Pel(A) . Because 4 is a right #,-bunch, we have s.=, , s' for all

0+

ssedc 4

m(t0+1)' N

Lemma 3.13. Assume that ¥ satisfies the LFE property and each right dead-

end path is f ™ -escapable. Then for each X eS,z there exists 5 7r such that
Xu{E}eS% and X <" X U {5}.
Proof. Assume X €S, . Then X = and | X|" < +00. Denote ¢, =|X|" and
H={t,q)eTxQ|t=t, A
dt'e(t,t,) Is € X (s(2) =g Asup(dom(s)) = g* (¢, )}

Denote H,=dom(H). Let us show that H, =[¢t,,z,). The inclusion

H, c[t),t,) follows from the definition of H . Let t<[¢,,¢,). Let us choose any

t'e(t,t,). Then g*(¢,t,)<t,. Because ¢, =\X+, there exists s € X such that

sup(dom(s))>g*(t',t, )>t'>t. Because ¢>f,, we have tedom(s) and
(t,s(¢)) e H. Then [t,,t,) < H,, because ¢ €[¢,,t,) is arbitrary.

Let us show that A is a functional binary relation. Assume that (¢,q,) € H
and (¢,q,)e H. Then there exist #,t; and s,,5,€ X such that 7 e(t¢,),
sup(dom(s;))>g"(t,t,), and ¢, =s,(t) for i=12. Let ¢'=min{t,z,}. Then

t'e(t,,

.
X \ ), because ¢ > ¢,,. Moreover,

min {sup(dom(s, )),sup(dom(s,))} = min{g" (#1,1,),8" (t3.,,)} = g (¢',1,,),
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by the monotonicity of g*. Then s,(¢)=s,(t) for te[t,,t"), because X is g"-
convergent. Then s,(¢) =¢q, = ¢, = 5,(¢), because t €[¢t,,t,) and ¢ €[¢,,1,).

We conclude that H is a graph of some function s, :[¢,,t,,) > Q.

Let (/,7) € LR(Q) be a LR representation of X. Let us show that s, € 7r. Let

te(ty,t,). Then (¢,s.(¢))e H and there exists ' e(t,¢,) and s€ X such that
s:(#)=s(¢) and sup(dom(s))>g*(¢',t,) >t >t.Foreach 7 €[t,,1"),

21, At e(t,t,) Asup(dom(s)) > g ('t )Ase X .
Then (z,5(7)) € H . Hence s(r)=s.(r) forall 7 €[¢,,#'). Then s=,_s. and s =, s.,
because te(¢),t). Because ¢, <t<sup(dom(s)) and seTr, we have
[(s,t) Ar(s,t). Then [(s.,t) Ar(s«,t), because [ is left-local and r is right-local.
Thus I(s.,t) Ar(ss,t) foreach t€(t,,t,).

Moreover, because ¢, € H,, there exists ¢ €(¢,,t,) and se€X such that
sup(dom(s)) > g (¢',t,) and s.(¢,)=s(¢,). Then for each ¢ e (¢,,t") we have 1>1¢,
and ¢ e(t,¢,). Hence (z,s(t))e H for each te(t,,t). Then s(¢)=s.(¢) for
te(t,,t"). Then r(s.,t,), because r(s,t,). We conclude that s. e7r. Moreover,
Se s S for all s € X, because X is a right #,-bunch.

Consider the case when s. is not a dead-end path, i.e. there exists a
continuation s. of s. to [¢,,¢,]. Then by the LFE and CPR properties there exists
t e(t,w(t,) and a trajectory 5:[t,,z,]—>Q such that 5Cs.. Then using

monotonicity of g it is straightforward to show that X U {s} is a bounded g*-
convergent right #,-bunch (i.e. X U {5} e S% ),and X <" X U {s}.

Consider the case when s, is a right dead-end path. Then s, is /" -escapable.
Let us choose 7 e(t,,t,) such that f"(z,t,)<w(¢,) (this is possible, because
f @, )=t  the function 7+ f'(r,t,) is continuous on (f,,z,], and
w(t,)>1,)
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The CPR property and Lemma 3.1 imply that there exists an escape s, from
s, of the form s, : [¢,,¢)) > O, where ¢, e(z,t,) and ¢, = " (¢,,t,).
Because 7, > 7, we have

by <to= [ (te,t,) < 7 (7,8,) <y (1,,).

Let us define a function 5: [¢,,£,) —> Q as follows:

56 = {s*(t), tet,,t,)

S0 telt, )

The Markovian property implies that 5e€7r. Moreover, X U{s} is a
bounded right 7,-bunch, because 5= ,s. and dom(s) is bounded. Also,
X <" XU{s},because | X ['=¢t, <t/ =| X U{s}[ <y, )=w(X]).

Let us prove XuU{s} is g -convergent. Assume that ¢ e(¢,,?),
s,8, € X U{s}, t,=sup(dom(s;)), i=1,2, and min{¢,%,} > g (¢',¢)). Let us show
that s, Zlig) S2- Consider the following cases.

!

— Suppose that s,,s, € X, ¢'<t,. Then min{s,,t,} > g ({,))>g"(¢,t,).
Then s,(¢) = s,(¢) forall £ €[t,,t"), because X is g’ -convergent.

— Suppose that s;,s, € X and ¢ >¢,. Then min{t,,t,} > g (£,t.))>t'>¢,.
Then ¢'=¢ =t¢, =t¢,, because s,,5, € X . The definition of A mplies that
(¢t,s,(t))e H and (¢,5,(t)) e H for all t€[t,,t,), because ¢, > g (t",¢,)
forall #"<¢, . Thus s, i) S2-

— Suppose that {s,,s,} ¢ X . The case s, =s, =5 1is trivial, so assume either
s;eX and s,=5, or 5, X and s, =5. We consider only the former
case, because the latter case is analogous. Let s, € X, s,=5. Then
t, >t =min{t,t,} > g (¢,t))>¢.  Also, =g (tt,) because

t'<t, <t.. We have (t,s,(t))e H for all te[t,,t") by definition of H,
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because ¢, >g"(¢",t,) for all /"<t . Hence s, Z(1y.) S+ Assume that

t'>t,. Then t,>g" (f,t))> g (¢

e’’e

t!y=t,, because ¢, = f"(t

e’tm

). Then

!

g (I, t)=g"(t,t)=t,. Then t,>t" by monotonicity of g". This
contradicts assumption ¢'>¢,. Thus ¢#'<¢,. Moreover, s.(t)=5(¢) for all
telty,t,]. Thus s,(¢)=5(t) =s,(¢) forall t€[t,,t'). []

Now we have lemmas that are necessary to prove Theorem 3.4.

Proof of Theorem 3.4. The “Only if” part of theorem follows from the CPR

property, so let us prove the “If” part.
Assume that X satisfies the LFE property and each right dead-end path is

f*-escapable. Let s:[t,,f ) > Q be a right dead-end path in X, 4,={s}, and
¢, ={4,} . It follows immediately that 4, € S,t) and ¢, € Ch(S;(r) ,<"). From Lemma
3.6 and Zorn’s lemma it follows that there exists a maximal element
¢, € Ch(S;; ,<") (with respect to <) such that ¢, <c,, .

Let X ={Jc,.Then X #3J, ¢,, #J, and 4, < X , because ¢, = ¢,

Let us show that | X ['=+c. Suppose that |X ['<+w. Then X eS% by
Lemma 3.8. Then by Lemma 3.13 there exists § such that X U{E}ES;(; and

X <" XU{s}. Then X = X U {5}, but this contradicts Lemma 3.7, so | X ["'=+o0.
Then by Lemma 3.12 there exists a trajectory s. :[f,,+0) > Q and Adec,

such that s. =i+ s' forall s'€ 4.

Because ¢, is a c-chain, 4ec,, and 4,={s}ec,<c,, we have either

m? m?

{s}c A,or Ac {s}. Because Aec,, gS;;) and @gS%,we have A=, so in both
cases s € 4. Then s. it S Then s. is an infinite escape from s .

Because s is an arbitrary right dead-end path, we conclude that each right

dead-end path is strongly escapable. []
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3.6 Example of an application of the theorem about right dead-end path

Although Theorem 3.3 and Theorem 3.5 together give an explicit criterion for
the existence of a global trajectory of a NCMS with a given LR representation,
proofs of the existence of global trajectories of NCMS which are not represented
using LR representation can be accomplished using Theorem 3.4. In this section we
give an example with illustrates this application of Theorem 3.4.

3.6.1 Informal considerations

Informally, consider the following situation: a system S travels in
accordance with a known law of motion and a (hazardous) object H moves along a
fixed trajectory independently of S. If H becomes sufficiently close to S, the
system S tries to perform a maneuver to avoid collision with H . We are interested
in conditions under which S can travel during an unbounded time interval while
avoiding collisions with H .

3.6.2 Semiformal considerations

Consider the following semiformal clarification of the described situation.

Suppose that the behavior of S is modeled by a control system of the form
d
7 y(1) = g(t, y(1),u(?)) (3.6)

where y(¢) e R" is a position of S at time ¢ and u(¢) is an input control of S
which influences the trajectory of S and can be used to perform a maneuver, and
the position of H at each time is described by a function z: 7 — R”.

We are going to find conditions under which there exists a function u# and a
corresponding solution y of (3.6) such that u# and y are defined on 7', y(¢) # z(¢)
forall teT,and u is constant over each time interval where y(¢)—z(¢) ¢ D, where
D 1is a given (fixed) set (D defines a region near z(z), where the input control of S

can be varied in order to perform a maneuver).

To simplify the problem, let us introduce a new variable x(¢) = y(¢)— z(¢)

and assume that z is differentiable. Then (3.6) can be rewritten in the form
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Z;x(t) =g(t,x(t) + z(t),u(t)) - :;; z(t) (3.7)

After introducing a new function f(¢,x,u) = g(t,x + z(t),u) — :;tz(t) we can
rewrite the equation (3.7) as

ZX(f) = f (&, x(2),u(?)) (3.8)

The problem is to propose sufficient conditions under which there exist

functions u# and x defined on 7" which satisfy (3.8), x(¢) #0 forall te T, and u is

constant over each time interval where x(¢) ¢ D, where 0 is the null vector in R" .
Similar and related problems were considered e.g. in [29] and were studied
using control-theoretic methods. However, in this example we will demonstrate a
direct application of Theorem 3.4 in this situation.
3.6.3 Formal considerations

Let us formulate the described problem formally in terms of NCMS.
Let n,meN, n>2, x eR", and DcR". Let U cR"” be a non-empty

compact set, || denote the Euclidean norm on R” or R”, and f:TxR" xU —» R"

be a function such that
— f is continuous and bounded on 7' xR" xU ;

— there exists a number L >0 such that Hf(t,xl,u) —f(t,xz,u)H < LHx1 - sz

forall x,,x,eR",teT,and ueU (i.e. f is Lipschitz-continuous in x).
Under these conditions Caratheodory existence theorem [26] implies that for
each 7, € T and x, € R", and a Lebesgue-measurable [95] function u: [¢,,+) > U

the problem

jtxm = £t x(0)u0)) (3.9)

x(ty) = x, (3.10)
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has a Caratheodory solution defined for all ¢#>¢,, i.e. a function ¢+ x(#;¢,;x,;u)
which is absolutely continuous [95] on every segment [a,b] c [¢,,+c), satisfies the
equation (3.9) a.e. (almost everywhere [95] in the sense of Lebesgue measure), and
satisfies (3.10). Moreover, this solution is unique in the sense that for any function
x:[t,t;) > R", which is absolutely continuous on every segment [a,b]c[¢,,t,),
satisfies (3.9) a.e. on [¢,,f,) and satisfies (3.10), x(¢)=x(#¢,;x,;u) holds for
te(ty,t,).

Let 0 =R" xU. Denote by proj,:Q ->R", proj,:0 — U the projections
on the first and second component, i.e. proj,((xy,u,)) = x, and proj,((x,,u,)) = -

Let Tr be the set of all functions s: 4 — Q, where 4€%, such that the
following conditions are satisfied, where x = proj, os and u = proj, os:

1) u is Lebesgue-measurable;

2) x is absolutely continuous on each segment [a,b]c A (a<b) and
satisfies the equation :;;x(t) = f(t,x(t),u(t)) a.e.on 4;

3) x(¢1)#0 forall e 4;

4) for each non-maximal ¢ € 4 such that x(¢) ¢ D there exists ¢’ € (¢,4+c) N 4
such that u(¢") = u(¢t) forall t" € (z,t").

5) for each non-minimal ¢ € A such that x(¢) ¢ D there exists ¢' €(0,1) N A
such that u(¢") = u(t) forall t" € (¢',1).

It follows straightforwardly from this definition that ¥ =(7,0,7r) is a
NCMS (i.e. Tr is a CPR, Markovian, and complete set of trajectories).

The problem is to give a sufficient condition which ensures that £ has a
global trajectory.

Proposition 3.1.

1) X satisfies the LFE property.

2) There exists s € Tr and & > 0 such that dom(s) =[0,¢&].
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Proof. 1) Let s:[a,b] > O be a trajectory, x = proj,os, and u = proj, os.
Let u':[a,+c) >U be a function such that u'(¢)=u(zt), if t<[a,b] and

u'(t)=u(b),if t>b. Then u=u'},,, u' is measurable, and x(¢) = x(¢;a;x(a);u’)

for all te€[a,b]. Let b'=b+1 and x':[a,b']—>R" be a function such that
x'(t) =x(t;a;x(a);u’) for tela,b’]. Then x=x"}|,,. Because x'(t)=0 for all
t€la,b] and x' is continuous, there exists b" € (b,b'] such that x'(¢) =0 for all
tela,b"]. Let s":[a,b"]— Q be a function such that s'(¢) = (x'(¢),u'(z)) for all
t€la,b"]. Then it follows immediately that s’ satisfies the conditions 1-4, so
s"eTr . Besides, sCs'. Thus X satisfies LFE.

2) Let us choose any x, € R"\{0} and u, €U and define x:7 —> R" as

x(t) = x(¢;,0;xy5u,) for all teT . Then x 1s continuous and x(0)=x, #0, so there
exists & >0 such that x(z) =0 for all 1€[0,¢]. Let s:[0,6]—> QO be a function
s(t) = (x(#),u,), t€[0,g]. Then s € Tr. [

Proposition 3.2. Assume that:

1) for each t €T there exist u,,u, €U such that f(z,0,u,), f(¢,0,u,) are
(nonzero) noncollinear vectors, i.e. k f(2,0,u,)+k,f(¢,0,u,) =0
whenever k,,k, e R are not both zero;

2) for each seTr defined on a set of the form [7.,4), if

lim, ,, (proj, os)(t)=0,then proj,(s(t)) € D for some t €[¢,,t,).

t—t,
Then each right dead-end path in X is f;"-escapable, where
fi (x,y) =2y —x is a right extensibility measure defined in Lemma 3.3.
Proof.

Let M'=1+sup{|f(¢,x",u")||(#,x",u')eTxR"xU}. Then 0<M'<+wo,

because f is bounded.
Let s:[a,b) > Q be a right dead-end path and x = proj, os, u= proj,cos.

Let u':[a+) > U be a function such that u'(z)=u(z), if t€[a,b) and
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u'(t)y=wu(a),if t2b. Then u=u'},, , u" is measurable, and x(1) = x(t;a;x(a);u’)
for all ¢ €[a,b). Then there exists a limit x, =lim, ,,  x(¢) = x(b;a;x(a);u’) e R".
Firstly, consider the case when x,#0. Then |jx;|>0. Let us choose an
arbitrary 1, € (a,b) such that b—¢, <|[x,||/(4M") and |x(z))— x| <[x,[/2 (this is
possible, because x;, =lim,,, x(¢)). Let u":[¢t),+c) > U and x":[t,,+00) > R"
be functions such that u"(¢#) =u(z,) for all t>¢, and  x"(¢) = x(t;¢,; x(¢,);u") for

all ¢>1¢,. Then |

x"(tO)H = Hx(to) -x; + le > Hle - Hx(to) — x,H > Hle/Z >2M'(b—t,).

Then for all ¢ > ¢, we have

"] =

X"(t) + [ £(2,x"(0),u"(2))dt

> |x"(to)| = [/ (& x" (@), u"(0))|dt >

>2M'(b—t))—-M'(t—t)=M'2b—t,—1).
Let d =2b—t,. Then d > ¢, because t, <b. Then x"(z) # 0 for all £ €[¢,,d].
Let s. :[t,,d]— Q be a function such that s.(¢) = (x"(¢),u"(¢)) for all te[t,,d]. It
follows immediately that s. € Tr. Also, s.(t,))=s(t,) and d =2b—1t, = f;"(t,,b).
Then s. is an escape from s and s is f," -escapable.
Now consider the case when x, =0.
Let us choose u,,u, €U such that v, = f(b,0,u,) and v, = f(b,0,u,) are

noncollinear (this is possible by the assumption 1 of the lemma). Then the function

h(k,,ky) =|kyv, +k,v,|  attains ~ some  minimal value M >0 on
((ky ky) € Rx R |[fs] +|k,| = 1} Then for all k,,k, such that &, #0 or &, #0,
h(k,,k,) = (‘kl‘ + ‘kz‘)h(kl(‘kl‘ + ‘kz‘)fl,kz (‘kl‘ + ‘kz‘)fl) > M(‘k1 ‘ + ‘kz‘) .
Let e=M/2>0. Because f is continuous, there exists 6 >0 such that for
each =12, teT, and x,eR" such that [b—7+|x)[<5 we have

| £t xgu)) = v, || =] £t xgu )~ f(B0.u))| < &. Let R=5/4, t, =max{b-R.a},
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and t,=b+R.Then R>0, a<t, <b<t, and for all j=12, te[t,t,] and x,

such that |x,|< R,

S, xg,u;)— ij <E.

Let us choose an arbitrary c € (¢,,b) such that b—c <min{R/(2M"),R/2}.
Then s |, € Tr by the CPR property and lim,_,, _(proj; o s ., )(¢) =x, =0, s0 by
the assumption 2 there exists #, € [¢,b) such that proj,(s(t,)) = x(t,) € D.

Let x,:[t,,t,] > R" and x,:[t,,t,] > R" be functions such that
x,(8) =x(t;ty;x(t );u;) and  x,(¢) = x(t;¢,;x(¢,);u,) for all te[t,t,]. Denote
d;(t)=f(t,x;(t),u;)—v; foreach j =12 and 1 €[7,,1,].

Then the following two cases are possible.

a) There exists je{l,2} such that 0¢range(x;). Let us choose any
d € (max{2b—t,,t,},t,)  (this is  possible, because ¢,<b<t, and
2b—t,<2b—c<b+R/2<b+R=t,). Then let s.:[t,,d]— Q be a function such
that s.(¢,) = s(2)) = (x(#y),u(y)) and s.(¢) = (x;(¢),u;) for all 7e(z),d]. Because
x;(ty) =x(t,) € D and x,(¢) # 0 for all ¢e[ty,1,]>[t),d], we have that s. e Tr.
Besides, s.(2,) =s(t,) and d >2b—t, = f{"(¢,,b), so s. is an escape from s and s
is f," -escapable.

b) 0 € range(x,) N range(x,). Then because x,,x, are continuous, there exist
t; =min{t € [fy,5,]|x;(1)=0} for j=12. Moreover, ¢;e(y,t,] for j=12,
because x,(z,) = x,(¢,) = x(t)) #0.

If we suppose that ij(t)H<R for each j=12 and fe€[s,7;], then

d ()| =||f(x;(),u)-v.|<e foreach j=12 and f€[¢,,t"], whence
J J J J J

100 =[x () —x, (1)) =

x(ty) + [ £ (65,0 )de = (1) — [ £t (0), )l

\Y

1 1y
(1] —1o) = vy (13 —tg) + [ d\()dt — [ d(1)dt

) ty

4q 5]
[vi+d,(t)dt— [ v, +d,(t)dt

fo to
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f )
2 vy (1] = 1) = v, (8 = 1) = [, (O|dt = [|d, ()] =

’ ’ ! ! M ’ !
We have a contradiction, so there exists j e {1,2} and ¢" €[¢,,;] such that

G

> R . This implies that

R <[x;(t"

=[x, () - x, " <M'(t)~1").

f f(t,x,(6),u,)dt

Then ¢ —ty2t;—t">R/M"'>2(b-c)22(b—1t,), so t;>2b—1t,. Let us
choose any d € (max{2b—to,to},t}). Let s.:[t,,d]— QO be a function such that
s:(tg) = s(8y) = (x(y),u(ty)) and s.(2) =(x,;(2),u;) for all te(s),d]. Because
x;(t))=x(t,)eD and x,(1)#0 for all 7e[ty,t})>[f,d], we have s.eTr.
Besides, s.(7,) = s(t,) and d >2b—t, = f{"(¢,,b), s0O s. is an escape from s and s

is f," -escapable. []

Proposition 3.3. Assume that:

1) foreach t €T there exist u,,u, € U such that f(¢,0,u,) and f(£,0,u,) are
noncollinear;

2) {0} is a path-component [77] of {0} U (R" \ D).

Then ¥ has a global trajectory.

Proof.

Let us show that the assumption 2 of Proposition 3.2 holds. Let seTr,
dom(s) =[t,,t,) (¢, <t,), lim,, _(proj °s)(t)=0. Denote x = proj, os. Suppose
that x(¢)¢ D for all ¢re(t,t,). Let y:[0,]]—> {0} U(R" \ D) be a function such

that y(¢)=x(¢, +&(t, —t))), if €€[0,1) and y(1)=0. Then y is continuous, so

there is a path from y(0)=x(#)#0 to 0 in {0} U(R"\D) (considered as a
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topological subspace of R"). This contradicts the assumption that {0} is a path-

component of {0} U (R"\ D). Thus x(¢) € D for some 7 €[#,,t,).

The assumption 1 of Proposition 3.2 also holds, so by Proposition 3.1,
Proposition 3.2, Lemma 3.3, Theorem 3.4, and Lemma 3.2, ¥ satisfies GFE.

Besides, by Proposition 3.1, there exists s € 77 with dom(s) =[0,&] for some ¢ > 0,

so by the GFE property, X has a global trajectory. [

3.7 Related work

In such domains as the theory of differential equations, control theory,
viability theory [8], the problems of global existence of solutions of initial value
problems for various classes of differential equations [19, 26, 32, 5] and inclusions
[7, 8, 30, 70, 109, 98], existence of global non-Zeno executions of hybrid systems
[85, 33, 42, 18] were studied for many specific classes of systems. Although such
results are practically relevant, the classes of systems considered are usually of a
lower level of abstraction than the class of NCMS and thus cannot be applied to the
problem of existence of total I/O pairs of strongly nonanticipative blocks in the
general case. On the other hand, the results presented in this chapter hold for

arbitrary strongly nonanticipative blocks and NCMS.

3.8 Conclusions from the chapter

We have considered the questions of how one can prove that a given strongly
nonanticipative block B has a total 1/O pair (if B indeed has a total I/O pair) and
how one can prove that for a given input signal bunch i€ Sh(In(B),W), where
dom(i) =T, there exists o€ Op(B)(i) with dom(o)=T . We have reduced these

questions to the problem of proving the existence of global trajectories of a NCMS

(Theorem 3.1, Theorem 3.2).
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We have proposed a method of proving the existence of a global trajectory of
a NCMS (Theorem 3.3) which is based on finding a subset of trajectories which
satisfy the global forward extensibility (GFE) property.

We have proposed a criterion (Theorem 3.5) which can be used to prove the
GFE property of NCMS by proving the existence of certain locally defined

trajectories independently in a neighborhood of each time moment.
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CONCLUSIONS

In the thesis we have given a solution to the problem of investigation of
abstract systems which admit inputs and outputs as partial functions of time. The
systems of this kind can be used for giving formal semantics and determining
properties of specification and development languages for cyber-physical systems,
real-time information processing systems, and other similar systems.

In the work we have proposed to apply the principles of the composition-
nominative approach to abstract systems which admit inputs and outputs as partial
functions of time. We have obtained the results listed below.

1) A new class of abstract time systems with partially defined inputs and
outputs called blocks was introduced. Basic properties of the systems of this class
were studied.

2) On the basis of the notions of causality (nonanticipation) which were
considered in the works by T. Windeknecht, M. Mesarovic, Y. Takahara the notions
of a strongly and weakly nonanticipative block were introduced.

3) On the basis of the notion of a solution system by O. Héjek a class of
abstract dynamical systems called initial Nondeterministic Complete Markovian
Systems (NCMS) was introduced.

4) Theorems about representation of strongly nonanticipative blocks using
NCMS were proved. It was shown that each strongly nonanticipative block has a
NCMS representation and that each initial /O NCMS is a representation of a
strongly nonanticipative block.

5) General criteria for the existence of total input-output pairs of a strongly
nonanticipative block and the existence of a total output for a given total input of a

strongly nonanticipative block were obtained.
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6) A general criterion for the existence of global trajectories of NCMS was
obtained. This criterion expresses the existence of global trajectories in terms of

conditions of the existence of locally defined trajectories of NCMS.
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