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On the Validity of Bayesian Neural Networks for
Uncertainty Estimation

John Mitros and Brian Mac Namee

School of Computer Science
University College Dublin, Dublin, IR

{ioannis, brian.macnamee} @ insight-centre.org

Abstract. Deep neural networks (DNN) are versatile parametric mod-
els utilised successfully in a diverse number of tasks and domains. How-
ever, they have limitations—particularly from their lack of robustness
and over-sensitivity to out of distribution samples. Bayesian Neural Net-
works, due to their formulation under the Bayesian framework, provide a
principled approach to building neural networks that address these limi-
tations. This work provides an empirical study evaluating and comparing
Bayesian Neural Networks to their equivalent point estimate Deep Neural
Networks to quantify the predictive uncertainty induced by their param-
eters, as well as their performance in view of uncertainty. Specifically,
we evaluated and compared three point estimate deep neural networks
against their alternative comparable Bayesian neural network utilising
well-known benchmark image classification datasets.

Keywords: Bayesian Neural Networks, Uncertainty Quantification, OoD,
Robustness

1 Introduction

With the advancement of technology and the abundance of data, our society has
been transformed beyond recognition. From smart home assistance technologies
to self-driving cars, to smart mobile phones a multitude of connected devices
now assist us in our daily routines.

One thing that is common among these devices is the exponential explosion
of data generated as a consequence of our activities. Predictive models rely on
this data to capture patterns in our daily routines, from which they can offer us
assistance tailored to our individual needs. Many of these predictive models are
based on deep neural networks (DNNs).

The machine learning community, however, is becoming increasingly aware of
issues associated with DNNs ranging from fairness to bias, and, from robustness
to uncertainty estimation. Motivated by this we setup to investigate the issues
of reliability and trustworthiness of prediction confidence estimates produced by
DNNs. We first assess the capability of current DNN models to provide confi-
dent (i.e. calibration error) and reliable (i.e. noise sensitivity error or the ability
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to predict out of sample instances with high uncertainty) predictions. Second,
we compare this to the capability of equivalent recent Bayesian formulations
(i.e. Bayesian neural networks (BNN)), in terms of accuracy, calibration error,
and ability to recognise and indicate out of sample instances.

There exist two types of uncertainties related to predictive models, aleatoric
and epistemic uncertainty [4]. Aleatoric uncertainty is usually attributed to
stochasticity inherent in the related task or experiment to be performed. It can
therefore be considered an irreducible error. Epistemic uncertainty is usually
attributed to uncertainty induced by the model parameters. It can therefore be
considered a a reducible error as it can be reduced by obtaining more data. The
question under investigation in this work is whether BNNs can provide better
calibrated and reliable estimates for out of sample instances compared to point
estimate DNNs and therefore relates to epistemic uncertainty.

The remaining sections of this paper are divided as follows. Section 2 outlines
related work in the area of confident estimations and Bayesian neural networks.
In Section 3, we provide the information related to the datasets used throughout
the experiments, their respective sizes and types. In Section 4, we describe the
metrics used to evaluate whether a classifier is calibrated (i.e. expected calibra-
tion error and reliability figures), as well as its ability to identify and predict out
of sample instances (i.e. symmetric KL divergence and distributional entropy
figures), along with their respective explanations. In Section 5, we introduce the
three BNN approaches utilised in the experiments, providing detailed explana-
tions of how they work. Finally, in Sections 6 and 7 we present the results related
to confidence calibration (i.e. Table 1 and Figure 1) and reliability prediction
estimates for out of sample instances (i.e. Table 3 and Figures 2), along with the
concluding remarks.

2 Related Work

Earlier findings [13, 17, 20, 18, 1] have demonstrated the incapacity of point esti-
mate deep neural networks (DNN) to provide confident and calibrated [10, 5, 9]
uncertainty estimates in their predictions. Motivated by recent work in this area
we strive to demonstrate, first, that this is indeed a serious problem currently
investigated in the machine learning community, and second, provide an alterna-
tive viable solution (i.e. BNN) which combines the best from both worlds (i.e. a
principled and elegant formulation due to the Bayesian inference framework and
powerful and expressive models thanks to DNN).

In order to help the reader understand the terminology and semantics of
uncertainty quantification in predictive models, it would be helpful to relate
the variance existent in the model parameters represented as the sum of both
aleatoric and epistemic uncertainty. Additionally, whenever the reader encoun-
ters the following terminology “point estimate DNN” in the document, it simply
refers to a DNN model coupled with a softmax function in the final layer. For
instance, suppose our DNN is defined by ŷ = f(x), where ŷ denotes the pre-
dictions for K possible classes. Then a “point estimate DNN” is simply defined



by exponentiating each prediction and normalising it by the total sum of all
exponentiated predictions.

p(y = j|x) =
eŷi∑K
j=1 e

ŷj

for i = 1, . . . ,K and ŷ = (y1, . . . , yK) ∈ RK (1)

The reason for identifying them as point estimate DNN is because they are
mistakenly misinterpreted as probabilistic models due to the fact that they pro-
vide predictions which resemble probabilities (i.e. estimates ∈ R[0−1]). Further-
more, Eq. 1 is misinterpreted mistakenly for a categorical distribution to which
we disagree since it should have a prior Dirichlet in order to be classified as a
categorical distribution. Our view is that Eq. 1 is more of a mathematical con-
venience in order to allow DNN model to emit predictions rather than a well
defined probability distribution.

As previously stated there are two main problems investigated in this work.
The first one is related to the inability of DNN to predict probability estimates
representative of the true correct likelihood function (i.e. calibration confidence).
For instance, in a binary classification task a classifier is considered uncalibrated
when the classifiers’ predictions do not match the empirical proportion of the
positive class upon which the classifier is requested to make a prediction. Poor
calibration confidence problems in DNN can be affected by different choices while
constructing the DNN architecture [5, 9] (e.g. depth, width, regularisation or
batch-normalisation). The second problem, is related to the incapacity of DNN to
identify and reliably predict out of sample instances (i.e. noise sensitivity) which
can be a consequent of noise in the data, noise in the model parameters or noise
constructed by an adversary in order to manipulate the models’ predictions [1,
11, 18, 3].

3 Data

The data used in this empirical study include two well-established datasets in
the machine learning literature, CIFAR-10 [8] and SVHN [14]. Both datasets
are comprised of colour images of dimensionality 32x32 and include 10 distinct
categories. In addition, both are considered to represent real world datasets with
CIFAR-10 being collected over the Internet while SVHN [14] being a result of
the Google Street View project representing house numbers. Further details re-
garding the number of instances of each dataset and equivalently their categories
are described below

– The CIFAR-10 [8] dataset consists of 60,000 colour images of dimensionality
32x32 with 10 classes. Each class contains 6,000 images. In total there are
50,000 training images and 10,000 test images.

– The SVHN [14] dataset consists of 99,289 colour images of dimensionality
32x32 representing digits of house numbers. There exist 10 categories one
for each digit, in total there are 73,257 colour images representing digits for
training, and equivalently 26,032 digits for testing.



4 Metrics

The chosen evaluation metrics utilised for this empirical study involved:

– Accuracy
– Expected calibration error
– Entropy
– Symmetric DKL divergence

Particularly, for a given neural network model ŷ = f(x;θ) of depth L de-
fined as {WLσL(WL−1 . . . σ2(W2σ1(W1x)))}, describing the number of func-
tion compositions and parameters {θ = {W1, . . . ,WL} with σ(·) being a non-
linear function.

The accuracy on a given output ŷn is measured by the indicator function
acc = 1

N

∑N
n=1 1(yn 6= ŷn) for each instance n ∈ N averaged over the total

number of instances N in the dataset. This metric is predominantly used in the
machine learning community to evaluate the generalisation ability of a predictive
model on a hold-out test set.

In order to capture whether a model is calibrated we utilised the expected

calibration error ECE =
∑M

m=1 |acc(Bm)− conf(Bm)| |Bm|
N in combination with

the equivalent reliability plots shown in Figure 1 similar to [5]. ECE is usually
expressed as a weighted average between the accuracy and confidence of a model
across M bins for N samples. This metric has the ability to capture any dis-
agreement between the classifiers predictions and the true empirical proportion
of instances for each class category for every mini-batch of instances presented
to the classifier.

Furthermore, to assess a models’ ability to characterise out of sample data
with high degree of uncertainty we focused on the work of [11] utilising in-

formation entropy H(Y ) = −
∑K

k=1 p(ŷk) log p(ŷk) on the final predictions of
a model in order to derive the uncertainty plots depicted in Figure 2. Essen-
tially, for every input x we have we have a corresponding vector of predictions
ŷ = (0.86, 0.23, . . . ,K) where each entry denotes the prediction of the classifier
for each class k ∈ K. For every dataset we split them randomly into two halves.
The first half represents the K/2 classes and the other other half the remaining.
We select one of the halves to be utilised to train the classifier (i.e. denotes in-
sample instances) and the remaining half (i.e. denotes out-of-sample instances)
to be utilised only during the testing phase of the classifier. Therefore, after the
classifier has been trained on one half (hence the 5+5 categories in Figures 2 )
we evaluate its generalisation ability on the remaining half where for every input
we have a corresponding entropy over the K classes. This provides a distribu-
tion over the total number of N inputs allowing to distinguish and evaluate the
classifier entropy among in-sample vs out-of-sample instances.

Finally, in order to conveniently compare and summarize a models’ perfor-
mance on detecting out of sample instances as a summary statistic the scalar
value of the symmetric KL-divergence DKL(p ‖ q) + DKL(q ‖ p) [11] between
two distributions p and q was selected as a sensible candidate. The choice of



KL-divergence allows to evaluate how similar are two distributions p and q.
The larger the KL-divergence is the more distinct are the distributions p and q.
Since we want to evaluate the ability of the classifier to recognise out of sample
instances we should be able to measure the KL-divergence of the classifiers’ es-
timates for in-sample p against out of sample q instances. The larger KL values
denote the classifier is in better position to recognise out of sample instances.

5 Methods

This section provides the details of the empirical evaluation comprised of the
following three components, (i) models, (ii) calibration and (iii) uncertainty. The
following (i) models were selected among which three of them represent point
estimate deep neural networks (DNN) and the remaining three their equivalent
Bayesian Neural Networks (BNN).

– Point estimate deep neural networks

• VGG16 [19]

• PreResNet164 [6]

• WideResnet28x10 [22]

– Bayesian neural networks

• VGG16 - Monte Carlo Dropout [4]

• VGG16 - Stochastic Weight Aaveraging of Gaussian samples [11]

• Stochastic Variational - Deep Kernel Learning [21]

(ii) The calibration of each model was evaluated using the expected cali-
bration error introduced in Section 4 in combination with the reliability plots
demonstrated in Figure 1. Each model was trained on 5 categories from CIFAR-
10 and accordingly SVHN with the remaining 5 categories being whithheld in
order to evaluate the models’ ability to associate out of samples instances with
high uncertainty as they were not introduced to the model at any step. The
duration of training for each model was 300 epochs with best performing model
on the validation set being selected as the final model for each architecture.

(iii) As already stated in order to evaluate a model’s ability to detect out of
sample instances with high uncertainty we utilised entropy on the predictions of
a model to derive Figures 2, for each dataset and model combination accordingly.
In addition, the symmetric KL-divergence described in Section 4 was introduced
in order to provide a comparable scalar summary statistic of the overall essence
of Figures 2.

In the remainder of this section we will introduce the three Bayesian neural
network approaches utilised during the experimental study:

1. Dropout as Bayesian approximation:

Provides a view of dropout at test time as approximate Bayesian inference [4].
It is based on prior work of [2] which established a relationship between



neural networks with dropout and Gaussian Processes (GP). Given a dataset
(X,Y) the posterior over the GP is formulated as,

F|X ∼ N (0,K(X,X))

Y|F ∼ N (F, 0 · I)

ŷ|Y ∼ Categorical (·)

where ŷ denotes a class label and ŷ 6= ŷ′. An integral part of the GP is
the choice of the covariance matrix K representing the similarity between
two inputs as a scalar value. The key insight to draw connections between
neural networks and Gaussian processes is to consider the possibility the
choice of the kernel to represent a non-linear function, for instance, con-
sider the rectified linear (ReLU) function, then the kernel would be ex-
pressed as

∫
p(w)σ(wTx)σ(wTx)dw with p(w) ∼ N (µ,Σ). Because usually

the integral is intractable a conventional approach would be to use Monte
Carlo integration in order to approximate it k̂ = 1

T

∑T
t=1 σ(wT

t x)σ(wT
t x),

hence, the name Monte Carlo Dropout. Let us now consider a one hid-
den layer neural network with dropout ŷ = (β2W2)σ(x(β1W1)) where

β1, β2 ∼ Bernoulli(p1,2). Utilising the approximate kernel k̂ one can ex-
press the parameters W1,2 as W1,2 = β1,2(A1,2 +σε1,2)(1−β1,2)σε1,2 with
A1,2, ε1,2 ∼ N (0, I) and β1,2 ∼ Bernouli(p1,2) closely resembling the NN
formulation. Therefore, to establish the final connection among NNs trained
with stochastic gradient descent (SGD) and dropout to GPs one has to sim-
ulate Monte Carlo sampling by drawing samples from the trained model at
test time [ŷn = f(xn;βnθn)]

N
n=1 with βn ∼ Bernouli(pn). The samples ŷn

resulting from the different dropout masks βn are averaged over the N dif-
ferent models in order to approximate and retrieve the posterior distribution.

2. Stochastic weight averaging of Gaussian samples
Stochastic weight averaging of Gaussian samples (SWAG) [11] is an exten-
sion of stochastic weight averaging (SWA) [7] where the weights of a NN are
averaged during different SGD iterates, which in itself can be viewed as ap-
proximate Bayesian inference [12], with ideas traced back to [16, 15]. In order
to understand SWAG we first need to explain SWA. SWA at a high level
can be viewed as averaged SGD [16, 15]. Essentially the main difference be-
tween SWA and averaged SGD is that SWA utilises a simple moving average
instead of an exponential one, in conjunction with a high constant learning
rate, instead of a decaying one. In essence, in SWA one maintains a running
average over the weights of a NN during the last 25% of the training process
which is used to update the first and second moments of batch-normalisation.
This leads to better generalisation since the SGD projections are smoothed
out during the average process leading to wider optima in the optimisation
landscape of the NN. Now that we have established what SWA is let us
introduce SWAG. SWAG is an approximate Bayesian inference technique
for estimating the covariance from the weight parameters of a NN. SWAG
maintains a running average θ̄2 = 1

T

∑T
t=1 θ

2
t in order to compute the covari-



ance Σ = diag(θ̄2− θ2) which produces the approximate Gaussian posterior
N (θ,Σ). At test time the weights of the NN are drawn from this posterior
θ̃n ∼ N (θ,Σ) in order to perform Bayesian model averaging to retrieve the
final posterior of the model as well as the uncertainty estimates from the
first and second moments.

3. Deep kernel learning
The deep kernel learning method [21] establishes a combination of NN archi-
tectures and GPs trained jointly in order to derive kernels with GP properties
overcoming the need to perform approximate Bayesian inference. The first
part is composed of any NN (i.e. task dependent) whose output is utilised
in the second part in order to approximate the covariance of the GP in the
additive layer As explained earlier in the MC-Dropout approach a kernel
between inputs x and x′ can be expressed via a non-linear mapping function
thanks to the kernel trick k(x,x′) → k(f(x,w), f(x′,w)|w) therefore com-
bining NNs with GPs seems like a natural evolution which permits scalable
and flexible kernels represented as neural networks to be utilised directly
in Gaussian Processes. Finally, given that the formulation of GPs allows to
represent a distribution over a function space it is thus possible to derive un-
certainty estimates from the moments of this distribution in order to inform
the models about the uncertainty in their parameters having an impact in
the final posterior distribution.

6 Results

In this section we describe the results from our experiments and the findings
that arise from these for our two initial questions. Let us recall them here again
for clarity:

– Do point estimate deep neural networks suffer from pathologies of poor cal-
ibration and inability to identify out of sample instances?

– Are Bayesian neural networks better calibrated and more resilient to out of
sample instances?

To answer the first question we draw the attention of the reader to Figure 1
and equivalently Table 1. Figure 1 shows the reliability plots for all models and
datasets. In these plots a perfectly calibrated model is indicated by the diago-
nal line. Anything below the diagonal represents an over-confident model, while
anything above the diagonal represents an under-confident model. The expected
calibration errors (ECE) in Table 1 (which measure the degree of miscalibration
present) seem to be in accordance with the results from [5]. All of the models are
somewhat miscalibrated. Some of the Bayesian approaches, however—in partic-
ular the models based on MC-Dropout and SWAG—are better calibrated than
their point estimate DNN counterparts.

Notice that all models exhibit high accuracy on the final test set (shown in
Table 2). This illustrates that a model can be very accurate but miscalibrated,



Fig. 1: Reliability plots across all models on CIFAR-10 [8] and SVHN [14] datasets.

Table 1: Expected calibration errors (ECE) for CIFAR-10 and SVHN equivalently.
Lower values indicate better calibrated models.

Models CIFAR10 SVHN

VGG16-SGD 0.0677236 0.0307552
VGG16-MC Dropout 0.0423307 0.0155248
VGG16-SWAG 0.0499478 0.0204564
PreResNet164 0.0309783 0.0238022
PreResNet164-MC Dropout 0.0338277 0.0161251
PreResNet164-SWAG 0.049338 0.0089618
WideResNet28x10 0.0200257 0.0210420
WideResNet28x10-MC Dropout 0.0255283 0.0147181
WideResNet28x10-Swag 0.0097967 0.0082371
DeepGaussProcess 0.1418236 0.3275412

or equivalently a model can be very well calibrated but inaccurate. There is no
real correlation between between calibration and accuracy of a model. It is also
known [5] that as the complexity of the model increases the calibration error
increases as well.

In order to evaluate and demonstrate the ability of the models to handle
out of sample instances we divided each of the CIFAR-10 and SVHN datasets
into two halves containing 5 categories each. These partitions represent in and
out of distribution samples. In the discussion that follows this is indicated with
the parenthesis (5 + 5) next to the dataset name to denote that the model was
trained on only 5 categories representing in distribution samples and at test time



Table 2: Accuracy of all the models on both datasets CIFAR-10 and SVHN.

Models CIFAR10 SVHN

VGG16-SGD 94.40 97.10
VGG16-MC Dropout 93.26 96.87
VGG16-SWAG 93.80 96.83
PreResNet164 93.56 97.90
PreResNet164-MC Dropout 94.68 97.73
PreResNet164-SWAG 93.14 97.69
WideResNet28x10 94.04 97.44
WideResNet28x10-MC Dropout 95.54 97.63
WideResNet28x10-SWAG 95.12 97.95
DeepGaussProcess 91.00 93.00

it was evaluated on the other 5 categories to simulate out of sample instances.
The results are illustrated in Figures 2, for CIFAR-10 and SVHN respectively,
and summarised in Table 3. The information depicted in Table 3 provides a
summary of Figures 2, by measuring the symmetric KL divergence, between the
distribution of class confidence entropies of each model for the in and out of
sample instances.

Table 3: Symmetric DKL divergence between in and out of distribution splits of CIFAR-
10 (5 + 5) and SVHN (5 + 5). Higher values indicate the ability of a model to flag
out of sample instances with high uncertainty.

Models CIFAR10 SVHN

VGG16-SGD 2.952740 5.638210
VGG16-MC Dropout 3.849440 6.273212
VGG16-SWAG 2.375000 5.058158
PreResNet164 4.244287 3.375254
PreResNet164-MC Dropout 2.879347 2.705263
PreResNet164-SWAG 1.810131 3.344560
WideResNet28x10 2.181033 3.051318
WideResNet28x10-MC Dropout 2.929135 2.995543
WideResNet28x10-SWAG 2.780160 3.646878
DeepGaussProcess 0.801246 0.153648

Together these results suggest that the Bayesian methods are better at iden-
tifying out of sample instances. Although the result is not clear cut, in some cases
the point estimate networks get higher divergence scores than the Bayesian ones,
overall the results point in the Bayesian direction.



Fig. 2: Out of sample distributional entropy plots for all models on CIFAR-10 (5 + 5)
categories.

7 Conclusion

In conclusion, as we have showed that point estimate deep neural networks indeed
suffer from poor calibration and inability to identify out sample instances with
high uncertainty. Bayesian deep neural networks provide a principled and viable



alternative that allows the models to be informed about the uncertainty in their
parameters and at the same time exhibits a lower degree of sensitivity against
noisy samples compared to their point estimate DNN. This suggests that this
is a promising research direction for improving the performance of deep neural
networks.
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