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Résumé 

Cette thèse est consacrée à l'investigation de propriétés de systèmes où les entrées 
et sorties sont des fonctions partielles sur le domaine temporel. Dans nos travaux, des 
systèmes de ce genre sont mappés vers des abstractions appelées "blocs". La notion de 
bloc peut être considérée comme une extension spécifique des notions de systèmes avec 
entrées et sorties qui ont été étudiés, en plusieurs variantes, en théorie des systèmes. Les 
aspects essentiels des blocs sont leurs non-déterminisme; partialité des entrées - sorties; et 
le domaine temps-réel. 

Les résultats originaux suivants ont été établis dans cette thèse: 
(1) Les notions de non-anticipation faible et forte considérées dans les travaux de la 

théorie des systèmes de T. Windeknecht, M. Mesarovic, Y. Takahara pour différentes 
classes de systèmes ont été comparées et étendues aux blocs. 

(2) Un théorème de représentation de blocs fortement non-anticipatifs a été prouvé. 
Il a été montré que de tels blocs peuvent être représentés par une classe de systèmes 
abstraits dynamiques appelés Systèmes Markoviens Non-déterministes Complets 
(NCMS). Ces derniers s'appuient sur la notion de système de solution introduit dans la 
Théorie des Processus de O. Hájek. 

(3) Des critères généraux pour l'existence de couples d'entrées - sorties totaux de 
blocs fortement non-anticipatifs et l'existence de sorties totales pour des entrées totales 
d'un bloc fortement non-anticipatif. 

Les résultats obtenus sont utiles pour la formalisation et l'analyse de langages de 
spécification basés sur des diagrammes de blocs, ainsi que pour des langages de 
développement pour des systèmes cyber-physiques et des systèmes de traitement de 
données temps-réel. 
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Abstract 

The thesis is devoted to investigation of properties of systems with inputs and 
outputs as partial functions on the real time domain. In our work systems of this kind are 
mapped to abstractions called blocks. The notion of a block can be considered as a specific 
extension of the notions of a system with inputs and outputs which were studied in various 
variants of mathematical systems theory. The main aspects of blocks are nondeterminism, 
partiality of inputs/outputs, real time domain. 

The following novel results concerning blocks were obtained in the thesis: 
(1) Weak and strong notions of nonanticipation considered in the works on 

mathematical systems theory by T. Windeknecht, M. Mesarovic, Y. Takahara for different 
classes of systems were extended to blocks and compared.  

(2) A representation theorem for strongly nonanticipative blocks was proved. It was 
shown that such blocks can be represented using an introduced class of abstract dynamical 
systems called Nondeterministic Complete Markovian Systems (NCMS) which is based 
on the notion of a solution system introduced in the Theory of Processes by O. Hájek. 

(3) General criteria for the existence of total input-output pairs of a strongly 
nonanticipative block and the existence of a total output for a given total input of a 
strongly nonanticipative block. 

The obtained results are useful in formalization and analysis of block diagram-
based specification and development languages for cyber-physical systems and real-time 
information processing systems. 
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LIST OF NOTATIONS 

 the set of natural numbers }{1,2,3,...

0  the set of non-negative integer numbers, i.e. {0}

 the set of real numbers  

  the set of non-negative real numbers, i.e. )[0,

),(],,(),,[],,[ babababa bounded intervals in  , if ba, , ba 

Asup the least upper bound of A , if A , A

(assuming =sup A , if A  is unbounded from above) 

Amin the least element of A , if A  and A  has the least 

element (otherwise, Amin  is undefined)  

Amax  the greatest element of A , if A  and A  has the 

greatest element (otherwise, Amax  is undefined) 

Ainf the greatest lower bound of A , if A , A

(assuming =inf A , if A  is unbounded from below) 

BAf : A total function from A  to B

BAf ~: A partial function from A  to B

Xf |  restriction of a function f  onto a set X

A2 the power set of a set A
AB the set of all total functions from A  to B

BA the set of all partial functions from A  to B

)(xf A function f  is defined on the argument x

yxf )( A function f  is defined on x  and yxf )(  holds 

)(xf A function f  is undefined on the argument x

)( fdom the domain of a function, i.e. })(|{ xfx

)( frange the range of a function, i.e. )}(=)(|{ xfyxfxy 



 8

)(Rdom the domain of a binary relation, }),(|{ Ryxyx 

)(Rrange the range of a binary relation, }),(|{ Ryxxy 

)()( xgxf  strong equality, i.e. )(xf  if and only if )(xg , and 

)(xf  implies )(=)( xgxf

gf  functional composition: ))(())(( xgfxgf 

)(lim  ft left limit at t
)(lim  ft right limit at t

),( xtft a function obtained from f  by fixing the value of a 

parameter x , i.e. a function xg  such that 

),()( xtftg x   for all t , where x  is a fixed value 

yX  constant function defined on X  which takes the value 

y , if X  is a given set and y  is a given value 

Bool the set of logical values },{ truefalse

 ,  ,  ,  ,   the logical operations of negation, disjunction, 

conjunction, implication, and equivalence respectively 

T time domain (coincides with   throughout the thesis) 

0 }|]{[0,{0}}\|){[0,},{ TttTttT 

T the set of all intervals (connected sets) I  in   such 

that TI   and the cardinality of I  is greater than one 

W A fixed non-empty set (signal values) 

,...],[ 2211 wvwv   A named set which maps names 1v , 1v , … to values 

1w , 2w , … (Section 1.2.2.3) 

[] the empty named set (Section 1.2.2.3) 

21 sbsb  A signal bunch 1sb  is a prefix of a signal bunch 2sb

(Definition 1.3) 

][xsb A signal which corresponds to a name x  of a signal 

bunch sb  (Definition 1.3) 
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 the trivial signal bunch (Definition 1.3) 
2 partial order on pairs of signal bunches (Section 1.3) 

)(BIn the sets of input names of a block B  (Definition 1.4) 

)(BOut the set of output names of a block B  (Definition 1.4) 

)(BOp the operation of a block B  (Definition 1.4) 

)(BIO the I/O relation of a block B  (Definition 1.6) 

)(BIDS the input data space of a block B  (Definition 1.6) 

)(BODS the output data space of a block B  (Definition 1.6) 

21 BB  1B  is a sub-block of a block 2B  (Definition 1.7)

21 ss  1s  is a subtrajectory of 2s  (Definition 2.2) 

21 ss  1s  is a proper subtrajectory of 2s  (Definition 2.2) 

21 ss A  functions 21 ,ss  coincide on a set A  (Definition 2.5) 

21 ss t  functions 21,ss  coincide in a left neighborhood of t

(Definition 2.5) 

21 ss t  functions 21,ss  coincide in a right neighborhood of t

(Definition 2.5) 

)(QST the set of all pairs ),( ts , where QAs :  for some 

TA  and At  (Section 2.3)

)(QLR the set of all pairs ),( rl , where BoolQSTl )(:  is a 

left-local predicate and BoolQSTr )(:  is a right-

local predicate (Section 2.3) 

NCMS Nondeterministic Complete Markovian System 

(Definition 2.4) 

I/O NCMS Input-output NCMS (Definition 2.9) 

CPR Closed under Proper Restrictions (Definition 2.1) 

)(In the set of input names an I/O NCMS   (Section 2.5) 

)(IState the set of internal states of an I/O NCMS 

(Section 2.5) 
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)(Out the set of output names an I/O NCMS   (Section 2.5) 

)(qin the first component of a state q  of an I/O NCMS, i.e. 

indqin )( , if ),,( outin dxdq   (Section 2.5) 

)(qistate the second component of a state q  of an I/O NCMS, 

i.e. xqistate )( , if ),,( outin dxdq   (Section 2.5) 

)(qout the third component of a state q  of an I/O NCMS, i.e. 

outdqout )( , if ),,( outin dxdq   (Section 2.5) 

end of a proof or example 
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INTRODUCTION 

Relevance of the topic of research. An abstract view of a computing system 

as a transformation of data, a function, or an input-output relation is rather common 

in computer science. In fact, this view is rooted in foundations of computing and is 

notable in the works of A. Turing and A. Church. 

Nevertheless, a large amount of computing systems used today act not as pure 

data transformers, but as agents interacting with physical processes. Such systems 

are now frequently called cyber-physical systems [9, 62]. Examples include 

autonomous automotive systems, robotics, medical devices, energy conservation 

systems, etc. [104]. 

As was stressed in [61], an important aspect that cyber-physical systems must 

take into account is the passage of (physical) time. The actions of such systems 

must be properly timed. Besides, the computational aspect of a system must be 

understood and modeled in a close relation with physical processes. However, this 

is not taken into account when a system is viewed as an input-output relation on 

data. 

One way to resolve this issue is to consider a system as an input-output 

relation on time-varying quantities (signals). A view of this kind is extensively used 

in signal processing and control theory [86, 64], but the kinds of mathematical 

models of systems usually considered in these fields (e.g. difference or differential 

equations [86]) do not provide high-level abstractions of processes that take place in 

cyber-physical systems [9]. In contrast, modeling and specification languages like 

Simulink [102], AADL [25], SysML [41] and others which have applications in the 

domain of cyber-physical systems employ high-level abstractions to deal with 

complexity of large systems. 

High-level mathematical models that take into account the aspect of time can 

be found in the mathematical systems theory. During the second half of the XX 
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century a large number of works that dealt with a mathematical theory of systems 

were published by L. Zadeh [117, 119, 118], R. Kalman [55], M. Arbib [6, 89], G. 

Klir [56], W. Wymore [115, 116], M. Mesarovic, [73, 74], B.P. Zeigler [121], A.I. 

Kuhtenko [59], N.P. Buslenko [16], V.M. Matrosov [71], and others [40, 87, 47, 

111, 90, 66, 114, 44]. Many of these works were inspired and influenced by the 

General Systems Theory by L. Bertalanffy [107, 22, 108], Cybernetics introduced 

by N. Wiener [110], information theory introduced by C. Shannon [101], circuit 

theory in electrical engineering, automata theory, control theory. A historical 

account on the mutual influence between these fields is given in [99, 56]. In 

particular, the approach developed by M. Mesarovic and Y. Takahara [74] is based 

on a formalization of a system as a relation on objects. Other approaches such as 

those developed by M. Arbib [6, 89], W. Wymore [115], B.P. Zeigler [121] resulted 

from unification of the theory of systems described by differential equations and the 

automata theory. 

Most of the mentioned works introduce a certain kind of abstraction of a 

system as an input-output relation on time-varying quantities (e.g. a general time 

system [74, Section 2.5], an external behavior of a dynamical system [55, Section 

1.1], an oriented abstract object [119, Chapter 1, Paragraph 4], an I/O observational 

frame [121, Section 5.3]) and consider such a relation as a mathematical 

representation of the system’s observable behavior. The most basic example is the 

definition of a Mesarovic time system [74] as a binary relation OIS  , where I

and O  are sets of input and output functions on a time domain T  ( TAI  , 
TBO  ). 

However, one aspect that is not sufficiently investigated in works on 

mathematical systems theory with regard to time systems is partiality of input and 

output signals as functions of time. For example, in a Mesarovic time system inputs 

and outputs are always total functions of time. In other theories, where analogous 

models are considered [119, 118, 121], partial inputs and outputs are allowed, but 
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an additional assumption about the equality of the domains of the corresponding 

inputs and outputs is usually made. 

However, the aspect of partiality of inputs and outputs becomes important, 

when a high-level input-output model of a real-world system is considered as an 

abstraction of a lower level mathematical model of this system. 

Various concrete mathematical models of systems (e.g. those described by 

differential equations, hybrid automata [33], etc.) admit a situation, when the inputs 

of a system (e.g. input control signals), if there are any, are defined on the entire 

time domain, but the system’s behavior (a solution of an equation, execution, etc.) 

and its outputs are not defined on the entire time domain. This can indicate a real 

phenomenon (e.g. termination or destruction of a real system) or inadequacy of a 

mathematical model [10]. 

An example of such a situation is the phenomenon of a finite time blow-up in 

differential equations [10, 31]. It is characterized by the unbounded growth of the 

value of one or several system variables during a bounded time interval. This can be 

illustrated by a (non-zero) solution )1/(=)( tctx  , constc =  of the differential 

equation )(=)( 2 txtx
dt
d , for which |)(| tx , when ct  . A survey of the 

respective results and applications can be found in [35, 10, 31, 63, 21, 13, 53]. 

Another kind of a situation when a mathematical model does not define a 

system’s behavior on the entire time domain is a Zeno behavior [1, 122, 4, 103] of a 

hybrid (discrete-continuous) system [33, 42]. In this case, a hybrid system performs 

an infinite sequence of discrete steps during a bounded total time, but each step 

takes a non-zero time. A simple example in which this behavior arises is a hybrid 

automaton [42] which models a bouncing ball [122]. 

It should be noted that in either case, the problems of detection of finite time 

blow-ups or Zeno behaviors in a mathematical model, their physical interpretation, 

and if necessary, adjustment of a model to avoid such behaviors are non-trivial. For 
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this reason, generally, one cannot assume that any available and useful model of a 

real-world system would be free of such behaviors. 

This dictates that an input-output abstraction of a real system which is based 

on concrete mathematical models of this system must take into account the 

possibility of partial input and outputs. 

The arguments mentioned above show that a study of abstract system models 

which take into account partiality of inputs and outputs as functions of time is an 

important topic of theoretical research. 

Connection of the work with scientific programs, plans, topics. The work 

is a part of the scientific research conducted at the department of Theory and 

Technology of Programming of the Faculty of Cybernetics of Taras Shevchenko 

National University of Kyiv devoted to the following fundamental and applied 

themes: “Development of constructive mathematical formalisms for intelligent 

decision support systems, knowledge processing, and  standardization of modern 

DBMS and CASE tools” (№ 0106U005856, 2006-2010), “Formal specifications 

and methods of development of reliable software systems” (№ 0111U007052, 2011-

2015). 

The work was supported in part by the project Verisync (ANR-10-BLAN-

0310) of Institut de Recherche en Informatique de Toulouse (IRIT), France, devoted 

to development of methods for ensuring safety and reliability of embedded 

software. 

Aim and objectives of the thesis. The aim of the work is formalization and 

analysis of systems that admit inputs and outputs which are partial functions of 

time. The main objectives of the research are listed below. 

1) Give a definition of an abstract system which admits partial inputs and 

outputs. 

2) Give an adequate definition of the notion of causality (nonanticipation) for 

abstract systems with partial inputs and outputs. Informally, this property means 
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that the current output values of a system do not depend on the future values of the 

inputs [86, 112, 28, 72]. 

3) Find a relation between causality (nonanticipation) and the existence of a 

representation in the form of a dynamical system for abstract systems with partial 

inputs and outputs. A connection between the existence of a state-space (dynamical 

system) representation of a system with inputs an outputs and nonanticipation was 

studied in the works on mathematical systems theory [112, 74, 56]. For example, in 

the theory by M. Mesarovic and Y. Takahara [74], a time system is causal if and 

only if it has a state space representation [74, Proposition 2.8]. The aim is to 

establish an analogous result for the systems considered in this work.  

4) Obtain criteria that allow one to determine the existence of pairs of the 

corresponding total inputs and total outputs (total input-output pairs) and the 

existence of a total output for a given total input for abstract systems with partial 

inputs and outputs (here “total” means “defined on the entire time domain”). 

The object of the research is a class of abstract systems with inputs and 

outputs which are partial functions on the real time domain. 

The subjects of the research are the aspects of causality (nonanticipation), 

representation, and the existence of total input-output pairs of abstract systems with 

inputs and outputs which are partial functions on the real time domain. 

Research methods. The research is based on methodological principles of the 

composition-nominative approach [84] which aims to construct a hierarchy of 

program and system models of various abstraction levels and generality. This 

approach is a development of the compositional programming by V.N. Red’ko [92, 

91] of Kyiv school of cybernetics which was inspired by the principle of 

composition by G. Frege and investigations of A.A. Lyapunov, Yu.I. Yanov, A.P. 

Ershov, V.M. Glushkov and others. 

Scientific novelty of the obtained results. The following novel results were 

obtained in the thesis. 
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1) A new class of abstract systems with partially defined inputs and outputs 

called blocks was introduced. Basic properties of the systems of this class were 

studied.  

2) Weak and strong notions of nonanticipation considered in [112, 74] were 

improved. These notions were extended to blocks and compared.  

3) For the first time a representation theorem for strongly nonanticipative 

blocks was proved. It was shown that such blocks can be represented using an 

introduced class of abstract dynamical systems called initial Nondeterministic 

Complete Markovian Systems (NCMS) which is based on the notion of a solution 

system by O. Hájek [37]. 

4) For the first time general criteria for the existence of total input-output 

pairs of a strongly nonanticipative block (i.e. input-output pairs ),( oi  such that both 

i  and o  are total functions of time) and the existence of a total output for a given 

total input of a strongly nonanticipative block were proved. 

5) For the first time a general criterion for the existence of global trajectories 

of NCMS was obtained. This criterion expresses the existence of global trajectories 

in terms of conditions of the existence of locally defined trajectories of NCMS. 

Theoretical and practical significance of the obtained results. The work is 

theoretical. The obtained results can be used for constructing high-level abstractions 

of cyber-physical, real-time information processing and other similar systems or 

their components. 

The results of the thesis were used in the course “Formal methods of program 

development” at the Faculty of Cybernetics of Taras Shevchenko National 

University of Kyiv. 

Personal contribution of the applicant. All results present in this thesis 

were obtained personally by the applicant. In the works published in co-authorship: 

– in the article [17] the following sections belong to the applicant:  

“3. Uncertain Markov processes”, “4. Systems with uncertain structure”; 
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– in the article [81] the following sections belong to the applicant: “2. 

Nominative data”, “5. Nominative equivalence”, “7. Nominative stability 

of programs of SCIONA”; 

– in the article [83] the following sections belong to the applicant: “1. 

Nominative and complex-named data”, “2. Properties of complex-named 

data”, “3. Monotonicity of the operations on complex-named data”; 

– in the article [52] the following sections belong to the applicant: “2. 

Motivating example”, “3 Possibility theory and Markov-like processes”, 

“4. Simple systems with uncertain switching”. 

Approbation of the results of the thesis. The main results of this work were 

presented at the following scientific conferences and workshops:   

1) XVI All-Ukrainian Scientific Conference “Modern problems in applied 

mathematics and informatics”, October 8-9, 2009, Lviv, Ukraine.  

2) The 6th International Conference “Theoretical and Applied Aspects of 
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Kyiv, Ukraine. 
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UkrPROG’2010, May 25-27, 2010, Kiev, Ukraine.  

5) International Scientific Conference on Computer Science and Engineering 

(CSE’2010), September 20-22, 2010, Košice, Slovakia. 

6) The Third International Conference “Nonlinear Dynamics – 2010”, 

September, 21-24, 2010, Kharkiv, Ukraine. 

7) XV International Conference “Dynamical system modeling and stability 

investigation” (DSMSI-2011), May 24–27, 2011, Kyiv, Ukraine. 

8) The 8th International Conference “Theoretical and Applied Aspects of 

Program Systems Development”, September 19-23, 2011, Kyiv, Ukraine.  
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18, 2011, Rožňava, Slovakia.  
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CHAPTER 1

ABSTRACT SYSTEMS WITH PARTIAL INPUTS AND OUTPUTS 

1.1 Overview 

As we have noted in the introduction, a large amount of computing systems 

used today act as agents interacting with physical processes. They are now 

frequently called cyber-physical systems [9, 62]. Modeling and specification of 

such systems requires taking into account the passage of (physical) time, so they 

cannot be viewed as pure data transformations or pure input-output relations on 

data. 

Let us give some quotes from the Cyber-Physical Systems (CPS) concept 

map [20] by S.S. Sunder of NIST (USA), E.A. Lee of UC Berkeley (USA) and 

others: 

“CPS integrates the dynamics of the physical processes with those of the 

software and networking, providing abstractions and modeling, design, and analysis 

techniques for the integrated whole.” [20] 

“Classical models of computation in computer science, rooted in Turing-

Church theories for non-concurrent systems, and in nondeterministic transition 

systems and process algebras for concurrent systems, do not handle temporal 

dynamics well.” [20] 

“A key CPS challenge is to conjoin the engineering abstractions for 

continuous dynamics (such as differential equations) with computer science 

abstractions (such as algorithms).” [20] 

Besides, the following research needs in CPS are outlined in [9]: Abstraction 

and Architectures, Distributed Computations and Networked Control, and 

Verification and Validation. With regard to the first aspect (Abstraction and 

Architectures) it is stated that 
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“Innovative approaches to abstraction and architectures that enable seamless 

integration of control, communication, and computation must be developed for 

rapid design and deployment of CPS.” [9]. 

The mentioned challenges imply the importance of development of adequate 

system models of various levels of abstraction and generality with the emphasis on 

the temporal behavior of a system (which should not be restricted to a purely 

discrete or purely continuous evolution). 

It should be noted that the essential role of mathematical modeling in systems 

engineering was already recognized in early works in that field [34, 39, 115, 16]. 

Although not aimed specifically at solving the mentioned challenges, many 

concrete models that combine a discrete and continuous behavior in some way were 

and are studied in control theory, theory of differential equations, and computer 

science, e.g. variable structure systems [11, 23, 106], impulsive differential 

equations [96, 60], differential equations with discontinuous right hand sides [26], 

switched systems [65], hybrid control systems [113, 105, 79, 14, 33], hybrid 

automata [46, 2, 42], phase transition systems [69], hybrid reactive modules [3], 

hybrid I/O automata [68]. It is reasonable to assume that on some level of 

abstraction models of these kinds would be useful in the context of CPS. 

A more general treatment of models that can combine discrete and continuous 

behavior (including studies of model hierarchies) can be found in many variants of 

mathematical systems theory [119, 6, 55, 74, 89, 121, 87, 88, 16, 71, 90, 66, 114, 

44]. With regard to the way of modeling system’s behavior, these variants of 

mathematical systems theory can be roughly classified into those which on the most 

abstract level consider a system as a “black box” which interacts with the 

environment and those which on the most abstract level describe the behavior of a 

system using the notion of state. 

We consider the approaches of the former kind preferable. For example, 

consider the Architecture Analysis and Design Language (AADL) standardized by 

the Society of Automotive Engineers (SAE) [25, 24, 45] which is applicable to the 
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domains related to cyber-physical systems. The following quote gives a general 

description of this langauge [24, p. 13]: 

“The language employs formal modeling concepts for the description and 

analysis of application system architectures in terms of distinct components and 

their interactions. It includes abstractions of software, computational hardware, and 

system components for (a) specifying and analyzing real-time embedded and high 

dependability systems, complex systems of systems, and specialized performance 

capability systems and (b) mapping of software onto computational hardware 

elements.” 

The core AADL language concepts include a Component Type which defines 

interface elements and externally observable attributes of a component and a 

Component Implementation which defines a component’s internal structure in terms 

of interconnections of subcomponents, subprogram call sequences, etc. One 

component type can have several corresponding implementations. A system is also 

viewed as a kind of (composite) component. A component type can be considered 

as a high-level (“black box”) model and a component implementation as its 

refinement. 

The description given above supports a view that approaches which on the 

abstract level consider a system as a “black box” are preferable (this still allows one 

to take into account the internal organization of a system on lower levels).  

Let us consider several variants of mathematical systems theory of this kind.   

– System theory by L. Zadeh [119, 118]. In this theory an oriented abstract 

object is defined as a family }{ ]1,0[ ttR  of sets indexed by segments of time ],[ 10 tt , 

where each set ]1,0[ ttR  consists of pairs ),( yu  (called input-output pairs) of functions 

of time u , y  (called segments) defined on a common domain ],[ 10 tt . The family 

must satisfy a consistency condition: if a pair ),( yu  belongs to ]1,0[ ttR , then any pair 

)|,|( ]1,0[]1,0[  yu  with ],[],[ 1010 tt  also belongs to some member of this family. 

A system is defined as a combination of abstract objects which can be represented 
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as a block diagram. Links between abstract objects mean equality constraints. 

Although it is noted that in general an input-output pair does not need to be 

extendable to (be a restriction of) some input-output pair defined on T  (i.e. globally 

in time), this case does not receive much attention. Instead, a special class of 

oriented abstract objects (oriented objects) is introduced in which for each pair 

),( yu  there is an input-output pair ),( TT yu  such that u , y  are restrictions of Tu , 

Ty  respectively and both Tu  and Ty  are defined on T . This class is then 

considered. In particular, a kind of state-state representation is introduced 

(following an informal principle that a state at a certain time is an information that 

is needed to determine the future behavior of a system [118]), the problems of 

identification and input-output analysis are considered, and further subclasses 

(linear systems) are studied. 

– Abstract systems theory by M. Mesarovic and Y. Takahara [73, 74]. A 

system is defined on the abstract level as a relation on sets nVVVS  ...21

(meaning a relation among objects). As a special case, an input/output system 

(“terminal system”) is obtained by partitioning },...,{ 1 nVV  into inputs (causes) and 

outputs (effects). A special case of an input/output system, a time system, is defined 

as a relation YXS  , where TAX   and TBY   are called time objects and 

their elements are called abstract time functions (total functions of time). Besides 

other classes of systems, the class of time systems receives much attention [74, 

Chapter 5]. In particular, the topics of state-space representation, causality, 

feedback are considered. 

– Systems theory by B.P. Zeigler [120, 121]. In this theory a hierarchy of 

system specifications is defined (it is noted in [121] that the levels of this hierarchy 

are close to epistemological levels defined by G. Klir [56] with the difference that 

Zeigler makes emphasis on time and dynamics). The initial level 0 (observational 

frame) of this hierarchy corresponds to knowledge of how to stimulate a system 

with inputs, which variables to measure, and how to observe them. The level 1 (I/O 

behavior) corresponds to knowledge of a set of time-indexed collections of input 
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and output data (input/output pairs of a system, pairs of input and output 

trajectories). Subsequent levels include knowledge of the state and structure of a 

system. On the initial level a system is formalized as an I/O observation frame 

),,(= YXTIO , where T  is a time domain (time base) and X , Y  are input and 

output value sets. On the level 1 (I/O relation observation) a system is formalized as 

a tuple ),,,,(= RYXTIORO  , where YXT ,,  are defined as in I/O observation 

frame,   is a set of allowable input segments, i.e. functions defined on a time 

interval which take values in X , and R  is an I/O relation consisting of pairs of 

input segments and output segments (function from a time interval to Y ) such that 

)(=)(  domdom  for all R),(  .  

– Behavioral approach to systems theory by J.C. Willems [111, 90]. A 

mathematical model is defined as a pair ),(  , where   is a set of outcomes and 

  is a behavior. Informally, a model defines a subset of possible outcomes of a 

set of all outcomes. A (dynamical) system is defined as a triple ),,(  , where 

   is a time domain,   is a signal space, and   is a behavior. Thus the 

behavior of system is a set of trajectories which have a common domain. An I/O 

dynamical system is defined as a tuple ),,,(  , where   is a time domain, 

and   are input and output signal spaces, and  )(   is a behavior. Thus the 

behavior is a set of total functions of time which determine input-output value pairs. 

Additional constraints are imposed that guarantee that the input is “free”, i.e. is not 

restricted by the system, and that for any given input signal, any two corresponding 

output signals which have a common prefix (till some time t ) coincide. 

Some works in the field of computer science provide abstract models close to 

the models described above. Examples are given below.   

– An approach to functional specification of real-time and hybrid 

systems proposed in [79]. In this work a notion of a stream processing function is 

defined as a function nm MMf )()(: 21
   , where 21, MM  are sets of input and 

output values, i.e. a mapping from tuples of total signals to tuples of total signals. It 
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is considered as a functional specification that describes the behavior of a 

component/system. The problems of composition and feedback are studied.  

– An approach to modeling timed concurrent systems proposed in [67, 

72]. A signal is considered as a partial function VTs ~:  from a time domain to a 

set of values, or as a set of pairs ),( vt , Tt , Vv  (called events) which is a graph 

of a partial function. The set of all such signals is denoted as ),( VTS  and is 

equipped with a set-valued distance-like function. A (partial) function F  from 

),( VTS  to ),( VTS  is considered as a model of a component/system. The question 

of feedback composition of such functions is studied for a special subclass of causal 

functions (strictly contracting functions [72]).  

We see that the approaches described above provide abstract input-output 

models of a system. These models can capture a temporal behavior of a system and 

do not restrict it to purely discrete or purely continuous evolutions. At the same 

time, we see an aspect that is not sufficiently investigated. Namely, the case when 

the components of an input-output pair are partial functions of time which do not 

necessarily have equal domains. Among the approaches described above, this case 

is explicitly considered in [67, 72], but only for a special subclass of deterministic 

(functional) systems. 

We will investigate not necessarily deterministic abstract systems with partial 

inputs and outputs (as functions of time) in this thesis. We will define a class of 

such systems which we call blocks. A block can be seen as a generalization of the 

notion of a Mesarovic time systems [74]. It maps a collection of input signals (input 

signal bunch) to one or more collections of output signals (output signal bunches). 

Then we will study the main aspects of blocks such as nonanticipation, 

representation, and existence of total input-output pairs. 

We use the term block, because the notion of a system is already very 

overloaded and in order to stress that regardless of the way of its actual 

specification, a block is viewed abstractly as a black box which receives input 

signals and produces output signals. 
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1.2 Preliminaries 

In this section we describe general methodological aspects of our work and 

general aspects of the mathematical framework which we use. 

1.2.1 Methodological aspects 

In the thesis we use some principles of the composition-nominative approach 

to program and system formalization [84]. The main principles of this approach are:   

– Development principle (from abstract to concrete): notions should be 

introduced as a process of their development that starts from abstract 

understanding and proceeds to more concrete considerations.  

– Principle of priority of semantics over syntax: program or system semantic 

and syntactical aspects should be first studied separately, then in their 

integrity in which semantic aspects prevail over syntactical ones.  

– Compositionality principle: programs or systems can be constructed from 

simpler programs or systems with the help of special operations, called 

compositions, which form a kernel of semantics structures.  

– Nominativity principle: nominative (naming) relations are the basic ones 

in constructing data.  

In accordance with the Development principle, we start our study with an 

abstract view of an input-output system in Chapter 1, and later in Chapter 2 and 

Chapter 3 we consider such systems on a more concrete level. In accordance with 

the Principle of priority of semantics over syntax, we focus on semantic properties 

of blocks, although we define blocks in a way that admits development of the 

syntactic aspect. We use the principles of Compositionality and Nominativity in 

Chapter 1 when we define block compositions and represent input and output data 

of blocks as named sets [84, 82, 81]. 
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1.2.2 Mathematical aspects 

1.2.2.1 Binary relations and functions 

We consider a binary relation as a subset of the Cartesian product of two sets 

and do not distinguish formally the notions of a binary relation R  and the graph of 

R . We do not distinguish formally the notion of a function and a functional binary 

relation. However, generally, we do not apply set membership notation to functions 

( fyx ),( ) and instead use a functional notation ))(=( xfy . 

The notation BAf :  (or BAf ~: ) indicates that f  is defined on a set 

A  (or subset of A ) and takes values in B . When we write that a function 

BAf ~:  is total or surjective, we mean that f  is total on the set A  specifically 

( )(xf  is defined for all Ax ) or, respectively, is onto B  (for each By  there 

exists )( fdomx  such that yxf =)( ). 

We will write )(xf  to indicate that a function f  is defined on a given 

argument x , and yxf )(  to indicate that f  is defined on x  and takes the value 

y  on x . To indicate that f  is undefined on x , we will write )(xf . We will write 

)()( xgxf   to indicate that )(xf  if and only if )(xg , and )(xf  implies 

)(=)( xgxf . 

1.2.2.2 Multi-valued functions 

A multi-valued function (multifunction) [84] associates one or more resulting 

values with each argument value. 

Definition 1.1. A (total) multi-valued function from a set A  to a set B

(denoted as BAf tm: ) is a function }{\2:  BAf .  

An inclusion )(xfy  means that y  is one of possible values of f  on x . 

1.2.2.3 Named sets 

We will use the notion of a named set [84] to formalize an assignment of 

values to variable names. 

Definition 1.2. A named set is a partial function WVd ~:  from a non-

empty set of names V   to a set of values W .   



 27

A named set can be considered as a special case of more general notions of 

nominative data and complex-named data [84, 82, 81, 83, 80, 48, 49, 75, 50] which 

reflect hierarchical data organizations. Operations on such data were described in 

[82]. We will use a special notation for the set of named sets: WV  denotes the set of 

all named sets WVd ~:  (this only emphasises that V  is a set of names). 

An expression of the form ,...],[ 2211 anan   (where ,..., 21 nn  are distinct 

names) denotes a named set d  such that ,...},{=)( 21 nnddom  and ii and =)( . 

The unique named set with empty domain is called the empty named set and 

is denoted as [] . 

For any named sets 21,dd  we write 21 dd   (named set inclusion), if (the 

graph of) 1d  is a subset of (the graph of) 2d . 

We give a special meaning to the operations of union  , intersection   and 

difference \  of named sets: if 21,dd  are named sets and the union of (graphs of) 1d

and 2d  is a named set d , then ddd =21  . Otherwise (i.e. the union of graphs of 

1d , 2d  is not functional), 21 dd   is undefined. 

The union of more than two named sets and the intersection of named sets are 

defined similarly. 

1.2.2.4 Axiom of choice 

We assume the axiom of choice [43] throughout the thesis and use it or 

equivalent statements (Zorn’s lemma [43]) without special mentioning. 

1.3  An abstract block 

Informally, a block is an abstract model of a system which receives input 

signals and produces output signals (Fig. 1.1). The input signals can be thought of 

as certain time-varying characteristics (attributes) of the external environment of the 

system which are relevant for (the operation of) this system. Each instance of an 

input signal has a certain time domain on which it is defined (present).  



 28

Fig. 1.1. An illustration of a block with input signals 1x , 2x , ... and output 

signals 1y , 2y , ... . The plot displays example evolutions of input and output 

signals. Solid lines represent (present) signal values. Dashed horizontal segments 

indicate signal absence. Dashed vertical lines indicate the right boundaries of the 

domains of signal bunches. 

An input signal bunch, or simply an input of the block, can be thought of as a 

collection of instances of input signals of the system. Each input signal bunch i  has 

an associated domain of the existence ( )(idom ) which is a superset of the union of 

the domains of signals contained in i . The domain of an input signal bunch can be 

thought of as a time span of the existence of the external environment of the system. 

The output signals can be considered as effects (results) of the system’s 

operation. An output signal bunch, or simply an output of the block, can be thought 



 29

of as a collection of instances of output signals of the system. The output signals 

have domains of definition (presence) and each output signal bunch o  has an 

associated domain of the existence ( )(odom ) which is a superset of the union of the 

domains of signals contained in o . The domain of an output signal bunch can be 

thought of as a time span during which the system operates.  

It is assumed that for an output signal bunch o  which corresponds to a given 

input signal bunch i  the inclusion )()( idomodom   holds (i.e. the system does not 

operate when the environment does not exist). However, in the general case, the 

presence of a given input signal at a given time does not imply the presence of a 

certain output signal at the same or any other time moment. 

A block may operate nondeterministically, i.e. for one input signal bunch it 

may choose an output signal bunch from a set of possible variants. But for any input 

signal bunch there exists at least one corresponding output signal bunch (although 

the values of all signals in it may be absent at all times, which means that the block 

does not produce any output values). 

Normally, a block processes the whole input signal bunch, and does or does 

not produce output values. However, in the general case, a block may not process 

the whole input signal bunch and may terminate at some time moment before its 

end. This is interpreted as an abnormal termination. 

Let us give formal definitions. Let =T  denote a time scale. We will use 

the same time scale T  throughout the thesis. We assume that T  is equipped with 

the topology induced by the standard topology on   [77], i.e. the open sets in T

have the form jJj IT   , where JjjI )(  is an indexed family of open intervals in 

 . Let us define the following class of sets:  

}|]{[0,{0}}\|){[0,},{=0 TttTttT  ,  

i.e. 0  is the set of all (bounded or unbounded) intervals with the left end 0 together 

with the empty set. Obviously, 0  is closed under arbitrary unions and 

intersections, and thus is a complete lattice of sets [93]. 
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Let W  be a fixed non-empty set of values. 

Definition 1.3. 

1) A signal is a partial function from T  to W  ( WTf ~: ).  

2) A V -signal bunch (where V  is a set of names) is a function WTsb V~:

such that 0)( sbdom . The set of all V -signal bunches is denoted as 

),( WVSb .  

3) A signal bunch is a V -signal bunch for some V .  

4) A signal bunch sb  is called trivial, if =)(sbdom , and is called total, if 

Tsbdom =)( . The trivial signal bunch is denoted as  .  

5) For a V -signal bunch sb , a signal corresponding to a name Vx  is a 

function Wsbdomxsb ~)(:][  such that )())(()]([ xtsbtxsb   for all t . 

6) A signal bunch 1sb  is a prefix of a signal bunch 2sb  (denoted as 21 sbsb  ), 

if Asbsb |= 21  for some 0A .  

Note that a signal is not considered as a special case of a signal bunch. 

Lemma 1.1. If Asbsb |= 21  for some signal bunches 21, sbsb  and 0A , then 

either )(= 1sbdomA , or 21 = sbsb . 

Proof. Assume Asbsb |= 21 . Then Asbdomsbdom )(=)( 21 . Because 

)( 2sbdom  and A  belong to 0 , they are comparable with respect to inclusion  , so 

we have either Asbdom =)( 1 , or )(=)( 21 sbdomsbdom . In the latter case we have 

21 = sbsb , because Asbsb |= 21 .  

Lemma 1.2.   is a partial order on V -signal bunches.  

Proof. Reflexivity of   follows from the fact that )(|= sbdomsbsb  and 

0)( sbdom  for any V -signal bunch sb .  

If 21 sbsb   and 12 sbsb  , then Asbsb |= 21  and Asbsb |= 12  for some 

0, AA , whence )()( 21 sbdomsbdom   and )()( 12 sbdomsbdom  . Then 

)(=)( 21 sbdomsbdom . Moreover, Asbdomsbdom )(=)( 12 , because Asbsb |= 21 . 

Then 21 = sbsb . Thus   is antisymmetric. 
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If 21 sbsb  , 32 sbsb  , then Asbsb |= 21 , Asbsb |= 32  for some 0, AA . Then 

31 sbsb , because AAsbsb |= 31  and 0 AA . Thus   is transitive.  

Later we will need a generalized version of the prefix relation   for pairs of 

signal bunches. 

For any signal bunches 2121 ,,, bsbssbsb   let denote ),(),( 21
2

21 bsbssbsb  , if 

there exists 0A  such that Abssb |= 11   and Abssb |= 22  .  

It is easy to see that 2  is a partial order on pairs of V -signal bunches (note 

that this is not a product order [93]). The notation 2  is not to be confused with the 

composition of a binary relation with itself. 

Now let us give the definition of a block. A block has a syntactic aspect (e.g. 

a description in some specification language) and a semantic aspect – a partial 

multi-valued function on signal bunches. 

Definition 1.4. 

1) A block is an object B  (syntactic aspect) together with an associated set of 

input names )(BIn , a set of output names )(BOut , and a total multi-

valued function )),(()),((:)( WBOutSbWBInSbBOp tm  (operation, 

semantic aspect) such that the membership ))(( iBOpo  implies 

)()( idomodom  .  

2) Two blocks 1B , 2B  are semantically identical, if )(=)( 21 BInBIn , 

)(=)( 21 BOutBOut , and )(=)( 21 BOpBOp .  

A membership ))(( iBOpo  means that o  is a possible output of a block B

on the input i . For each input signal bunch i  there exists some output signal bunch 

o . The domain of o  is a subset of the domain of i . A situation when o  becomes 

undefined at some time t , but i  is still defined at t  we interpret as an error during 

the operation of the block B  (the block cannot resume its operation after t ). 

If there is only one possible output signal bunch for each input signal bunch, 

we call a block deterministic.   
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Definition 1.5. A block B  is deterministic, if ))(( iBOp  is a singleton set for 

each )(BIn -signal bunch i .  

Definition 1.6. 

1) An input/output (I/O) pair of a block B  is a pair of signal bunches ),( oi

such that ))(( iBOpo . In such a pair i  is called the input signal bunch 

and o  is called the output signal bunch.  

2) The I/O relation of a block B  is the set of all I/O pairs of B , i.e. is the 

graph of the multifunction )(BOp . The I/O relation of B  is denoted as 

)(BIO . 

3) The input data space of a block B  is the set WBIDS BIn )(=)(  and the 

output data space of B  is the set WBODS BOut )(=)( .  

As the inclusions )(),( BIOoi   and ))(( iBOpo  are equivalent, we will use 

the one which is more convenient in a given context. 

From Definition 1.6 we have that if )(),( BIOoi  , then i  takes values in 

)(BIDS  and o  takes values in )(BODS .  

Definition 1.7. A block B  is a sub-block of a block B  (denoted as BB  ), if 

)(=)( BInBIn  , )(=)( BOutBOut  , and )()( BIOBIO  .  

Obviously, the sub-block relation   on blocks is reflexive and transitive, so 

it is a preorder. It can be interpreted as a kind of refinement of models, in particular, 

if a block B  is considered as a model of a real system and B  is considered as a 

specification of requirements to the behavior of this system, the relation BB   can 

be interpreted as a statement that the system satisfies the specification. 

Definition 1.8. An I/O pair ),( oi  of a block B  is called   

1) trivial, if ),(=),( oi ;  

2) non-trivial, if ),(),( oi ;  

3) normal, )(=)( odomidom ;  

4) total, if Todomidom =)(=)( ;  
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5) abnormal, if )()( idomodom  .  

From Definition 1.4 we immediately have that the trivial pair ),(   is an I/O 

pair of any block. This pair means that a block does not output any value when it 

has no available input. A normal I/O pair corresponds to the case when a block 

operates normally and processes the whole available input. An abnormal I/O pair 

corresponds to the case when a block terminates before the end of the available 

input signal bunch, which we interpret as an error during its operation. 

The output signal bunch of an abnormal I/O pair is in some sense non-

continuable. Formally, this is expressed by the following lemma.  

Lemma 1.3. Let ),( oi  be an abnormal I/O pair of some block and oi ,  be 

signal bunches such that ),(),( 2 oioi  . Then oo = .   

Proof. Assume that ),(),( 2 oioi  . Then Aii |=   and Aoo |=   for some 

0A . By Lemma 1.1, either )(= odomA , or oo = . In the latter case the 

proposition holds, so consider the former case, i.e. )(= odomA . We have 

)(=)( odomAidom  , because Aii |=  . This contradicts the assumption that ),( oi  is 

abnormal, because )()( idomodom  . Thus oo = .  

1.4 Composition of blocks 

The usual ways in which input-output systems like blocks can be combined 

include the sequential and parallel composition. Other ways of combining such 

systems are also possible (e.g. a composition involving a feedback [74, 118]), but 

we do not consider them in the thesis. Formally, we define the compositions of 

blocks as follows. 

Definition 1.9. If 21, BB  are blocks such that )()( 21 BInBOut  , then a block 

B  is called a sequential composition of 1B  and 2B  (Fig. 1.2), if )()( 1BInBIn  , 

)()( 2BOutBOut  , and  ))(( 21
))(())(( iBOpo oBOpiBOp  . 
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Definition 1.10. If JjjB )(  is an indexed family of blocks, where J  is a 

set of indices, such that  )()( jj BInBIn  and  )()( jj BOutBOut  for all 

Jjj ,  such that jj  , then a block B  is called a direct product (or a parallel 

composition with independent inputs) of JjjB )(  (Fig. 1.3), if  Jj jBInBIn  )()( , 

 Jj jBOutBOut  )()( , and ))(( iBOp  is the set of all )),(( WBOutSbo  such that 

there exists an indexed family Jjjo )(  such that 

1) ))(( ifBOpo jjj   for all Jj , where for each Jj

WWf jBInBIn
j

)()(:   is a function such that )(|)(
jBInj ddf   for all Wd BIn )( ; 

2)  Jj jodomodom  )()( ; 

3)  Jj j toto  )()(  for each  Jj jodomt  )( , where   is the union of 

named sets (note that  Jj j to )(  is defined, because the sets )( jBOut , Jj  are 

disjoint). 

Fig. 1.2. An illustration of a sequential composition of blocks. 

Fig. 1.3. An illustration of a direct product of blocks. 
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Proposition 1.1. Let 21, BB  be blocks such that )()( 21 BInBOut  . Then  

1) a sequential composition of 1B  and 2B  exists; 

2) if each of B  and B  is a sequential composition of 1B  and 2B , then B  and 

B  are semantically identical. 

Proof. 1) For each )),(( 1 WBInSbi  denote  ))(( 21
))(()( iBOpo oBOpiO  .  

Let )),(( 1 WBInSbi . Then ))(( 1 iBOp , so there exists some 

))(( 1 iBOpo  , and because ))(( 2 oBOp , we have )(iO .  

Moreover, if )(iOo , then ))(( 2 oBOpo   for some ))(( 1 iBOpo  , so 

)()()( idomodomodom  . Thus )()( idomodom   for all )(iOo .  

Let B  be the triple )))((),(),(( )),((21 1 WBInSbiiOBOutBIn  . Let us associate with 

B  the sets )()( 1BInBIn  , )()( 2BOutBOut  , and a function 

)),(()),((:)( WBOutSbWBInSbBOp tm  such that )())(( iOiBOp   for all i . Then 

B  is a block and is a sequential composition of 1B  and 2B  by Definition 1.9. 

2) Follows immediately from Definition 1.9. 

Proposition 1.2. Let JjjB )(  be an indexed family of blocks, where J  is 

a set of indices, such that  )()( jj BInBIn  and  )()( jj BOutBOut  for all 

Jjj ,  such that jj  . Then  

1) a direct product of JjjB )(  exists; 

2) if each of B  and B  is a direct product of JjjB )( , then B  and B  are 

semantically identical. 

Proof.  1)  Denote  Jj jBInIN  )( ,  Jj jBOutOUT  )( . For each Jj

WWf jBInIN
j

)(:   is a function such that )(|)(
jBInj ddf   for all Wd IN . 

For each ),( WINSbi  let )(iO  be the set of all ),( WOUTSbo  such that 

there exists an indexed family Jjjo )(  such that ))(( ifBOpo jjj   for all Jj , 

 Jj jodomodom  )()( , and   Jj j toto  )()(  for each  Jj jodomt  )( . 
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Let ),( WINSbi . Then for each Jj , )),(( WBInSbif jj   and there 

exists some ))(( ifBOpo jjj  . Let  Jj jodomA  )(  and WAo OUT:  be a 

function such that  Jj j toto  )()(  for all At . Then 0A , so ),( WOUTSbo . 

Thus )(iOo . So we have )(iO  for all ),( WINSbi . 

Moreover, for each )(iOo  we have  Jj jodomodom  )()(  for some 

Jjjo )(  such that ))(( ifBOpo jjj   for all Jj , so because J , we have 

)()()( idomifdomodom Jj j    . 

Let B  be the triple )))((,,( ),( WINSbiiOOUTIN  . Let us associate with B  the 

sets INBIn )(  and OUTBOut )( , and )),(()),((:)( WBOutSbWBInSbBOp tm

such that )())(( iOiBOp   for all i . Then B  is a block and is a direct product of 

JjjB )(  by Definition 1.10. 

2) Follows immediately from Definition 1.10.  

1.5 Causality in input-output systems 

In the case of input-output systems, causality (or nonanticipation) basically 

means the output does not depend on future values of the input. This notion 

frequently appears in mathematical systems theory [112, 74, 28, 66] and signal 

processing [86]. Systems that work in real (physical) time satisfy this condition. 

However, the details of a formal definition for different classes of systems vary. 

In signal processing, electrical engineering, control theory the following 

definition is frequently used [86, 64]: if a system maps signals 1x , 2x  to signals 1y , 

2y  and )(=)( 21 txtx  for all 0tt  , then )(=)( 21 tyty  for all 0tt  . It is presupposed 

that a system is deterministic. We can reformulate it for blocks as follows.  
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Definition 1.11. A deterministic block B  is causal, if for each 

)),((, 21 WBInSbii   and Tt , if ][0,2][0,1 |=| tt ii , ))(( 11 iBOpo  , and ))(( 22 iBOpo  , 

then ][0,2][0,1 |=| tt oo .  

The following lemma shows that in this definition one can consider signal 

bunches which coincide not only on a segment of the form ][0, t , but on any 

0A . 

Lemma 1.4. A deterministic block B  is causal if and only if for all signal 

bunches 2121 ,,, ooii  and 0A  such that ))(( 11 iBOpo  , ))(( 22 iBOpo  , the 

equality AA ii |=| 21  implies AA oo |=| 21 .   

Proof.  The “if” part of the statement follows immediately from Definition 

1.11, because 0][0, t . Consider the “only if” part of the statement. Assume that 

B  is deterministic. Let 0A  and 2121 ,,, ooii  be signal bunches such that 

))(( 11 iBOpo  , ))(( 22 iBOpo  , and AA ii |=| 21 . If ][0,= tA  for some Tt , then 

AA oo |=| 21  by Definition 1.11. Otherwise, ][0,= sup<0 tA At  , whence AA oo |=| 21 , 

because ][0,2][0,1 |=| tt oo  for each Tt  by Definition 1.11.  

The condition for causality is illustrated in Fig. 1.4. 

Fig. 1.4. An illustration of Lemma 1.4.  

The graphs of signal bunches are depicted as solid lines. 
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Some works in the domain of mathematical systems theory [112, 74, 28, 66] 

extend this notion of causality to the nondeterministic case. However, there is no 

unified approach to an extension of such kind. 

For example, in the work [112] a notion of a non-anticipatory system of the 

form TT BAS  , where T  is a time domain (in [112] T  is denoted as T , but we 

changed this symbol here to avoid a conflict with our notation). When ),(= 0 tT

with the standard ordering, where 0t , this notion can be described as follows 

[112, Definition 2.4]:   

– If S  is a functional relation, S  is called non-anticipatory, if for all Tt

and )(, Sdomxx  , if ],0(],0( |=| tttt xx  , then ))((=))(( txStxS  .  

– Otherwise, S  is called non-anticipatory, if there exists a set 
)()( SdomSrangeF   of functional non-anticipatory systems such that 

)}(=)(|),{(= xfyFffyxS  .  

In the theory [74], a time system YXS  , where X  and Y  are sets of 

(total) functions on a time domain is called causal [74, Chapter 3, Definition 2.2], if 

it has a causal initial response function, which means [74, Chapter 3, Definition 1.1 

and Definition 2.1] a function YXC :0 , where C  is an arbitrary set, such that 

Syx ),(  if and only if )),(=( 0 xcyc  , and for any Xxx ,  and tc, , if 

}:{}:{ |=| tttttt xx   , then }:{0}:{0 |),(=|),( tttttt xcxc   . The idea here is essentially 

similar to the definition given in [112]. In the same work a number of related 

notions are defined. In particular, a notion of a pre-causal system YXS   is 

defined as follows [74, Chapter 3, Definition 2.4]: for any Xxx ,  and t , if 

}:{}:{ |=| tttttt xx   , then }:{}:{ |)(=|)( tttttt xSxS   , where }),(|{=)( SyxyxS   and 

AxS |)(  means )}(||{ xSyy A  . It it shown that the notions of a pre-causal and 

causal system are equivalent on a special class of time systems (the class of output-

complete systems [74, Chapter 3, Definition 2.5 and Proposition 2.1]). Other 

notions defined in [74] include strongly causal, past-determined, and strongly past-
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determined systems [74, Chapter 3]. They are shown to be stronger than the notion 

of a causal system. 

In the theory [66] a notion of a precausal system is defined in the same way 

as the notion of a pre-causal system is defined in [74], but is used for a special class 

of linear time systems [66, p. 276]. 

In [28] the authors define another notion of a causal or non-anticipatory

system. They consider a function  2:F  (i-o function), where   and   are 

sets of (total) input and output functions on a time domain Time  which is assumed 

to be 0 , and define [28, Definition 7] that F  is causal (or non-anticipatory), if for 

any f , g  such that )(=)( tgtf  for all kt  , kk gFfF |)(=|)( , where kfF |)(  is the 

set of restrictions of )( fF  on time moments kt  . The idea here is essentially the 

same as in pre-causal systems in the sense of [74]. 

Considering the definitions mentioned above, we can distinguish two 

recurring ideas: a non-anticipatory system in the sense of [112] (or causal system in 

the sense of [74]) and a pre-causal time system in the sense of [74]. We will apply 

both ideas to blocks. To avoid clash with terminology used in different works, we 

will introduce the notions of a strongly nonanticipative and weakly nonanticipative

block on the basis of ideas of a non-anticipatory system in the sense of [112] and 

pre-causal system in the sense of [74]. 

Definition 1.12. A block B  is strongly nonanticipative, if for each 

)(),( BIOoi   there exists a deterministic causal sub-block BB  such that 

)(),( BIOoi  .    

Definition 1.13. A block B  is weakly nonanticipative, if for each 0A  and 

)),((, 21 WBInSbii  , if AA ii |=| 21 , then  

)}.)((||{=)})((||{ 21 iBOpooiBOpoo AA 

These notions can be considered as adaptations of the notions of 

causality/nonanticipation which were considered in [74] and [112] for certain 

classes of systems with total inputs and outputs to blocks. 
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1.6 Deterministic causal, weakly nonanticipative, and strongly 

nonanticipative blocks 

Let us compare the introduced notions of nonanticipation. Firstly, note that 

the notions of a weakly and strongly nonanticipative block indeed can be considered 

as generalizations of the notion of a deterministic causal block (Definition 1.11). 

Lemma 1.5. Let B  be a deterministic block. Then: 

1) B  is causal if and only if B  is weakly nonanticipative.  

2) B  is causal if and only if B  is strongly nonanticipative.  

Proof. The item 1 follows immediately from Lemma 1.4 and Definition 1.13, 

while the item 2 follows from the fact that )(BIO  and that BB  if and only if 

BB =  for a deterministic block B .  

By Definition 1.12, informally, the operation of a strongly nonanticipative 

block B  can be interpreted as a two-step process:  

1) before receiving input signals, the block B  chooses an arbitrary 

deterministic causal sub-block BB  (one can call this a response 

strategy); 

2) the block B  receives the input signals of B  and produces the 

corresponding output signals (response) which become the output signals 

of B .  

Intuitively, it is clear that in this scheme at any time the block B  does not 

need a knowledge of the future of its input signals in order produce the 

corresponding output signals. 

Let us prove the following (alternative) characterization of weakly 

nonanticipative blocks which does not rely on comparison of sets of signal bunches.   

Theorem 1.1. A block B  is weakly nonanticipative if and only if the 

following conditions are satisfied:   

1) if )(),( BIOoi   and ),(),( 2 oioi  , then )(),( BIOoi  ;  

2) if ))(( iBOpo  and ii  , then ),(),( 2 oioi   for some ))(( iBOpo  .    
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Proof.

Let us prove the “if” part of the theorem. Assume that the conditions 1 and 2 

of the theorem are satisfied. Assume that 0A , )),((, 21 WBInSbii  , and 

AA ii |=| 21 . Let ))(( 1iBOpo . Then from the condition 1 we have )|)((| 1 AA iBOpo  , 

because ),()|,|( 1
2

1 oioi AA  . Moreover, 21 | ii A  , because AA ii |=| 21 . Thus 

),()|,|( 2
2

1 oioi AA   for some ))(( 2iBOpo   by the condition 2. 

If )|,|( 1 AA oi  is an abnormal I/O pair of B , then oo A =|  by Lemma 1.3 and 

AA oo |=|  , whence )})((||{| 2iBOpooo AA  . 

Now consider the case when )|,|( 1 AA oi  is a normal I/O pair of B . Because 

0)}(,{ odomA , only the following two cases are possible:   

– )(odomA . We have AA oo  |=|  for some 0A . By Lemma 1.1, either 

oo A =| , or AodomA A =)|(= . In both cases, AA oo |=|  , whence 

)})((||{| 2iBOpooo AA  .  

– )(odomA . Then oo A=|  and )(=)(=)|( 11 odomAidomidom A  . Then 

)(=)( 1 odomidom , because 01),( Aidom . Then 112 =|=| iii AA . Because 

)( 1idomA  , we have 21 = ii  by Lemma 1.1. Then 

)})((||{| 2iBOpooo AA  . 

Thus we have proved that for any 0A , )),((, 21 WBInSbii   such that 

AA ii |=| 21 , if ))(( 1iBOpo , then )})((||{| 2iBOpooo AA  . This immediately 

implies that B  is weakly nonanticipative by Definition 1.13. 

Now let us prove the “only if” part of the theorem.  

Assume that B  is weakly nonanticipative. 

Assume that )(),( BIOoi   and ),(),( 2 oioi  . Then Aii |=  and Aoo |=  for 

some 0A . Then AAAA iii |=|)|(=| , whence  

)})((||{=)})((||{|= iBOpooiBOpoooo AAA 
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by Definition 1.13. Then Aoo |=   for some ))(( iBOpo  . Moreover, 

Aidomodom  )()( . Thus oo =  and )(),( BIOoi  . 

Assume that ))(( iBOpo  and ii  . Then Aii |=   for some 0A . Then 

AAAA iii |=|)|(=|  , whence  

)})((||{=)})((||{| iBOpooiBOpooo AAA 

by Definition 1.13. Then AA oo |=|   for some ))(( iBOpo  . Moveover, 

Aidomodom  )()( , whence AA ooo |=|=  . Thus ),(),( 2 oioi  .   

The conditions of Theorem 1.1 are illustrated in Fig. 1.5 and Fig. 1.6 below. 

Fig. 1.5. An illustration of the condition 1 of Theorem 1.1.  

Dashed rectangles enclose I/O pairs. 

Fig. 1.6. An illustration of the condition 2 of Theorem 1.1.  

Dashed rectangles enclose I/O pairs. 
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This theorem has the following corollary. 

Lemma 1.6. Let   be a non-empty set of weakly nonanticipative blocks and 

B  be a block such that )(=)( BIOBIO B 
  . Then B  is weakly nonanticipative. 

Proof. Let us check that the condition 1 of Theorem 1.1 holds for B . Let 

)(),( BIOoi   and ),(),( 2 oioi  . Then )(),( BIOoi   for some B . Then 

)(),( BIOoi   by Theorem 1.1 for the block B , because B  is weakly 

nonanticipative. Then )(),( BIOoi  . 

Let us check that the condition 2 of Theorem 1.1 holds for B . Let 

))(( iBOpo  and ii  . Then )(),( BIOoi   for some B . Then ),(),( 2 oioi 
for some ))(( iBOpo   by Theorem 1.1 for the block B , because B  is weakly 

nonanticipative. Then )()(),( BIOBIOoi   and ))(( iBOpo  . 

We conclude that B  is weakly nonanticipative by Theorem 1.1.  

Lemma 1.7. Let B  be a weakly nonanticipative block and )(),( BIOoi  . 

Then there exists a weakly nonanticipative sub-block BB 0  such that 

}{=))(( 0 oiBOp .   

Proof. Assume that B  is weakly nonanticipative and )(),( BIOoi  . For each 

)),(( WBInSbi   let us define a set  

)}.|=||=|(|))(({=)( 0 AAAA ooiiAiBOpoiO  

Let us show that )(iO  for all i . Let )),(( WBInSbi   and 

}|=||{= 0
*

AA iiAA  . Then 0
* A  and ** |=|

AA
ii . Then from Definition 

1.13 it follows that )})((||{| ** iBOpooo
AA

 . Then there is some ))(( iBOpo 

such that ** |=|
AA

oo . Then for each 0A , if AA ii |=| , then *AA , whence 

AA oo |=| . Thus )(iOo   and )(iO . 

Obviously, ))(()( iBOpiO   for each i , and because )(iO  for all i , 

we conclude that O  is an operation of some sub-block of B , i.e. there is a sub-
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block BB 0  with )(=))(( 0 iOiBOp   for all i . Moreover, }{=)(=))(( 0 oiOiBOp  by 

the definition of O . 

Let us show that 0B  is weakly nonanticipative. Indeed, let 

)),((=)),((, 021 WBInSbWBInSbii  , 0A , and AA ii |=| 21 . For 1,2=j  let us 

denote  

)})((||{= jAj iBOpooU 

)}.|=||=|(),),((||{= 0 AAAAjAj ooiiAWBOutSbooV   

Then for 1,2=j  we have  

=)}(||{=)})((||{ 0 jAjA iOooiBOpoo 

=)}|=||=|())((||{= 0 AAAAjjA ooiiAiBOpoo   

.= jj VU 

We have 21 = UU  by Definition 1.13, because B  is weakly nonanticipative. 

Now let us check that 21 VV  . Assume that 1| Vo A  for some o such that 

AAAA ooii   |=||=|1  for each 0A . Two cases are possible: AA ii |=|1  and 

AA ii ||  . Consider the first case ( AA ii |=|1 ). Let o   be an arbitrary element of )( 2iO

(which exists as we have shown above). Then AAAA ooii   |=||=|2  for each 

0A , whence 2| Vo A . Then AAA ooo |=|=|  , because AAA iii |=|=| 12 . Thus 

2| Vo A . 

Consider the second case ( AA ii || 21  ). Then AAA iii ||=| 12   and the equality 

AA ii  |=|2  implies AA  . Then AAAAAA ooiiii   |=||=||=| 12  for each 

0A . Thus 2| Vo A  by the definition of 2V . 

So in both cases, 2| Vo A , and because o is arbitrary, we conclude that 

21 VV  . By exchanging indices 1, 2 in the proof above we can show that 12 VV  . 

Thus .= 21 VV  Then we have  

)}.)((||{===)})((||{ 20221110 iBOpooVUVUiBOpoo AA 

Thus 0B  is weakly nonanticipative by Definition 1.13.  
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Although Definition 1.13 can seem to be a natural generalization of the 

notion of a causal deterministic block, it has certain more or less counter-intuitive 

consequences which we will describe below. 

Example 1.1 ( f -limit block). Assume that =W . We will call a block B

an f -limit block, where :f  is a function, if }{=)( xBIn  and }{=)( yBOut

for some names yx, , and for each )),(( BInSbi , ))(( iBOp  is defined as follows:   

– if Txidom =])[(  and )]([lim txit   exists and finite, then ))(( iBOp  is the 

set of all }{y -signal bunches o  such that Tyodomodom =])[(=)(  and 

;)]([lim=)]([lim 







txiftyo

tt

– otherwise, ))(( iBOp  is the set of all }{y -signal bunches o  such that 

])}[(|{=])[(=)( 0 xidomAAyodomodom  .  

Obviously, in this definition ))(( iBOp  (because 0  is closed under 

unions) and )()( idomodom   for each ))(( iBOpo . This implies that an f -limit 

block exists for each :f .  

Informally, for a given real-valued input signal ( ][xi ) of infinite duration 

( Txidom =])[( ) which converges to some finite limit L  as t , an f -limit 

block produces an output signal ( ][yo ) which converges to the value )(Lf . If the 

input signal does not converge or has a bounded duration, the block outputs an 

arbitrary signal while the value of the input signal is defined. 

The following proposition shows that f -limit blocks are weakly 

nonanticipative. 

Proposition 1.3. Let B  be an f -limit block for some :f . Then B  is 

weakly nonanticipative.   

Proof. Assume that }{=)( xBIn  and }{=)( yBOut . 

Let us check the condition 1 of Theorem 1.1 for B . Let )(),( BIOoi   and 

),(),( 2 oioi  . Then Aii  |=  and Aoo  |=  for some 0A .  

If Txidom =])[(  , then TA = , whence ii =  and oo =  and )(),( BIOoi  .  
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Consider the case when Txidom  ])[( . The definition of an f -limit block 

implies that ])}[(|{=])[(=)( 0 xidomAAyodomodom  . Then  

]).[(=]))[|((=])[(=)(=)( yodomyodomAyodomAodomodom A  

Moreover,  

=])}[(|{=)(=)( 0 AxidomAAAodomodom  
= }])[(|{ 0 AxidomAA  , 

because 0  is closed under intersections. We have 

][(=]))[|((=])[( xidomxidomAxidom A   ). From this and the equalities given 

above, ])}[(|{=])[(=)( 0 xidomAAyodomodom   . Then )(),( BIOoi  , 

because Txidom  ])[( .  

Thus the condition 1 of Theorem 1.1 holds for B . 

Let us check the condition 2 of Theorem 1.1 for B . Assume that 

))(( iBOpo  and ii  , where )},({ xSbi  .  

Note that we have ])}[(|{=])[(=)( 0 xidomAAyodomodom   from the 

definition of an f -limit block. Consider the following cases.   

a) Todom =)( . In this case, Tidom =)(  and ii = . Then there exists 

))(( iBOpo   such that ),(),( 2 oioi   (one can choose ooii =,=  ). 

b) Todom )( , Txidom =])[(  , and a value )]([lim= txiL t   exists and 

finite. Let )},({ ySbo   be a signal bunch such that Todom =)(  , )(=)( toto , if 

)(odomt , and ]2)([=)( tLfyto   , if )(\ odomTt . Then 

TodomTyodomyodom =))(\(])[(=])[(  . Moreover, )(odom  is a bounded subset 

of T , because Todom )( , whence )(=)]([lim Lftyot   and thus ))(( iBOpo 

by the definition of an f -limit block. Because Txidom =])[(  , we have 

)(=])[( idomxidom . Then because ))(( iBOpo , the definition of an f -limit block 

implies that )(=)( idomodom . Then ),(),( 2 oioi  .  
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c) Either Txidom  ])[( , or )]([lim txit   does not exist, or is infinite. Let 

us define 00 ])}[(|{=   xidomAAA  . Because ii  , we have 

])[(])[( xidomxidom  , whence Aodom )( . Let )},({ ySbo   be a signal 

bunch such that Aodom  =)( , )(=)( toto , if )(odomt , and 0][=)( yto , if 

)(\ odomAt   (o  is correctly defined, because Aodom )(  and 0A ). Then 

Ayodomodom  =])[(=)( , because ])[(=)( yodomodom . Then from the definition 

of f -limit block and of A   it follows that ))(( iBOpo  . If )(=)( idomodom , then 

oo odom =| )(  and ii odom =| )( , whence ),(),( 2 oioi  . Now let us assume that 

)()( idomodom  . Then )(])[( idomxidom  , because ))(( iBOpo . We have 

ii idom =| )( , whence )(])[(=]))[|((=])[( )( idomxidomxidomxidom idom  . Then for 

each 0A  such that ])[( xidomA   we have )(])[()( idomxidomidomA  , 

whence )(idomA  (because 0)(, idomA ), and thus ])[( xidomA . Then 

)(=)( odomAodom  . This implies that oo = . Then ii idom =| )(  and oo idom =| )( , 

whence ),(),( 2 oioi  .  

In all cases a)-c) there exists ))(( iBOpo   such that ),(),( 2 oioi  . Thus the 

condition 2 of Theorem 1.1 is satisfied. We conclude that B  is weakly 

nonanticipative by Theorem 1.1.  

When a function f  is discontinuous, this result can be seen as rather counter-

intuitive, at least if weak nonanticipation is understood as a formalization of the 

idea that at any time a block does not know the future values of the input signals 

and cannot use them to determine the current output value. 

For example, if f  is the signum function (i.e. 0=(0)f , 1=)(xf , if 0>x , 

and 1)( xf , if 0<x ), then an f -limit block B  outputs a signal ][ yo  which 

converges to 1 (when t ), when the input signal ][xi  converges to a positive 

number (when t ). Moreover, it outputs a signal ][ yo  which converges to 0, 

when the input signal ][xi  converges to 0. Then, intuitively, for each time t , the 
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knowledge of ],0[|][ txi  (i.e. a prefix of the input signal till t ) does not give B  a 

useful information to distinguish between the cases 0][lim  xit  and 

0][lim  xit , but the block still manages to output a signal which converges to 

different values in each of these cases. 

The following proposition clarifies the characteristics of an f -limit block for 

a discontinuous f . 

Proposition 1.4. Let :f  be a function and B  be an f -limit block. 

Then B  has a deterministic causal sub-block if and only if f  is continuous.   

Proof. Assume that }{=)( xBIn  and }{=)( yBOut .   

Let us prove the “if” part of the proposition.  

Assume that f  is continuous. Let B  be a block such that }{=)( xBIn  , 

}{=)( yBOut  , and for each )},({ xSbi , ))(( iBOp   is defined as follows: 

}{=))(( oiBOp , where o  is the (unique) }{y -signal bunch such that 

])}[(|{=)( 0 xidomAAodom   and ))]]([([=)( txifyto   for each 

)(odomt . Obviously, B  satisfies the definition of a block and is deterministic. 

Let us check that B  is causal. Let Tt , ))(( 11 iBOpo  , ))(( 22 iBOpo  , 

][0,2][0,1 |=| tt ii . Then  

][0,])[(=]))[|((=]))[|((=][0,])[( 2][0,2][0,11 txidomxidomxidomtxidom tt  .  

Then the following holds:   

=][0,])}[(|{=][0,)(=)|( 101][0,1 txidomAAtodomodom t  
=]}[0,])[(|{= 10 txidomAA 
=]}[0,])[(|{= 20 txidomAA 

).|(=][0,)(=][0,])}[(|{= ][0,2220 todomtodomtxidomAA 
Then for each )|(=)|()|( ][0,2][0,1][0,1 ttt idomidomodomt  , we have  

)(=))]]([([=))]]([([=)( 2211 totxifytxifyto  . 

Thus ][0,2][0,1 |=| tt oo  and B  is causal. 
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Let us show that BB . Let )),(( BInSbi   and ))(( iBOpo  . If 

Txidom =])[(  and )]([lim txit   exists and is finite, then Tyodomodom =])[(=)(

and ))]([(=)]([ txiftyo  for each Tt , whence  









)]([lim=)]([lim txiftyo

tt

by continuity of f . Otherwise,  

])}[(|{=])[(=)( 0 xidomAAyodomodom  . 

Thus ))(( iBOpo , because B  is an f -limit block. Then BB . Thus B  is a 

deterministic causal sub-block of B .  

Let us prove the “only if” part of the proposition.  

Assume that B  has a deterministic causal sub-block B . Let a  and 

ka , 1,2,...=k  be a sequence such that aakk =lim  .  

Let us show that )(=)(lim afaf kk  . 

Let us define sequences )},({ ySbik  , )},({ ySbok  , and Ttk  , 

1,2,...=k  by induction as follows. 

Let ][=)( 11 axti   for all Tt , 1o  be a unique member of ))(( 1iBOp  , and 

0=1t . If kiii ,...,, 21  are already defined, let )(=)(1 titi kk , if ][0, ktt  and 

][=)( 11  kk axti  , if ][0,\ ktTt . Let 1ko  be a unique member of ))(( 1 kiBOp . 

Because B  is a sub-block of an f -limit block, Tyodomodom kk =])[(=)( 11   and  

)(=))]([lim(=)]([lim 111  kktkt aftxiftyo . 

Then let  

|{inf,{max1=1 Ttt kk  

}}
1

1}||)()]([{|sup 11 
  k

taftyo kk  . 

We have defined sequences ki , ko , kt  for 1,2,...=k  . The sequence kt , 

1,2,...=k  is a strictly increasing and unbounded from above and 0=1t . 
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Let i  be a }{x -signal bunch such that Tidom =)( , )(=)( 111 titi , and 

)(=)( 1 titi k , if ],( 1 kk ttt , k , and o  be a (unique) member of ))(( iBOp  . We 

have 11 =)]([  kk atxi  for all 1,2,...=k  and ktt > . Then ,...},{)]([ 21  kk aatxi  for 

all k  and ktt > . For each 0>  there exists k  such that |<| aak   for all 

kk  , whence |<)]([| atxi   for all ktt > . Thus atxit =)]([lim  . Then 

Tyodomodom =])[(=)(  and )(=)]([lim aftyot  , because B  is a sub-block of 

an f -limit block. 

On the other hand, ][0,][0,1 |=|
ktkktk ii   for all k . Because kt  is an 

increasing sequence, we have ][0,][0, |=|
ktkktk ii   for all k  and kk  . Besides, 

]1,(1]1,( |=|
 ktktkktkt

ii  for all k , whence ]1,(]1,( |=|
 ktktkktkt

ii  for all 1 kk . 

Also, )(=)( 111 titik  for all k . Then  

][0,],1(...]2,1(}1{][0, |=|=|
ktkktkttttkt

iii
  for all 2,3,...=k , 

whence ][0,][0, |=|
ktkkt

oo , because B  is causal. Then )(=)( kkk toto  for all 2,3,...=k , 

and from the definition of kt  we have  

k
aftyoaftyo kkkkk

1|)()]([|=|)()]([|   for all 2,3,...=k . 

This implies that )(=)(lim afaf kk  , because )(=)]([lim aftyot  . We 

conclude that f  is sequentially continuous [43] and thus is continuous.  

This proposition implies that for a discontinuous function f , an f -limit 

block has no deterministic causal sub-block. 

Now we can show the following relation between the notions of a weakly and 

strongly nonanticipative block. 

Theorem 1.2 (About strongly nonanticipative block).

1) Each strongly nonanticipative block is weakly nonanticipative.  

2) There exists a weakly nonanticipative block which is not strongly 

nonanticipative.  

Proof.
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1)  Assume that B  is strongly nonanticipative. Let R  be the set of all 

relations )(BIOR   such that R  is an I/O relation of a weakly nonanticipative 

block. For each RR  let us define a block RB  such that RBIO R =)( , 

)(=)( BInBIn R , )(=)( BOutBOut R . Let }|{= RRBR . Then each element of 

is weakly nonanticipative. From Definition 1.12 and Lemma 1.5 we have 

)(=)( BIOBIO B   R . On the other hand, )()( BIOBIO   for any RB , 

so )(=)( BIOBIO B 
  . Then B  is weakly nonanticipative by Lemma 1.6.  

2)  Let :f  be a discontinuous function and B  be an f -limit block. 

By Proposition 1.3, B  is weakly nonanticipative. By Proposition 1.4, B  has no 

causal deterministic sub-blocks. Because )(BIO , B  is not strongly 

nonanticipative. 

Consider some examples. Firstly, consider an example of a strongly 

nonanticipative block. Let yu,  be names and =W  (W  is the set of signal values). 

Example 1.2. Let B  be a block such that }{=)( uBIn , }{=)( yBOut , and for 

each i , )}(),({=))(( 21 ioioiBOp , where )),(()(),( 21 WBOutSbioio   are signal 

bunches such that )(=))((=))(( 21 idomiodomiodom  and for 1,2=j  we have   

– )]]([[=))(( tuijytio j  , if )(idomt  and )]([ tui ;  

– []=))(( tio j , if )(idomt  and )]([ tui .     

Informally, this means that B  is a “gain” block with a slope j  which is either 

1 or 2 during the whole duration of the block’s operation. 

Obviously, B  satisfies Definition 1.4, i.e. is indeed a block. 

Let us show that B  is strongly nonanticipative. For 1,2=j  let BB j  be a 

sub-block such that )}({=))(( ioiBOp jj  for all )),(( WBInSbi  (i.e. 1B  always 

selects )(1 io  from ))(( iBOp  and 2B  always selects )(2 io ). 

The blocks 1B , 2B  are deterministic. Let us check that they are causal.  
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Let {1,2}j . Let )),((, WBInSbii j , T , ][0,][0, |=|  ii  , ))(( iBOpo j , 

and ))(( iBOpo  . Then )]]([[=)( tuijyto   for all ])[( uidomt , []=)(to  for 

all ])[(\)( uidomidomt , and )(to , for all )(idomt . Similarly, we have 

)]]([[=)( tuijyto    for ])[( uidomt  , []=)(to  for all ])[(\)( uidomidomt  , 

and )(to , for all )(idomt  . Then ][0,)(=][0,)(   idomidom  and 

][0,][0, |][=|][  uiui  , because ][0,][0, |=|  ii  . Then we conclude that ][0,][0, |=|  oo  . 

Thus jB  is causal. 

Obviously, each I/O pair )(),( BIOoi   belongs either to )( 1BIO , or to 

)( 2BIO , so B  is strongly nonanticipative by Definition 1.12.  

Above we have given an example of a weakly nonanticipative block which is 

not strongly nonanticipative ( f -limit block for a discontinuous f ). Now consider 

an example of a block which is not weakly nonanticipative. 

Example 1.3. Let B  be a block such that }{=)( uBIn  , }{=)( yBOut  , and 

the operation is defined as follows:   

– }{=))(( 1oiBOp  , where )(=)( 1 idomodom  and 1][=)(1 yto  for all 

)(idomt , if Tuidom =])[( ;  

– }{=))(( 2oiBOp  , where )(=)( 2 idomodom  and 0][=)(2 yto  for all 

)(idomt , otherwise.  

Informally, the block B  decides whether its input signal u  is total. 

It is easy to see that B  indeed satisfies Definition 1.4 (i.e. is a block), but the 

condition 1 of Theorem 1.1 is not satisfied, because )(),( BIOoi  , where 

0][=)( uti  for all Tt , 1][=)( yto  for all Tt , and ),()|,|( 2
[0,1][0,1] oioi  , 

but )()|,|( [0,1][0,1] BIOoi  . So B  is not weakly nonanticipative.  

Informally, the reason is that at each time t  the current value of y  depends 

on the entire input signal.  
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1.7 Classes of blocks 

The classes of blocks that we have introduced are illustrated in Fig. 1.7. 

Arguably, the notion of a strongly nonanticipative block conforms to the informal 

idea of nonanticipation as non-dependence of the current output signal values of the 

block on the future of the input. However, for weakly nonanticipative blocks this is 

not so clear and is debatable, because of Proposition 1.3 and Proposition 1.4. We 

will consider the notion of a strongly nonanticipative block as possibly not the most 

general, but adequate generalization of the notion of a causal block to the 

nondeterministic setting and investigate such blocks in the next chapters. 

Fig. 1.7. Classes of blocks. 

1.8 Conclusions from the chapter 

We have introduced the notion of a block as an input-output system which 

maps an input signal bunch to one or more output signal bunches. Input and output 

signal bunches are not necessarily total functions of time. We have introduced two 

notions of nonanticipation for blocks (weakly nonanticipative and strongly 

nonanticipative blocks) on the basis of similar notions that appear in the literature 

for different kinds of input-output systems [112, 74, 28, 66] and compared them.  
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CHAPTER 2

REPRESENTATION OF STRONGLY  

NONANTICIPATIVE BLOCKS 

2.1 Overview 

Typically, even in the variants of mathematical systems theory which on the 

abstract level consider a system as a “black box”, e.g. [119, 74, 121, 111], the 

concept of a system’s state is still introduced and a link between black box and 

state-based models is established. 

– In the work [118] by L. Zadeh the concept of state is discussed and the 

following description is given: 

“Roughly, a state of a system at any given time is the information needed to 

determine the behavior of the system from that time on.”. 

Abstractly, a system is represented by a family of pairs of time functions 

),(,)},,{(= 10]1,0[]1,0[ ttyu ttttA , where ]1,0[ ttu  and ]1,0[ tty  are an input and 

output defined on a time segment ],[ 10 tt  (there may be more than one pair defined 

on a given time segment). It is assumed that the family is closed under segmentation 

(CUS), i.e. a restriction of an input-output pair which belongs to A  and is defined 

on ],[ 10 tt  onto a sub-segment of ],[ 10 tt  still belongs to  . 

Formally, a state is defined for such a system using the following 

construction. A bundle of input-output pairs is a subset of the set )( 0tA  of all pairs 

from A  defined on a segment of the form ],[ 0 tt , 0tt   for a fixed 0t . Members of a 

chosen indexed family of bundles which satisfies several special conditions 

(covering, closure under truncation, uniqueness, continuation [118]) are called 

aggregates and their indices (tags) are called states of A  at time 0t . This 

construction is used to represent a system as an input-output-state relation of the 
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form ));((= 0 utxAy , where )( 0tx  is an (initial) state, ))(( 0)0( tdomu txA , 

))(( 0)0( trangey txA , )( 0)0( ttxA  is the aggregate corresponding to the index (tag) 

)( 0tx . This equality expresses a functional dependence ( A ) of the future output ( y ) 

of the system on the current state ))(( 0tx  and the future input (u ). Other questions 

related to the notion of state are also discussed in [118], such as equivalence of 

states, state equation, association of states with a system, etc.  

– In the work [74] by M. Mesarovic and Y. Takahara the following 

reasons for introducing the concept of state are given: 

“(i) A system is, in general, a relation; i.e. the same input can lead to different 

outputs. The state enables a representation of the system as a function. The idea is 

that if one knows what state the system is in, he could with assurance ascertain what 

the output will be. In such a way one regains “predictability” believed to be present 

if a complete set of observations is available. 

(ii) The state enables the determination of a future output solely on the basis 

of the future input and the state the system is in. In other words, the state enables a 

“decoupling” of the past from the present and future. The state embodies all past 

history of the system. Knowing the state supplants knowledge of the past. 

Apparently, for this role to be meaningful, the notion of past and future must be 

relevant for the system considered; this leads to the notion of an abstract time 

system.” [74, p. 45] 

A notion of a pre-state space representation of a time system YXS 

( TAX  , TBY  ) is introduced [74, p. 80] as a pair of families of mapping ),(  , 

},,,:|{= ttTttCXC tttttttt    , },:|{= TtBACttt   such that 

)),,((=),( tttttttttttttt xxcxc   , if ttx   is the concatenation of ttx   and ttx 

(composition or semi-group property), tttttt cxc =),( , and Syx ),(  if and only if 

there exists 0Cc  such that for any Tt , ))(),,((=)( 0 txxcty t
tt  . Here tx

denotes }<|{| tttx   and ttx   denotes 
}<*|*{

|
tttt

x


 (where Xx ), ttX   denotes 
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}|{ Xxx tt  , tC  for Tt  are some sets, tt Cc  , tt   is called a state-transition 

function, and t  is called an output function. If CCt =  for all Tt , ),(   is called 

a state-space representation of S  and C  is called a state space. It is shown that any 

causal system has a state-space representation [74, Chapter 3, Proposition 2.8]. 

More general notions of a pre-dynamical system representation and a dynamical 

system representation (which also use state-transition functions) are also introduced 

and studied. 

– In the work [121] by B. P. Zeigler two problems associated with the black 

box view of a system are underscored: 

“Firstly, we have the problem of going from structure to behavior: If we 

know what lies inside the box, we ought to be able to describe, in one or the other 

way, the behavior of the box as viewed externally. The second area relates to the 

reverse situation – going from behavior to structure: the problem of trying to infer 

the internal structure of a black box from external observations.” [121, p. 107]. 

On one of the levels (I/O system), the interior of a system is modeled using 

the notion of state. In particular, it is noted: 

“The state set is fundamental, as it has to have the property to summarize the 

past of the system such that the future is uniquely determined by the current state 

and the future input. This property of the state set is called the semigroup or 

composition property.” [121, p. 109]. 

An I/O system is defined as a tuple ),,,,,,(=  QYXTS  where T  is a 

time domain (time base), X , Y  are input and output value sets,   is a set of 

allowable input segments, i.e. functions defined on a time interval which take values 

in X , Q  is a set of states, QQ  :  is a global state transition function, 

YXQ  :  or YQ  :  is an output function. This tuple must satisfy certain 

constraints:   must be closed under concatenation and so-called left segmentation, 

i.e. a left segment (prefix) of an element of   is again in  , and   must satisfy the 

composition (semigroup) property: )),,((=),(   qq , where   denotes a 

concatenation of input segments, assuming   and   are contiguous (the right end 
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of the domain of   coincides with the left end of the domain of ). A relation of 

this model to a more abstract view of a system (I/O relation observation) is 

considered [121].  

Such views are usually consistent with understanding of state in theories 

which consider it more fundamental and use it in the definition of a system. For 

example, in the work [54] by R. Kalman it is noted: 

“Intuitively speaking, the state is the minimal amount of information about 

the past history of the system which suffices to predict the effect of the past upon 

the future.” 

In the same work a system is defined using the notions of a state space, space 

of inputs, and transition and output functions which satisfy certain properties 

(axioms). 

All approaches mentioned above insist that if a state of a system is known 

and fixed at a given time, then for a given future input, a future output of the system 

is determined uniquely. Thus non-uniqueness of the system’s output for a given 

input can be explained by the freedom of choice of an initial state. 

In contrast, in many models considered in computer science (e.g. non-

deterministic automata, transition systems, etc.) the notion of state is used in a less 

restricted sense. A response of a non-deterministic system which starts in a fixed 

initial state and processes a given input data may not be uniquely determined. 

This motivates to look for state-based representations of input/output (“black 

box”) systems which support multiple variants of a state evolution for a given 

(complete future history of) input and a given initial state. Other desirable features 

are the ability to represent a sufficiently large class of input/output systems and to 

take into account partiality of inputs/outputs as functions of time. 

A representation that we are looking for is a kind of dynamical system. 

Formalizations of the notion of a dynamical system of various levels of generality 

were given in many works, e.g. [12, 78, 36, 11, 15, 76, 94, 37, 100, 57, 55, 74, 71, 

111, 27]. Classical approaches to the definition of a dynamical system, such as 
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those proposed by A.A. Markov [78], V.V. Nemytskii and V.V. Stepanov [78] and 

others (a survey is given in [71]) can be considered as axiomatizations of the 

properties of systems described by differential equations. 

As was noted in the work [37] by O. Hájek, the following properties of 

ordinary differential equations were of primary concern in various  

axiomatizations:  

1) local existence of solutions; 

2) indefinite prolongability (global existence) of solutions; 

3) unicity of solutions; 

4) autonomness (the right-hand side of the equation does not depend 

explicitly on time).  

However, in a number of works [11, 15, 76, 94, 37, 100, 57, 71], etc., there 

was a tendency to remove some of these properties from basic assumptions and 

consider increasingly general classes of dynamical systems. An overview and 

comparison of many such approaches is given in [71]. 

In particular, in [37] it was proposed to eliminate all properties 1)-4) from the 

axiomatization to obtain a far-reaching generalization of dynamical systems. 

Similar ideas also appeared in some other works [57, 71, 111]. 

More specifically, in [37, 38] the following notion was introduced: p  is 

called a process on P  over R , if P  is a set, R , and )()( RPRPp 

satisfies the following properties (infix notation is used for the relation p ):   

– ),(),(  ypx  implies   ; 

– Initial-value property: Ip   for each R  (where I  is the identity 

relation on P ); 

– Compositivity property:  ppp = , if    in R , where  p

denotes a binary relation on P  such that ypx   if and only if 

),(),(  ypx . 
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Intuitively, R  means a time domain, P  is called a phase-space, and a relation 

),(),(  ypx  means that there exists a solution/trajectory which takes values x  and 

y  at times   and   respectively. 

Formally, with a process p  there is an associated notion of a solution: a 

partial function PRs ~: , the domain of which is a non-empty, but possibly a 

singleton interval in R , is a solution of p , if )()(   sps  for all )(, sdom , 

  .  

The solution system S of a process p  (also denoted as psol ) is the set of all 

solutions of p . Solution systems have the following basic properties. 

1) Each Ss  is a partial function PRs ~:  such that )(sdom  is an interval 

in R .  

2) Partialization property: Ss I|  for each Ss  and interval I  in R .  

3) Concatenation property: if Sss 21, , the domains of 21,ss  intersect, and 

21 ss   is a partial function, then Sss  21 .  

4) If }{ is  is a monotone family in S , then Ssi  .  

5) If I  is an interval in R , PIs : , and for each I ,  there exists 

Ss   such that )(=)(  ss  , )(=)(  ss  , then Ss .  

In [37] it is also suggested that a solution system can be defined axiomatically 

without the notion of a process.  

A set S  is called a solution system in P over R  (independently of any 

process), if S  satisfies the properties 1-3 mentioned above. Its members are called 

solutions. One can associate a process, denoted as Spr , with such a set by letting 

),(),(  ySprx  if and only if    and there exists Ss  such that )(= sx  and 

)(= sy . But in the general case, neither SprsolS = , nor psolprp =  holds.  

If SprsolS =  holds, S  is called process-complete. A necessary and 

sufficient condition for this is the property 5 mentioned above, and a necessary 

condition is the property 4.  
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If psolprp =  holds, p  is called solution-complete. A necessary and 

sufficient condition for this is: ypx   if and only if there exists psols  such that 

)(= sx  and )(= sy . 

We conclude that the notions of process and solution system in the sense of 

[37] are quite general and take into account the aspects which we are interested in 

(nondeterminism, partiality, continuous time, no assumptions about the structure of 

the phase-space P ). Among them we prefer the notion of a solution system, 

because it more explicitly represents a dynamic behavior.  

In this chapter our aim is to establish a link between blocks and a notion like 

solution system. However, we will not use the exact definitions and terminology of 

[37] for the following main reasons:   

– we would like to include the properties 1-4 of a solution system (not only 

1-3) in an abstract definition of a dynamical system; we will need a 

property similar to 4 in this and the next chapter;  

– we prefer to use the terms “state space” and “trajectory” instead of “phase 

space” and “solution” in our context.  

We will introduce a notion that is close to a solution system of [37] and call it 

a Nondeterministic Complete Markovian System (NCMS). 

Then we will show that strongly nonanticipative blocks have a representation 

in the form of NCMS. 

2.2 Nondeterministic complete Markovian systems (NCMS) 

As before, let =T . Denote by T  the set of all (bounded or unbounded) 

intervals in T  with cardinality greater than one, i.e. A T  if and only if TA , 

Att ],[ 21  for all Att 21 ,  such that 21 tt  , and Att  },{ 21  for some  21 tt  . 

Let Q  be a set (a state space) and Tr  be some set of functions of the form 

QAs : , where TA . Let us call its elements trajectories.   
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Definition 2.1. A set of trajectories Tr  is closed under proper restrictions 

(CPR), if Trs A|  for each Trs  and TA  such that )(sdomA . 

In order to refer to Definition 2.1 we will use phrases like “Tr  is CPR” or 

“Tr  satisfies the CPR property”. 

Definition 2.2.  

1) A trajectory Trs 1  is a subtrajectory of Trs 2  (denoted as 21 ss ), if 

)()( 21 sdomsdom   and )1(21 |= sdomss .  

2) A trajectory Trs 1  is a proper subtrajectory of Trs 2  (denoted as 

21 ss  ), if 21 ss  and 21 ss  .  

3) Trajectories Trss 21,  are incomparable, if neither 21 ss , nor 12 ss  .  

Lemma 2.1. ),( Tr  is a (possibly empty) partially ordered set (poset).   

Proof. For each Trss 21, , 21 ss  if and only if (the graph of) the function 1s

is a subset of (the graph of) 2s . Then it is obvious that   is a partial order on Tr . 

Definition 2.3. A CPR set of trajectories Tr  is called 

1) Markovian (see Fig. 2.1 below), if for each Trss 21,  and Tt 0  such that 

)(inf=)(sup= 210 sdomsdomt , )( 01 ts , )( 02 ts , and )(=)( 0201 tsts , the 

following function s  belongs to Tr : 








)(),(
;)(),(

=)(
22

11

sdomtts
sdomtts

ts

2) complete, if each non-empty chain in ),( Tr  has a supremum.  

Note that the property 2 differs from chain-completeness [93] in that only 

non-empty chains must have a supremum. 

Because of the CPR property, a supremum of a chain c  in the poset ),( Tr

exists if and only if Trs * , where Qsdoms cs  )(:*   is defined as follows: 

)(=)(* tsts , if cs  and )(sdomt  (this is indeed a function, because c  is a chain). 

Definition 2.4. A nondeterministic complete Markovian system (NCMS) is a 

triple ),,( TrQT , where Q  is a set (state space) and Tr  (trajectories) is a set of 
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functions QTs ~:  with T)(sdom  such that Tr  is CPR, complete, and 

Markovian (in the sense of Definition 2.3).  

Fig. 2.1. Markovian property of a CPR set of trajectories. If one trajectory 

ends and another begins in a state q  at a time t  (both are defined at t ), then their 

concatenation is a trajectory. 

The notion of a NCMS is close to the notion of a solution system in the sense 

of [37] (discussed in Section 2.1), but there are some differences.   

– The time domain T  and the set of states Q  correspond to the time domain

R  and the phase-space P  of a solution system (Section 2.1). However, for 

simplicity we assume that T  is fixed to be  , while in [37] R  can can be 

any subset of  .  

– Trajectories correspond to the members of a solution system (solutions). 

However, their domains cannot be singleton sets, while solutions can be 

defined on singleton sets. This is not a principal difference, but we assume 

that trajectory domains are not singleton sets for convenience.  

– CPR property of NCMS corresponds to the Partialization property of 

solution systems (property 2). The difference is that Partialization allows 

restrictions on singleton sets, while CPR does not allow them.  

– Markovian property of NCMS basically corresponds to the Concatenation

property (property 3) of solution systems. By themselves these properties 
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are not equivalent: the formulation of the Markovian property of NCMS is 

weaker in the sense that it does not allow one to make a union of two 

trajectories, if the intersection of their domains is not a singleton set. But 

using both CPR and Markovian properties, one can make a union of two 

trajectories even if the intersection of their domains is not a singleton set. 

The term “Markovian” is meant to indicate that if a system is in a given 

state, the set of its possible future evolutions does not depend on its past 

[51] (however, it is not meant to suggest a direct relation to Markov 

processes in probability theory). The usage of this term in a similar sense 

can be found in the literature, e.g. [111]. In a more general sense a similar 

interpretation of a Markov property was considered in [52, 17] in the 

context of the possibility theory.  

– Completeness property of NCMS basically corresponds to the (unnamed) 

property 4 of solution systems (which are associated with processes). 

The main reason for considering this notion instead of a solution system is the 

Completeness property of NCMS (not assumed by default in the process-

independent definition of a solution system [37, Definition 2.1]). The results 

concerning NCMS that we will obtain and use in this and the next chapter 

significantly depend on it. Moreover, in our opinion, the Markovian property is 

more convenient than the Concatenation property of solution systems, so we 

decided to use it in the definition of NCMS. 

2.3 Representation of NCMS 

In this section we will give a convenient general representation of NCMS. Let 

us introduce the following terminology.  

Definition 2.5. Let QTss ~:, 21 . Then 1s  and 2s  coincide:   

1) on a set TA , if AA ss |=| 21  and )()( 21 sdomsdomA   (this is denoted 

as 21 ss A );  
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2) in a left neighborhood of Tt , if 0>t  and there exists )[0, tt  , such 

that 2],(1 ss tt  (this is denoted as 21 ss t );  

3) in a right neighborhood of Tt , if there exists tt > , such that 2),[1 ss tt 

(this is denoted as 21 ss t ).  

Let Q  be a set. Denote by )(QST  the set of pairs ),( ts  where QAs :  for 

some TA  and At . 

Definition 2.6. A predicate BoolQSTp )(:  is called   

1) left-local, if ),(),( 21 tsptsp   for each )()},(),,{( 21 QSTtsts   such that 

21 ss t , and, moreover, ),( tsp  holds for each ),( ts  such that t  is the least 

element of )(sdom ;  

2)  right-local, if ),(),( 21 tsptsp   for each )()},(),,{( 21 QSTtsts   such 

that 21 ss t , and, moreover, ),( tsp  holds for each ),( ts  such that t  is the 

greatest element of )(sdom .  

Let us denote by )(QLR  the set of all pairs ),( rl , where BoolQSTl )(:  is 

a left-local predicate and BoolQSTr )(:  is a right-local predicate. 

Definition 2.7. A pair )(),( QLRrl   is called a LR representation of a NCMS 

),,(= TrQT , if ))}.,(),((|:{= tsrtslAtAQAsTr  T

Theorem 2.1 (About LR representation)   

1)  Each pair )(),( QLRrl   is a LR representation of a NCMS with the set of 

states Q .  

2) Each NCMS has a LR representation.  

Proof.

1)  Let )(),( QLRrl  . Let ),,(= TrQT , where  

))}.,(),((|:{= tsrtslAtAQAsTr  T

Let us show that Tr  is CPR. Let Trs , QAs : , TA , and AA  . 

Then Asdom A  )|(  and ),(),( tsrtsl   for all At . If t  is a non-maximal element 

of A , then ss tA  |  and ),( tsr , whence ),|( tsr A . Similarly, if t  is a non-minimal 
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element of A , then ss tA |  and ),( tsl , whence ),|( tsl A . Moreover, if A  has a 

minimal element t , then ),|( tsl A , because l  is left-local. Similarly, if A  has a 

maximal element t , then ),|( tsr A , because r  is right-local, Thus 

),|(),|( tsrtsl AA    for all )|( AsdomAt  . Then Trs A| . 

Let us show that Tr  is complete. Let Trc   be a non-empty -chain and 

ss cs =* , i.e. the union of (graphs) of functions. Then *s  is a function defined on 

)(sdomcs  . It is sufficient to show that Trs * . We have ),(),( tsrtsl   for all 

cs  and )(sdomt . Moreover, for each cs  and t  in the interior of )(sdom  we 

have *ss t  and *ss t . Thus ),(),( ** tsrtsl   for each t  in the interior of 

)( *sdom . Moreover, if )( *sdom  has the least element *t , then *t  is the least element 

of )(sdom  for some cs , whence ),(),( *
*

*
* tsrtsl  , because *

*
ss t   and ),( *tsr , 

while ),( *
* tsl  holds automatically. Analogously, we have that if )( *sdom  has the 

greatest element *t , then ),(),( **** tsrtsl  . Then ),(),( ** tsrtsl   holds for all 

)( *sdomt . Thus Trs * . 

Let us show that Tr  is Markovian.  

Let Trss 21, , )(inf=)(sup= 210 sdomsdomt , )( 01 ts , )( 02 ts , and 

)(=)( 0201 tsts . Let us define Qsdomsdoms  )()(: 21  as )(=)( 1 tsts , if 

)( 1sdomt  and )(=)( 2 tsts , if )( 2sdomt . Then for 1,2=j  we have 

),(),( tsrtsl jj   for all )( jsdomt . Besides, 1ss t  for all }{\)( 01 tsdomt  and 

1ss t  for all non-minimal )( 1sdomt . Then ),(),( tsrtsl   for all 

}{\)( 01 tsdomt  and ),( 0tsl , because l  is left-local and r  is right-local. 

Analogously, we have ),(),( tsrtsl   for all }{\)( 02 tsdomt  and ),( 0tsr . Thus 

),(),( tsrtsl   for all )(sdomt , whence Trs . 

Thus   is a NCMS and ),( rl  is a LR representation of  . 



 66

2)  Let ),,(= TrQT  be a NCMS. Let us define predicates BoolQSTl )(:

and BoolQSTr )(:  as follows:   

– ),( tsl  if and only if either t  is the least element of )(sdom , or there exists 

tt <  such that )(],[ sdomtt   and Trs tt  ],[| ; 

– ),( tsr  if and only if either t  is the greatest element of )(sdom , or there 

exists tt >  such that )(],[ sdomtt   and Trs tt ],[| .  

Let ))},(),((|:{= tsrtslAtAQAsrT  T . 

It follows immediately from the CPR property of Tr  that l  is left-local, r  is 

right-local, and rTTr  . 

Let us prove the opposite inclusion TrrT  . Assume that TA , QAs : , 

and ),(),( tsrtsl   for all At . 

Consider the following cases:   

a) ],[= baA  for some ba < . For each ),( bat  we have ),(),( tsrtsl  , 

whence there exists tt <  and tt >  such that )(],[ sdomtt   and Trs tt  ],[| , 

Trs tt  ],[| , whence Trs tt  ],[|  by the Markovian property. Denote ),(= ttOt  . 

Because )(sdoma , )(max sdoma  , and ),( asr , there exists at >  such that 

)(],[ sdomta   and Trs ta  ],[| . Denote ),[= taOa  . Similarly, because 

)(sdomb , )(min sdomb  , and ),( bsl , there exists bt <  such that 

)(],[ sdombt   and Trs bt  ],[| . Denote ],(= btOb  . Thus have we defined tO  for all 

At . Then AttO )(  is an open cover of A  in the sense of the topology induced on 

A  from T  ( aO  and bO  are relatively open). Since A  is compact, there exists a 

finite sub-cover 
it

O , ki 1,2,...,= . Let it  denote the left end of 
it

O  and it   denote the 

right end of 
it

O .  

Without loss of generality we can assume that bttta k =...= 21  . By the 

construction of tO , Trs
itit


 ],[|  and iii ttt   for ki 1,2,...,= . Then it is easy to see 

that CPR and Markovian properties of Tr  imply that Trss ba =| ],[ .  
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b) ),[= baA  for some ba < , where }{,  TbTa . We have rTs ta ],[|

for all ),( bat , because l  is left-local and r  is right-local. Then Trs ta ],[|  for all 

),( bat  by the previous case a). By the completeness property of Tr  we conclude 

that Trs .  

c) ],(= baA  for some ba < . We have rTs bt ],[|  for all ),( bat , because l

is left-local and r  is right-local. Then Trs bt ],[|  for all ),( bat  by the case a). 

Using the completeness property of Tr  we conclude that Trs . 

d) ),(= baA  for some ba <  ( }{,  TbTa ). Let us choose an arbitrary 

),( bac . We have rTs ca ],(|  and rTs bc ),[| , because l  is left-local and r  is 

right-local. From the two previous cases b) and c) we obtain that Trs ca ],(|  and 

Trs bc ),[| . Then Trs  by the Markovian property of Tr .  

We conclude that )(),( QLRrl   and rTTr = . Thus ),( rl  is a LR 

representation of  .  

Informally, this theorem shows that for a NCMS, a global property “is a 

trajectory” )( Trs  can be expressed as a conjunction of local properties 

( ),(),( tsrtsl  ) for each time moment. 

This theorem has the following corollaries which we will use later.  

Lemma 2.2. Let J  and Jjjj TrQT )),,((  be an indexed family of NCMS. 

Then the triple ),,(= jJjjJj TrQT    is a NCMS.   

Proof. Denote jJj QQ  = , jJj TrTr  = . Obviously, each function in Tr

takes values in Q . For each Jj  let ),( jj rl  be a LR representation of ),,( jj TrQT , 

which exists by Theorem 2.1. Then 

))},(),((|:{= tsrtslAtAQAsTr jjj  T . 

Then )()( jQSTQST   for all Jj . Let predicates BoolQSTl )(:  and 

BoolQSTr )(:  be defined for each )(),( QSTts   as ),(),( tslJjtsl j  and 

),(),( tsrJjtsr j . Because, all jl , Jj  are left-local, we have that if 



 68

)()},(),,{( 21 QSTtsts   and 21 ss t , then ),(),( 21 tsltsl  , and moreover, ),( tsl

whenever t  is the least element of )(sdom . Thus l  is left-local. Similarly, because 

all jr , Jj  are right-local, we have that if )()},(),,{( 21 QSTtsts   and 21 ss t , 

then ),(),( 21 tsrtsr  , and moreover, ),( tsr  whenever t  is the greatest element of 

)(sdom . This r  is right-local. Then )(),( QLRrl   and by Theorem 2.1, it is an LR 

representation of a NCMS. Then the triple 

))},(),((|:{,,( tsrtslAtAQAsQT  T

is a NCMS. Moreover,  

=))},(),((|:{ tsrtslAtAQAs  T

.==)},(),(|:{= TrTrtsrtslJjAtAQAs j
Jj

jj 


 T

Thus   is a NCMS. 

Definition 2.8. A state-restriction of a NCMS ),,(= TrQT  on a set Q , 

denoted as Q | , is a triple }))()(|{,,( QtssdomtTrsQQT  .  

Lemma 2.3. Q |  is a NCMS for each NCMS ),,(= TrQT  and a set Q .   

Proof. Let us define  

})()(|{= QtssdomtTrsrT  . 

Then ),,(=| rTQQTQ   . Let BoolQSTl )(:  and BoolQSTr )(:  be 

predicates which are true for all values of the input argument. Obviously, l  is left-

local and r  is right-local. Let us define  

))},(),((|:{= tsrtslAtAQAsrT  T . 

By Theorem 2.1, ),,(= rTQT   is a NCMS. Moreover, rT   is the set of all 

functions of the form QAs :  for all TA , whence we have rTTrrT  = . 

Then from Lemma 2.2 (applied to the case of a two-element indexed family of 

NCMS) we have that ),,(=| rTTrQQTQ    is a NCMS. 



 69

2.4 Examples of sets of trajectories and NCMS 

Firstly, let us consider some examples of sets of trajectories. 

Let =Q . Consider the following sets of trajectories:   

– allTr  is the set of all functions QAs : , TA .  

– contTr  is the set of all continuous functions allTrs .  

– diffTr  is the set of functions allTrs  such that s  is differentiable on the 

interior of )(sdom .  

– bndTr  is the set of all functions allTrs  which are bounded on their 

domains, i.e. for each bndTrs  there exist ba, , ba <  such that 

],[)( bats   for all )(sdomt .  

Proposition 2.1. The following holds:   

1)  , allTr , contTr , diffTr , bndTr , bnddiff TrTr   are CPR.  

2)  , allTr , contTr  are complete and Markovian.  

3) diffTr  is complete, but is not Markovian.  

4) bndTr  is Markovian, but is not complete.  

5) bnddiff TrTr   is neither complete, nor Markovian.  

Proof.

1)  The empty set and allTr  are obviously CPR. The restrictions of 

continuous, differentiable, bounded, differentiable and bounded functions defined 

on real intervals onto real sub-intervals are still continuous, differentiable, bounded, 

differentiable and bounded respectively. Thus contTr , diffTr , bndTr , bnddiff TrTr   are 

CPR.  

2)  It follows immediately from Definition 2.3 that  , allTr  are complete and 

Markovian. To show that contTr  is complete and Markovian, consider predicates 

BoolQSTrl )(:,  defined as follows:  
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– ),( tsl  if and only if either tsdom =)(min  , or )(inf> sdomt  and s  is 

left-continuous at t ; 

– ),( tsr  if and only if either tsdom =)(max  , or )(sup< sdomt  and s  is 

right-continuous at t .  

Obviously, ),( tsl  is left-local, ),( tsr  is right-local. Moreover, ),(),( tsrtsl 

for all )(sdomt  if and only if s  is continuous. Then Theorem 2.1 implies that 

contTr  is complete and Markovian. 

3)  Consider Qs [0,1]:1  and Qs )[1,:2  such that tts =)(1  for all 

[0,1]t  and 1=)(2 ts  for all )[1,t . Then bnddiff TrTrss 21,  and 

(1)=(1) 21 ss . Let )(=)( 1 tsts , if )( 1sdomt , )(=)( 2 tsts , if )( 2sdomt . Then s  is 

not differentiable at 1=t , so diffTrs . Thus diffTr  is not Markovian. Completeness 

of diffTr  follows from Definition 2.3. 

4)  Markovian property follows immediately from Definition 2.3. Consider a 

function QTs : , where tts =)(  for all Tt . Then bndt Trs ][0,|  for all Tt , but 

bndTrs . Thus bndTr  is not complete.  

5)  The same argument as we used in 3) shows that bnddiff TrTr   is not 

Markovian. The same argument as we used in 4) shows that bnddiff TrTr   is not 

complete. 

Now let us consider some examples of NCMS. 

Proposition 2.2. Let d , dQ = , and ddf  : . Let Tr  be the set 

of all functions QAs : , TA  such that on the interior of A  the function s  is 

differentiable and satisfies ))(,(=)( tstfts
dt
d , and ))(,(=)( tstfts   holds for 

At min , if Amin , and ))(,(=)( tstfts   holds for At max , if Amax , 

where )(ts  and )(ts  denote a left and right derivative at t  respectively.  

Then ),,( TrQT  is a NCMS. 
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Proof. Consider the predicates BoolQSTrl )(:,  defined as follows:   

– )))(,(=)()(inf())((min),( tstftssdomttsdomtsl   ; 

– )))(,(=)()(sup())((max),( tstftssdomttsdomtsr   ; 

Obviously, ),( tsl  is left-local and ),( tsr  is right-local. Moreover, 

),(),( tsrtsl   for all )(sdomt  if and only if on the interior of )(sdom  the function 

s  is differentiable and satisfies ))(,(=)( tstfts
dt
d , and ))(,(=)( tstfts   holds 

for )(min sdomt  , if )(min sdom , and ))(,(=)( tstfts   holds for 

)(max sdomt  , if )(max sdom . Then Theorem 2.1 implies that ),,( TrQT  is a 

NCMS. 

Proposition 2.3. Let )ˆ,( Q  be a state transition system, i.e. Q  is a set 

(states) and QQ ̂  is a binary relation (transitions, we will write 21 ˆ qq  , if 

 ˆ),( 21 qq ). Suppose that Q  is equipped with a discrete topology [77], i.e. open 

sets are all subsets of Q .  

Let Tr  be the set of all functions QAs :  such that for each non-minimal 

At , )(lim  st  exists and )()(lim tsst   , and for each non-maximal At , 

)(lim  st  exists and  












.),(limˆ)(
,),(=)(lim

0

0




tsts
ttss

t

t








Then ),,( TrQT  is a NCMS (Fig. 2.2). 

Proof. Indeed, consider the predicates BoolQSTrl )(:,  such that:   

– ),( tsl  if and only if either tsdom =)(min  , or )(inf> sdomt  and 

)(lim  st  exists and )(=)(lim tsst   ; 

– ),( tsr  if and only if either tsdom =)(max  , or )(sup< sdomt  and a limit 

)(lim  st  exists and )(=)(lim tsst   , if 0t  and 

)(limˆ)(  sts t , if 0t .  
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Obviously, ),( tsl  is left-local and ),( tsr  is right-local. Then Theorem 2.1 

implies that ),,( TrQT  is a NCMS. 

Fig. 2.2. A trajectory which models an execution of a (discrete-time) state 

transition system )ˆ,( Q . At non-negative integer time moments the system 

changes its current state q  to a next state q  such that qq ̂ . 

2.5 Representation of a strongly nonanticipative block 

In this section we will introduce a representation of strongly nonanticipative 

blocks using NCMS. 

As before, let W  denote a fixed non-empty set of values. 

Definition 2.9. An input-output (I/O) NCMS is an NCMS ),,( TrQT  such that 

Q  has a form WXW OI   for some sets I  (set of input names), X  (set of 

internal states), and O  (set of output names). The WI  is called an input data set and 

WO  is called an output data set.  

Informally, an I/O NCMS describes possible evolutions (trajectories) of 

triples ),,( outin dxd  of input data ( Wd I
in  ), internal state ( Xx ), and output data 

( Wd O
out  ). 
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Lemma 2.4. Each I/O NCMS ),,( TrQT  has a unique set of input names, 

internal states, and output names.   

Proof. The proof follows from the fact that if 

WXWWXWQ OIOI 2
2

21
1

1 ==   and 21, XX , then 21 = XX , WW II 21 = , 

and WW OO 21 = , whence 21 = II  and 21 = OO , because W .  

For a I/O NCMS   we will denote as )(In  its unique set of input names, as 

)(Out  its set of output names, and as )(IState  its internal state space. 

For any I/O NCMS ),,(= TrQT  and a state Qq  we will denote as )(qin , 

)(qistate , )(qout  the projections of q  on the first, second, and third coordinate 

respectively. Correspondingly, for any Trs , sin  , sistate , sout  , denote a 

composition of the respective projection map with a trajectory. 

For each )),(( WInSbi   let us denote   

– })(|{=),( 0 isinsdomTrsiS   ;  

– ),( iSmax   is the set of all -maximal (i.e. non-continuable) trajectories 

from ),( iS  ;  

– )},(|(0){=),( iSssiSinit  ;  

– })(|(0){=)( 0 sdomTrssSinit .  

For each QQ   let us denote:  

)},,,(=|{=),,(1,2 dxdqdQqxdQSel 

i.e. a selection of states from Q  by the value of the first and second component. 

For each QQ   and )),(( WInSbi   let us denote:  
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where )({0} qout  is a function defined on {0} which takes the value )(qout . 
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For each QQ 0  let us denote:  













)(),),(0),,(,(
;=)(},{

=),,(
01,2

)(
0 idomixiQSelo

idom
iQO

all
IStatex

all 

Definition 2.10. An initial I/O NCMS is a pair ),( 0Q  such that 

),,(= TrQT  is a I/O NCMS and 0Q  is a set (admissible initial states) such that 

QQSinit  0)( .  

Definition 2.11. A NCMS representation of a block B  is an initial I/O 

NCMS ),( 0Q  such that   

1) )(=)( InBIn  and )(=)( OutBOut ;  

2) ),,(=))(( 0 iQOiBOp all   for all )),(( WBInSbi .  

Informally, the operation of a block B  represented by an initial I/O NCMS 

),( 0Q  on an input signal bunch i  can be described as follows:   

1) If (0)i  is undefined, then B  stops (the output signal bunch is  ).  

2) Otherwise, B  chooses an arbitrary internal state )( IStatex .  

3) If there is no admissible initial state 0Qq  with (0)=)( iqin  and 

xqistate =)(  (i.e. =)(0),,( 01,2 xiQSel ), then B  stops. 

4) Otherwise, B  chooses an arbitrary 0Qq  such that (0)=)( iqin  and 

xqistate =)(  (i.e. )(0),,( 01,2 xiQSelq ).  

5) If {0}=)(idom  or there is no trajectory s  which starts in q  and is defined 

on some interval (of positive length) from 0 , then B  outputs )(qout  at 

time 0 and stops.  

6) Otherwise, B  chooses an arbitrary maximal trajectory s  defined on an 

interval from 0  such that qs =(0)  and isin   and outputs the signal 

bunch sout  .  

Theorem 2.2 (About representation of a strongly nonanticipative block). 

Each strongly nonanticipative block has a NCMS representation.   
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Theorem 2.3 (Converse theorem about representation of a strongly 

nonanticipative block). Each initial I/O NCMS is a NCMS representation of a 

strongly nonanticipative block. 

We will prove these two theorems in the next two sections. 

2.6 Proof of the theorem about representation of a strongly 

nonanticipative block 

Firstly, let us prove several auxiliary lemmas. 

Lemma 2.5. Let ),,( TrQT  be a NCMS, Q  be a set, QQf :  be an 

injective function, and }|{= TrssfrT   . Then ),,( rTQT   is a NCMS.   

Proof. Let us show that rT   is closed under proper restrictions (CPR). Let 

rTs  , TA , and )(sdomA . Then sfs =  for some Trs , whence Trs A| , 

because Tr  is CPR and )(=)( sdomsdom  . Thus Trsfs AA  )|(=|  . 

Let us show that rT   is Markovian. Let rTss  21, , 

)(min=)(max= 21
* sdomsdomt  , and )(=)( *

2
*

1 tsts  . Then 11 = sfs  , 22 = sfs 

for some Trss 21, . Then ))((=))(( *
2

*
1 tsftsf , whence )(=)( *

2
*

1 tsts , because f

is injective. Then a function Qsdomsdoms  )()(: 21  such that )(=)( 1 tsts  if 

)( 1sdomt  and )(=)( 2 tsts , if )( 2sdomt  belongs to Tr . Then rTsfs  =  and 

)(=)( 1 tsts  , if )( 1sdomt   and )(=)( 2 tsts  , if )( 2sdomt  . 

Let us show that rT   is complete (in the sense of Definition 2.3). Let rTc 

be a non-empty -chain. Let TrcsfTrsc  }|{=  . If css 21, , then 

21 sfsf   , or 12 sfsf   , whence 21 ss   or 12 ss  , because f  is injective. 

Thus c  is a -chain. It is non-empty, because c  and for any rTcs   there 

exists Trs  that ssf = . Then there exists a least upper bound Trs *  of c

(when Tr  is viewed as poset with respect to ). Let ** = sfs  . Then rTs * , 
*ss   for all cs  , and )(=)(=)(=)( ** sdomsdomsdomsdom cscs    . Then 
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the graph of *s  is the union of the graphs of the members of c . Thus *s  is the 

least upper bound of c  (when rT   is viewed as poset with respect to ). 

Lemma 2.6. Let ),,( jj TrQT , Jj  be an indexed family of NCMS such 

that   =jj QQ , if jj  . Let j
Jj QQ  =  and j

Jj TrTr  = . Then ),,( TrQT  is 

a NCMS.   

Proof.  Firstly, let us show that Tr  is closed under proper restrictions (CPR). 

Let Trs , TA , and )(sdomA . Then jTrs  for some Jj , whence 

TrTrs j
A | . 

Secondly, let us show that Tr  is Markovian. Let Trss 21, , 

)(min=)(max= 21
* sdomsdomt , and )(=)( *

2
*

1 tsts . Then jTrs 1  and jTrs 2  for 

some Jjj , . Then jj = , because otherwise,   =jj QQ  and )()( *
2

*
1 tsts  . 

Then a function Qsdomsdoms  )()(: 21  such that )(=)( 1 tsts , if )( 1sdomt

and )(=)( 2 tsts , if )( 2sdomt  belongs to TrTr j  . 

Finally, let us show that Tr  is complete (in the sense of Definition 2.3). This 

is obvious, if =Tr , so assume that Tr . Let Trc   be a non-empty -chain. 

For each Trs  there exists an index Jsj )(  such that )(sjTrs . For each 

css 21, , either 21 ss , or 12 ss  , and because )(),( 21 sdomsdom  and the sets jQ

are disjoint for different j , we have )(=)( 21 sjsj . Thus all indices )(sj , cs

coincide, so there exists Jj  such that jTrc  . Then there exists a least upper 

bound jTrs *  of c  in the sense of the poset jTr  (with the ordering ). Then it is 

easy to see that *s  is a least upper bound of c  in the sense of the poset Tr  (with the 

ordering ). 

Lemma 2.7. Let   be a I/O NCMS, )),(( WInSbi  , and ),( iSs  . Then 

there exists ),( iSs max   such that ss  .   

Proof. Consider a set }|),({= ssiSsG   . 
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Let Gc   be a non-empty -chain. Then it has a least upper bound *s  in 

Tr , because   is a NCMS. This implies that )( *sdomA  for some }{\0 A , 

whence )(0 *sdom . Then 0
*)( sdom , because Trs * . Moreover, isin * , 

because isin   for all cs   . Then ),(* iSs  . Obviously, *ss , so Gs * . 

We conclude that each non-empty -chain of elements of G  has an upper 

bound in G . Because Gs , we have G . Then Zorn’s lemma [43] implies that 

G  has some -maximal element s . Then ),( iSs max   and ss  .  

Lemma 2.8. Let ),,(= TrQT  be a I/O NCMS, QQ  , and 

)),(( WInSbi  . Then   

1) )),((),,( WOutSbiQoall  ;  

2) )()( idomodom   for each ),,( iQoo all  ;  

3)  ),,( iQoall .  

Proof.   1) Let ),,( iQoo all   be an arbitrary element.  

If  =Q  or {0})( idom , then =o  or o  has a form )({0} qout  for 

some Qq , whence )),(( WOutSbo  , because Wqout Out )()(   for any Qq . 

Consider the case when )({0} idom  and Q . Then either o  has a form 

)({0} qout  for some Qq , or souto =  for some ),( iSs max  .  

In the former case, )),(( WOutSbo  . In the latter case, Trs , 

0)( sdom , and Wtsout Out )())((   for all )(sdomt , whence 

)),((= WOutSbsouto  . In all cases, )),(( WOutSbo  .  

2)  Let ),,( iQoo all   be an arbitrary element. 

If =Q  or =i , then =o , whence )()( idomodom  .  

If Q  and {0}=)(idom , then )({0}=)( idomodom  .  

If Q  and )({0} idom , then either )({0}=)( idomodom  , or 

)(=)(=)( sdomsoutdomodom   for some ),( iSs max  . In the latter case, isin  , 

whence )()(=)( idomsdomodom  . In all cases, )()( idomodom  .  
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3) If  =Q , or =i , or Q  and {0}=)(idom , then  ),,( iQoall

immediately from the definition of allo . 

Consider the case when Q  and )({0} idom .  

If there exists ),(\ iSQq init  , then )({0} qout  belongs to ),,( iQoall  . 

Otherwise, ),( iSQ init  . Let us choose any Qq   (it exists because Q ). 

Then ),( iSq init   and there exists ),( iSs   such that qs =(0) . Then by Lemma 

2.7, there exists ),( iSs max   such that ss  , whence qs =(0) . Then 

),,( iQosout all  .   

Lemma 2.9. Each initial I/O NCMS is a NCMS representation of a unique 

(up to semantic identity) block.   

Proof. Uniqueness up to semantic identity is obvious from Definition 2.11. 

Let us prove that if ),( 0Q  is an initial I/O NCMS, where ),,(= TrQT , then it is a 

NCMS representation of some block. 

Let )),(( WInSbi  . Let us show that ),,( 0 iQOall   is a non-empty subset of 

)),(( WOutSb   and )()( idomodom   for all ),,( 0 iQOo all  . This is obvious, if 

=)(idom . Consider the case when )(idom . Then  

)),(0),,(,(=),,( 01,2)(0 ixiQSeloiQO allIStatexall   . 

For each )( IStatex  we have QQxiQSel  001,2 )(0),,( . Besides, 

)(IState . Then Lemma 2.8 implies that }{\2),,( )),((
0   WOutSb

all iQO  and 

)()( idomodom   for all ),,( 0 iQOo all  . Thus ),( 0Q  is a NCMS representation 

of a block.  

Lemma 2.10. Let B  be a deterministic causal block. Then B  has a NCMS 

representation.   

Proof. Let us denote ]}[0,=)(|)),(({= tidomTtWBInSbiX   and 

WXWQ BOutBIn )()(=  . Then X . Let in , istate, out  denote projection maps 

from Q  on the first, second, and third coordinate respectively.  
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Let Tr  be the set of all functions of the form QAs : , where TA , such 

that  the following conditions hold: 

a) for each {0}\)(sdomt  we have ][0,=)))((( ttsistatedom  and 

))((=)))((( tsinttsistate , and if (0)s , then (0))(=))(0)(( sintsistate ;  

b) for each )(sdomt  we have )(odomt  and )(=))(( totsout , where o  is a 

unique member of ))(()(( tsistateBOp ;  

c) if {0}\)(, 21 sdomtt   and 21 tt  , then ))(())(( 21 tsistatetsistate  .  

Let us show that ),,(= TrQT  is a NCMS. 

Firstly, let us check that Tr  is closed under proper restrictions (CPR). Let 

Trs , TA , and )(sdomA . Then s  satisfies a)-c). Then TAsdom A =)|(  and 

As |  satisfies a)-c), whence Trs A| . 

Secondly, let us check that Tr  is Markovian. Assume that Trss 21, , 

)(min=)(max= 21
* sdomsdomt , and )(=)( *

2
*

1 tsts .  

Let Qsdomsdoms  )()(: 21  be a function such that )(=)( 1 tsts , if 

)( 1sdomt  and )(=)( 2 tsts , if )( 2sdomt . 

Let us show that s  satisfies the condition a). Let {0}\)(sdomt . Then 

{0}\)( 1sdomt  or {0}\)( 2sdomt  and because 21, ss  satisfy the condition a), we 

have ][0,=)))((( ttsistatedom  and ))((=)))((( tsinttsistate . Assume that (0)s . 

Then (0)1s . If {0}\)( 1sdomt , then  

(0))(=(0))(=))(0)((=))(0)(( 11 sinsintsistatetsistate , 

because 1s  satisfies a). Otherwise, )( 2sdomt  and tt *<0 . Because 2s  satisfies 

c), we have ))(())(( 2
*

2 tsistatetsistate  . Because {0}\)( 1
* sdomt   and (0)1s , we 

have (0))(=))(0)(( 1
*

1 sintsistate . Then  

(0))(=(0))(=))(0)((=))(0)((=))(0)(( 1
*

12 sinsintsistatetsistatetsistate . 

Thus s  satisfies the condition a). 
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Moreover, s  satisfies b), because 1)1( =| ss sdom , 2)2( =| ss sdom , and 21, ss  satisfy 

the condition b).  

Let us show that s  satisfies the condition c). Let {0}\)(, 21 sdomtt   and 

21 tt  . If 2
*

1 ttt  , then ))(())(())(( 2
*

1 tsistatetsistatetsistate  , then 

))(())(( 21 tsistatetsistate  . Otherwise, both 21, tt  belong to )( 1sdom  or )( 2sdom  and  

))(())(( 21 tsistatetsistate   also holds. Thus s  satisfies the condition c).  

We conclude that Tr  is Markovian. 

Thirdly, let us check that Tr  is complete in the sense of Definition 2.3. Let 

Trc   be a non-empty -chain. Let Qsdoms cs  )(:*   be a function such that 

the graph of *s  is a union of graphs of all elements of c  (this is indeed a function, 

because c  is a chain). Then T)( *sdom  (because )c  and *s  satisfies a)-c) 

because each cs  satisfies a)-c). Thus Trs * . It follows that *s  is a least upper 

bound of c  in Tr  viewed as a poset with respect to  . 

We conclude that   is a NCMS. 

Let )),(( WBInSbi  and ))(( iBOpo .  

Let us show that )(|= sdomosout   for each ),( iSs  , and if ),( iSs max  , 

then osout = .   

Let ),( iSs  . Then 0)( sdom  and isin   by the definition of ),( iS  , 

and )(=))((=)))((( titsinttsistate  for all {0}\)(sdomt  by the condition a).  

If )(, sdomtt   and tt <0 , then )))(((=)))(((=)( ttsistatettsistateti   by 

the condition c). Moreover, we have (0)s , whence (0)=(0))(=))(0)(( isintsistate

for each {0}\)(sdomt  by the condition a). Then for each {0}\)(sdomt  we 

have ][0,|=))(( titsistate , because ][0,=)))((( ttsistatedom . Then  

}|{=)|)((=)))(()(( ][0,][0, tt oiBOptsistateBOp , 
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because B  is deterministic and causal. Then ))(|(=))(( ][0, totsout t  and )(odomt

for each )(sdomt  by the condition b). This implies that )()( odomsdom   and for 

all )(sdomt , )(=))(( totsout . Thus )(|= sdomosout  .  

We have )()({0} odomsdom  , so T)(odom . Because (0)=(0))( isin

and (0)=(0))( osout , it follows that a function Qodoms  )(:  such that 

(0)=(0) ss  and ))(,|),((=)( ][0, toitits t  for all {0}\)(odomt  satisfies the 

conditions a)-c). Moreover, Trs  , 0)( sdom , and iisin odom )(|= . Then 

),( iSs  . Besides, ss sdom =| )( .   

This implies that if ),( iSs max  , then ss =  and osout = . 

Now let us denote  

(0)}=(0)=)({0})(),(|),,{(=0 odidodomBIOoiQdxdQ outinoutin  . 

Let us prove that 0)( QSinit  . Let )(),,(  initoutin Sdxd . Then 

(0)=),,( sdxd outin  for some Trs  such that 0)( sdom , then ),( sinSs  , 

whence )(|= sdomosout  , where o  is the unique member of ))(( sinBOp  . Then 

)(),( BIOosin  , )({0} odom , and )(0)(=(0))(= sinsindin  , and 

(0)=(0))(= osoutdout . Thus 0),,( Qdxd outin  . 

We conclude that ),( 0Q  is an initial I/O NCMS. Obviously, )(=)( BInIn 

and )(=)( BOutOut  . 

Now let us prove the following property of 0Q :   

d) if )(),( BIOoi  , 0Qq , i , and (0)=)( iqin , then o  and 

(0)=)( oqout .  

Indeed, if )(),( BIOoi  , i , and 0Qq , then there exists )(),( BIOoi 

such that )()({0} idomodom  , (0)=)( iqin  , (0)=)( oqout  . Because {0}{0} |=| ii

and B  is deterministic and causal, we have {0}{0} |=| oo , whence o  and 

)(=(0)=(0) qoutoo  . 

Now let us show that ),( 0Q  is a NCMS representation of B .  
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It is sufficient to show that ),,(=))(( 0 iQOiBOp all   for all )),(( WBInSbi . 

This is obvious, if =i . 

Let }{\)),((  WBInSbi  and ))(( iBOpo  be arbitrary elements. Then 

)),(0),,(,(=),,( 01,2)(0 ixiQSeloiQO allIStatexall   . 

Consider the following cases: 

– =)(0),,( 01,2 xiQSel  for some )( IStatex . Then there is no pair 

)(),( BIOoi   such that (0)=(0) ii  and (0)o . For all )( IStatex , 

=o  and =)(0),,( 01,2 xiQSel . Then ))((=}{=),,( 0 iBOpiQOall  .  

– )(0),,( 01,2 xiQSel  for all )( IStatex  and {0}=)(idom . Then (0)o

and (0)=)( oqout  for each 001,2 )(0),,( QxiQSelq   by the property d). 

Then }{=(0)}{{0}=)),(0),,(,( 01,2 ooixiQSeloall   for all )( IStatex , 

whence ))((=),,( 0 iBOpiQOall  .  

– )(0),,( 01,2 xiQSel  for all )( IStatex , )({0} idom , and 

{0})( odom . If (0)=)( iqin  for some ),( iSq init  , then (0)= sq  for 

some ),( iSs  , whence )(|= sdomosout   as we have shown above, but 

this is impossible, because )({0} sdom  and {0})( odom . Thus 

(0))( iqin   for each ),( iSq init  . Then for each )( IStatex

)(0),,((0) 01,2 xiQSels   holds for all ),( iSs max   and 

 =),()(0),,( 01,2 iSxiQSel init . Then for each )( IStatex , 

)}(0),,(|)({{0}=)),(0),,(,( 01,201,2 xiQSelqqoutixiQSeloall   , whence 

 (0)}=)(|)({{0}=),,( 00 iqinQqqoutiQOall  . Because for 

some 0Qq , (0)=)( iqin  by the property d), we have )(0 odom  and 

))((=}{=(0)}{{0}=),,( 0 iBOpooiQOall  . 

– )(0),,( 01,2 xiQSel  for all )( IStatex  and )({0} odom . We have 

T)(odom . Let )( IStatex  and )(0),,( 01,2 xiQSelq . Then 

(0)=)( iqin  and have (0)=)( oqout  by the property d). It is easy to see 
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that a function Qodoms  )(:  such that qs =(0)  and 

))(,|),((=)( ][0, toitits t  for all {0}\)(odomt  satisfies a)-c). Moreover, 

Trs  , 0)( sdom , and iisin odom )(|= . Then ),( iSs  . Then 

),(=(0) iSqs init  . Because )(0),,( 01,2 xiQSelq  is arbitrary, we have 

),()(0),,( 01,2 iSxiQSel init  . Then for each )( IStatex ,  

}{=)),(0),,(,( 01,2 oixiQSeloall  , because osout =  for any ),( iSs max 

as we have shown above and )(0),,( 01,2 xiQSel . Then 

))((=}{=),,( 0 iBOpoiQOall  , because )(IState . 

In all possible cases we have ))((=),,( 0 iBOpiQOall  . Thus ),( 0Q  is a 

NCMS representation of the block B .   

Let ),,(= 111 TrQT  and ),,(= 222 TrQT  be I/O NCMS such that 

)(=)( 21  InIn  and )(=)( 21  OutOut . 

Let us introduce the following notions 

Definition 2.12.

1) A state embedding from 1  to 2  is a function 21: QQf   such that 

)}(=)()(|{=}|{ 121 qftsQqsdomtTrsTrssf   and there exists 

an injective function )()(: 21  IStateIStateg  such that for all 1Qq ,  

)).()),((),((=)( qoutqistategqinqf

2) A state embedding from an initial I/O NCMS ),( 1
01 Q  to an initial I/O 

NCMS ),( 2
02 Q  is a state embedding f  from 1  to 2  such that for each 

1Qq , 1
0Qq  if and only if 2

0)( Qqf  .  

Note that it follows immediately from this definition that a state embedding 

from 1  to 2  is an injective function. 

Lemma 2.11. Let ),,(= 111 TrQT  and ),,(= 222 TrQT  be I/O NCMS, 

)(=)( 21  InIn  and )(=)( 21  OutOut , and f  be a state embedding from 1  to 

2 . Let )),(( 1 WInSbi  . Then )},(|{),( 12 iSssfiS maxmax    and  
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)},(|)({=)}(=|),({ 112 iSqqfqfqQqiSq initinit  . 

Proof. Because 21}|{ TrTrssf  , we have the following:  

 1022 |{})(|{=),( TrssfisinsdomTrsiS  

=})(|{=})()( 010 isinsdomTrssfisfinsfdom    

)}.,(|{= 1 iSssf 

Let ),( 1 iSs max  . Then ),( 2 iSsf  . Suppose that ),( 2 iSsf max  . 

Then ssf   for some ),( 2 iSs  . Because )(sdom , }|)({)( 1Qqqfts 

for some Tt . Then sfs  =  for some 1Trs  , because 

)}(=)()(|{=}|{ 121 qftsQqsdomtTrsTrssf  . Then sfsf   , 

whence ss  , because f  is injective. Besides, 0)(=)(  sdomsdom  and 

isinsin   = . Then ),( 1 iSs  . We get a contradiction with the assumption 

),( 1 iSs max  . We conclude that ),( 2 iSsf max  . Thus we have 

)},(|{),( 12 iSssfiS maxmax   . 

Now let us show that  

)},(|)({=)}(=|),({ 112 iSqqfqfqQqiSq initinit  . 

Let ),( 2 iSq init   and 1Qq   be such that )(= qfq  . Then (0)= sq  for some 

),( 2 iSs  . Then 2Trs  and )(=(0) qfs  , where 1Qq  . Then there exists 1Trs 

such that sfs = . Moreover, 0)(=)(  sdomsdom  and isinsin  = . Then 

),( 1 iSs   and ),((0) 1 iSs init  . Thus  

)},(|)({(0))(=(0)= 1 iSqqfsfsq init  . 

Conversely, let ),( 1 iSq init  . Then (0)= sq   for some ),( 1 iSs  . Then 

),( 2 iSsf  , whence ),()(0)(=(0))(=)( 2 iSsfsfqf init   . Then because 

1Qq  , we have )}(=|),({)( 12 qfqQqiSqqf init  . Thus  

)},(|)({=)}(=|),({ 112 iSqqfqfqQqiSq initinit  .  
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Lemma 2.12. For 1,2=j  let ),( 0
j

j Q  be a NCMS representation of a block 

jB . Assume that )(=)( 21  InIn  and )(=)( 21  OutOut  and there exists a state 

embedding f  from ),( 1
01 Q  to ),( 2

02 Q . Then 21 BB  . 

Proof. Assume that ),,(= 111 TrQT  and ),,(= 222 TrQT . We have 

)(=)(=)(=)( 2211 BInInInBIn   and )(=)(=)(=)( 2211 BOutOutOutBOut  . 

Because f  is a state embedding, there exists an injective function 

)()(: 21  IStateIStateg  such that for all Qq , 

))()),((),((=)( qoutqistategqinqf . 

Let )),(( WBInSbi . Then for 1,2=j , ),,(=))(( 0 iQOiBOp j
jallj  . Let us 

show that ),,(),,( 1
01

2
02 iQOiQO allall  . This is obvious, if =i , so assume i . 

Let us fix some )( 11  IStatex . Denote )(0),,(= 1
1
01,21 xiQSelQ  and 

))((0),,(= 1
2
01,22 xgiQSelQ . Because g  is injective and }|)({ 1

0
2
0 QqqfQ  ,  

 )}(=)((0)=)(|{= 1
2
02 xgqistateiqinQqQ

=)}(=))(((0)=))((|)({ 1
1
0 xgqfistateiqfinQqqf 

=)}(=))(((0)=)(|)({= 1
1
0 xgqistategiqinQqqf 

}.|)({=)}(0),,(|)({= 11
1
01,2 QqqfxiQSelqqf 

Let us show that 2Q  if and only if 1Q . Indeed, if 1Q , then 

2Q , because }|)({ 12 QqqfQ  . Conversely, if 2Q , then 

2
01 )),((0),( Qdxgi   for some )( 2Outd , whence 11 ),(0),( Qdxi   and 

2
01 )),(0),(( Qdxif  , whence, 1

01 ),(0),( Qdxi  , because f  is a state embedding, and 

finally,  )(0),,(= 1
1
01,21 xiQSelQ . 

Now let us show that ),,(),,( 1122 iQoiQo allall  . This is obvious, if  =1Q

or  =2Q , because 2Q  if and only if 1Q  as we have shown above. So let 

us assume that 1Q  and 2Q . 
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Consider the case when {0}=)(idom . Because }|)({ 12 QqqfQ  ,  

=}|))(({{0}}|)({{0}=),,( 1222 QqqfoutQqqoutiQoall  

).,,(=}|)({{0}= 111 iQoQqqout all 

Now consider the case when )({0} idom . Then  

 }(0)),(|{=),,( 2222 QsiSssoutiQo maxall 

)}.,(\|)({{0} 22 iSQqqout init  

By Lemma 2.11 we have )},(|{),( 12 iSssfiS maxmax    and 

)},(|)({=)}(=|),({ 112 iSqqfqfqQqiSq initinit  . 

Because f  is injective and }|)({ 12 QqqfQ  ,  

  ),(|)({}(0)),(|{ 122 iSssfoutQsiSssout maxmax 

}.(0)),(|{}(0))( 112 QsiSssoutQsf max  

Moreover, because 11 QQ   and f  is injective, we have  

=),(\}|)({),(\ 2122 iSQqqfiSQ initinit 

=)}(=|),({\}|)({= 121 qfqQqiSqQqqf init 

=)},(|)({\}|)({= 11 iSqqfQqqf init 

)}.,(\|)({= 11 iSQqqf init 

Then  

|))(({{0})},(\|)({{0} 22 qfoutiSQqqout init  

)}.,(\|)({{0}=)},(\ 1111 iSQqqoutiSQq initinit  

Finally, we have ),,(),,( 1122 iQoiQo allall  . 

We conclude that for each )( 11  IStatex ,  

).),(0),,(,())),((0),,(,( 1
1
01,211

2
01,22 ixiQSeloixgiQSelo allall 

Then because i  by our assumption, we have  




)),(0),,(,(=),,(=))(( 2
2
01,22

)2(2

2
022 ixiQSeloiQOiBOp all

IStatex
all 




))),((0),,(,( 1
2
01,22

)1(1

ixgiQSeloall
IStatex
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).)((=),,(=)),(0),,(,( 1
1
011

1
01,21

)1(1

iBOpiQOixiQSelo allall
IStatex






We conclude that 21 BB  .  

Definition 2.13. A disjoint union of an indexed family of initial I/O NCMS 

Jj
j

j Q  )),(( 0 , where J  and ),,(= jjj TrQT  for each Jj , is a pair ),( 0Q , 

where ),,(= TrQT  and  

1) WIStatejWQ OUT
jJj

IN   ))(}{(=  , where )(= jJj InIN  , and 

)(= jJj OutOUT  ;  

2) }|{= jj TrsJjsfTr  ;  

3) }|)({= 00
j

j QqJjqfQ  ;  

where for each Jj , QQf jj :  is a function such that  

.)),()),(,(),((=)( jj Qqqoutqistatejqinqf 

Lemma 2.13. Let ),( 0Q  be a disjoint union of an indexed family of initial 

I/O NCMS Jj
j

j Q  )),(( 0 , where J . Then ),( 0Q  is an initial I/O NCMS.   

Proof. Assume ),,(= TrQT  and ),,(= jjj TrQT  for each Jj . For each 

Jj , let QQf jj :  be defined as in Definition 2.13. 

Let us show that   is a NCMS. Let )(= jJj InIN  , )(= jJj OutOUT  , 

and for each Jj  let WIStatejWQ OUT
j

IN
j  ))(}({= .  

Then jf  is an injective function from jQ  to jQ . Then because j  is a 

NCMS, the triple ),,( jj rTQT  , where }|{= jjj TrssfrT   , is a NCMS by Lemma 

2.5. For each Jjj ,  such that jj   we have   =jj QQ . Moreover, 

jJj QQ 
=  and jJj rTTr 

=  by Definition 2.13. Then ),,(= TrQT  is a NCMS 

by Lemma 2.6. Because  )(}{ jJj IStatej ,   is an I/O NCMS. 
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For each Jj , ),( 0
j

j Q  is an initial I/O NCMS, so j
j

jinit QQS  0)( . 

Then  

=})(|(0){=)( 0 sdomTrssSinit

=})(|)(0){(= 0 sfdomTrsJjsf jjj 

.=}|)({)}(|)({= 00 QQqJjqfSqJjqf j
jjinitj 

Obviously, QQ 0 , so QQSinit  0)( . We conclude that ),( 0Q  is an 

initial I/O NCMS.  

Definition 2.14. 

1) A complete set of sub-blocks of a block B  is a set   of sub-blocks of B

such that )(=)( BIOBIO B 
  .  

2) A complete indexed family of sub-blocks of a block B  is an indexed 

family JjjB )(  such that }|{ JjB j   is a complete set of sub-blocks of B .  

Lemma 2.14. Let JjjB )(  be a complete indexed family of sub-blocks of a 

block B , where J . Assume that for each Jj , jB  has a NCMS 

representation ),( 0
j

j Q . Let ),( 0Q  be a disjoint union of Jj
j

j Q  )),(( 0 . Then 

),( 0Q  is a NCMS representation of B . 

Proof. Assume that ),,(= jjj TrQT  for each Jj  and ),,(= TrQT . 

By Lemma 2.13, ),( 0Q  is an initial I/O NCMS, whence by Lemma 2.9, 

there exists a block B  (unique up to semantic identity) such that ),( 0Q  is a 

NCMS representation of B . Because BB j , for each Jj  we have 

)(=)(=)( BInBInIn jj  and )(=)(=)( BOutBOutOut jj . 

Because J , we have )(=)(=)(=)( BInInInBIn jJj 
  and 

)(=)(=)(=)( BOutOutOutBOut jJj 
 . 

For each Jj , let )()(:  IStateIStateg jj  and QQf jj :  be functions 

such that ),(=)( xjxg j  for all )( jIStatex  , and for each jQq , 
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))()),((),((=)( qoutqistategqinqf jj . 

Let us show that BB  . Let us fix Jj . Obviously, )(=)(  InIn j , 

)(=)(  OutOut j , and the function jg  is injective. Because 

  =}|)({}|)({ jjjj QqqfQqqf , if Jjj ,  and jj  , from the item 2 of 

Definition 2.13 it follows that  

)}(=)()(|{=}|{ qftsQqsdomtTrsTrssf jjjj  . 

Then jf  is a state embedding from j  to  . Moreover, from the item 3 of 

Definition 2.13 it follows that for each jQq , jQq 0  if and only if 0)( Qqf j  , 

because jf  is injective and   =}|)({}|)({ jjjj QqqfQqqf  for all Jjj ,

such that jj  . Thus jf  is a state embedding from ),( 0
j

j Q  to ),( 0Q . Then 

BB j   by Lemma 2.12. Because Jj  is arbitrary, we conclude that BB  . 

Now let us show that BB . Let )(),( BIOoi  . Then ),,( 0 iQOo all  .  

If =i , then =o  and )(),( BIOoi   (because B  is a block).  

Consider the case when i . Then there exists an element 

)(}{=)(*
jJj IStatejIStatex    such that )),(0),,(,( *

01,2 ixiQSeloo all  . 

Then there exists Jj  and )(*
jj IStatex   such that ),(= **

jxjx . 

Let WIStatejWQ Out
j

In
j

)()( ))(}({=    and 
jQj  |= . Then j  is a 

NCMS by Lemma 2.3. Let us denote by jrT   the set of trajectories of j . Obviously, 

jQ  is the set of states of j  and )(=)(  InIn j , )(=)(  OutOut j . Besides, j  is 

an I/O NCMS and  

jjjinitjQinitjinit QQQQSSS   0)()|(=)( , 

because ),( 0Q  is an initial I/O NCMS. Denote jj QQQ  00, = . Then ),( 0, jj Q  is 

an initial I/O NCMS. Moreover, )(*
jIStatex  . 

Let us prove that ),,( 0, iQOo jjall  . Denote )(0),,(= *
01,2 xiQSelQ . 
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Firstly, let us show that QxiQSel j  =)(0),,( *
0,1,2 . Indeed, if 

jj QQQq  00, =  and (0)=)( iqin , *=)( xqistate , then Qq  . Conversely, if 

Qq  , then 0Qq , ),(=)((0),=)( *
jxjqistateiqin , whence jQq   and 

)(0),,( *
0,1,2 xiQSelq j . 

Secondly, let us show that ),,( iQoo jall  . Note that ),,( iQoo all  . If 

 =Q  or {0})( idom , from the definition of allo  we have 

),,(=),,( iQoiQoo jallall  . Consider the case when Q  and )({0} idom . 

Because ),,( iQoo all  , the following two sub-cases are possible:   

a) souto =  for some ),( iSs max   such that Qs (0) . Then Trs , 

0)( sdom , and isin  . Because Qs (0) , we have 

),(==(0))( **
jxjxsistate . From the item 2 of  Definition 2.13 for   it 

follows that the first component of the value ))(( tsistate  is j  for all 

)(sdomt . Then jQts )(  for all )(sdomt , whence jrTs  . Then 

),( iSs j . Moreover, ),( iSs jmax  , because otherwise, ss   for some 

),( iSs j , whence ),( iSs  , and we get a contradiction with 

),( iSs max  . Thus ),,( iQoo jall   by definition of allo .  

b) )({0}= qouto   for some ),(\ iSQq init  . Then (0)sq   for all Trs

such that 0)( sdom  and isin  . Because 
jQj  |= , we have, in 

particular, (0)sq   for all jrTs   such that 0)( sdom  and isin  . 

Then ),(\ iSQq jinit  , whence ),,( iQoo jall  .  

Thus we conclude that ),,( iQoo jall  , )(0),,(= *
0,1,2 xiQSelQ j , and 

)(*
jIStatex  , whence ),,( 0, iQOo jjall  , because i  by assumption. 

By Lemma 2.9, there exists a block jB  such that ),( 0, jj Q  is a NCMS 

representation of jB . Let )()(: jj IStateIStateg   and jj QQf :  be functions 
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such that xxjg =)),((  for all )( jIStatex   and ))()),((),((=)( qoutqistategqinqf

for all jQq  . Obviously, )(=)( jj InIn  , )(=)( jj OutOut  , and g  is injective. 

Moreover, f  is an inverse of jf , whence  

=})()(|{=}|{ jj QtssdomtTrssfrTssf  

.=}))(()(|)({= jjjjj TrQtsfsdomtTrsJjsff   

Because )(sdom  for each jTrs , and )))(((=)( tsffts j  and 

jj Qtsf ))((  for each )(sdomt , we have  

)}(=)()(|{=}|{ qftsQqsdomtTrsrTssf jjj  . 

Then f  is a state embedding from j  to j . Moreover, for each jQq  , 

jj QQQq  00, =  if and only if )(= qfq j   for some jQq 0  if and only if 

jQqf 0)(  . Then f  is a state embedding from ),( 0, jj Q  to ),( 0
j

j Q . Then jj BB 

by Lemma 2.12. As we have shown above, ))((=),,( 0, iBOpiQOo jjjall  , so 

))(( iBOpo j , whence )(),( BIOoi  . We conclude that BB . 

We have shown that BB   and BB . Then B  and B  are semantically 

identical. Then ),( 0Q  is a NCMS representation of B .  

Now we can prove Theorem 2.2. 

Proof of Theorem 2.2. Let B  be a strongly nonanticipative block. Let us 

show that B  has a NCMS representation. 

Let   be the set of all relations )(BIOR   such that R  is an I/O relation of 

a deterministic causal block. For each R  let us define a block RB  such that 

RBIO R =)( , )(=)( BInBIn R , )(=)( BOutBOut R . Then RB  is a deterministic 

causal block for each R  and )(=)( RR BIOBIO   , because B  is strongly 

nonanticipative. Then RRB )(  is a complete indexed family of sub-blocks of B

and  . By Lemma 2.10, for each R  there exists an initial I/O NCMS 
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),( 0
R

R Q  which is a NCMS representation of RB . Let ),( 0Q  be a disjoint union of 

 R
R

R Q )),(( 0 . Then by Lemma 2.14, ),( 0Q  is a NCMS representation of B . 

2.7 Proof of the converse theorem about representation of a strongly 

nonanticipative block 

In this section we give a proof of Theorem 2.3.

Lemma 2.15. Assume that a block B  has a NCMS representation, 

)(),( BIOoi  , and ),(),( 2 oioi  . Then )(),( BIOoi  . 

Proof. Let ),( 0Q  be a NCMS representation of B , where ),,( TrQT .  

Because ),(),( 2 oioi  , we have Aii |  an Aoo |  for some 0A . If  

i  or A , then  oi , so )(),( BIOoi  .  

Let us assume that i  and A .  Then ),,())(( 0 iQOiBOpo all   and 

there exists )( IStatex  such that ),,( iQoo all  , where )),0(,( 02,1 xiQSelQ  . 

Moreover, )0()0( ii   and  )),0(,( 02,1 xiQSelQ  , whence 

))((),,(),,( 0 iBOpiQOiQo allall  . 

Because ),,( iQoo all  , the following cases are possible. 

1) Q  and o . Then ))((),,( iBOpiQoo all  . 

2) }0{)( idom  and )(}0{ qouto   for some Qq  . Then ii   and 

oo  , because A . Then ))(())(( iBOpiBOpoo  . 

3) )(}0{ idom  and )(}0{ qouto   for some ),(\ iSQq init  . Then 

oo  , because A . If }0{A , then }0{)( idom  and Qq  , so  

))((),,()(}0{ iBOpiQoqoutoo all   . 

Consider the case when }0{A . Then A}0{  and )(}0{ idom  , because 

0}),({ Aidom . Moreover, because ii  and ),( iSq init  , we have ),( iSq init  , 

whence ),(\ iSQq init  . Then ))((),,()(}0{ iBOpiQoqoutoo all   . 
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4) )(}0{ idom  and souto   for some ),( iSs max   such that Qs )0( .  

If }0{A , then }0{)( idom  and Qs )0( , so  

))((),,())0((}0{| }0{ iBOpiQosoutoo all   . 

Consider the case when }0{A . Then A}0{ . Then )(}0{ idom  , because 

0}),({ Aidom  and )(}0{ idom . By the CPR property of  , we have Trs A| . 

Besides, )|( Asin  iisin AA  ||)(  , because isin  , so ),(| iSs A  . Denote 

Ass | . Because ),( iSs  , by Lemma 2.7 there exists ),(ˆ iSs max   such that 

ss ˆ . Because Aiisin |ˆ  , we have Asdom )ˆ( . Then 

AsdomsdomAsdom A  )ˆ()|()( . 

Because 0}),({ Asdom , we have either )ˆ()|( sdomsdomA A  , or 

)ˆ()|()( sdomsdomsdom A  . In the former case, sss A ˆ|  , because ss ˆ . In the 

latter case, Asdom )( , whence ssss A ˆ|  . Moreover, ),(),(ˆ iSiSs max  , 

because ii , and ),( iSs max  , so sss ˆ . So in both cases, ),(ˆ iSss max  . 

Moreover, soutoo A  |  and Qss  )0()0( . Then 

))((),,( iBOpiQosouto all   . 

 In all possible cases ))(( iBOpo  . We conclude that )(),( BIOoi  .  

Lemma 2.16. Assume that a block B  has a NCMS representation, 

))(( iBOpo , and ii  . Then there exists ))(( iBOpo   such that ),(),( 2 oioi  .  

Proof. Let ),( 0Q  be a NCMS representation of B , where ),,( TrQT .  

Assume that i . Then o . We have ))(( iBOp . Let us choose an 

arbitrary ))(( iBOpo  . Then ),(),( 2 oioi  . 

Now let us assume that i . Then ),,())(( 0 iQOiBOpo all   and there 

exists )( IStatex  such that ),,( iQoo all  , where )),0(,( 02,1 xiQSelQ  . 

Moreover, )0()0( ii   and  )),0(,( 02,1 xiQSelQ  , whence 

))((),,(),,( 0 iBOpiQOiQo allall  . 

Because ),,( iQoo all  , the following cases are possible. 
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1) Q  and o . Let o . Then ))((),,( iBOpiQoo all  . 

Moreover, )(| idomii   and )(| idomoo  , so ),(),( 2 oioi  . 

2) }0{)( idom  and )(}0{ qouto   for some Qq  .  

If }0{)( idom , then ii  , so for oo   we have ))(( iBOpo   and 

),(),( 2 oioi  .  

Consider the case when )(}0{ idom  .  

If ),( iSq init  , then ))((),,()(}0{ iBOpiQoqouto all   , so for 

oo   we have )(| idomii   and )(| idomoo   (because )()( idomodom  ), whence 

),(),( 2 oioi   and ))(( iBOpo  . 

If ),( iSq init  , then by Lemma 2.7 there exists ),( iSs max   such that 

Qqs )0( . Then ))((),,( iBOpiQosout all  . Let souto  . Then 

}0{|ii   and }0{|oo  , because }0{)( idom  and )0()())0(()0( oqoutsouto  ,  

so  ),(),( 2 oioi  . Besides, ))(( iBOpo  . 

3) )(}0{ idom  and )(}0{ qouto   for some ),(\ iSQq init  . 

Let us show that ),( iSq init  . Suppose that ),( iSq init  . Then there exists 

),( iSs   such that qs )0( . Then iisin idomidom  )()( |)|(   and Trs idom )(|  by 

the CPR property, so ),(| )( iSs idom   and ),()0)(|( )( iSsq initidom  . This 

contradicts the assumption ),(\ iSQq init  . Thus ),( iSq init  . 

Then )(}0{ idom   and ),(\ iSQq init  . Let oo  . Then 

))((),,()(}0{ iBOpiQoqouto all   . Moreover, )(| idomii   and 

)(| idomoo  , so ),(),( 2 oioi  . 

4) )(}0{ idom  and souto   for some ),( iSs max   such that Qs )0( . 

We have iisin  , so ),( iSs  . By Lemma 2.7 there exists 

),( iSs max   such that ss  . Let souto   . Then Qss  )0()0(  and 

)(}0{ idom  , whence ))((),,( iBOpiQosouto all   . We have 
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iisin idomidom  )()( ||   and Trs idom  )(|  by the CPR property, so ),(| )( iSs idom  . 

Also, )(| idomss  , because )()( idomsdom  . Then )(| idomss  , because 

),( iSs max  . Then )(| idomoo  . Moreover, )(| idomii  , so ),(),( 2 oioi  . 

In all cases there exists ))(( iBOpo   such that ),(),( 2 oioi  .  

Lemma 2.17. If a block B  has a NCMS representation, then it is weakly 

nonanticipative. 

Proof. Follows from Lemma 2.15, Lemma 2.16, and Theorem 1.1. 

Lemma 2.18. Assume that a block B  is weakly nonanticipative and 

}0{)( odom  for each )(),( BIOoi  . Then B  is strongly nonanticipative. 

Proof. Let us fix )(),( ** BIOoi  . Then ),()|,|( **
2

}0{*}0{* oioi  , so 

)()|,|( }0{*}0{* BIOoi   by Theorem 1.1, because B  is weakly nonanticipative. 

Let }}0{)(|)),(({  idomWBInSbiI . We have Ii }0{* |  and 

)|)((| }0{*}0{** iBOpoo  , because }0{)( * odom . For each Ii  we have 

))(( iBOp , so there exists a (selector) function )),((: WBOutSbIf   such that 

))(()( iBOpif   for all Ii  and *}0{* )|( oif  .  

For each )),(( WBInSbi  let )}|({)( }0{ifiO  . Then )(iO  and if 

)(iOo , then )|)(()|( }0{}0{ iBOpifo  , so )()|()( }0{ idomidomodom  . Then 

there exists a block B  such that )()( BInBIn  , )()( BOutBOut  , and 

)())(( iOiBOp   for all )),(( WBInSbi .  

The block B  is deterministic, because )(iO  is a singleton for each i . 

Moreover, if )),((, 21 WBInSbii  , Tt , ][0,2][0,1 |=| tt ii , ))(( 11 iBOpo  , and 

))(( 22 iBOpo  , then 2}0{2}0{11 )|()|( oififo  , whence ][0,2][0,1 |=| tt oo . Thus the 

block B  is causal. 

Let us show that BB . Let )(),( BIOoi  . If i , then o  and 

)(),( BIOoi  .  
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Assume that i . Then )|)(()|( }0{}0{ iBOpifo  . We have ii }0{| , so by 

Theorem 1.1 there exists ))(( iBOpo   such that ),(),|( 2
}0{ oioi   (because B  is 

weakly nonanticipative). Then Aii || }0{   and Aoo |  for some 0A . Then A0 , 

because i . Then Aodom  }0{)( , whence ooo A | . Then )(),( BIOoi  . 

Because )(),( BIOoi   is arbitrary, BB . 

Moreover, we have }{)}|({)())(( *}0{*** oifiOiBOp  , so )(),( ** BIOoi  . 

 We conclude that for each )(),( ** BIOoi   there exists a deterministic causal 

sub-block BB  such that )(),( ** BIOoi  . Thus B  is strongly nonanticipative. 

Lemma 2.19. Assume that a block B  has a NCMS representation, 

)(),( ** BIOoi  , )(}0{ *idom , and }0{)( * odom . Then there exists a sub-block 

BB  such that B  has a NCMS representation and }{))(( ** oiBOp  . 

Proof. Let ),( 0Q  be a NCMS representation of B , where ),,( TrQT . 

Then ),,( *0* iQOo all  , *i , and there exists )(*  IStatex  such that 

),,( *** iQoo all  , where )),0(,( **02,1* xiQSelQ  . Because }0{)( * odom , there 

exists ),(\ *** iSQq init   such that )(}0{ ** qouto  .  

Let )})0({)()}0(({)}0()(|{ ***00 oIStateiiqinQqQ  . 

On the set of all function of the form QAs : , where TA  let us define a 

predicate P  such that  

)(sP )|)|((}0{\())|(( ),0[*),0[0}0{ tt isinTtQsrange   . 

For each QAs : , where TA , let us define a function QAsF :)( :  

– *)0)(( qsF  , if A0  and )0())0(( *isin  ; 

– )0()0)(( ssF  , if A0  and )0())0(( *isin  ; 

– )())(( tstsF   for all }0{\At . 

Let )(),( QLRrl   be a LR representation of   (which exists by Theorem 

2.1).  Let BoolQSTr  )(:  be a predicate such that  

–  )0,(sr )()0),(( sPsFr  ,if )()0,( QSTs  ; 
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– ),(),( tsrtsr  , if )(),( QSTts   and 0t . 

Let us show that r  is right-local. Let )(),(),,( 0201 QSTtsts   and 21 0
ss t  . 

If 00 t , then ),(),(),(),( 02020101 tsrtsrtsrtsr  , because r  is right-local.  

Consider the case when 00 t . Then there exists 0t  such that 2),0[1 ss t . 

Let us show that )0,()0,( 21 srsr  . Assume that )0,( 1sr . Then either 

)0),(( 1sFr , or )( 1sP . In the former case, )()( 2),0[1 sFsF t  by the definition of 

F , because 2),0[1 ss t , whence )0),(( 2sFr , because r  is right-local, so 

)0,( 2sr . In the latter case, i.e. )( 1sP , we have either 01 )0( Qs  , or there exists 

0t  such that ),0[*),0[1 |)|( tt isin  . If 01 )0( Qs  , then 012 )0()0( Qss  , so 

)( 2sP  and )0,( 2sr . Otherwise, there exists 0t  such that ),0[*),0[1 |)|( tt isin  , 

so )|()|(| }),min{,0[2}),min{,0[1}),min{,0[* tttttt sinsini    , so )( 2sP  and )0,( 2sr .  

Thus )0,()0,( 21 srsr   in all cases, so )0,()0,( 12 srsr  . 

Thus we have shown that )0,()0,( 12 srsr   whenever 21 0
ss t  . Then we 

have )0,()0,( 21 srsr   whenever 21 0
ss t  . Moreover, if )(),( QSTts   and 

tsdom )(max , then 0t  and ),( tsr , so ),( tsr  holds.  

We conclude that r  is right-local. 

 Then )(),( QLRrl   is a LR representation of some NCMS ),,( rTQT 

by Theorem 2.1. Then ))},(),((|:{ tsrtslAtAQAsrT  T . 

Let us show that ))()(( sPTrsFrTs   holds for each function of the 

form QAs : , where TA . Consider the following cases. 

a) )0(s . Then ssF )( . Also, )(sP , because )|( }0{srange  and )0(*i , 

so ),(),( tsrtsr   for all )(sdomt , whence ))()(( sPTrsFrTs  . 

b) )0(s . Then we have )()0),(()0,( sPsFrsr  . Moreover, 

}0{\}0{\ ||)( TT ssF  , whence ),()),(( tsltsFl   and ),(),()),(( tsrtsrtsFr 

for all }0{\)(sdomt . Also, )0),(( sFl  and )0,(sl , so )0,()0),(( slsFl  . Then  
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)())),(()),(()(()),(),()(( sPtsFrtsFlsdomttsrtslsdomt  , 

whence ))()(( sPTrsFrTs  . 

We conclude that ))()(( sPTrsFrTs   for each QAs : , TA . 

Obviously, QQ 0 . Let us show that 0)( QSinit  . Let )( initSq . Then 

qs )0(  for some rTs  . Then )()( sPTrsF   holds. Then 0}0{ )|( Qsrange  , 

because )(sP . Then 0)0( Qsq  .  

We conclude that QQSinit  0)( , so ),( 0Q  is an initial I/O NCMS. By 

Lemma 2.9, it is a NCMS representation of some block B . Then )()( BInBIn 

and )()( BOutBOut  . 

Let us show that ))(())(( iBOpiBOp   for all )),(( WBInSbi . 

Assume that )),(( WBInSbi  and ))(( iBOpo  . Let us show that 

))(( iBOpo . This is obvious, if i , so assume that i . Then there exists 

)()(  IStateIStatex  such that ),,( iQoo all  , where )),0(,( 02,1 xiQSelQ  . 

Then the following cases are possible. 

1) Q  and o . Then )0()0( *ii  , so )),0(,( 02,1 xiQSel  and 

))((),,()),),0(,(,( 002,1 iBOpiQOixiQSeloo allall  . 

2) }0{)( idom  and )(}0{ qouto   for some Qq  .  

If )0()0( *ii  , then )),0(,( 02,1 xiQSelq , so  

))(()),),0(,(,()(}0{ 02,1 iBOpixiQSeloqouto all   . 

Consider the case when )0()0( *ii  . Because 0Qq   and )0()0()( *iiqin  , 

we have )0()( *oqout  , so *oo   and }0{* |ii  . Because ),(),|( **
2

*}0{* oioi  , 

)(),( ** BIOoi  , by Lemma 2.15, we have )(),|( *}0{* BIOoi  , so ))(( iBOpo . 

3) )(}0{ idom  and )(}0{ qouto   for some ),(\ iSQq init  .  

Consider the following sub-cases. 

3.1) )0()( *iqin  . Then because 0Qq  , we have 0Qq , so 

)),0(,( 02,1 xiQSelq . Let us show that ),( iSq init  . Suppose ),( iSq init  . Then 



 99

)0(sq   for some ),( iSs  . Then )0())0(( *isin  , so ssF )( . Moreover, 

0}0{ )|( Qsrange  , because 0Qq  , and )|)|((}0{\( ),0[*),0[ tt isinTt   , because 

)0())0(( *isin  . Then )(sP  holds and TrssF )( , so rTs  . Besides, isin  , 

so ),( iSs   and ),( iSq init  . This contradicts the assumption ),(\ iSQq init  . 

Thus ),( iSq init  . Then because )),0(,( 02,1 xiQSelq , we have  

))(()),),0(,(,()(}0{ 02,1 iBOpixiQSeloqouto all   . 

3.2) )0()( *iqin  . Then because 0Qq  , we have )0()( *oqout  , so *oo  . 

Consider the case when ),0[*),0[ || tt ii   for some 0t . Then because 

),()|,|(),|( **
2

),0[*),0[*),0[ oioioi ttt   and )(),( ** BIOoi  , by Lemma 2.15, we have 

)(),|( ),0[ BIOoi t  . Then there exists ))(( iBOpo   such that ),(),|( 2
),0[ oioi t   by 

Lemma 2.16. Then oo   by Lemma 1.3, because ),|( ),0[ oi t  is an abnormal I/O 

pair. Then ))(( iBOpo . 

Now consider the case when ),0[*),0[ || tt ii   for all 0t .  

Let us show that ),(* iSq init  . Suppose that ),(* iSq init  . Then )0(* sq 

for some ),( iSs  . Let Qsdoms  )(:  be a function such that qs  )0( , 

)()( tsts   for }0{\)(sdomt . Then )0()())0(( *iqinsin  , so 

)0()0)(( * sqsF  , }0{\}0{\}0{\ |||)( TTT sssF  . Then TrssF )( . Also, 

0}0{ }{)|( Qqsrange  . We have isin  , because isin   and 

)0()0()())0(( * iiqinsin  . Because ),0[*),0[ || tt ii   for all 0t , this implies that 

),0[*),0[ |)|( tt isin   for all 0t . Then )(sP   holds. So we have )()( sPTrsF  . 

Thus rTs  . Then because  )0(s  and isin  , we have ),( iSs  . Then 

),()0( iSsq init  , which contradicts the assumption ),(\ iSQq init  .  

Thus ),(* iSq init  . Because )),0(,( **02,1* xiQSelq  , )0()()0(* iqini  , 

we have ))(()),),0(,(,()(}0{ *02,1* iBOpixiQSeloqout all  . Because 0Qq  , 

)0()( *iqin  , we have )()0()( ** qoutoqout  . Then ))(()(}0{ iBOpqouto   . 
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4)  )(}0{ idom  and souto   for some ),( iSs max   such that Qs )0( .  

Then rTs  , so )()( sPTrsF   holds. Also, we have )0()( ** iqin  , which 

implies that sinsFin  )( . Then isFin )( , so ),()( iSsF  .  

Let us show that ),()( iSsF max  . Let ),( iSs   be any element such that  

ssF )( . Let Qsdoms  )(:  be a function such that )0()0( ss   and )()( tsts 

for all }0{\)(sdomt  . Then )0()0)(()0)(( ssFsF   and )()())(( tststsF 

for all }0{\)(sdomt  , so TrssF )( . Moreover, isinsin    holds, 

because )0())0(())0(( isinsin  . Because )(sP  holds, we have 

),0[*),0[ ||)( tt isin   for all 0t . Then because isin   and isin  , we have 

),0[*),0[ ||)( tt isin   for all 0t . From this and 0}0{ )}0({)|( QQssrange  , 

we have )(sP  . Thus )()( sPTrsF  . Then rTs  , because 

T )()( sdomsdom . Then ),( iSs  , because isin  . Also, 

)())(()()( tstsFtsts   for }0{\)(sdomt  and )0()0( ss  , so ss  .  Then 

ss  , because ),( iSs max  . As we have shown above, ssF )( , so )(sFs  . 

We have shown that for any ),( iSs  , if ssF )( , then )(sFs  . Then 

because ),()( iSsF  , we have ),()( iSsF max  . Consider the following cases. 

4.1) )0())0(( *isin  . Then ),()( iSsFs max  , and because 0)0( QQs  , 

we have 0)0( Qs   and )),0(,()0( 02,1 xiQSels  . Then  

))(()),),0(,(,( 02,1 iBOpixiQSelosouto all   . 

4.2) )0())0(( *isin  . Because Qs )0( , we have )0())0(()0( *isini  . Then 

)),0(,()),0(,()0)(( *02,1**02,1* xiQSelxiQSelqsF  . Then  

))(()),),0(,(,()( *02,1 iBOpixiQSelosFout all  . 

Because 0)0( Qs   and )0())0(( *isin  , we have )0())0(( *osout  . Then 

))0(())0(()())0)((( ** soutooutqoutsFout  . Also, ))(()))((( tsouttsFout   for 

all }0{\)(sdomt . Thus ))(()( iBOpsFoutsouto   . 

We conclude that ))(())(( iBOpiBOp   for all i . Thus BB . 
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Let us show that }{))(( ** oiBOp  . Assume that )),(( WBInSbi  and 

))(( *iBOpo  . Because )(}0{ *idom , there exists )( IStatex  such that 

),,( *iQoo all  , where )),0(,( *02,1 xiQSelQ  . Then Q .  

Then the following cases are possible. 

a) souto   for some ),( *iSs max   such that Qs )0( . Then rTs  , 

)0(s , and *isin  . Then )()( sPTrsF  , so )|)|((}0{\ ),0[*),0[ tt isinTt   , 

but this contradicts the relation *isin  , because )(}0{ sdom  and 0)( sdom . 

b) )(}0{ qouto   for some ),(\ *iSQq init  . Then 0Qq   and 

)0()( *iqin  , so )0()( *oqout  . Then *oo  . 

We conclude that }{))(( ** oiBOp  . Then }{))(( ** oiBOp  . Thus B

satisfies the statement of the lemma.  

Lemma 2.20. Assume that a block B  has a NCMS representation, 

)(),( ** BIOoi  , and )(}0{ *odom . Then there exists a deterministic block B

such that B  has a NCMS representation, )()( BInBIn  , )()( BOutBOut  , 

))(())(( iBOpiBOp   for each )),(( WBInSbi  such that )0()0( *ii  , and 

)(),( ** BIOoi  . 

Proof. Let ),( 0Q  be a NCMS representation of B , where ),,( TrQT . 

Then ),,( *0* iQOo all  . Then *i , because )()(}0{ ** idomodom  . Then there 

exists )(*  IStatex  such that )),),0(,(,( ***02,1* ixiQSeloo all  . Then because 

)(}0{ *odom , there exists ),( ** iSs max   such that )),0(,((0) **02,1* xiQSels   and 

** souto  . Then Trs * . 

Let   be the set of all sets TrX   such that  

a) Xs * ; 

b) )(0 sdom  and )0()0( *ss   for each Xs ;  

c) for each Xs  and }0{\Tt , Xs t ),0[|  and Xs t ],0[| ;  

d) for each Xss 21 , , if 21 sinsin   , then 21 ss  . 
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It follows immediately that  

 }{}}0{\||{}}0{\||{ *],0[*),0[* sTtsTts tt , 

and  c  for each non-empty  -chain c . Then Zorn’s lemma implies that 

  has some  -maximal element *X . 

Let us show that each non-empty -chain in *X  has a supremum in *X . Let 
*XC   be a non-empty -chain. Let 0s  be a function (the graph of) which is a 

union of (graphs of) elements of C  ( 0s  is indeed a function, because C  is a -

chain).  Then Trs 0  by the completeness and CPR properties of the NCMS  . 

Besides, )(0 0sdom .  

Suppose that *
0 Xs  . Let }{ 0

* sXX  . Then XX * , whence X , 

because *X  is  -maximal in  .  To get a contradiction, let us show that X . 

We have TrX  , because Trs 0 . The conditions a) and b) are obviously satisfied 

for X  . If 0t  and 0),0[0 | ss t  , then  ))|(\)(()( ),0[00 tsdomsdomsdom  for 

some Cs  (because  Cs sdomsdom  )()( 0 ), which implies that ss t ),0[0 | , 

(because )0(s  and T)(sdom ), whence *
),0[0 | Xs t  , because *Xs  and *X

satisfies the condition c).  Similarly, if 0t  and 0],0[0 | ss t  , then ss t ],0[0 |  for 

some Cs  and *
],0[0 | Xs t  . Thus X   satisfies the condition c). Then because 

X , this implies that X   does not satisfy the condition d), i.e. there exist 

}{, 0
*

21 sXXss   such that 21 ss   and 21 sinsin   . Because *X  satisfies 

the condition d), we have that one of the elements of },{ 21 ss  belongs to *X  and 

another one coincides with 0s . Without loss of generality we can assume that 

*
1 Xs   and 02 ss  . Then 01 sinsin    and 01 ss  . Then )()( 01 sdomsdom   and 

there exists )( 0sdomt  such that ],0[0],0[1 || tt ss  . Then 0t , because 

)0()0()0( 1*0 sss  . If 0],0[0 | ss t  , then *
],0[0 | XCs t   and *

],0[1 | Xs t  , and 
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)|()|( ],0[0],0[1 tt sinsin   , which contradicts the condition d) for the set *X . Thus 

0],0[0 | ss t  , and because )( 0sdomt ,  t  is the greatest element of )( 0sdom . Then 

 Cs sdomsdomt  )()(],0[ 0 , whence there exists Cs  such that )(sdomt . 

Then ],0[)( tsdom   and s  is the -greatest element of C , because C  is a -

chain. Thus Css 0 . Then *
0 Xs  , *

1 Xs  , 01 ss  , and 01 sinsin   . But 

this contradicts the condition d) for the set *X .  

We conclude that *
0 Xs  . It follows immediately from the definition of 0s

that 0s  is a -supremum of C . Because C  is arbitrary, it follows that each non-

empty -chain in *X  has a supremum in *X . 

Let *)( XIStateY   and WYWQ BOutBIn )()(  . Then Y , because 

*X . For each *Xs  and Yy  let Qsdomf y
s )(:  be a function such that 

)0(y
sf ))0((,)),0(( soutysin ; 

)(tf y
s ))((),|)),((()),(( ],0[ tsoutstsistatetsin t , if }0{\)(sdomt . 

Note that because *X , for each *Xs  we have )(0 sdom , Trs , and 
*

],0[| Xs t   for all 0t . This implies that y
sf  indeed takes values in Q . 

Let us define the following set: 

}|~)(|~{ *
A

y
sfssdomAAYyXssrT  T . 

Because )()( sdomfdom y
s   and Qfrange y

s )(  for all *Xs  and Yy , we 

have that rT   is the set of all functions of the form QAs :~ , where TA , such 

that there exist *Xs  and Yy  such that y
sfs~ . 

Let ),,( rTQT  . Let us show that   is a NCMS. 

Let us show that rT   satisfies the CPR property. Let rTs ~ , TA , and 

)~(sdomA . Then there exist *Xs  and Yy  such that y
sfs~ . Then 

T Asdom A )|~(  and y
sA fs |~  . Thus rTs A |~ . 
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Let us show that rT   satisfies the Markovian property. Assume that 

rTss 21
~,~  and )~(min)~(max 210 sdomsdomt  , and )(~)(~

0201 tsts  . Let 

Qsdomsdoms  )~()~(:~
21  be a function such that )()(~

01 tsts  , if 0tt   and 

)()(~
02 tsts  , if 0tt  . Because rTss 21

~,~ , there exist *
21, Xss   and Yyy 21 ,

such that j

j

y
sj fs~  for 2,1j . Then )(~)( 00 tstf j

y
s

j

j
  for 2,1j . Then 

)()( 00
2

2
1

1
tftf y

s
y

s  . We have 00 t , because )~(max 10 sdomt   and T)~( 1sdom , so 

from the definition of y
sf  we have ],0[2],0[1 00

|| tt ss  . Also, )()( 210 sdomsdomt  , 

because )()( j
y

s sdomfdom j

j
  for 2,1j . Then )()(],0[ 210 sdomsdomt  , 

because *
21, Xss  . Then )()( 21 tsts   for all ],0[ 0tt . 

 Let us show that 1
2

~
1

y
sfs . Because )(],0[)~( 201 sdomtsdom  , for all 

}0{\)~( 1sdomt  we have  

 ))((),|)),((()),(()()(~
1],0[1111

1
1

tsoutstsistatetsintfts t
y

s

= ))((),|)),((()),(( 2],0[222 tsoutstsistatetsin t . 

Moreover,  )0()(~ 1
11
y

sfts ))0((,)),0(( soutysin . Then )(~)( 1
1

2
tstf y

s   for all 

)~( 1sdomt . Thus 1
2

~
1

y
sfs . 

Besides, 1
2

~
2

y
sfs  , because 2

2
~

2
y

sfs   and }0{\}0{\ || 1
2

2
2 T

y
sT

y
s ff  , and 

)~(0 2sdom . Thus 1
2

~
1

y
sfs  and 1

2
~

2
y

sfs  . Then 1
2

~ y
sfs  by the definition of s~ . 

Moreover, T)~(sdom , so rTs ~ . Thus rT   satisfies the Markovian property. 

Let us show that rT   is complete in the sense of Definition 2.3. 

Let rTc   be a non-empty -chain. Let *~s  a function (the graph of) which 

is the union of (graphs of) elements of c . Then T  cs cdomsdom ~
* )()~( .  

Let us show that rTs *~ . Because rTc  , there exist functions *: Xc 

and Yc :  such that )~(
)~(

~ s
sfs 

  for each cs ~ .  
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For each TA  denote  }0{\ ],0[)( AA    . Let }~||)~({ ))~(( cssc sdom   . 

Then for any TA , the set )(A  has a form ),0[ t  or ],0[ t  for some 0t  (because 

A  and }0{A ). Because  *)( Xrange  , this implies that *Xc  . 

Moreover, c , because c . 

Let us show that c  is a -chain. Because c  is a -chain, it is sufficient to 

show that if css 21
~,~  and 21

~~ ss , then ))~((2))~((1 21
|)~(|)~( sdomsdom ss    . Assume that 

css 21
~,~  and 21

~~ ss . Denote )~( jj ss   and )~( jj sy   for 2,1j . Let 

))~(()( 11 sdomsdomt  . Then ],0[ t  for some }0{\)~( 1sdom  by the 

definition of  . Because 21
~~ ss , we have )(~)(~

12  ss  . Moreover,  

j

j

j

j

y
s

s
sj ffs )~(

)~(
~ 

  for 2,1j . Then )(~)(  j
y

s sf j

j
  for 2,1j . Then 

)()( 2
2

1
1

 y
s

y
s ff  . Then )()(],0[ 21 sdomsdom  , and because 0 , we have 

],0[2],0[1 ||  ss  . Then )()( 12 tsts  . Because ))~(()( 11 sdomsdomt   is arbitrary, 

we have 2))~((1 1
| ss sdom  . Moreover, ))~(())~(( 21 sdomsdom  , because 21

~~ ss . 

Then ))~((2))~((1 21
|| sdomsdom ss   . Thus ))~((2))~((1 21

|)~(|)~( sdomsdom ss    . We conclude 

that c  is a -chain. 

Thus c  is a non-empty -chain in *X . As we have shown above, this 

implies that c  has a supremum in *X . Denote this supremum as *s . Then *ss  for 

all cs  and ** Xs  . If )0(~*s , let us denote ))0(~( ** sistatey  , otherwise, let *y

be an arbitrary element of Y  (which exists, because Y ). 

Let us show that 
*

*
~* y

s
fs  . It is sufficient to show that 

*

*
~ y

s
fs  for each 

cs ~ . Indeed, let cs ~ , *)~( Xss  , and )~(sy  . Let }0{\)~(sdomt . Then  

)(tf y
s = ))((),|)),((()),(( ],0[ tsoutstsistatetsin t = )(~ ts . 

Then )())~(( sdomsdomt  , whence  )(| ))~(( ts sdom . Because *Xs  this 

implies that )|(],0[ ))~(( sdomsdomt  . Moreover, ))~((|)~( sdoms  = cs sdom  ))~((| , and 
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*s  is a supremum of c , so have )()(*  ss   for all ],0[ t . Then )()(* tsts   and 

],0[],0[
* || tt ss  . Then )(~)()(

*

* tstftf y
s

y
s

 . Because }0{\)~(sdomt  is arbitrary, 

we have 
*

*|~
}0{\

y
sT fs  . If )0(~s , then 

*

*
~ y

s
fs . Let us show that 

*

*
~ y

s
fs , if )0(~s .  

Suppose that )0(~s  Then )0(~)0( sf y
s  , whence )0(s  and 

)))0((,)),0((()0(~ soutysins  . Then )0()0(|)~( ))~(( ss sdom  , so )0()0(* ss  , 

because cs sdom  ))~((|)~( . Because *~s  is the union of elements of c  and cs ~ , we 

have )0(~)0(~* ss  . Then ysistatesistatey  ))0(~())0(~( ** , whence  

)0(~)))0((,)),0((()))0((,)),0((()0( ****

* ssoutysinsoutysinf y
s

 . 

Then 
*

*|~
}0{

y
s

fs  , and because 
*

*|~
}0{\

y
sT fs  , we have 

*

*
~ y

s
fs . 

We conclude that 
*

*
~ y

s
fs  for each cs ~ . Then 

*

*
~* y

s
fs  . Because 

T)~( *sdom , this implies that rTs *~ . Then it follows that c  has a least upper 

bound in rT   ( *~s  is its least upper bound).  

Because c  is an arbitrary non-empty -chain, we conclude that rT   is 

complete in the sense of Definition 2.3.  

Thus   is a NCMS. The definition of Q  implies that   is an I/O NCMS. 

For each )),(( WBInSbdin   denote 

)}),,()(|{)( 00 QdxdIStatexddO outinoutin  ; 

})(|)),(({ 00  inin dOWBInSbdD . 

Note that because Trs * , )0(*s , and ),( 0Q  is an initial I/O NCMS, we have 

0**** )()0()))0(()),0(()),0((( QSssoutsistatesin init  , 

whence )))0((())0(( *0* sinOsout   and 0* ))0(( Dsin  . 

Then there exists a function )),((: 0 WBOutSbD   (selector) such that 

))0(()))0((( ** soutsin   and )()( 0 inin dOd   for each 0Ddin  . 

Let us define 
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)}(|),,{( 00 inoutinoutin ddYyDddydQ  . 

Obviously, QQ 0 .  

Let us show that ))0(()( *sinqin   and ))0(()( *soutqout   for each 

)( initSq . Let )( initSq . Then there exists rTs ~  such that qs )0(~ . Then 

y
sfs~  for some *Xs  and Yy . Then qsoutysinf y

s  )))0((,)),0((()0( . 

Because *Xs  and *X  , we have )0()0( *ss  . Then ))0(()( *sinqin   and 

))0(()( *soutqout  . 

Then for each )( initSq  we have  

)())0(()))0((())(( ** qoutsoutsinqin  , 

whence 0)( QSinit  . 

 Thus QQSinit  0)( . Then ),( 0Q  is an initial I/O NCMS. Then by 

Lemma 2.9, ),( 0Q  is a NCMS representation of some block B . Then 

)()()( BInInBIn  , )()()( BOutOutBOut  , and ),,())(( 0 iQOiBOp all 

for all )),(( WBInSbi . 

Let us show that the block B  is deterministic. Suppose that there exist 

)),(( WBInSbi   and ))((},{ 21 iBOpoo   such that 21 oo  . Then i , because 

otherwise,  21 oo . Then ),,(},{ 021 iQOoo all   and there exist Yyy 21 ,  such 

that )),(0),,(,( 01,2 iyiQSeloo jallj   for 2,1j . Denote )(0),,( 01,2 jj yiQSelQ  , 

2,1j . If 0)0( Di  , then )))0((,),0(( iyiQ jj   for 2,1j , and otherwise, 

 21 QQ . Thus 1Q  if and only if 2Q . Besides, because 21 oo   and 

),,( iQoo jallj   for 2,1j , at least one of 1Q  and 2Q  is non-empty (otherwise, 

 21 oo ). Thus both 1Q  and 2Q  are non-empty and 0)0( Di  .  

Let us show that }0{)( idom . Suppose that }0{)( idom . Because 1Q , 

2Q , and ),,( iQoo jallj   for 2,1j , for each 2,1j  there exists jj Qq 

such that )(}0{ jj qouto  . For 2,1j  we have jj Qq  , whence 
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0)0()( Diqin j  . Then ))0(()( iqout j   for 2,1j , because 0Qq j  . Then 

)()( 21 qoutqout  , but this contradicts the assumption 21 oo  . Thus }0{)( idom .  

Because i  and }0{)( idom , we have )(}0{ idom . Then for each 

2,1j , because jQ  and ),,( iQoo jallj  , we have either )(}0{ jj qouto 

for some ),(\ iSQq initjj  , or jj souto ~  for some ),(~ iSs maxj   such that 

jj Qs )0(~ . Consider the following cases. 

1) For both 2,1j  there exist ),(\ iSQq initjj   such that 

)(}0{ jj qouto  . Then for 2,1j  we have 0)0()( Diqin j  , whence 

))0(()( iqout j  , because 0Qq j  . Then )()( 21 qoutqout   and 21 oo  , but this 

contradicts the assumption 21 oo  . 

2) There exists a (single) index }2,1{j  such that )(}0{ jj qouto   for 

some ),(\ iSQq initjj   and jj souto   33
~  for some ),(~

3 iSs maxj   such that 

jj Qs   33 )0(~ . Denote )0(~
3 jsq  . Then )( initSq , so, as we have shown above, 

))0(()( *sinqin   and ))0(()( *soutqout  . Besides, )(0),,( 301,23 jj yiQSelQq   , 

so ))0(()()0( *sinqini  . Because jj Qq  , we have ))0(()0()( *siniqin j  . 

Because 0Qq j   and 0* ))0(( Dsin  , we have ))0(())(()( *soutqinqout jj  . 

Then let Qsdoms j  )~(:~
3  be  a function such that jqs )0(~  and )(~)(~

3 tsts j , if 

}0{\)~( 3 jsdomt  . Because rTs j 3
~ , there exists *Xs  and Yy  such that 

y
sj fs~3  . Then )0(s  and qssoutysinf j

y
s   )0(~)))0((,)),0((()0( 3 . Let 

Yqistatez j  )( . Then )()( tftf y
s

z
s   for all }0{\)(sdomt  and  

 ))(,),(()))0((,)),0((()0( qoutzqinsoutzsinf z
s

jjjj qqoutqistateqinsoutzsin  ))(),(),(()))0((,)),0((( ** . 

Then z
sfs~ , because y

sj fs~3  . Then because T  )~()~( 3 jsdomsdom , we have 

rTs ~ . Moreover, )0()())0(~( iqinsin j  , and )())(~())(~( 3 titsintsin j    for all 
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}0{\)~(sdomt , because ),(~
3 iSs maxj  . Then isin ~ . Besides, 0)~( sdom , 

so ),(~ iSs  . Moreover, jqs )0(~ , so ),( iSq initj  . We have a contradiction 

with the assumption ),(\ iSQq initjj  . 

3)  For both 2,1j  there exist ),(~ iSs maxj   such that jj Qs )0(~  and 

jj souto ~ . Then there exist Yzz 21, , *
21, Xss   such that j

j

z
sj fs~  for 2,1j . 

Then )()~( jj sdomsdom   for 2,1j  and  ))(())(())(~( tsintfintsin j
z

sj
j

j
  for each 

2,1j , )~( jsdomt . Also, isin j~  for 2,1j . Denote )~()~( 21 sdomsdomA  . 

Then ))(())(~()())(~())(( 2211 tsintsintitsintsin   for all At . Moreover, either 

TA  , or A  has a form ),0[ t  or ),0[ t  for some }0{\Tt . Then because 
*

21, Xss   and *X  , we have *
1 | Xs A  and *

2 | Xs A . Besides, 

)|()|( 21 AA sinsin   , whence AA ss || 21   by the property d) of the set *X  . 

Then for each }0{\At , 

 )))((),|)),((()),((()()(~
1],0[1111

1
1

tsoutstsistatetsintfts t
z

s

)(~)()))((),|)),((()),((( 22],0[222
2

2
tstftsoutstsistatetsin z

st  . 

Because 021 )~(),~( sdomsdom , we have )}~(),~({ 21 sdomsdomA . Then 

)~( ksdomA   for some }2,1{k . Then }0{\3}0{\ |~|~
TkTk ss  . 

Let us show that }0{\3}0{\ |~|~
TkTk ss  . Suppose that }0{\3}0{\ |~|~

TkTk ss  . Then 

}0{\3}0{\ || TkTk oo  . For each 2,1j  we have )()0(~  initj Ss , whence 

))0(())0(~()0( *soutsouto jj  . Then )0()0( 21 oo   and 21 oo  , so we have a 

contradiction with the assumption 21 oo  . Thus }0{\3}0{\ |~|~
TkTk ss  . 

So we have }0{\3}0{\ |~|~
TkTk ss  . Let us define a function Qsdoms k  )~(:~

3

as follows: )0(~)0(~
kss   and )(~)(~

3 tsts k , if }0{\)~( 3 ksdomt  . For 2,1j , 

j

j

z
sj fs~  and )()0(~  initj Ss , whence ))0(())0(~())0(( *sinsinsin jj   and 

))0(())0(~())0(( *soutsoutsout jj  . Then )0()0()0(~)0(~
3
k

k
k

k

z
s

z
sk ffss


  and 
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)()()(~)(~
3

3
33 tftftsts k

k
k

k

z
s

z
sk 




   for }0{\)~(sdomt . Thus k
k

z
sfs
3

~ . Because 

T  )~()~( 3 jsdomsdom , we have rTs ~ . Moreover, 0)~( sdom . Because 

isin k~  and isin k3
~ , we have isin ~ . Thus ),(~ iSs  . Besides, ssk

~~  , 

because }0{\}0{\3}0{\ |~|~|~
TTkTk sss   and )0(~)0(~

kss  . But the relation ssk
~~ 

contradicts the assumption ),(~ iSs maxk  .  

In all cases 1)-3) we have a contradiction. Thus for each )),(( WBInSbi 

and ))((},{ 21 iBOpoo   we have 21 oo  .  

We conclude that the block B  is deterministic. 

Let us show that ))(())(( iBOpiBOp   for each )),(( WBInSbi  such that 

)0()0( *ii  . 

Assume that )),(( WBInSbi , )0()0( *ii  , and ))(( iBOpo  . Let us show 

that ))(( iBOpo . We have ),,( 0 iQOo all  . Because i , there exists Yy *

such that )),(0),,(,( *01,2 iyiQSeloo all  .  

Let )),0(,( *02,11 yiQSelQ  . Because ),( ** iSs max  , we have 

)0()0())0(( ** iisin  . Then  )))}0((,)),0(({( ***1 soutysinQ , because 

))0(()))0((( ** soutsin  . 

Besides, 0* )()0( QSs init  , because ),( 0Q  is an initial I/O NCMS. 

Let )())0(( **  IStatesistatex  and )),0(,( *02,11 xiQSelQ  . Then  

1**02,1* ))),0((,()0( QxsinQSels  . 

Let us show that if ),()0(* iSs init  , then ),( iSq init  . Assume that 

),()0(* iSs init  . Then )0()0(* ss   for some ),( iSs  .  Let 

}{}}0{\||{}}0{\||{ ],0[),0[
* sTtsTtsXX tt  . 

Then TrX  . Because *X  , we have Xs * , )0()0( *ss   for all 

Xs , and for each Xs  and }0{\Tt , Xs t ],0[|  and Xs t ),0[| , so X  satisfies 
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the properties a)-c) of the elements of  . Because *X  is  -maximal in  , either 

X  does not satisfy the property )d  of the elements of  , or *XX  . 

In the former case, there exists Xss 21,  such that 21 sinsin    and 21 ss  . 

Because *X   and different elements of *\ XX  have different domains, we have 

that for some }2,1{k , *Xsk   and *
3 \ XXs k  . Then isinsinsin kk    3 , 

rTf y
sk

* , )()( *
k

y
s sdomfdom

k
 , and )0()0( *ssk  . Then for *~ y

sk
fs   we have 

rTs ~ , )0(~s = qsoutysinf y
sk

 )))0((,)),0((()0( ***
* , because 1Qq  , and 

isinfinsin k
y

sk
  *~ . Then ),(~ iSs   and qs )0(~ , whence ),( iSq init  . 

In the latter case, *XX  , so *Xs , isin  , and )0()0( *ss  . Then for 

*~ y
sfs   we have rTs ~ , )0(~s = qsoutysinf y

s  )))0((,)),0((()0( ***
* , because 

1Qq  , and isinfinsin y
s   *~ . Then ),(~ iSs  , qs )0(~ , so ),( iSq init  . 

In both cases, ),( iSq init  . 

We conclude that if ),()0(* iSs init  , then ),( iSq init  . 

Because 1Q  and ),,( 1 iQoo all  , the following cases are possible. 

1) }0{)( idom  and )(}0{ qouto   for some 1Qq  . Then 

)))0((,)),0((( *** soutysinq  , so ))0(()( *soutqout  . Because 1* )0( Qs  , we have  

))((),,(),,())0((}0{ 01* iBOpiQOiQosouto allall   . 

2) )(}0{ idom  and )(}0{ qouto   for some ),(\1 iSQq init  . As we 

have shown above, if ),()0(* iSs init  , then ),( iSq init  . Then because 

),( iSq init  , we have ),()0(* iSs init  . Besides, )),0(,()0( *02,11* xiQSelQs  , so 

),(\)0( 1* iSQs init  . Also, ))0(()( *soutqout  , because 1Qq  . Then because  

)(}0{ idom , we have 

))((),,(),,())0((}0{)(}0{ 01* iBOpiQOiQosoutqouto allall   . 

3)  souto ~  for some ),(~ iSs max   such that 1)0(~ Qs  . Then 

)))0((,)),0((()0(~
*** soutysins  , rTs ~ , and there exists *Xs  such that *~ y

sfs . 
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Let )~(| sdomss  . Because )~(sdom  either coincides with T , or has a form  ],0[ t  or 

),0[ t  for some }0{\Tt , we have *Xs . Also, )()()~( *y
sfdomsdomsdom   and 

)()( ** tftf y
s

y
s   for all )(sdomt , so **

)~(|~ y
ssdom

y
s ffs  . Because ),(~ iSs max  , 

we have )0(s  and isinfinsin y
s ~*   . Also, TrXs  * , so ),( iSs  . 

By Lemma 2.7, there exists ),(ˆ iSs max   such that ss ˆ .  

Let us show that *ˆ Xs . Suppose that *ˆ Xs . Let  

}ˆ{}}0{\||ˆ{}}0{\||ˆ{ ],0[),0[1 sTtsTtsX tt 

 and 1
* XXX  . We have TrX   and )0()0()0()0(ˆ *ssss  , because 

*Xs . Then X  satisfies the properties a)-c) of the elements of  . Because *ˆ Xs

and *X  is  -maximal in  , the set X  does not satisfy the property d) of the 

elements of  . Then there exist Xss 21,  such that 21 sinsin    and 21 ss  . 

Because *X   and different elements of *\ XX  have different domains, for 

some }2,1{k , *Xsk   and *
3 \ XXs k  . If ks 3 s , then ks 3  either coincides 

with *Xs , or has a form ],0[| ts  or ),0[| ts  for some 0t , whence *
3 Xs k  . In both 

cases we have a contradiction with *
3 \ XXs k  , so kss 3 , because 1X  is a  -

chain and 13, Xss k  . Because )()( 3 ksdomsdom  , we have 

sinsinsinsin sdomsdomksdomk    )|ˆ()|()|( )()(3)( . Then because *Xs  and 

*Xsk  , we have  *
)(| Xs sdomk   and ss sdomk )(| . Then kss , because 

)()()( 3 kk sdomsdomsdom   . This implies that **~ y
s

y
s k

ffs  , because *Xsk  . 

Also, we have rTf y
sk

*  and isinsinsinfin kk
y

sk
 ˆ3

*   , so ),(* iSf y
sk

 . 

This contradicts the inclusion ),(~ iSs max  , because *~ y
sk

fs . 

We conclude that *ˆ Xs . 
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Then because ss ˆ , we have **
ˆ

~ y
s

y
s ffs  . Also,  rTf y

s *
ˆ  and 

isinfin y
s ˆ*
ˆ   , so ),(*

ˆ iSf y
s  . Then because ),(~ iSs max  , we have 

*
ˆ

*~ y
s

y
s ffs  . This implies that )ˆ()( sdomsdom  . Then ss ˆ , because ss ˆ . 

We conclude that ),(ˆ iSss max  . Moreover, 0)()0( QSs init   and 

)0())0(~())0(())0(( * isinfinsin y
s  , whence )),0(,()0( 02,1 xiQSels  , where 

))0((sistatex  . Besides, osoutfoutsout y
s  ~*  . Then  

))((),,()),),0(,(,( 002,1 iBOpiQOixiQSelosouto allall   . 

In all cases 1)-3) above, ))(( iBOpo . 

We conclude that ))(())(( iBOpiBOp   for each )),(( WBInSbi  such that 

)0()0( *ii  . 

Let us show that )(),( ** BIOoi  . We have *
* Xs  , ),( ** iSs max  , and 

** souto  . Let Yy  be an arbitrary element. Because *
* Xs  , we have 

rTf y
s 
*

. Denote y
sfs

*
~  . Then )()~( *sdomsdom   and ***

~ isinfinsin y
s   , 

so ),(~
*iSs  . By Lemma 2.7, there exists ),(~

*iSs max   such that ss ~~ . 

Because rTs ~ , there exists *Xs  and Yy   such that y
sfs ~ . Then y

s
y

s ff 
*
 . 

This implies that )()( * sdomsdom  , yy  , and )()(* tsts   for all 

}0{\)( *sdomt . Moreover, )0()0( *ss  , because *Xs . Then ss* .  Denote 

)~(sdomA  . Then Asdomsdomsdom  )~()~()( * , so Ass |* . Besides, 

*| Xs A , because *Xs . Then we have y
s

y
s ff

A
| . Moreover, 

Asdomfdom A
y

s A
 )|()( | , because )()()~( sdomfdomsdomA y

s   . Then 

because y
s

y
s ffs  ~  and )~(sdomA  , we have sf y

s A
 ~

| . Then 

*|
~)()|( isinfinsin y

sA A
  . Besides, TrXs A  *| , whence ),(| *iSs A  . 

Because Ass |*  and ),( ** iSs max  , we have Ass |*  . Then 

),(~~
*|*
iSsffs max

y
s

y
s A

 . We have 0)()0(~ QSs init  , because ),( 0Q  is 
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an initial I/O NCMS. Moreover,  )0())0(())0(~( ** isinsin   and 

)())0(())0(~(
*

 IStateyfistatesistate y
s , whence )),0(,()0(~

*02,1 yiQSels  . 

Moreover, ***
~ osoutfoutsout y

s   . Then   

))((),,()),),0(,(,(~
**0**02,1* iBOpiQOiyiQSelosouto allall   . 

Thus )(),( ** BIOoi  .   

Lemma 2.21. Assume that a block B  has a NCMS representation, 

)(),( ** BIOoi  , and )0(*i . Then there exists a deterministic causal block B  such 

that )()( BInBIn  , )()( BOutBOut  , ))(())(( iBOpiBOp   for each 

)),(( WBInSbi  such that )0()0( *ii  , and )(),( ** BIOoi  . 

Proof. Consider the following cases.  

1) Either }0{)( * idom , or *o , and also the inclusion }0{)( odom  holds 

for each )(),( BIOoi   such that ),(),( 2
** oioi  .  

Let us define a function )),((2)),((: WBOutSbWBInSbO   as follows: 

}{)( O  and }{)( *oiO  , if i . Then )(iO  is a singleton set for each i . 

Moreover, we have }0{)( * odom , so )()( idomodom   holds for all oi,  such that 

)(iOo . Then there exists a deterministic block B  such that )()( BInBIn  , 

)()( BOutBOut  , and OBOp )( . If ))(( 11 iBOpo   and ))(( 22 iBOpo   for 

some 21, ii  such that ],0[2],0[1 || tt ii   for some Tt , then 1i  if and only if 2i , 

so 21 oo  , whence ],0[2],0[1 || tt oo  . Thus B  is causal. 

Moreover, ))(()( *** iBOpiOo  , because *i . Then )(),( ** BIOoi  . 

Let )),(( WBInSbi  and )0()0( *ii  .  

Consider the case when *o . Then because )(),( ** BIOoi   and 

),(),|( **
2

}0{* oii  , we have )(),|( }0{* BIOi   by Lemma 2.15.  Then because 

}0{* |i i , by Lemma 2.16 there exists ))(( iBOpo   such that ),(),|( 2
}0{* oii   . 

Then because )0(*i , we have o . Then ))(())((}{}{ * iBOpiBOpo  . 
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Consider the case when *o . Then }0{)( * idom  and because 

)(),( ** BIOoi   and }0{** |ii  i , by Lemma 2.16 there exists ))(( iBOpo   such 

that ),(),( 2
** oioi  . Then }0{)( odom  and }0{)( * odom , so *oo   and 

))(())((}{ * iBOpiBOpo  .  

Thus B  satisfies the statement of the lemma. 

2) )(}0{ *idom , *o , and the inclusion }0{)( odom  holds for each 

)(),( BIOoi   such that ),(),( 2
** oioi  .  

Then )(}0{ *idom  and }0{)( * odom , so by Lemma 2.19 there exists a sub-

block BB  such that B  has a NCMS representation and }{))(( ** oiBOp  .  

By Lemma 2.17, B  is weakly nonanticipative. Consider the following cases.  

2.1) There exists )(),( 00 BIOoi   such that )0()0( *0 ii   and 

)(}0{ 0odom . Then by Lemma 2.20 (applied to B), there exists a deterministic 

block B   which has a NCMS representation, such that )()()( BInBInBIn  , 

)()()( BOutBOutBOut  , ))(())(())(( iBOpiBOpiBOp   for each 

)),(( WBInSbi   such that )0()0()0( *0 iii  , and )(),( 00 BIOoi  . Then 

}{))(())(( *** oiBOpiBOp  , so )(),( ** BIOoi  . Besides, B   is causal by 

Lemma 2.17 and Lemma 1.5. Then B   satisfies the statement of the lemma. 

2.2) For each )(),( BIOoi  , if )0()0( *ii  , then )(}0{ odom  is not 

satisfied (which is implies the inclusion }0{)( odom ).  

Let 0B  be a block such that )()( 0 BInBIn  , )()( 0 BOutBOut  , and 

))(())(( 0 iBOpiBOp  , if )0()0( *ii  , and }{))(( 0  iBOp , otherwise. Obviously, 

0B  is indeed correctly defined as a block.  

Let us show that 0B  is weakly nonanticipative. Let 0A , 

)),((, 021 WBInSbii  , and AA ii |=| 21 . If A  or 1i  or 2i , then  

)}.)((||{=}{)})((||{ 2010 iBOpooiBOpoo AA 
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Assume that )()(0 21 idomidomA  . If )0()0( *1 ii  , then )0()0( *2 ii  , 

whence ))(())(( 0 jj iBOpiBOp   for 2,1j , and so 

)})((||{)})((||{ 2010 iBOpooiBOpoo AA 

because B  is weakly nonanticipative. Otherwise, )0()0()0( *12 iii  , whence 

}{))(())(( 2010  iBOpiBOp . Then  

)})((||{}{)})((||{ 2010 iBOpooiBOpoo AA  . 

We conclude that 0B  is weakly nonanticipative. Moreover, }0{)( odom  for 

each )(),( 0BIOoi  . Then 0B  is strongly nonanticipative by Lemma 2.18, so it has 

some deterministic causal sub-block 0BB   (because  )( 0BIO ). Then 

}{))(())(())(( ***0* oiBOpiBOpiBOp  , whence )(),( ** BIOoi  . Besides, 

)()( BInBIn  , )()( BOutBOut  , and for each )),(( WBInSbi  such that 

)0()0( *ii   we have ))(())(())(())(( 0 iBOpiBOpiBOpiBOp  .  Then B 

satisfies the statement of the lemma. 

3) There exists )(),( 00 BIOoi   such that ),(),( 00
2

** oioi   and   

}0{)( 0 odom  does not hold. Then )(}0{ 0odom , )0()0( *0 ii  , and by Lemma 

2.20 there exists a deterministic block B  which has a NCMS representation, such 

that )()( BInBIn  , )()( BOutBOut  , ))(())(( iBOpiBOp   for each 

)),(( WBInSbi  such that )0()0()0( *0 iii  , and )(),( 00 BIOoi  . Then B  is 

weakly nonanticipative by Lemma 2.17, so it is causal by Lemma 1.5. Because 

)(),( 00 BIOoi   and ),(),( 00
2

** oioi  , we have )(),( ** BIOoi   by Theorem 1.1. 

Then B  satisfies the statement of the lemma.  

Lemma 2.22. Assume that a block B  has a NCMS representation. Then B  is 

strongly nonanticipative. 

Proof. Let us fix an arbitrary )(),( 00 BIOoi  .  
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If 0i , then let []}0{* i  and *o  be an arbitrary member of ))(( *iBOp . 

Otherwise, i.e. if 0i , then let 0* ii   and 0* oo  . In both cases we have defined a 

pair ),( ** oi  such that )(),( ** BIOoi   and *i . 

Denote WD BIn )( . For each each Dd   let did }0{ , if )0(*id   and 

*iid  , if )0(*id  . Then did )0(  and ))(( diBOp  for each Dd   and 

))(( )0(* *iiBOpo  . Then there exists a (selector) function )),((: WBOutSbDf 

such that ))(()( diBOpdf   for each Dd   and ** ))0(( oif  .  

Then by Lemma 2.21, for each Dd   let us choose a deterministic causal 

block dB  such that )()( BInBIn d  , )()( BOutBOut d  , ))(())(( iBOpiBOp d   for 

each )),(( WBInSbi  such that )0()0( dii  , and )())(,( dd BIOdfi  . 

Let )),((2)),((: WBOutSbWBInSbO   be a function such that 

))(()( )0( iBOpiO i , if i  and }{)( O .  

Then )(iO  for all i  and )()( idomodom   whenever )(iOo . Then 

there exists a block B  such that )()( BInBIn  , )()( BOutBOut  , OBOp )( .; 

Because for each Dd   the block dB  is deterministic, B  is deterministic.  

Let us show that BB  . Let )(),( BIOoi  . If i , then 

)(),(),( BIOoi  . Otherwise, ))(())(()( )0( iBOpiBOpiOo i  , because 

)0()0( )0(iii  , whence )(),( BIOoi  . Thus BB . 

Let us show that B  is causal. Let )),((, WBInSbii  , Tt , ][0,][0, |=| tt ii  , 

))(( iBOpo  , and ))(( iBOpo  . If i  or i , then  ooii , so 

][0,][0, |=| tt oo  . Consider the case when i  and i . Then )0(i ,  )0(i , and 

)0()0( ii  . Denote )0(id  . Then ))(())(( iBOpiBOpo d  and 

))(())(( iBOpiBOpo d   ,whence ][0,][0, |=| tt oo  , because dB  is causal.  

We conclude that B  is causal. Moreover, 

}{))}0(({))(())(())(( **)0()0(*)0(* ***
oifiBOpiBOpiBOp iii  . 
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Then )(),( ** BIOoi  . If 0i , this implies that )(),(),( **00 BIOoioi  . 

Otherwise, i.e. if 0i , then )(),(),( 00 BIOoi  . 

We conclude that for each )(),( 00 BIOoi   there exists a deterministic causal 

sub-block BB  such that )(),( 00 BIOoi  . Thus B  is strongly nonanticipative. 

Now we can prove Theorem 2.3. 

Proof of Theorem 2.3.  Let ),( 0Q  be an initial I/O NCMS. By Lemma 2.9, it 

is a NCMS representation of some block B . Then by Lemma 2.22, B  is strongly 

nonanticipative.  

2.8 Strongly nonanticipative blocks, NCMS, and predicate pairs 

As we have shown above (Theorem 2.2), each strongly nonanticipative block 

has a representation in the form of an initial I/O NCMS (NCMS representation). 

Conversely, each initial I/O NCMS is a NCMS representation of a strongly 

nonanticipative block (Theorem 2.3). This is illustrated in Fig. 2.3. 

An initial I/O NCMS consists of an I/O NCMS and a set of admissible initial 

states. An I/O NCMS is a NCMS, in which the set of states has a special form: 

WXW OI  , where OI ,  are sets of input and output names, X  is a non-empty 

set of internal states, and W  is a set of signal values. 

An I/O NCMS is a kind of NCMS, so by Theorem 2.1 it can be represented 

by a left-local/right-local predicate pair (LR representation). An LR representation 

of a NCMS is illustrated in Fig. 2.4. 

We will use the results described above in the next chapter to derive criteria 

of the existence of total I/O pairs of strongly nonanticipative blocks. 
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Fig. 2.3. An illustration of a NCMS representation of a block.   

Fig. 2.4. An illustration of a LR representation of a NCMS.  

2.9 Conclusions from the chapter 

We have introduced a class of abstract dynamical systems that we called 

Non-deterministic Complete Markovian Systems (NCMS) on the basis of the notion 

of a solution system in the sense of [37] and investigated their basic properties (the 

existence of a LR representation). 

We have defined a special kind of NCMS, namely input-output (I/O) NCMS, 

and also introduced a notion of an initial I/O NCMS as a pair of an I/O NCMS and a 

set of initial states. 

We have defined a notion of a NCMS representation of a (strongly 

nonanticipative) block as an initial I/O NCMS. We have shown that each strongly 

nonanticipative block has a NCMS representation and that each initial I/O NCMS is 

a representation of a strongly nonanticipative block. 

A left-local and right-local 
predicate pair 

LR representation 

NCMS 

Theorem 2.1 
    (item 2) 

Strongly nonanticipative block 

Initial I/O NCMS = I/O NCMS + 
subset of admissible initial states 

NCMS representation Theorem 2.2 

Theorem 2.1 
    (item 1) 

Theorem 2.3 
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CHAPTER 3

EXISTENCE OF TOTAL I/O PAIRS OF A  

STRONGLY NONANTICIPATIVE BLOCK 

3.1 Overview 

In Chapter 1 we defined the notion of a block which allows partially defined 

inputs and outputs. The operation of a block can be described by a set of input-

output pairs ),( oi  (which we denoted as )(BIO ) which are partial functions of time 

with possibly different domains (but such that )()( idomodom  ). However, as we 

have mentioned in Chapter 1, several approaches to mathematical systems theory 

consider the case of total input-output pairs Todomidom =)(=)(( ) particularly 

important. This motivates to investigate the properties of the set of total input-

output pairs as a subset of the set of all input-output pairs of a block. 

One of the most basic questions that can be asked about total input-output 

pairs of a block is their existence. 

In this chapter we consider the following question:   

(a) How can one prove that a given strongly nonanticipative block B  has a 

total I/O pair (if B  indeed has a total I/O pair) ?

Using the same techniques which we will use to answer this question, in this 

chapter we will also give an answer to the following question:   

(b) How can one prove that for a given input signal bunch )),(( WBInSbi , 

where Tidom =)( , there exists ))(( iBOpo  with Todom =)(  ? 

That is, to prove that a block admits a total output for a given total input. Due 

to the fact that we interpret the case )()( idomodom   as an abnormal termination of 

a block on the input i , this can be interpreted as proving that it is possible for a 

block to process the input i  normally. 
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3.2 Using the NCMS representation 

The following two theorems show that the questions (a) and (b) formulated in 

the previous section can be reduced to the problem of proving the existence of 

global trajectories of NCMS. 

Definition 3.1. A trajectory s  of a NCMS   is called global, if Tsdom )( . 

Theorem 3.1. Let B  be a strongly nonanticipative block and ),( 0Q  be its 

NCMS representation, where ),,(= TrQT . Then B  has a total I/O pair if and only 

if   has a global trajectory. 

Proof.

Let us prove the “if” part. Assume that Trs  and Tsdom =)( . Let (0)=0 sq , 

)(= 0qistatex , sini = , souto = , and )(0),,(= 01,2 xiQSelQ . Then 

00 )( QSq init  , whence Qq 0 , so Q . Besides, ),( iSs max  , because 

Tsdom =)(  and iisin = . Then because Qs (0) , we have 

),,(= iQosouto all   by the definition of allo . Then ))((=),,( 0 iBOpiQOo all  , 

because i  and ),( 0Q  is a NCMS representation of B . Then )(),( BIOoi   and 

Todomidom =)(=)( . Thus B  has a total I/O pair. 

Let us prove the “only if” part. Assume that B  has a total I/O pair 

)(),( BIOoi  . Because ),( 0Q  is a NCMS representation of B  and i , we have 

),,( 0 iQOo all  . Then there is )( IStatex  such that ),,( iQoo all  , where 

)(0),,(= 01,2 xiQSelQ . Then souto =  for some ),( iSs max   such that Qs (0) , 

because Todom =)( . Then Trs  and Tsdom =)( , so s  is a global trajectory. 

Theorem 3.2. Let B  be a strongly nonanticipative block and ),( 0Q  be its 

NCMS representation, where ),,(= TrQT . Let )),(( WBInSbi  and Tidom =)( . 

Let ),( rl  be a LR representation of   and BoolQSTl  )(:  and 

BoolQSTr  )(:  be predicates such that  

))(=))((=)(min(),(),( titsintsdomtsltsl  , 
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)).(=))((=)(max(),(),( titsintsdomtsrtsr 

Then   

1) )(),( QLRrl  ;  

2)  If ),( rl   is a LR representation of a NCMS ),,(= rTQT  , then 

 }=)(|)()({ TodomiBOpo  if and only if   has a global trajectory. 

Proof.

1) Let us show that l  is left-local. Assume that )(),(),,( 21 QSTtsts   and 

21 ss t . Then t  is not the least element of either )( 1sdom , or )( 2sdom , whence 

),(),( 21 tsltsl   and )(=))(( 1 titsin  if and only if )(=))(( 2 titsin , because 

)(=)( 21 tsts . Then ),(),( 21 tsltsl  . Moreover, if )(),( QSTts   and t  is the least 

element of )(sdom , then ),( tsl , whence ),( tsl . Thus l  is right-local. 

Let us show that r  is right-local. Assume that )(),(),,( 21 QSTtsts   and 

21 ss t . Then t  is not the greatest element of either )( 1sdom , or )( 2sdom , whence 

),(),( 21 tsrtsr   and )(=))(( 1 titsin  if and only if )(=))(( 2 titsin , because 

)(=)( 21 tsts . Then ),(),( 21 tsrtsr  . Moreover, if )(),( QSTts   and t  is the 

greatest element of )(sdom , then ),( tsr , whence ),( tsr . Thus r  is right-local. 

2) Assume that ),( rl   is a LR representation of a NCMS ),,(= rTQT  . 

Then ))},(),((|:{= tsrtslAtAQAsrT  T . 

Firstly, let us show that ),(=})(|{ 0 iSsdomrTs   . 

Let rTs   and 0)( sdom . Then ),(),( tsrtsl   for all )(sdomt . Then 

),(),( tsrtsl   for all )(sdomt , whence Trs . Moreover, )(=))(( titsin  for all 

non-minimal )(sdomt  and )(=))(( titsin  for all non-maximal )(sdomt , so 

)(=))(( titsin  for all )(sdomt  (because )(sdom  is not a singleton). Then isin  , 

whence ),( iSs  . 

Conversely, let ),( iSs  . Then Trs  and 0)( sdom , whence 

),(),( tsrtsl   for all )(sdomt . Moreover, )(=))(( titsin  for all )(sdomt . Then 

),(),( tsrtsl   for all )(sdomt , whence rTs  . 
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We conclude that ),(=})(|{ 0 iSsdomrTs   . 

Now let us show that  }=)(|))(({ TodomiBOpo  if and only if there 

exists rTs   such that Tsdom =)( . 

Let us prove the “if” part. Assume that rTs   and Tsdom =)( . Then 

),( iSs  . Let (0)=0 sq , )(= 0qistatex , souto = , and )(0),,(= 01,2 xiQSelQ . 

Then 00 )()( QSSq initinit  , whence Qq 0 , so Q . Besides, 

),( iSs max  , because Tsdom =)( . Then ),,(= iQosouto all   by the definition 

of allo , because Qs (0) . Then ))((=),,( 0 iBOpiQOo all  , because i  and 

),( 0Q  is a NCMS representation of B . Moreover, Todom =)( . Thus 

 }=)(|))(({ TodomiBOpo . 

Let us prove the “only if” part. Assume that ))(( iBOpo  and Todom =)( . 

Because ),( 0Q  is a NCMS representation of B  and i , we have 

),,( 0 iQOo all  . Then there is )( IStatex  such that ),,( iQoo all  , where 

)(0),,(= 01,2 xiQSelQ . Then souto =  for some ),( iSs max   such that Qs (0) , 

because Todom =)( . Then ),( iSs  , whence rTs   and Tsdom =)( , so s  is a 

global trajectory of  . 

Now we will focus on the problem of existence of global trajectories of a 

NCMS. 

3.3 Existence of globally defined trajectories of NCMS 

An obvious method of proving the existence of a global trajectory of a NCMS 

with a given LR representation ),( rl  is to choose (guess) some global trajectory 

candidate function QTs :  and prove that ),(),( tsrtslTt  . 

As an alternative to guessing an entire global trajectory one can try to 

find/guess for each t  a partial trajectory ts  defined in a neighborhood of t  which 

satisfies ),(),( tsrtsl tt   in such a way that all ts , Tt  can be glued together into a 
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total function. An important aspect here is that the admissible choices of ts , ts   for 

distant time moments Ttt ,  (i.e. such that ts , ts   appear as subtrajectories of some 

global trajectory) can be dependent. 

However, this method can be generalized: instead of guessing an exact global 

trajectory or its exact locally defined subtrajectories, one can guess some “region” 

(subset of trajectories) which presumably contains a global trajectory and has some 

convenient representation. It is desirable that for this region the proof of the 

existence of a global trajectory can be accomplished by finding/guessing locally 

defined trajectories in a neighborhood of each time moment independently, or at 

least so that when choosing a local trajectory in a neighborhood of a time moment t

one does not need to care about a choice of a local trajectory in a neighborhood of a 

distant time moment. 

We formalize the described generalized method of proving the existence of 

global trajectories of a NCMS as follows. 

Let ),,(= TrQT  be a fixed NCMS. 

Definition 3.2.   satisfies  

1) the local forward extensibility (LFE) property, if for each Trs  of the 

form Qbas ],[:  ( ba < ) there exists a trajectory Qbas  ],[:  such 

that Trs  , ss  , and bb >  (i.e. s  is a continuation of s ).  

2) the global forward extensibility (GFE) property, if for each trajectory s  of 

the form Qbas ],[:  there exists a trajectory Qas  ),[:  such that 

ss  .  

Theorem 3.3. Let ),( rl  be a LR representation of  . Then   has a global 

trajectory if and only if there exists a pair )(),( QLRrl   such that   

1) ),(),( tsltsl   and ),(),( tsrtsr   for all )(),( QSTts  ;  

2) ),(),(][0, tsrtslt    for some 0>  and a function Qs ][0,:  ;  

3) if ),( rl   is a LR representation of a NCMS  , then   satisfies GFE.  

Proof.
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Let us prove the “if” part. Assume that 1)-3) hold. By 2) there exists 0>

and Qs ][0,:   such that ),(),( tsrtsl   for all ][0,t . Let ),,(= rTQT   be a 

NCMS such that ),( rl   is a LR representation of   (which exists, because 

)(),( QLRrl  ). Then by 3),   satisfies GFE. Besides, rTs  . Then there exists 

Qs  )[0,:  such that rTs   and ss  . Then ),(),( tsrtsl   for all Tt , 

whence Trs  , because of 1), so   has a global trajectory.  

Let us prove the “only if” part. Assume that   has a global trajectory Trs * . 

Let BoolQSTl  )(:  and BoolQSTr  )(:  be predicates such that  

))(=)(=)(min(),(),( * tststsdomtsltsl  , 

)).(=)(=)(max(),(),( * tststsdomtsrtsr 

In the same way as in the proof of the item 1) of Theorem 3.2, it is straightforward 

to show that l  is left-local and r  is right-local. Then )(),( QLRrl  . Obviously, 

),(),( tsltsl   and ),(),( tsrtsr   for all )(),( QSTts  , so 1) holds. Besides, we 

have ),(),( ** tsrtsl   for all Tt , because Trs * , whence ),(),( ** tsrtsl   for all 

Tt . Then 2) also holds. Assume that ),( rl   is a LR representation of a NCMS  . 

Let us show that   satisfies GFE. Let Qbas ],[:  ( ba < ) be a trajectory of  . 

Then ),(),( tsrtsl   for all )(sdomt . Then )(=)( * tsts  for all ],( bat  and 

)(=)( * tsts  for all ),[ bat , so )(=)( * tsts  for all ],[ bat . Then *ss . Besides, *s

is a trajectory of  . Let ),[
* |=  ass . Then s  is a trajectory of   by the CPR 

property and ss  . Thus   satisfies the GFE property. 

Theorem 3.3 means that the existence of a global trajectory of a NCMS 

with a LR representation ),( rl  can be proved using the following approach: 

1) Choose/guess a pair )(),( QLRrl   such that ),(),( tsltsl   and 

),(),( tsrtsr   for all )(),( QSTts  . This pair is a LR representation of a 

NCMS ),,(= rTQT  , where  

))},(),((|:{= tsrtslAtAQAsrT  T . 
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The set TrrT   plays the role of a region which presumably contains a 

global trajectory.  

2) If it is possible to find a function s  on a small segment ][0,  which 

satisfies ),(),( tsrtsl   for ][0,t  (i.e. s  is a trajectory of  ) and 

prove that   satisfies GFE, then   has a global trajectory.  

To complete this method of proving the existence of a global trajectory, in the 

next section we will show that the GFE property of a NCMS can be proven by 

proving the existence of certain locally defined trajectories independently in a 

neighborhood of each time moment. 

3.4 Reduction of the GFE property to the LFE property 

As above, let ),,(= TrQT  be a fixed NCMS.   

Definition 3.3. A right dead-end path (in  ) is a trajectory Qbas ),[: , 

where Tba , , ba < , such that there is no Qbas  ],[: , Trs   such that ss 
(i.e. s  cannot be extended to a trajectory on ],[ ba ).  

Definition 3.4. An escape from a right dead-end path Qbas ),[:  (in  ) is 

a trajectory Qdcs  ),[:  (where }{Td ) or Qdcs  ],[:  (where Td  ) 

such that ),( bac , bd > , and )(=)( cscs  . An escape s  is called infinite, if 

=d .  

Definition 3.5. A right dead-end path Qbas ),[:  in   is called strongly 

escapable, if there exists an infinite escape from s .  

Lemma 3.1. If Qbas ),[:  is a right dead-end path and ),( bac , then 

),[| bcs  is a right dead-end path. 

The proof follows immediately from the CPR and Markovian properties of  . 

Lemma 3.2.   satisfies GFE if and only if   satisfies LFE and each right 

dead-end path is strongly escapable.   

Proof.
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Let us prove the “if” part. Assume that   satisfies LFE and each right dead-

end path in   is strongly escapable.  

Let us prove that   satisfies GFE. Let Qbas ],[:  be a trajectory. Let us 

denote }=)(min)(min|{= asdomsdomssTrsS   . Then each nonempty 

-chain of elements of S  has an upper bound in S , because of the completeness 

property of  . Because S , Zorn’s lemma implies that S  has some maximal 

element *s  (with respect to ). Because of the LFE property, )( *sdom  cannot be a 

closed bounded segment. Then either ),[=)( * asdom , or ),[=)( * yasdom  for 

some Ty . Consider the latter case, i.e. ),[=)( * yasdom , Ty , ya < . Because 
*s  is maximal in S , *s  cannot be extended to a trajectory on ],[ ya . Hence *s  is a 

right dead-end path. Moreover, by > , because *ss . Then ),( yab  and by 

Lemma 3.1, ),[
* | ybs  is a right dead-end path. Then there exists some infinite escape 

Qcs ),[:1  from ),[
* | ybs  (where ),( ybc , )(=)( *

1 cscs ).  

Let us define Qas ),[:2  as follows:  



 

ctts
catts

ts
>),(

],[),(
=)(

1

*

2

Then Trs 2  by the CPR and Markovian properties of  . Moreover, 2ss , because 

bc >  and *ss . 

We conclude that in any case, either ),[=)( * asdom  and *ss , or there 

exists a trajectory Qas ),[:2  such that 2ss . Because s  is arbitrary, 

satisfies the GFE property.  

Let us prove the “only if” part. Assume that   satisfies the GFE property. 

Then   satisfies the LFE property because of the CPR property of  .  

Let us prove that each right dead-end path is strongly escapable. Let 

Qbas ),[:  ( ba < ) be a right dead-end path. Let ),( bac . Then Trs ca ],[|  by 

the CPR property of  . Then there exists a trajectory Qas  ),[:  such that 
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ss ca ],[|  by the GFE property. Let ),[|=  css . Then Trs   by the CPR property 

of   and )(=)( cscs  . Then s   is an infinite escape from s . Thus each dead-end 

path is strongly escapable. 

Now we will consider conditions under which each right dead-end path is 

strongly escapable. 

Definition 3.6. A function )[0,)[0,:   is of class K , if it is 

continuous, strictly increasing, 


=)(lim x
x

 , and 0=(0) . 

Definition 3.7.

1) A right extensibility measure is a function   ~:f  such that 

)(}|),{(  fdomyxTTyxA , 0),( yxf  for all Ayx ),( , 

Af |  is strictly decreasing in the first argument and strictly increasing in 

the second argument, and for each 0x , xxxf =),(  and 


 ),(lim yxfy . 

2) A right extensibility measure f  is called normal, if f  is continuous on 

}|),{( yxTTyx   and there exists a function K  such that 

yy <)(  for all 0>y  and the function )),(( yyfy   is of class K .  

Let us fix a right extensibility measure f . Note that 

yyyfyxf =),(>),(   for all 0, yx  such that yx < . 

Definition 3.8. A right dead-end path Qbas ),[:  is called f -escapable 

(Fig. 3.1), if there exists an escape Qdcs  ],[:  from s  such that ).,( bcfd 

Informally, this definition means that the value of a right extensibility 

measure gives a lower estimate on how long an escape from a right dead-end path 

can be. The first argument of the right extensibility measure is the time at which the 

escape starts (i.e. the left end of its domain) and the second argument is the time at 

which the right dead-end path becomes undefined (the right end of its domain). 



 129

Fig. 3.1. An f -escapable right dead-end path Qbas ),[:  (displayed here 

as a curve) and a corresponding escape Qdcs  ],[:  (displayed here as a 

horizontal segment) such that ).,( bcfd 

Theorem 3.4 (About right dead-end path). Assume that   satisfies the LFE 

property and f  is a normal right extensibility measure. Then each right dead-end 

path is strongly escapable if and only if each right dead-end path is f -escapable.  

We will give a proof of this theorem in a separate section (Section 3.5), 

because it is longer than other proofs in this section.  

The following lemma gives an example of a right extensibility measure. 

Lemma 3.3. For each n  the function n
n xyyyxf )(=),(   ( yx, ) 

is a normal right extensibility measure. 

Proof. Obviously, 
nf  is defined and non-negative on the set 

}|),{( yxTTyxA  , Anf |  is strictly decreasing in the first argument and is 

strictly increasing in the second argument, xxxfn  ),( , and 


 ),(lim yxfny , so 

nf  is a right extensibility measure. Besides, 
nf  is 

continuous on   . Let ),0[),0[:   be a function 2/)( yy  . Then 

K , yy <)(  for all 0>y , and n
n yyyyf )2/()),((    is a continuous, 
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strictly increasing, unbounded function which takes zero value at zero, so 

)),(( yyfy   is of class K . So 
nf  is a normal right extensibility measure.  

Note that for xyyxf  2=),(1 , a right dead-end path Qbas ),[:  is 
1f -

escapable, if there exists an escape Qdcs  ],[:  with cbbd  . 

Now let us give a criterion for the GFE property. 

Theorem 3.5. Let ),( rl  be an LR representation of   and f  be a normal 

right extensibility measure. Then   satisfies the GFE property if and only if for 

each 0>t  there exists ](0,t  such that for each ),[0 ttt   and Qtts ],[: 0

the following holds: 

1) ttsrsltt >),(),(],[ 10  

)),(),()(()(=)(],[: 1  srslsdomtstsQtts  ; 

2) ),(),(),(),(),[ 010 ttttslsrsltt  

)).,(),()(()(=)()],(,[: 1111  srslsdomtstsQttfts  

Proof.  Let us prove the “if” part. 

Assume that for each 0>t  there exists ](0, t  such that 1) and 2) hold for 

each ),[0 ttt   and Qtts ],[: 0 . 

Let us show that   satisfies GFE. 

Firstly, let us show that   satisfies LFE. Let Qbas ],[:  be a trajectory of 

  (where Tba , , ba < ). Then 0>b . Then for bt =  there exists ](0, t  such 

that the property 1) holds for each ),[0 ttt   and Qtts ],[: 0 . Let 

},{max=0 tat  and ],0[|= ttss . Then Trs  by the CPR property and 

),(),(  srsl   for all ],[ 0 tt , and by the property 1) there exists btt =>1  and 

Qtts  ],[: 1  such that )(=)(=)( tststs  and ),(),(  srsl   for all )(sdom  . 

Then Trs  . Let us define Qtas  ],[: 1  as follows: )(=)(  ss  , if ],[ ba  and 

)(=)(  ss  , if ],[ 1tb . Then Trs   by the Markovian property. Moreover, 

ss   and bt >1 . So   satisfies LFE. 
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Secondly, let us show that each right dead-end path in   is f -escapable. 

Let Qbas ),[:  be a right dead-end path in   (where Tba , , ba < ). Then 

0>b . Then for bt =  there exists ](0, t  such that the property 2) holds for each 

),[0 ttt   and Qtts ],[: 0 . Let },{max=0 tat  and s  be some continuation 

of ),0[| tts  on ],[ 0 tt . Then Trs tt ),0[|  by the CPR property and ),(),(  srsl   for all 

),[ 0 tt . Besides, ),( tsl , because s  is a dead-end path and ),( tsr  holds. Then by 

the property 2) there exists ),( 01 ttt   and a function Qttfts   )],(,[: 11  such that 

)(=)( 11 tsts  and ),(),(  srsl   for all )(sdom  . Then Trs  . Moreover, 

),(1 bat  , )(=)(=)( 111 tststs , and ),()(max 1 btfsdom  . Thus s  is an escape 

from s . Then s  is f -escapable. 

Thus by Theorem 3.4, each right dead-end path in   is strongly escapable. 

Then by Lemma 3.2,   satisfies GFE. 

Now let us prove the “Only if” part. Assume that   satisfies GFE. Let 0>t . 

Let us choose an arbitrary ](0, t . Assume that ),[0 ttt   and Qtts ],[: 0 . 

Let us prove the property 1). Assume that ),(),(  srsl   for all ],[ 0 tt . 

Then Trs  and by GFE there exists Qts ],[: 01  such that Trs 1  and 1ss . 

Let 1=1 tt  and ]1,[|= ttss . Then Trs   by the CPR property and )(=)( tsts  and 

),(),(  srsl   for all )(sdom  . 

Let us prove the property 2). Assume that ),(),(  srsl   for all ),[ 0 tt . 

Then Trs tt ),0[| . Consider the case when ),0[| tts  is a right dead-end path in  . Then 

by Lemma 3.2 it is strongly escapable, so there exists ),( 01 ttt   and 

Qts ),[: 11  such that )(=)( 11 tsts  and Trs 1 . Let 
)],1(,1[1 |=

ttft
ss  . Then 

Trs   by the CPR property and )(=)( 11 tsts  and ),(),(  srsl   for all 

)(sdom  . 
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Now consider the case when ),0[| tts  is not a right dead-end path. Then there  

exists Qtts ],[: 00  such that Trs 0  and 0),0[| ss tt  . Then by GFE there exists 

Qts ],[: 01  such that Trs 1  and 10 ss  . Let us choose an arbitrary ),( 01 ttt 

and define 
)],1(,1[1 |=

ttft
ss  . Then Trs   by the CPR property and 

)(=)(=)(=)( 110111 tstststs  and ),(),(  srsl   for all )(sdom  . 

Thus in both cases the property 2) holds. 

Note that in this theorem the first condition basically means the LFE property 

and the second condition expresses the existence of an escape of a length given by 
f . This theorem means that to prove the GFE property, it is sufficient to prove the 

existence of certain locally defined trajectories independently in a neighborhood of 

each time moment. 

3.5 Proof of the theorem about a right dead-end path 

In this section we will give a proof of Theorem 3.4. 

Let ),,(= TrQT  be a fixed NCMS and f  be a fixed normal right 

extensibility measure. Let us introduce several auxiliary definitions and lemmas. 

Definition 3.9. A right 0t -bunch (in  ) is a non-empty set TrA  such that 

0=))((min tsdom   for each As  and 201 = ss t   for all Ass 21, .

For each non-empty set TrA  denote  

)).(sup(sup= sdomA
As



We assume that  =A , if =))((sup sdom  for some As . 

Definition 3.10. A (right) 0t -bunch A  is called bounded, if  <A . 

Otherwise it is called unbounded. 
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Lemma 3.4. There exists a function TTTg  ~:  defined on 

}|),{( yxTTyx   such that   

1) g  is strictly increasing in both arguments; 

2) xxxg =),(  and yyxgx <),(<   for all Tyx ,  such that yx < ; 

3) yyxfxg =)),(,(   for all Tyx ,  such that yx  . 

Proof. For each fixed 0x  let ),[: xhx  be a function such that 

),()( yxfyhx
  for all ),[  xy . Then because f  is a normal right 

extensibility measure, we have that xh  is strictly increasing, continuous, maps the 

set ),[ x  to itself, is unbounded from above, and xxhx )( . Therefore, it has a 

strictly increasing inverse 1
xh  which is defined on ),[ x . Let us define 

TTTg  ~:  as follows:  )(),( 1 yhyxg x
   for all ),( TTyx   such that 

yx  . Then g  is strictly increasing in the second argument and 

yyxfxg =)),(,(   for all Tyx ,  such that yx  . If Tyxx ,, 21  and 

yxx  21 , then )),(,()),(,()),(,( 212211 yxgxfyxgxfyyxgxf   , 

which implies that ),(),( 21 yxgyxg   , so g  is strictly increasing in the first 

argument. Thus the condition 1 and 3 of the lemma are satisfied.  

Let us prove the condition 2. Indeed, xxhxxg x  )(=),( 1  for all 0x . 

Besides, if Tyx ,  and yx < , then yyygyxgxxgx   ),(),(<),( , 

because g  is strictly increasing in both arguments as we have shown above. 

Let us fix a function g  which is described in Lemma 3.4.  

Definition 3.11. A bounded right 0t -bunch A  is called g -convergent, if for 

each ),( 0
 Att  and Ass 21,  the following holds:

if ),())}((sup)),((sup{min 21
  Atgsdomsdom , then 2),0[1 = ss tt  .  
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We will need the following notion [58]: if X  is some set and XXg : , a 

function XXf :  which satisfies the equation gfff
N


  


 times

...  ( N ) is called 

an N -th order iterative root of g . The existence of iterative roots can be established 

in some cases using the following theorem which was proved in [58]. 

Theorem 3.6 [58, Theorem 11.2.2]. Let X  be an interval and let f  be a 

strictly increasing and continuous self-mapping of X . Then f  possesses strictly 

increasing and continuous iterative roots of all orders. 

Note that here the interval X  can be unbounded. 

Let K  be a function such that yy <)(  for all 0>y  and the function 

)),(( yyfy   is of class K  (such a function exists by Definition 3.7).

Then by Theorem 3.6 there exists a continuous and strictly increasing 

function   on )[0,  such that for all 0x ,  

)),((=))(( xxfx    (3.1) 

Lemma 3.5.   is of class K  and xx >)(  for all 0>x .   

Proof.  For all 0>x  we have xxxfxxfx   ),()),((=))((  , because 

xx )( . Suppose that 00 )( xx   for some 00 x . Then )())(( 000 xxx    by 

monotonicity of  . This contradics the assumption 00 )( xx  . Thus xx )(  for 

all 0>x . Moreover, because, 0)0,0()0),0(())0((   ff  , we have 

0)0(  . Besides, 


=)(lim x
x

  and   is continuous and strictly increasing. We 

conclude that   is of class K   and xx >)(  for all 0>x .  

Let   be a strictly increasing and continuous function such that  

)(=))(( xx 

for all 0>x  (it exists by Theorem 3.6).  

Then xx >)(  for all 0>x  (because otherwise, there exists 0>0x  with 

00 )( xx   and 0000 )())((=)( xxxx    – a contradiction with Lemma 3.5). 

Let   be a strictly increasing and continuous function such that  
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)(=))(( xx 

for all 0>x  (which exists by Theorem 3.6).  

Then xx >)(  for all 0>x , because xx >)(  for all 0>x , whence  

).(=))((<)(=))((<)(< xxxxxx   (3.2) 

For any set of sets S  and a binary relation SS   denote:   

– ),( SCh  is the set of all  -chains Sc   (i.e. BA  or AB   for each 

cBA , ) such that  

1) the union of elements of each non-empty bounded subset (in the sense 

of  ) of c  belongs to c , i.e. for each }{\2  cc , if there exists 

cX   such that Xc  , then cc  . Note this implies that c  is a 

Dedekind-complete poset with resepct to   [97, p. 87] (i.e. every 

nonempty bounded subset has a supremum); 

2) for each non-maximal cA  (i.e. AA   for some cA  ) there exists 

cA   such that AA   and AA  . 

–   is a binary relation on ),( SCh  such that 21 cc   if and only if 21 cc  , 

and BA  for all 1cA  and 12 \ ccB .  

For each 00 t  let us define:   

– 
0t

S  is the set of all bounded g -convergent right 0t -bunches (in  );  

–   is a binary relation on 
0t

S  such that BA   if and only if 

)|(|<|<|||  ABA  .  

Let us prove some general properties of ),( SCh . 

Lemma 3.6.

1)   is a partial order on ),( SCh . 

2) Each chain in the poset )),,(( SCh  has an upper bound.  

Proof. The statement 1. follows immediately from definition of  . 
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Let us show the statement 2. Let ),( SChC   be a  -chain. Let us show that 

).,(=  SChCc   It is straightforward to check that c  is a  -chain. 

Let us check that for each non-empty cc  , if there exists cX   such that 

Xc  , then cc  . Assume cc  , c , cX   and Xc  . Then there 

exists CcX   such that XcX  , because CcX = . Firstly, let us show that 

Xcc  . Let cA  . Because CccA = , there exists CcA   such that AcA . 

Now assume that XcA . Then XA cc   (otherwise XA ccA  ). Then AX cc  , 

because C  is a  -chain and Ccc XA , . Then AX  , because XcX  , XA ccA \ . 

Then AXcA  . Then we have a contradiction XcXA = . Thus XcA

and we conclude that Xcc  . Now we have that Xcc  , c  and there exists 

XcX   such that Xc  . Then Xcc   by the definition of ),( SCh , because 

),( SChCcX  . Thus cCc =  . 

Let us check that for each non-maximal cA  (with respect to  ) there exists 

cA   such that AA   and AA  . Assume that cA  is non-maximal. Then there 

exists cB  such that BA . Then there exist Ccc BA ,  such that AcA , BcB , 

because Cc = . Moreover, either BA cc   or AB cc  . If BcA , then A  is a non-

maximal element of Bc . Then there exists BcA   such that AA   and AA  , 

because ),( SChcB  . Then cCA = . On the other hand, if BcA , then 

AB cc   (because otherwise )BcA  and AB  , because BcB  and BA ccA \ . 

This contradicts the inclusion BA  given above. We conclude that there exists 

cA   such that AA   and AA  . 

Thus ),( SChc  by the definition of ),( SCh .  

Lemma 3.7. Let mc  be a  -maximal element of ),( SCh  and ScX m = . 

Then the following holds:  

1) mcX  .  

2) There is no set SY   such that YX   and YX  .  
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Proof. Let us prove 1). Let }{= Xcc mm  .  

Let us show that ),( SChcm  . We have Scm   and XA  for all mcA , 

because mcX = . Moreover, mc  is a  -chain. Thus }{= Xcc mm   is a  -chain. 

Let us check that for each non-empty mcc  , if there exists mcX   such 

that Xc  , then mcc  . Assume that mcc  , c . If cX  , then 

XXcccX mm =)(=    and mcc  . Consider the case when 

cX  . Then mcc   and because mc  is a  -chain, for each mcA , either BA

holds for some cB  , or AB   holds for all cB  . Then for each mcA , either 

cA   or Ac  . If Ac   for some mcA , then by taking into account 

that mcc  , c  and ),( SChcm  , we have mm ccc  . If cA   for all 

mcA , then XcccX mm ==   , because mcc  . Then mcc  . Thus 

in all cases mcc  . 

Let us check that for each non-maximal mcA   (with respect to  ) there 

exists mcA   such that AA   and AA  . Assume that mcA   is non-maximal. 

Then XA  . Then mcA . Moreover, A  is a non-maximal element of mc , because 

otherwise AcX m == . Then because ),( SChcm  , there exists mm ccA 

such that AA   and AA  . 

Thus ),( SChcm   by definition of ),( SCh . 

We have mm cc   and BA  for all mcA  and mm ccB \ , because 

}{\ Xcc mm   and XcA m = . Then mm cc  . Then mm cc = , because 

),( SChcm   and mc  is a  -maximal element of ),( SCh . Thus mcX  . 

Now let us prove 2) by contradiction. Assume that there exists SY   such 

that YX   and YX  . Let }{= Ycc mm  . Let us show that ),( SChcm  . 

We have Scm  . Also, YA  for all mcA , because YXcm = . 

Moreover, mc  is a  -chain. Thus }{= Ycc mm   is a  -chain. 
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Let us check that for each non-empty mcc  , if there exists mcX   such 

that Xc  , then mcc  . Let mcc  , c . If cY  , then 

YYXYcccY mm ==)(=    and mcc  . Consider the case when 

cY  . Then mcc   and Xcc m =  . Moreover, mcX   by the statement 1) 

of this lemma. From this and from mcc  , c  and ),( SChcm  , we have 

mm ccc  . Thus in both cases we have mcc  . 

Let us check that for each non-maximal mcA   (with respect to  ) there 

exists mcA   such that AA   and AA  . Assume mcA   is non-maximal 

element. Then YA  , because Y  is a maximal element of mc . Then mcA . If A  is 

a non-maximal element of mc , then there exists mm ccA   such that AA   and 

AA  , because ),( SChcm  . If A  is a maximal in mc , then AcX m == , 

mcY  , YA  and YA . Thus ),( SChcm  . 

We have mm cc   and BA  for all mcA  and mm ccB \ , because 

}{\ Ycc mm   and YXcA m  = . Then mm cc  . Also, we have 

mm cYcX  ==  , because YX  . Then mm cc  . Then mc  is not a  -maximal 

element of ),( SCh , because mm cc   and }{\),( mm cSChc  . We have a 

contradiction with assumptions of the lemma. Thus there is no set SY   such that 

YX   and YX  . 

Let us consider some properties of the set }{\),(
0

 tSCh  for a fixed 

Tt 0 . Note for each element c  of this set, c , because 
0t

S . 

Lemma 3.8. If }{\),(
0

  tSChc  and  <c , then 
0t

Sc .  

Proof. Let }{\),(
0

  tSChc , cX = , and  <X . Then X . 

Let us show that X  is a bounded right 0t -bunch. For each Xs  there exists 

cA  such that As . Then 0=))((min tsdom  , because A  is a right 0t -bunch. Let 
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Xss 21, . Then there exist cAA 21,  such that 11 As   and 22 As  . Then 21 AA 

or 12 AA  , because c  is a  -chain. Moreover, 
021, tSAA . If 21 AA  , then 

221, Ass   for 1,2=i . Then 201 = ss t  , because 2A  is a right 0t -bunch. Similarly, if 

12 AA  , then 201 = ss t  , because 1A  is a right 0t -bunch. In both cases 201 = ss t  . 

Thus X  is a bounded right 0t -bunch, because  <X . 

Let us show that X  is g -convergent. Let ),( 0
 Xtt , Xss 21, . Then 

there exist cAA 21,  such that 11 As  , 22 As  . Then 21 AA   or 12 AA  , because 

c  is a chain. Also, 21, AA  are bounded 0t -bunches, because 
021, tSAA . 

Let ))((sup= ii sdomt , 1,2=i . Assume that ),(},{min 21
  Xtgtt . 

Let us show that 2),0[1 = ss tt  . 

Consider the case 21 AA  . Then 221, Ass   and  ||, 221 Att . Then  

,>),(},{min|||| 212 tXtgttAX  

because XA 2  and  |<| Xt . If ),( 20
 Att , then 2),0[1 = ss tt  , because 2A  is g -

convergent. Otherwise,  2= At . Then  

,=),(),(},{min 2221
  AAtgXtgtt

by monotonicity of g , whence 
221 == Att , because  ||, 221 Att . 

For each ),( 20
 Att  we have  

).,(>=},{min 2221
  AtgAtt

Then 2),0[1 = ss tt  , because 2A  is g -convergent. Then 2),0[1 = ss tt  , because 

),(=),( 020 ttAtt    is arbitrary. 

In the case 12 AA   we can show that 2),0[1 = ss tt   using analogous arguments. 

Thus X  is g -convergent. Then 
0t

SX  by the definition of 
0t

S . 
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Let us define a prefix relation ̂  on Tr : 21
ˆss  if and only if 21 ss  and for 

each )( 11 sdomt   and )(\)( 122 sdomsdomt   we have 21 tt  .  

Let us define a prefix closure operation pcl  on Tr2 : 

}ˆ|{=)( ssAsTrsApcl   , if TrA . 

Lemma 3.9.

1) ̂  is a partial order on Tr . 

2) pcl  is a closure operator, i.e. )(ApclA  (extensivity), 

)()( ApclApcl  , if AA   (monotonicity), and )())(( ApclApclpcl 

(idempotence). 

Proof.  

1) It is obvious that ̂  is reflexive and anitsymmetric. Let us check that ̂  is 

transitive. Assume 21
ˆss  and 32

ˆss  . Then 21 ss , 32 ss  , whence 31 ss . Besides, if 

)( 11 sdomt   and )(\)( 133 sdomsdomt  , then either )( 23 sdomt  , whence 31 tt  , 

because 21
ˆss , or )(\)( 233 sdomsdomt  , whence 31 tt  , because 32

ˆss   and  

)()( 211 sdomsdomt  . Thus ̂  is transitive. 

2) Monotonicity of pcl  follows from its definition. Moreover, pcl  is 

extensive and idempotent, because ̂  is reflexive and transitive. 

Lemma 3.10. 
0

)( tSApcl  for each 
0t

SA . 

Proof. Let 
0t

SA . Then A  is a bounded g -convergent right 0t -bunch. 

Let )(ApclA  . Then TrAA  , so A . Let As  . Then there exists 

As   such that ss ̂ . Then 0)(min tsdom  , and because ss ̂  and )( 1sdom  is a 

nonempty subset of )( 2sdom , we conclude that 0)(min tsdom  . Then 

)(],[ 10 sdomtt   for some 01 tt   and ss  , whence ss t  0
. Because As   is 

arbitrary and ss t  0
 for all Ass , , we have that ss t  0

 for all Ass , . 

Thus A  is a right 0t -bunch. 
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Because A  and for each As   there exists As   such that ss  , we 

have   AA . On the other hand,   AA , because AA  . Thus   AA

and A  is a bounded right 0t -bunch. 

Let us show that A  is g -convergent. Let ),(),( 00
  AtAtt  and 

Ass 21, . Assume that  

),(),())}((sup)),((sup{min 21
  AtgAtgsdomsdom . 

Then there exist Ass  21,  such that 11
ˆss   and 22

ˆss  . Then  

),())}((sup)),((sup{min 21
  Atgsdomsdom , 

so 2),0[1 = ss tt   , because A  is g -convergent. Then 2),0[1 = ss tt  , because 

)()())||,(,[),[ 2100 sdomsdomAtgttt    (by the item 2 of Lemma 3.4), 11
ˆss  , 

and 22
ˆss  . Thus A  is g -convergent. We conclude that 

0
)( tSApclA . 

Lemma 3.11. If ),(
0

 tSChc , then ),(}|)({
0

 tSChcAApcl .  

Proof. Let ),(
0

 tSChc  and }|)({=ˆ cAApclc  . 

By Lemma 3.10 we have 
0

ˆ tSc . Besides, ĉ  is a non-empty  -chain, 

because c  is a non-empty  -chain and pcl  is monotone. 

Let us show that the union of elements of each non-empty bounded subset of 

ĉ  belongs to ĉ . Assume that }{\2 ˆ  cc  and there exists cX ˆ  such that 

Xc  . Then there exists cY   such that )(YpclX   and there exists a non-

empty set cc   such that }|)({ cAApclc  . Then  

)(}|)({ YpclXccAApcl   . 

From the definition of pcl  we have  

)()}|{(=}|)({ cpclcAApclcAApcl   . 

If there exists cZ   such that Zc   (i.e. c   is a bounded subset of c ), 

then cc  , because ),(
0

 tSChc . From this we have ccpclc ˆ)(=   .  
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Otherwise, cc =  , because c  is a chain. Then  

)()(==)(=)( cpclYpclXccpclcpcl  

by monotonicity of pcl , whence cXc ˆ=  .  

In both cases, cc ˆ . Thus the union of elements of a non-empty bounded 

subset of ĉ  belongs to ĉ . 

Let A  be a non-maximal element of ĉ . Then there exists cB  such that 

)(= BpclA . If B  is a maximal element of c , then cB  , because c  is a chain, 

and  ccAApclcpclBpclA ˆ}|)({)()(  , which contradicts the 

assumption that A  is non-maximal. Thus B  is a non-maximal element of c .  

Then there exists cB   such that BB   and BB  . Then cBpcl ˆ)(   and 

)(BpclA  . Moreover, )(   BBB  , whence )()(   ABpclA  , 

because   BBpclA )(=  and   |)(||| BpclB . Thus )(BpclA  . 

We conclude that ),(}|)({ˆ
0

 tSChcAApclc . 

Lemma 3.12. If }{\),(
0

  tSChc  and  =c , then there exists a 

trajectory Qts ),[: 0*  and cA  such that ss t 0* =  for all As  .  

Proof. Let }{\),(
0

  tSChc  and 
 =c . Let }|)({=ˆ cAApclc  . 

Because c , we have }{\),(ˆ
0

  tSChc  by Lemma 3.11. Moreover, 

=|ˆ| c , because cc ˆ . 

Let us construct a  -monotone sequence cAn ˆ , n  and a sequence 

nn As  , n  as follows. Lemma 3.5 implies that the function   has an inverse 

function 1  which is defined and strictly increasing on )[0, . Moreover, 

xx <)(1  for all 0>x . Let us choose cA ˆ1  arbitrarily and choose 11 As   in such 

a way that )|(|=)(sup 1
1

1
 Asdom   (this is possible, because 1A , 

 |<|)|(|<0 11
1 AA , and 1A  is prefix-closed, i.e. 11 =)( AApcl ). 
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Suppose that elements nAA ,...,1  and nss ,...,1  are already constructed. Let us 

construct 1nA , 1ns  in the following way. 

Let }|ˆ{= AAAAcAC nn   . Then C , because nA  is not a  -

maximal element of ĉ  ( ĉ  has no maximal elements, because  =|ˆ| c ). Let 

.=* CA   Then   <)|(||| *
nAA  , because )|(|<||  nAA   for all CA  . Let 

us choose cX ˆ  such that  |>||| *AX . Because ĉ  is a  -chain, XA   for all 

cCA ˆ . Then XA * . Then cA ˆ*  , because ĉ  is Dedekind-complete. Then 

there exists cB ˆ  such that BA *  and BA * , because *A  is a non-maximal 

element of ĉ  and ),(ˆ
0

 tSChc . Let us define BAn =1 . Then 1 nn AA  and 

cAn ˆ1  . Also, let us choose 11   nn As  such that )|(|=)(sup 1
1

1





 nn Asdom   (this 

is possible, because 1nA , 





 |<|)|(| 11
1

nn AA , and 1nA  is prefix-closed).  

We have defined sequences nA  and ns , 1n . The sequence nA  is obviously 

 -monotone. Let us show that for each 1n ,  

).|(|<||)|(|<|| 1



  nnnn AAAA   (3.3) 

Let 1n . Like above, let }|ˆ{= AAAAcAC nn    and CA =*  . 

Then ))|(|(|| 1


  nn AA  , because )|(||| *  nAA   and 1
*




nAA  . Moreover, 

CAn 1  and )|(||<||| *1*



  AAA n  , because 1

*
 nAA  and 1

*



nAA  . Then 

1
 nn AA   by the definition of C , because cAn ˆ1 , and 1 nn AA . Then 




  ||)|(| 1nn AA  or 
  |||| 1 nn AA  by the definition of  . However, 


  |>||||| *

1 nn AAA , because C . Thus )).|(|(||)|(| 1



  nnn AAA 

From this and (3.2) we finally have (3.3). 

The sequence || nA  is monotone. If it is bounded from above, then its limit is 

a fixed point of  , because   is continuous. But xx >)(  for all 0>x , whence  

.=||lim 


n

n
A
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By the construction of ns , )|(|=)(sup 1 
nn Asdom   for all 1n , thus  

.=)(suplim 


n
n

sdom  (3.4) 

From (3.1) we have that for all 0,x

).(>=))),((),((=)))((),(( xxxxfxgxxg  

Let us prove that for each 1n ,  

)(=)( 1 tsts nn   for all ))(sup(< nsdomt  . (3.5) 

Let 1n  and )(sup= nsdomx , |=| nAa , 
 |=| 1nAb . Then )(= 1 ax   and 

)(<< aba   by (3.3). Then  

).),(())(),((=)))((),(( bxgaxgxxgx   

by monotonicity of g . Then  

=)}|(|),|(|{min=)}(sup),(sup{min 1
11

1





 nnnn AAsdomsdom 

).||),((=)|(|= 1
1 


  nn AxgxA 

Because )||(0, 1


 nAx  and )||(0,)( 1


 nAx , 11,   nnn Ass , and 1nA  is 

g -convergent, we have )(=)( 1 tsts nn   for all )(< xt   = ))(sup( nsdom . 

Let us define a function *s  on ),[ 0 t  such that for each 0tt  , 

)(=)( )(* tsts tm  where )))}(sup(,[|{min=)( 0 nsdomttntm  . Because   is 

unbounded and yy <)(  for all 0>y , from (3.4) it follows that )(* ts  is defined 

for all 0tt  . 

The sequence )(sup nsdom , 1n  is monotone (by construction of ns ) and 

is monotone, therefore (3.5) implies that )(=)( tsts nm  for all m , mn   and 

))(sup(< msdomt  . Then )(=)(* tsts n  for each t  such that ))(sup(< )(tmsdomt 

and )(tmn  . But ))(sup(< )(tmsdomt   for all 0tt  . Thus  

)(=)(* tsts n  for all 0tt   and )(tmn  . 

It is easy to see that the function )(tm  is monotonically non-decreasing, so 

for each 0tt   and 1],[ 0  tt , )(=)( 1)(*  tmss , whence 1)(* =  tmt ss   and  
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if 0tt  , then 1)(* =  tmt ss  . Let )(),( QLRrl   be a LR representation of  . Because 

for all n , Trsn   and 0=))((min tsdom n  (each ns  belongs to some right 0t -bunch), 

and for each 0tt  , 1))((sup 1)(  tsdom tm , we have ),(),( 1)(1)( tsrtsl tmtm    for all 

0tt  . Then because l  is left-local and r  is right-local, ),(),( ** tsrtsl   for all 0tt  . 

Hence Trs * . Moreover, 1)0(0* =  tmt ss  . Let cA  be a set such that 

)(=1)0( ApclA tm  . Because A  is a right 0t -bunch, we have ss t 0* =  for all 

1)0(  tmAAs .  

Lemma 3.13. Assume that   satisfies the LFE property and each right dead-

end path is f -escapable. Then for each 
0t

SX  there exists Trs  such that 


0

}{ tSsX  and }{sXX  .  

Proof. Assume 
0t

SX . Then X  and  <X . Denote Xtm =  and  

 |),{(= 0ttQTqtH

))},())((sup=)((),( mm ttgsdomqtsXsttt   . 

Denote )(=1 HdomH . Let us show that ),[= 01 mttH . The inclusion 

),[ 01 mttH   follows from the definition of H . Let ),[ 0 mttt . Let us choose any 

),( mttt  . Then mm tttg <),(  . Because Xtm = , there exists Xs  such that 

ttttgsdom m >),())((sup   . Because 0tt  , we have )(sdomt  and 

Htst ))(,( . Then 10 ),[ Htt m  , because ),[ 0 mttt  is arbitrary. 

Let us show that H  is a functional binary relation. Assume that Hqt ),( 1

and Hqt ),( 2 . Then there exist 21,tt   and Xss 21,  such that ),( mi ttt  , 

),())((sup mii ttgsdom   , and )(= tsq ii  for 1,2=i . Let },{min= 21 ttt  . Then 

),( 0
 Xtt , because 0tt  . Moreover,  

),,()},(),,({min))}((sup)),((sup{min 2121 mmm ttgttgttgsdomsdom  
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by the monotonicity of g . Then )(=)( 21 tsts  for ),[ 0 ttt  , because X  is g -

convergent. Then )(===)( 2211 tsqqts , because ),[ 10 ttt   and ),[ 20 ttt  . 

We conclude that H  is a graph of some function Qtts m ),[: 0* . 

Let )(),( QLRrl   be a LR representation of  . Let us show that Trs * . Let 

),( 0 mttt . Then Htst ))(,( *  and there exists ),( mttt   and Xs  such that 

)(=)(* tsts  and ttttgsdom m >),())((sup   . For each ),[ 0 tt  ,  

Xsttgsdomttt mm   ),())((sup),(0  . 

Then Hs ))(,(  . Hence )(=)( *  ss  for all ),[ 0 tt  . Then *= ss t  and *= ss t , 

because ),( 0 ttt  . Because ))((sup<<0 sdomtt  and Trs , we have 

),(),( tsrtsl  . Then ),(),( ** tsrtsl  , because l  is left-local and r  is right-local. 

Thus ),(),( ** tsrtsl   for each ),( 0 mttt .  

Moreover, because 10 Ht  , there exists ),( 0 mttt   and Xs  such that 

),())((sup mttgsdom    and )(=)( 00* tsts . Then for each ),( 0 ttt   we have 0tt 

and ),( mttt  . Hence Htst ))(,(  for each ),( 0 ttt  . Then )(=)( * tsts  for 

),[ 0 ttt  . Then ),( 0* tsr , because ),( 0tsr . We conclude that Trs * . Moreover, 

ss t 0* =  for all Xs , because X  is a right 0t -bunch. 

Consider the case when *s  is not a dead-end path, i.e. there exists a 

continuation *s  of *s  to ],[ 0 mtt . Then by the LFE and CPR properties there exists 

))(,( mmm ttt   and a trajectory Qtts m  ],[: 0  such that *ss  . Then using 

monotonicity of g  it is straightforward to show that }{sX   is a bounded g -

convergent right 0t -bunch (i.e. 
0

}{ tSsX ), and }{sXX  . 

Consider the case when *s  is a right dead-end path. Then *s  is f -escapable. 

Let us choose ),( 0 mtt  such that )(<),( mm ttf   (this is possible, because 

mmm tttf =),( , the function ),( mtf    is continuous on ],( 0 mtt , and 

mm tt >)( ). 
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The CPR property and Lemma 3.1 imply that there exists an escape es  from 

*s  of the form Qtts eee  ),[: , where ),( me tt   and ),(= mee ttft  .  

Because et , we have  

).(<),(),(=< mmmeem ttfttftt  

Let us define a function Qtts e  ),[: 0  as follows:  








),[),(
),[),(

=)( 0*

eee

e

tttts
tttts

ts . 

The Markovian property implies that Trs . Moreover, }{sX   is a 

bounded right 0t -bunch, because *0
= ss t   and )(sdom  is bounded. Also, 

}{sXX  , because ).|(|=)(<|}{=|<=||   XtsXttX mem 

Let us prove }{sX   is g -convergent. Assume that ),( 0 ettt  , 

}{, 21 sXss  , ))((sup= ii sdomt , 1,2=i , and ),(},{min 21 ettgtt   . Let us show 

that 2),0[1 = ss tt  . Consider the following cases.   

– Suppose that Xss 21, , mtt < . Then ),(),(},{min 21 me ttgttgtt   . 

Then )(=)( 21 tsts  for all ),[ 0 ttt  , because X  is g -convergent.  

– Suppose that Xss 21,  and mtt  . Then me ttttgtt   ),(},{min 21 . 

Then mtttt === 21 , because Xss 21, . The definition of H  implies that 

Htst ))(,( 1  and Htst ))(,( 2  for all ),[ 0 mttt , because ),( mm ttgt  

for all mtt < . Thus 2),0[1 = ss tt  .  

– Suppose that Xss },{ 21 . The case sss == 21  is trivial, so assume either 

Xs 1  and ss =2 , or Xs 2  and ss =1 . We consider only the former 

case, because the latter case is analogous. Let Xs 1 , ss =2 . Then 

tttgtttt em   ),(},{min= 211 . Also, ),(1 mttgt    because 

em ttt  < . We have Htst ))(,( 1  for all ),[ 0 ttt   by definition of H , 
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because ),( mm ttgt    for all mtt < . Hence *),0[1 = ss tt  . Assume that 

ett > . Then meee tttgttgt =),(),(1   , because ),(= mee ttft  . Then 

meee tttgttg =),(=),(   . Then tte   by monotonicity of g . This 

contradicts assumption ett > . Thus ett  . Moreover, )(=)(* tsts  for all 

],[ 0 ettt . Thus )(=)(=)( 21 tststs  for all ),[ 0 ttt  .  

Now we have lemmas that are necessary to prove Theorem 3.4. 

Proof of Theorem 3.4. The “Only if” part of theorem follows from the CPR 

property, so let us prove the “If” part.  

Assume that   satisfies the LFE property and each right dead-end path is 
f -escapable. Let Qtts ),[: *

0  be a right dead-end path in  , }{=0 sA , and 

}{= 00 Ac . It follows immediately that 
00 tSA  and ),(

00
 tSChc . From Lemma 

3.6 and Zorn’s lemma it follows that there exists a maximal element 

),(
0

 tm SChc  (with respect to  ) such that mcc 0 .  

Let mcX = . Then X , mc , and XA 0 , because mcc 0 .  

Let us show that =|| X . Suppose that <|| X . Then 
0t

SX  by 

Lemma 3.8. Then by Lemma 3.13 there exists s  such that 
0

}{ tSsX  and 

}{sXX  . Then }{sXX  , but this contradicts Lemma 3.7, so =|| X .  

Then by Lemma 3.12 there exists a trajectory Qts ),[: 0*  and mcA

such that ss t 0* =  for all As  .  

Because mc  is a  -chain, mcA , and mccsA  00 }{ , we have either 

As }{ , or }{sA . Because 
0tm ScA  and 

0t
S , we have A , so in both 

cases As . Then ss t 0* = . Then *s  is an infinite escape from s .   

Because s  is an arbitrary right dead-end path, we conclude that each right 

dead-end path is strongly escapable. 
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3.6  Example of an application of the theorem about right dead-end path 

Although Theorem 3.3 and Theorem 3.5 together give an explicit criterion for 

the existence of a global trajectory of a NCMS with a given LR representation, 

proofs of the existence of global trajectories of NCMS which are not represented 

using LR representation can be accomplished using Theorem 3.4. In this section we 

give an example with illustrates this application of Theorem 3.4. 

3.6.1 Informal considerations 

Informally, consider the following situation: a system S  travels in 

accordance with a known law of motion and a (hazardous) object H  moves along a 

fixed trajectory independently of S . If H  becomes sufficiently close to S , the 

system S  tries to perform a maneuver to avoid collision with H . We are interested 

in conditions under which S  can travel during an unbounded time interval while 

avoiding collisions with H . 

3.6.2 Semiformal considerations 

Consider the following semiformal clarification of the described situation. 

Suppose that the behavior of S  is modeled by a control system of the form  

))(),(,()( tutytgty
dt
d

             (3.6) 

where nty )(  is a position of S  at time t  and )(tu  is an input control of S

which influences the trajectory of S  and can be used to perform a maneuver, and 

the position of H  at each time is described by a function nTz : .  

We are going to find conditions under which there exists a function u  and a 

corresponding solution y  of (3.6) such that u  and y  are defined on T , )()( tzty 

for all Tt , and u  is constant over each time interval where Dtzty  )()( , where 

D  is a given (fixed) set ( D  defines a region near )(tz , where the input control of S

can be varied in order to perform a maneuver). 

To simplify the problem, let us introduce a new variable )()()( tztytx 

and assume that z  is differentiable. Then (3.6) can be rewritten in the form 
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)())(),()(,()( tz
dt
dtutztxtgtx

dt
d

              (3.7) 

After introducing a new function )()),(,(),,( tz
dt
dutzxtguxtf   we can 

rewrite the equation (3.7) as  

))(),(,()( tutxtftx
dt
d

                    (3.8) 

The problem is to propose sufficient conditions under which there exist 

functions u  and x  defined on T  which satisfy (3.8), 0)(tx  for all Tt , and u  is 

constant over each time interval where Dtx )( , where 0  is the null vector in n . 

Similar and related problems were considered e.g. in [29] and were studied 

using control-theoretic methods. However, in this example we will demonstrate a 

direct application of Theorem 3.4 in this situation. 

3.6.3 Formal considerations 

Let us formulate the described problem formally in terms of NCMS. 

Let mn, , 2n , nx * , and nD  . Let mU   be a non-empty 

compact set,   denote the Euclidean norm on n  or m , and nn UTf  :

be a function such that  

– f  is continuous and bounded on UT n  ; 

– there exists a number 0L  such that 2121 ),,(),,( xxLuxtfuxtf 

for all nxx 21, , Tt , and Uu  (i.e. f  is Lipschitz-continuous in x ). 

Under these conditions Caratheodory existence theorem [26] implies that for 

each Tt 0  and nx 0 , and a Lebesgue-measurable [95] function Utu ),[: 0

the problem  

))(),(,()( tutxtftx
dt
d

                   (3.9) 

00 )( xtx    (3.10) 
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has a Caratheodory solution defined for all 0tt  , i.e. a function );;;( 00 uxttxt 

which is absolutely continuous [95] on every segment ),[],[ 0  tba , satisfies the 

equation (3.9) a.e. (almost everywhere [95] in the sense of Lebesgue measure), and 

satisfies (3.10). Moreover, this solution is unique in the sense that for any function 
nttx ),[: 10 , which is absolutely continuous on every segment ),[],[ 10 ttba  , 

satisfies (3.9) a.e. on ),[ 10 tt  and satisfies (3.10), );;;()( 00 uxttxtx   holds for 

),[ 10 ttt . 

Let UQ n   . Denote by nQproj :1 , UQproj :2  the projections 

on the first and second component, i.e. 0001 )),(( xuxproj   and 0002 )),(( uuxproj  .  

Let Tr  be the set of all functions QAs : , where TA , such that the 

following conditions are satisfied, where sprojx 1  and sproju 2 : 

1) u  is Lebesgue-measurable; 

2) x  is absolutely continuous on each segment Aba ],[ )( ba   and 

satisfies the equation ))(),(,()( tutxtftx
dt
d

  a.e. on A ; 

3) 0)(tx  for all At ; 

4) for each non-maximal At  such that Dtx )(  there exists Att  ),(

such that )()( tutu   for all ),( ttt  . 

5) for each non-minimal At  such that Dtx )(  there exists Att  ),0(

such that )()( tutu   for all ),( ttt  . 

It follows straightforwardly from this definition that ),,( TrQT  is a 

NCMS (i.e. Tr  is a CPR, Markovian, and complete set of trajectories).  

The problem is to give a sufficient condition which ensures that   has a 

global trajectory. 

Proposition 3.1.

1)   satisfies the LFE property. 

2) There exists Trs  and 0  such that ],0[)( sdom . 
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Proof. 1) Let Qbas ],[:  be a trajectory, sprojx 1 , and sproju 2 . 

Let Uau  ),[:  be a function such that )()( tutu  , if ],[ bat  and 

)()( butu  , if bt  . Then ],[| bauu  , u  is measurable, and ));(;;()( uaxatxtx 

for all ],[ bat . Let 1 bb  and nbax  ],[:  be a function such that 

));(;;()( uaxatxtx   for ],[ bat  . Then ],[| baxx  . Because 0 )(tx  for all 

],[ bat  and x  is continuous, there exists ],( bbb   such that 0 )(tx  for all 

],[ bat  . Let Qbas  ],[:  be a function such that ))(),(()( tutxts   for all 

],[ bat  . Then it follows immediately that s  satisfies the conditions 1-4, so 

Trs  . Besides, ss  . Thus   satisfies LFE.  

2) Let us choose any }{\0 0nx   and Uu 0  and define nTx :  as 

);;0;()( 00 uxtxtx   for all Tt . Then x  is continuous and 0 0)0( xx , so there 

exists 0  such that 0)(tx  for all ],0[ t . Let Qs ],0[:   be a function 

)),(()( 0utxts  , ],0[ t . Then Trs .  

Proposition 3.2. Assume that: 

1) for each Tt  there exist Uuu 21,  such that ),,( 1utf 0 , ),,( 2utf 0  are 

(nonzero) noncollinear vectors, i.e. 000  ),,(),,( 2211 utfkutfk

whenever 21,kk  are not both zero; 

2) for each Trs  defined on a set of the form ),[ 21 tt , if  

0 ))((lim 12
tsprojtt  , then Dtsproj ))((1  for some ),[ 21 ttt . 

Then each right dead-end path in   is 
1f -escapable, where 

xyyxf  2),(1  is a right extensibility measure defined in Lemma 3.3. 

Proof. 

Let }),,(|),,(sup{1 UTuxtuxtfM n   . Then  M0 , 

because f  is bounded. 

Let Qbas ),[:  be a right dead-end path and sprojx 1 , sproju 2 . 

Let Uau  ),[:  be a function such that )()( tutu  , if ),[ bat  and 
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)()( autu  , if bt  . Then ),[| bauu  , u  is measurable, and ));(;;()( uaxatxtx 

for all ),[ bat . Then there exists a limit n
btl uaxabxtxx   ));(;;()(lim .  

Firstly, consider the case when 0lx . Then 0lx . Let us choose an 

arbitrary ),(0 bat   such that )4/(0 Mxtb l   and 2/)( 0 ll xxtx   (this is 

possible, because )(lim txx btl  ). Let Utu  ),[: 0  and ntx  ),[: 0

be functions such that )()( 0tutu   for all 0tt   and    ));(;;()( 00 utxttxtx   for 

all 0tt  . Then )(22/)()()( 0000 tbMxxtxxxxtxtx lllll  . 

Then for all 0tt   we have  

 
t

t

t

t
dttutxtftxdttutxtftxtx

00

))(),(,()())(),(,()()( 00

)2()()(2 000 ttbMttMtbM  . 

Let 02 tbd  . Then 0td   because bt 0 . Then 0 )(tx  for all ],[ 0 dtt . 

Let Qdts ],[: 0*  be a function such that ))(),(()(* tutxts   for all ],[ 0 dtt . It 

follows immediately that Trs * . Also, )()( 00* tsts   and ),(2 010 btftbd  . 

Then *s  is an escape from s  and s  is 
1f -escapable. 

Now consider the case when 0lx . 

Let us choose Uuu 21,  such that ),,( 11 ubfv 0  and ),,( 22 ubfv 0  are 

noncollinear (this is possible by the assumption 1 of the lemma). Then the function 

221121 ),( vkvkkkh   attains some minimal value 0M  on  

}1|),{( 2121  kkkk  . Then for all 21,kk  such that 01 k  or 02 k , 

)())(,)(()(),( 21
1

212
1

2112121 kkMkkkkkkhkkkkh   . 

Let 02/  M .  Because f  is continuous, there exists 0  such that for 

each 2,1j , Tt , and nx 0  such that  0xtb  we have 

 ),,(),,(),,( 00 jjjj ubfuxtfvuxtf 0 . Let 4/R , },max{1 aRbt  , 
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and  Rbt 2 . Then 0R , 21 tbta   and for all 2,1j , ],[ 21 ttt  and 0x

such that Rx 0 ,  jj vuxtf ),,( 0 . 

Let us choose an arbitrary ),( 1 btc  such that }2/),2/(min{ RMRcb  . 

Then Trs bc ),[|  by the CPR property and 0 lbctt xtsproj ))(|(lim ),[12
 , so  by 

the assumption 2 there exists ),[0 bct   such that Dtxtsproj  )())(( 001 . 

Let nttx ],[: 201  and nttx ],[: 202  be functions such that 

));(;;()( 1001 utxttxtx   and ));(;;()( 2002 utxttxtx   for all ],[ 20 ttt . Denote 

jjjj vutxtftd  )),(,()(  for each 2,1j  and ],[ 20 ttt . 

Then the following two cases are possible. 

a) There exists }2,1{j  such that )( jxrange0 . Let us choose any 

)},,2(max{ 200 tttbd   (this is possible, because 20 tbt   and 

20 2/22 tRbRbcbtb  ). Then let Qdts ],[: 0*  be a function such 

that ))(),(()()( 0000* tutxtsts   and )),(()(* jj utxts   for all ],( 0 dtt . Because 

Dtxtx j  )()( 00  and 0)(tx j  for all ],[],[ 020 dtttt  , we have that Trs * . 

Besides, )()( 00* tsts    and ),(2 010 btftbd  , so *s  is an escape from s  and s

is 
1f -escapable. 

b) )()( 21 xrangexrange 0 . Then because 21, xx  are continuous, there exist 

})(|],[min{ 20 0 txtttt jj  for 2,1j . Moreover, ],( 20 ttt j   for 2,1j , 

because 0 )()()( 00201 txtxtx . 

If we suppose that Rtx j )(  for each 2,1j  and ],[ 0 jttt  , then 

 jjjj vutxtftd )),(,()(  for each 2,1j  and ],[ 0 jttt  , whence 

 
 2

0

1

0

)),(,()()),(,()()()( 2201102211
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dtutxtftxdtutxtftxtxtx00
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 2

0

1

0

)()()()( 21022011

t

t

t

t
dttddttdttvttv

0)(
2

)()()( 020102010201  ttttMttttttttM  . 

We have a contradiction, so there exists }2,1{j  and ],[ 0 jttt   such that 

Rtx j  )( . This implies that  

)()),(,()()()( ttMdtutxtftxtxtxR j

t

t
jjjjjj

j

 




. 

Then )(2)(2/ 00 tbcbMRtttt jj  , so 02 tbt j  . Let us 

choose any )},,2(max{ 00 jtttbd  . Let Qdts ],[: 0*  be a function such that 

))(),(()()( 0000* tutxtsts   and )),(()(* jj utxts   for all ],( 0 dtt . Because 

Dtxtx j  )()( 00  and 0)(tx j  for all ],[),[ 00 dtttt j  , we have Trs * . 

Besides, )()( 00* tsts   and ),(2 010 btftbd  , so *s  is an escape from s  and s

is 
1f -escapable.  

Proposition 3.3. Assume that: 

1) for each Tt  there exist Uuu 21,  such that ),,( 1utf 0  and ),,( 2utf 0  are 

noncollinear; 

2) }{0  is a path-component [77] of )\(}{ Dn0 . 

Then   has a global trajectory. 

Proof. 

Let us show that the assumption 2 of Proposition 3.2 holds. Let Trs , 

),[)( 21 ttsdom   ( 21 tt  ), 0 ))((lim 12
tsprojtt  . Denote sprojx 1 . Suppose 

that Dtx )(  for all ),[ 21 ttt . Let )\(}{]1,0[: Dn 0  be a function such 

that ))(()( 121 tttx   , if )1,0[  and 0)1( . Then   is continuous, so 

there is a path from 0 )()0( 1tx  to 0  in )\(}{ Dn0  (considered as a 
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topological subspace of n ). This contradicts the assumption that }{0  is a path-

component of )\(}{ Dn0 . Thus Dtx )(  for some ),[ 21 ttt . 

The assumption 1 of Proposition 3.2 also holds, so by Proposition 3.1, 

Proposition 3.2, Lemma 3.3, Theorem 3.4, and Lemma 3.2,   satisfies GFE. 

Besides, by Proposition 3.1, there exists Trs  with ],0[)( sdom  for some 0 , 

so by the GFE property,   has a global trajectory.  

3.7 Related work 

In such domains as the theory of differential equations, control theory, 

viability theory [8], the problems of global existence of solutions of initial value 

problems for various classes of differential equations [19, 26, 32, 5] and inclusions 

[7, 8, 30, 70, 109, 98], existence of global non-Zeno executions of hybrid systems 

[85, 33, 42, 18] were studied for many specific classes of systems. Although such 

results are practically relevant, the classes of systems considered are usually of a 

lower level of abstraction than the class of NCMS and thus cannot be applied to the 

problem of existence of total I/O pairs of strongly nonanticipative blocks in the 

general case. On the other hand, the results presented in this chapter hold for 

arbitrary strongly nonanticipative blocks and NCMS. 

3.8 Conclusions from the chapter 

We have considered the questions of how one can prove that a given strongly 

nonanticipative block B  has a total I/O pair (if B  indeed has a total I/O pair) and 

how one can prove that for a given input signal bunch )),(( WBInSbi , where 

Tidom =)( , there exists ))(( iBOpo  with Todom =)( . We have reduced these 

questions to the problem of proving the existence of global trajectories of a NCMS 

(Theorem 3.1, Theorem 3.2). 
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We have proposed a method of proving the existence of a global trajectory of 

a NCMS (Theorem 3.3) which is based on finding a subset of trajectories which 

satisfy the global forward extensibility (GFE) property. 

We have proposed a criterion (Theorem 3.5) which can be used to prove the 

GFE property of NCMS by proving the existence of certain locally defined 

trajectories independently in a neighborhood of each time moment. 
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CONCLUSIONS 

In the thesis we have given a solution to the problem of investigation of 

abstract systems which admit inputs and outputs as partial functions of time. The 

systems of this kind can be used for giving formal semantics and determining 

properties of specification and development languages for cyber-physical systems, 

real-time information processing systems, and other similar systems. 

In the work we have proposed to apply the principles of the composition-

nominative approach to abstract systems which admit inputs and outputs as partial 

functions of time. We have obtained the results listed below. 

1) A new class of abstract time systems with partially defined inputs and 

outputs called blocks was introduced. Basic properties of the systems of this class 

were studied.  

2) On the basis of the notions of causality (nonanticipation) which were 

considered in the works by T. Windeknecht, M. Mesarovic, Y. Takahara the notions 

of a strongly and weakly nonanticipative block were introduced.  

3) On the basis of the notion of a solution system by O. Hájek a class of 

abstract dynamical systems called initial Nondeterministic Complete Markovian 

Systems (NCMS) was introduced. 

4) Theorems about representation of strongly nonanticipative blocks using 

NCMS were proved. It was shown that each strongly nonanticipative block has a 

NCMS representation and that each initial I/O NCMS is a representation of a 

strongly nonanticipative block. 

5) General criteria for the existence of total input-output pairs of a strongly 

nonanticipative block and the existence of a total output for a given total input of a 

strongly nonanticipative block were obtained. 
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6) A general criterion for the existence of global trajectories of NCMS was 

obtained. This criterion expresses the existence of global trajectories in terms of 

conditions of the existence of locally defined trajectories of NCMS. 
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