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Résumé 

La connaissance de la distribution spatiale des espèces et des communautés dans les 

écosystèmes est un préalable indispensable à la compréhension du fonctionnement et 

les processus des écosystèmes ainsi que les questions de conservation et 

d'aménagement du territoire. Dans le contexte des changements globaux, le 

changement climatique et les activités anthropiques sont reconnus comme des 

déterminants majeurs de la diversité et des patrons de distribution des poissons, 

affectant ainsi les propriétés et la structure des écosystèmes aquatiques. Cependant, 

très peu d’efforts ont été entrepris pour étudier la diversité et le fonctionnement de ces 

écosystèmes lacustres en Chine. Dans cette thèse, nous contribuons à mettre en 

évidence les effets des changements climatiques et des activités anthropiques sur les 

patrons de diversité et de distribution des poissons, ainsi que sur le fonctionnement 

des écosystèmes en nous appuyant sur des approches de modélisation écologique. 

 Dans le premier temps, nous avons déterminé les distributions et les assemblages 

globales de 425 espèces et sous-espèces de poissons dans 135 lacs distribués à travers 

le territoire chinois en utilisant une nouvelle approche multi-espèce ajustée par l’arbre 

multi-variable de régression et connu sous le nom de MRT. Cinq assemblages de 

poissons ont pu être définis par la classification contrainte avec un total de 107 

espèces indicatrices identifiées. Nous avons montré une différence significative de la 

diversité spécifique pour chaque assemblage : la diversité spécifique des poissons 

dans le plateau étant significativement plus faible que celle des lacs des plaines. 

Cependant, la diversité de l’assemblage de l’ensemble des plateaux est plus 

importante que celle d'autres régions. Par ailleurs, nos résultats indiquent que 

l’altitude, la température minimale du mois le plus froid, la gamme de température 

annuelle et les précipitations du mois le plus sec sont des facteurs important dans la 

détermination des assemblages et des patrons de distribution des poissons des lacs 

chinois. 

 Dans un 2ème temps, le modèle MRT a été utilisé pour prédire la richesse 
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spécifique et la distribution des espèces de poissons sous l'influence du changement 

climatique dans le but d’améliorer la gestion et la conservation des poissons en Chine. 

Nos résultats montrent que MRT est un modèle fiable et idéal pour prédire la 

communauté multi-spécifique de poissons. Au niveau de la composition spécifique, 

l’altitude apparait comme le meilleur des prédicteurs, suivi par les précipitations au 

cours du mois le plus sec, la gamme de température annuelle et la température 

annuelle moyenne. Pour la richesse spécifique, les précipitations au cours du mois le 

plus sec, la température maximale du mois le plus chaud et l’aire des lacs sont des 

facteurs majeurs pour  prédire les patrons de distribution et de richesse des poissons. 

 Dans un 3ème

 Finalement, l’étude a été focalisée sur l’évaluation des effets des activités 

anthropiques sur la structure et les fonctions des écosystèmes lacustres peu profond 

riche en macrophytes (lac Bao’an, localisé dans la partie médiane du Yangtze) en 

utilisant le modèle ECOPATH. Les résultats montrent que les espèces de poissons 

 temps, nous examinons la capacité et l’incertitude associé aux 

modèles d'ensemble (c'est à dire à la combinaison des prédictions issues de diffrents 

modèles de distribution d'espèces (SDM)) pour prédire la distribution et la diversité 

des espèces de poissons. L’impact potentiel de 2 sources d’incertitude a été démontré : 

les caractéristiques des espèces (c'est à dire la prévalence des espèces, l'altitude, les 

gammes de températures et de précipitations) et les techniques de modélisation 

(méthodes de calibration et d’évaluation). Nos résultats montrent que les prédictions 

issues d’un simple modèle de distribution (SDM) est très variable et même douteuse 

pour l’ensemble des espèces considérée alors qu’une approche d’ensemble donne de 

meilleures prédiction. Nous avons aussi montré qu’il n’y a pas d’influence 

significative des méthodes d’évaluation sur les sorties du modèle. Nous montrons que 

les caractéristiques des espèces, la prévalence des espèces, l’altitude et la gamme de 

précipitations pourraient fortement affecter les résultats des SDMs, alors que la 

gamme de températures n’a pas d'influence significative. Finalement, nous avons 

vérifié l'hypothèse selon laquelle la distribution des espèces à faible aire de 

distribution peut être prédite avec plus de précision que la distribution des espèces à 

large échelle de distribution.  
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commercialisables souffrent d'une très forte pression de pêche, tandis que les 

ressources fourragères comme les algues, les plantes immergés et les mollusques ne 

présentes pas de signe de surexploitation. En outre, nos résultats montrent que 

l'écosystème du lac Bao'an est un système "mûr" selon la théorie d’Odum. Cependant, 

comparé aux autres écosystèmes lacustres, le lac Bao’an, comme beaucoup d’autres 

lacs en Chine, montrent une très faible valeur de CI (Connectance Index), de FCI 

(Finn’sCycling Index) et de SOI (System Omnivory Index), indiquant que les 

fonctions de ces écosystèmes lacustres chinois ont tendance à être plus simple et plus 

linéaire que les écosystèmes lacustres d'autres pays. En conséquence, notre étude 

témoigne d'un besoin urgent d’orientation et de management des activités 

anthropiques, principalement le repeuplement et la pêcherie traditionnelle. 

 

 

Mots-clés: Modèle de Distribution d’Espèces, Ecopath with Ecosim, Assemblages de 

Poissons, Patron de Distribution, Prédiction, Propriété et Structure de l’Ecosystème, 

Lacs, Chine 
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Abstract 

Knowledge of the spatial distribution of species and communities in ecosystems 

is an essential prerequisite for the understanding of ecosystem functioning and 

processes as well as conservation and spatial planning issues. During the last several 

decades, in the context of global change, climate change and anthropogenic activities 

have long been acknowledged as the two main determinants which drive the fish 

diversity and distributions patterns, and ultimately affect the aquatic ecosystem 

properties and structure. However, up until now, very few efforts aimed at the fish 

diversity and ecosystem in the lakes across China. Consequently in the present study, 

we contribute to highlight the effects of climate change and anthropogenic activities 

on fish diversity and distribution patterns as well as the ecosystem properties with the 

approach of several ecological modelling.  

Specifically, we first build the global perspective on the fish distribution and 

assemblage patterns for a total of 425 fish species (subspecies) in 135 lakes across 

China using a novel multi-species approach fitted by the Multivariate Regression Tree 

(MRT). Five fish assemblages were defined by the constrained clustering, 107 

indicator species were thus identified. Species diversity showed significantly 

differences among each assemblage: fish species richness in plateau lakes was 

significantly lower than plain lakes; however the diversity of the whole assemblage in 

plateaus was higher than other regions. Altitude, minimum temperature of the coldest 

month, annual temperature range and precipitation during the driest month were found 

to be the most important determinants affecting fish assemblages and distribution 

patterns in Chinese lakes.  

Then, MRT model was used to predict both species richness and species 

distribution in order to improve the management and conservation of fish species in 

China. Our results showed that MRT is a reliable and ideal community-based 

predictive technique for multi-species prediction. At the species composition level, 

altitude was the main determinant for the prediction, followed by precipitation of the 
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driest month, temperature annual range and annual mean temperature. While at the 

richness level, precipitation of driest month, maximum temperature of warmest month 

and lake area were the main drivers for the prediction of the fish species richness 

pattern.  

Thirdly, we examine the capacity and uncertainty of ensemble modelling in 

predicting fish species distribution and diversity. Potential impacts from two main 

kinds of uncertainty sources were thus considered: species characteristics (contained 

species prevalence, altitude range, temperature range and precipitation range) and 

model techniques (calibration technique and evaluation technique). Finally, our 

results highlight that predictions from single SDM were so variety and unreliable for 

all species while ensemble approaches could yield more accurate predictions; we also 

found that there was no significant influence on the model outcomes from the 

evaluation measures; we emphasized that species characteristics as species prevalence, 

altitude range size and precipitation range size would strongly affect the outcomes of 

SDMs, but temperature range size didn’t show a significantly influence; our findings 

finally verified the hypothesis that species distributed with a smaller range size could 

be more accurately predicted than species with large range size to be plausible in 

aquatic ecosystems.  

Lastly, a case study focused on evaluating the lake ecosystem properties and 

foodweb structure as well as the effects in a typical shallow macrophytic lake (Bao’an 

Lake, distributed in the middle reaches of the Yangtze River basin), using the Ecopath 

model. Finally, the results showed that all the commercial fish suffered from high 

fishing pressure while forage resources such as attached algae, submerged plants and 

molluscs were not fully utilized. Moreover, we highlight that the Bao’an Lake 

ecosystem was a mature system according to Odum’s theory. However when 

compared with some other lake ecosystems, the Bao’an Lake ecosystem, as well as 

some China lake ecosystems, showed extremely low values of CI (Connectance 

Index), FCI (Finn’s Cycling Index) and SOI (System Omnivory Index), indicating that 

the ecosystem functions and food web structure of these Chinese lake tended to be 

simpler and linear than lake ecosystems in other countries. Consequently, this study 
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indicated an urgent need for the adjustment and management of artificial fishery 

stocking in such type of lakes. 

Our present study have pictured the global perspective of lake fish diversity and 

distribution patterns in China, defined the main determinants, and examined the 

potential effects of climate change and anthropogenic activities on fish diversity and 

ecosystem properties. Our results will benefit the conservation and management of 

fish resources, biodiversity, as well as the lake ecosystems all over the world. 

 

Key words: Species Distribution Model, Ecopath with Ecosim, Fish assemblages, 

Distribution patterns, Predicting, Ecosystem properties and structure, Lakes, China 
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1. Introduction 

1.1Global climate change and biodiversity 

1.1.1 Climate change 

Increasingly publications consider new evidence of climate change based on 

many independent scientific analyses from observations of the climate system, 

paleoclimate archives, theoretical studies of climate processes and simulations using 

climate models. Reports from the IPCC 2013 showed that warming of the climate 

system is unequivocal, and since the 1950s, many of the observed changes are 

unprecedented over decades to millennia. The atmosphere and ocean have warmed, 

the amounts of snow and ice have diminished, sea level has risen, and the 

concentrations of greenhouse gases have increased. According to the report, natural 

and anthropogenic substances and processes that alter the Earth’s energy budget are 

drivers of climate change (IPCC, 2013). 

Specifically, over the period 1880 to 2012, there has been a consistent, large-scale 

warming of both the land and ocean surface. The globally averaged combined land 

and ocean surface temperature show a warming of 0.85 (0.65 to 1.06) °C, the total 

increase between the average of the 1850–1900 period and the 2003–2012 period is 

0.78 (0.72 to 0.85) °C, based on the single longest dataset available (Fig.1a), While 

for the longest period when calculation of regional trends is sufficiently complete 

(1901 to 2012), almost the entire globe has experienced surface warming (Fig.1b).  

Increasing global mean surface temperature is very likely to lead to changes in 

precipitation and atmospheric moisture because of changes in atmospheric circulation, 

a more active hydrological cycle, and increases in the water-holding capacity 

throughout the atmosphere. Confidence in precipitation change averaged over global 

land areas since 1901 is low prior to 1951 and medium afterwards. Averaged over the 

mid-latitude land areas of the Northern Hemisphere, precipitation has increased since  
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Fig.1 (a) Observed global mean combined land and ocean surface temperature anomalies, from 1850 to 
2012 from three data sets. Top panel: annual mean values. Bottom panel: decadal mean values 
including the estimate of uncertainty for one dataset (black). Anomalies are relative to the mean of 
1961−1990. (b) Map of the observed surface temperature change from 1901 to 2012 derived from 
temperature trends determined by linear regression from one dataset (orange line in panel a). Source: 
(IPCC, 2013) 
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1901 (medium confidence before and high confidence after 1951) (Fig.2). 

Precipitation has very likely increased during the 20th century by 5 to 10% over most 

mid- and high latitudes of Northern Hemisphere continents, but in contrast rainfall has 

likely decreased by 3% on average over much of the subtropical land areas (IPCC, 

2013). 

 
Fig.2 Maps of observed precipitation change from 1901 to 2010 and from 1951 to 2010. Source: 

(IPCC, 2013) 

Moreover, there is very high confidence that the rate of sea level rise since the 

mid-19th century has been larger than the mean rate during the previous two 

millennia. Over the period 1901 to 2010, global mean sea level rose by 0.19 (0.17 to 

0.21) m. The atmospheric concentrations of carbon dioxide, methane, and nitrous 

oxide have increased to levels unprecedented in at least the last 800,000 years. Carbon 

dioxide concentrations have increased by 40% since pre-industrial times, primarily 

from fossil fuel emissions and secondarily from net land use change emissions. The 

ocean has absorbed about 30% of the emitted anthropogenic carbon dioxide, causing 

ocean acidification (IPCC, 2013). 

While in the future global and regional climate change, projections of changes in 

the climate system are made using a hierarchy of climate models ranging from simple 

climate models, to models of intermediate complexity, to comprehensive climate 

models, and Earth System Models. These models simulate changes based on a set of 

scenarios of anthropogenic forcing. A new set of scenarios, the Representative 

Concentration Pathways (RCPs), was used for the new climate model simulations 
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carried out under the framework of the Coupled Model Intercomparison Project Phase 

5 (CMIP5) of the World Climate Research Programme. 

Projections of temperature and precipitation for the end of the 21st century (2081

– 2100) are given relative to 1986– 2005, increase of global mean surface 

temperatures for 2081–2100 relative to 1986–2005 is projected to likely be in the 

ranges derived from the concentration-driven CMIP5 model simulations, that is, 

0.3°C to 1.7°C (RCP2.6), 1.1°C to 2.6°C (RCP4.5), 1.4°C to 3.1°C (RCP6.0), 2.6°C 

to 4.8°C (RCP8.5).Warming will continue beyond 2100 under all RCP scenarios 

except RCP 2.6 (Fig.3a). While for the projections of global precipitation, extreme 

precipitation events over most of the mid-latitude land masses and over wet tropical 

regions will very likely become more intense and more frequent by the end of this 

century, as global mean surface temperature increases (Fig.3b). 

 

 
Fig.3 Maps of CMIP5 multi-model mean results for the scenarios RCP2.6 and RCP8.5 in 2081–2100 of 
(a) annual mean surface temperature change, (b) average percent change in annual mean precipitation. 
Source: (IPCC, 2013) 
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1.1.2 Impacts of climate change on freshwater biodiversity and 

ecosystem 

There is ample evidence that global climate change will irreversibly affect the 

biodiversity and ecosystem, especially the freshwater ecosystems which were always 

considered as one of the most vulnerable ecosystem (Millenium Ecosystem 

Assessment, 2005). However, knowledge of the biodiversity of freshwater ecosystems 

is still very incomplete, but declines in biodiversity are thought to be far greater in 

freshwater than in the most affected terrestrial ecosystems (Dudgeon et al., 2006). 

Fish assemblage and diversity, were always considered as the most important 

indicator for freshwater ecosystem, have been frequently used as the research hotspot 

in the context of climate change recently. Abell et al. (2008) declared that fish are 

directly affected by changes in temperature since that the richness of freshwater fish 

communities showed a significantly decrease from the tropical to the polar region. 

Moreover, Jeppesen et al. (2010) compared the fish assemblages in 94 shallow lakes 

in Denmark (cold temperate), Belgium and the Netherlands (temperate) and Southern 

Spain (Mediterranean), the results showed that the Belgian and Dutch lakes were 

generally more species-rich than the Danish lakes, whereas the species number both 

per lake and in total was much lower in the Spanish lakes. Recently, combined with 

the large database and ecological modeling, increasingly publications used climatic 

models to project the potential distribution of freshwater species. Comte et al. (2013) 

provide a review and some meta-analyses of the literature reporting both observed and 

predicted climate-induced effects on the distribution of freshwater fish, the results 

highlight the fact that, in recent years, freshwater fish distributions have already been 

affected by contemporary climate change in ways consistent with anticipated 

responses under future climate change scenarios: the range of most cold-water species 

could be reduced or shift to higher altitude or latitude, whereas that of cool- and 

warm-water species could expand or contract. Buisson et al. (2010) have projected the 

potential impacts of global climate change on stream fish assemblages and diversity in 

France, the results showed that only the scarce coldwater species (e.g., brown trout 



Part I: Synthesis 

6 
 

Salmo trutta fario) were predicted to experience a strong reduction in their 

distributional area, whereas most cool water and warm water fish species (e.g., barbel 

Barbus barbus, European chub Leuciscus cephalus) were predicted to colonize many 

newly suitable sites located in intermediate streams or upstream. Local species 

richness was forecasted to increase greatly, and high turnover rates indicated 

fundamental changes in the structure of assemblages in the future. Moreover, the 

climate change could result in remarkably different impacts on the structure of fish 

assemblages depending on their position along the upstream-downstream gradient. 

Recent studies also suggested that future climate change is projected to modify the 

taxonomic composition of freshwater fish assemblages by increasing their overall 

similarity (Tisseuil et al., 2012). 

Global climate warm may also enhance eutrophication and its symptoms by 

affecting external and internal nutrient loading, evaporation rates and water levels 

(Jeppesen et al., 2007; 2009). Otherwise, cascading effects of changes in the fish 

assemblages could also cause a series of affects on the freshwater ecosystem 

functioning, such as the climate-induced change of fish community would alter the 

food-web structure, and the predator-prey dynamics may thus be uncoupled (Lazzaro, 

1997). A study contained 81 shallow European lakes from Northern Sweden to Spain 

indicated that the ratio of fish biomass to zooplankton biomass increased southwards, 

whilst the zooplankton: phytoplankton biomass ratio decreased substantially 

(Gyllstrom et al., 2005). Consequently, the change in fish community structure 

leading to increased proportions of smaller-bodied individuals will also impact other 

lake processes, such as nutrient dynamics and mobilization. 

1.2 Lake fish diversity and the effects in China    

There are numerous of lakes distributed across mainland China, according to the 

recently survey, more than 2759 natural lakes (area>1.0 km2) were existed in 

mainland China, with the total area of 91019.63km2 (Wang and Dou, 1998). Lakes 

thus were consisted as one part of the most important resources in China, with 
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ecological functions contained water supply, entrainment, fisheries, transport and so 

on. Fish play a key role in the trophic dynamics and ecosystem structure of lakes, fish 

species richness varied considerably from 0 to 200 in different lakes (Tejerina-Garro 

et al., 1998; Amarasinghe and Welcomme, 2002). Lakes usually connected with rivers 

or other water bodies, and thus with higher fish diversity (Xie and Chen, 1999). Lakes 

contributed most to fish biodiversity, supporting more species, contained unique 

species and scarce species than other freshwater ecosystems, as rivers, streams and 

ponds at a regional level (Williams et al., 2003). Chinese lakes, occupying 

significantly different natural environments, climatic factors and fish biota due to the 

vast area, have always been considered as the ‘centre of dispersal’ for fish species 

(Wu, 1964; 1977). Through the literature review and meta-analysis on the published 

data, we found that there were more than 400 species were lived or living in the lakes 

in China (Guo unpublished data). Fish diversity in Chinese lakes contributed to one of 

the worldwide hotspot in the area of biodiversity study.  

However, during the last several decades, freshwater fishes worldwide face an 

array of threats from lake and habitat degradation, dam construction, river 

fragmentation, pollution, over-exploitation and interactions with introduced species. 

Such impacts are especially prevalent in densely populated countries undergoing rapid 

development.  

Land-use and land-cover change could affect habitat availability considerably and 

thus leads to the alterations of fish biodiversity (He et al., 2011; Park et al., 2006). 

Over the last several decades, along with urbanization and economic development, 

impoldering around lakes appeared in China. Increased levels of impoldering have 

caused a considerable loss of wild habitat, lead to shrink of lake and even disappeared, 

deterioration of water and air quality, and loss of biodiversity (Fang et al. 2009, Li et 

al., 2006). Moreover, lake environmental pollution could also lead to the habitat loss, 

because the water quality would affect fish lives and growth. Nowadays, large number 

of lakes in China has suffered from eutrophication (Cui and Li, 2005), the resultant 

affected lakes causes symptoms such as algal blooms, heavy growth of rooted aquatic 

plants (macrophytes), algal mats, deoxygenation and, in some cases, unpleasant odor, 
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which often affects most of the vital uses of the water such as water supply, recreation, 

fisheries, or aesthetics. 

 Large dam construction affect the fish diversity mostly by causing habitat loss, 

alter the reproductive environments of some species, and block migration routes, and 

thus leading to a substantial decline in biodiversity (Stanley and Doyle, 2003; Wu et 

al., 2004). Such as the Three Gogres Dam in China, the largest hydroelectric dam in 

the world will have catastrophic consequence for fish, most especially to the migrant 

species in the middle and lower reaches of Yangtze River, by damaging the new 

spawning sites already formed below and above the Gezhou Dam and completely 

blocking the upstream migration routes of fish (Xie, 2003). Otherwise, dam 

construction between lakes and rivers could lead to lake-river separated, which also 

considered to be one of the reasons of fish diversity decrease (Liu et al., 2010). 

Fisheries in lakes began in 1950s from fishing wild resources to stock-enhanced 

fish resources in China, nowadays, due to the food safe issues, lake fisheries have 

already spreaded all over the mainland, but mostly in the eastern China. However, 

along with development of fisheries in the lakes, still some problems that could also 

have serious negative effects on fish diversity in the lake. Such as fertilization, 

over-exploition, introduced exotic species. Fertilization was common in some lakes to 

increase the growth rate of some traditional aquaculture species (e.g. 

Hypophthalmichthys molitrix and Hypophthalmichthys nobilis), which can aggravate 

entrophication and lead to environmental pollution; Over-exploitation of fish 

resources appeared in lots of lakes, certain fishing techniques, such as dense-aperture 

nets, bombing, poisoning, and electric fishing, has severely affected breeding and 

regeneration of fish species in lakes (Cui and Li, 2005). Large scale of artificial 

stocking of introduced fish species would alter the fish richness and diversity without 

doubt; however invasion of exotic species is an important causal factor in the threats 

to some native or endemic species, because invaders usually have a fast growth rate, 

strong resistance to extreme environments, a wide food spectrum, and a high 

reproductive rate. The impact of introduced species as predators or competitors of 

native species has been especially striking in many plateau lakes (Xie and Chen, 
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1999), and in many cases these exotic species could replace the native species.   

1.3 Development and application of model techniques  

1.3.1 Species distribution modelling 

The fascinating question of how species are distributed on earth in space and 

time has a long history which has inspired many biogeographers and ecologists to 

seek explanations. Recently, increasing interest in how species respond to global 

changes makes it essential to be able to determine species distribution ranges 

accurately. However, for a long time, it is too difficult to assess and monitor 

organisms in a large scale, while in this case, species distribution models (SDM) 

which could integrate fragmental information of species and habitats globally showed 

it’s advantages (Guisan and Zimmermann, 2000). Species distribution modelling 

(sometimes called environmental or bioclimatic niche modelling) relies on ecological 

theory of processes that mediate species distributions and abundance-especially niche 

theory (Austin, 2002). Species distribution models (SDMs) are generally developed to 

quantify the association between species’ occurrence or abundance and environmental, 

climatic or geographical predictors (Guisan and Zimmerman, 2000; Araújo and 

Guisan, 2006; Elith et al., 2007), and different kinds of SDMs have been widely used 

to predict species distribution not only for conservation and management purposes, 

but also for forecasting the effects of environmental or climate change (Guisan and 

Thuiller, 2005; Heikkinen et al., 2006; Pompe et al., 2008; Elith and Leathwick, 2009; 

Kharouba et al., 2009). Over the last decade, numerous of SDMs as Generalized 

Linear Models (GLMs) (McCullagh and Nelder, 1989), Generalized Additive Models 

(GAMs) (Hastie and Tibshirani, 1990), Classification and Regression Tree (CART) 

(Breiman et al., 1984), Random Forest (RF) (Breiman,2001), and even some 

multi-species model as Multivariate Adaptive Regression Splines (MARS, Friedman, 

1991), Artificial Neural Networks (ANN) (Ripley, 1996) and Multivariate Regression 

Trees (MRT) (De’ath, 2002) have been documented and applied routinely for (1) 

predicting distribution patterns or assemblages from the current habitat status (Park et 
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al., 2006; Buisson et al., 2008; Grenouillet et al., 2011), (2) evaluating the potential 

spreading capacity of invasive species (Roura-Pascual et al., 2009; Brummer et al., 

2013), and (3) assessing biological responses and occurrences to global changes 

(Thuiller et al., 2005; Araujo et al., 2006; Buisson and Grenouillet, 2009; Tisseuil et 

al., 2012; Yu et al., 2013). With the rapid development of computing capacity and 

large databases, the SDMs have been widely used in both basic and applied ecology 

(Fig.1). 

 
Fig.4 Publications focus on species distribution models. Data source from Web of Knowledge 

 

To build a species distribution modelling, the principal steps are outlined in 

Figure 5. Normally two types of input data are needed: 1) Biological data; and 2) 

Environmental variables.  

Biological data: Species distribution data could be either presence-absence data 

(records of presence and absence of the species at sampled localities) or presence-only 

data (records of localities where the species has been observed). Normally, species 

distribution data may be obtained in a variety of ways (Richard, 2007): 

1) Personal collection: occurrence localities can be obtained during field surveys by 

an individual or small group of researchers. 
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2) Museum collections: occurrence localities can be obtained from collections in 

natural history museums. 

3) Online resources: distribution data from a variety of sources are increasing being 

made available over the internet. 

4) Published data: occurrence data from a published database 

 

 
Fig.5 Flow diagram detailing the main steps required for building and validating a correlative species distribution 

model, Modeified from (Richard, 2007) 

 

Environmental data 

A wide range of environmental input variables have been employed in species’ 

distribution modeling. Most common are variables relating to climate (e.g. 

temperature, precipitation), topography (e.g., elevation, aspect), soil type and land 

cover type. Variables tend to describe primarily the abiotic environment, although 

there is potential to include biotic interactions within the modeling. Modern 

technologies, including RS (remote sensing), the internet, and GIS have greatly 

facilitated the collection and dissemination of environmental datasets; In addition, 
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global climate models have been used to generate scenarios of future climates and to 

simulate climatic conditions since the end of the last glacial period. 

1.3.2 Ecopath with Ecosim 

Ecopath with Ecosim, also named as static mass-balance trophic model (freely 

available at www.ecopath.org; Christensen et al., 2004), which focuses on energy 

transfer between trophic levels and is now widely used in aquatic ecosystem research 

(Fetahi et al., 2011; Li et al., 2009; Byron et al., 2011; Xu et al., 2011a; Xu et al., 

2011b). It differs from other modeling approaches because it encompasses the full 

trophic spectrum, which makes it appropriate for quantitative assessment of 

ecosystem structure and function systematically (Christensen, 1995). The basic 

mass-balance equation of EwE can be described as: 

Production = catches + predation mortality + biomass accumulation + net migration + 

other mortality or re-expressed concisely and intelligibly as: 
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where iB  is the biomass of group i; 
iB

P







 represents the Production/Biomass ratio 

of group i, which is equal to the coefficient of total mortality Z under steady-state 

conditions (Allen 1971); iEE  is the ecotrophic efficiency of group i; jB is the 

biomass of predator j; 
jB

Q






  is the consumption/biomass ratio of predator j; jiDC is 

the contribution of prey i in the diet of predator j; iEX is the export of group i 

(Christensen et al., 2004; Christensen et al., 2005). For each functional group, the 

composition of the diet and at least three of the four parameters (B, P/B, EE, and Q/B) 

must be inputed to establish the model, and the other parameters which are unknown 

can be estimated by the model. 

Ecopath with Ecosim (EwE) has been widely considered to be an appropriate 

tool for the analysis of food webs. The Ecopath model is ecosystem-based software, 

and like other ecosystem models, can summarize and view changes in species 
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interactions within an ecosystem (Christensen et al., 2005; Xu et al., 2011b). Both 

direct and indirect effects of species changes in the ecosystem can be explored and 

effects on the overall functioning of the ecosystem can be estimated (Heymans et al., 

2004). Furthermore, the suitability of this approach is its application to a broad field 

of theories that are useful for ecosystem studies, e.g. thermodynamic concepts, 

information theory, trophic level description and network analysis (Xu et al., 2011a). 

EwE was first introduced to China by Tong (1999) and thereafter has been used in 

several aquatic ecosystems to manage fisheries in China, especially in ocean systems. 

However, few EwE models have been constructed for China’s lake ecosystems except 

Li et al. (2009) and Jia et al. (2012). So far, no EwE model is available for the shallow 

macrophytic lakes in the MYRB, which have long been used for stocking fish. These 

lakes have unique aquatic living resources and environmental conditions. 

1.4 Specific objectives 

During the last several decades, in the context of global change, climate change 

and anthoropogenic activities have long been acknowledged as the two main 

determaints which drive the fish diversity and distributions patterns, and ultimately 

affect the acquatic ecosystem properties and structure. However, very few efforts 

aimed at the fish diversity and ecosystem in the lakes across China. While knowledge 

of the biodiversity of lake ecosystems is very incomplete, but declines in biodiversity 

are thought to be far greater in fresh water than in the most affected terrestrial 

ecosystems. Consequently, in the present study, we focused on the climate and 

anthoropogenic effects on fish diversity and distribution patterns as well as the 

ecosystem with the approach of several ecological modelling. 

Specifically, the present study mostly aims to 1) determining the lake fish 

distribution and assemblage patterns as well as the drive factors; 2) predicting the lake 

fish species distribution and richness in the context of climate change; 3) ensemble 

modeling the lake fish species distribution and the uncertainties; 4) modeling lake 

ecosystem structure and properties under artificial activites. 
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2. Materials and Methods 

2.1 Study area 

2.1.1 Study area for Fish diversity and distribution 

Lakes in China always had with complicated natural environments and large 

geological variations. In the present study, a total of 135 lakes (Fig.6, 21.9-48.9º N 

and 81.2-132.6º E) distributed across China with creditable fish presence-absence data 

were selected. The surface areas of these lakes ranged from 0.0006 to 2933 km2

 

. The 

detailed location and limnological characteristics of each lake are summarized in 

Appendix Table S1. 

 
Fig.6 Map of the study lakes distributed in mainland China 

 

 

2.1.2 Study area for lake ecosystem 

Bao’an Lake (Fig.7), with a total area of 39.3 km2, is a typical shallow 
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macrophytic lake (usually with an average water depth of 2.1m) located on the south 

bank of the Yangtze River basin within Hubei Province, Central China (Guan, 1995). 

This lake used to be part of a larger lake, Liangzi Lake, which was connected to the 

Yangtze River by a channel. According to a survey, the area covered with aquatic 

macrophytes in the lake reached 75% of the whole lake, dominated by Vallisneria 

spiralis L., Myriophyllum spicatum L. and Nelunbo nucefera G. (Su et al., 1995). The 

physicochemical parameters of water quality during the study period are listed in 

Table1. 

 

 

 

 

Fig.7 Geographic location and sketch map of Bao’an Lake 
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Tab.1 Physicochemical parameters of water quality in Bao’an Lake during 1992-1993 

 

 

 

 

 

 

 

 

 

 

2.2 Data Collection 

2.2.1 Fish diversity data 

 The presence-absence data of fish in the 135 lakes were compiled from published 

fish surveys since the 1950s (see Appendix S1 for details). To ensure the quality and 

authenticity of the data, fish compositions derived from long-term monitoring and 

surveying were adopted, while the data with insufficient sampling were omitted. For 

the lakes that had fish fauna data from several time periods, normally the earliest were 

preferred as they may have suffered from fewer artificial disturbances. Fish 

composition data were then revised according to the monograph “Fauna Sinica” and 

Wu (1977; 1964) to deal with possible nomenclatural changes (e.g. synonyms, newly 

discovered and named fish species). Consequently, 425 fish species and subspecies 

were included. 

 

 

 

 

Parameters Unit Annual average 

Water temperature °C 18.9 

Secchi disk depth cm 148 

pH - 8.06 

Conductivity μs/cm 267.4 

Alkalinity - 46.54 

Dissolved oxygen mg/L 9.82 

Chemical oxygen demand mg/L 3.60 

Total nitrogen mg/L 1.460 

Total phosphorus mg/L 0.037 
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2.2.2 Climatic and environmental variables 

   A set of climatic and lake geographic variables were used as the explanatory 

variables. The climatic variables were derived from the WordClim database (Hijimans 

et al., 2005, available at http://www.worldclim.org) using Arcgis 10.1 (ESRI). This 

database was developed from compiled monthly averages of climate as measured at 

weather stations from a large number of global, regional, national and local sources, 

mostly from the 1950–2000 periods, using the Thin Plate Smoothing Spline (TPS) 

algorithm that yielded climate surfaces for monthly maximum, minimum, mean 

temperatures and total monthly precipitation (Hutchinson, 1995). In order to improve 

the accuracy of our analyses, we choose the highest resolution (30 arc-seconds (~1 

km)). Totally 23 variables were listed and used for the fish patterns analysis. In the 

prediction study, a PCA (principal component analysis) was performed to eliminate 

the variables with high correlation, and finally 8 variables are included (Table 1, in 

bold). 

http://www.worldclim.org/�
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Tab.2 The description of the predictor variables used in the study (The variables with bold are selected to be used in the predictive model) 

 

Variables 

abbreviation 

Variable type Min Median Mean Max SD 

Latitude Mean latitude  21.90  31.10  34.42  48.90  7.90  

Longitude Mean Longitude 81.20  114.40  111.60  132.60  10.47  

ALT Elevation of the site 2.00  144.00  911.70  4947.00  1154.56  

A Surface area of the lake 0.01  27.95  225.80  4930.00  544.82  

AMT Bio1:Annual mean temperature -5.00  140.00  113.70  217.00  61.45  

MDR Bio2:Mean diurnal range: mean of monthly (max temp–min temp) 70.00  110.00  104.50  146.00  19.95  

ISO Bio3:Isothermality: (Bio2/Bio7) *100 21.00  25.00  30.16  53.00  9.78  

TS Bio4:Temperature seasonality (SD *100) 3242.00  8807.00  9305.00  15770.00  3468.65  

MTWM Bio5:Maximum temperature of warmest month 130.00  286.00  284.40  340.00  46.71  

MTCM Bio6:Minimum temperature of coldest month -295.00  -22.00  -79.59  93.00  109.16  

TAR Bio7:Temperature annual range (Bio5–Bio6) 212.00  331.00  364.00  561.00  103.52  

MTWE Bio8:Mean temperature of wettest quarter 78.00  216.00  214.30  283.00  40.57  

MTDQ Bio9:Mean temperature of driest quarter -208.00  50.00  -2.47  162.00  104.59  
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MTWA Bio10:Mean temperature of warmest quarter 78.00  221.00  227.00  286.00  48.12  

MTCQ Bio11:Mean temperature of coldest quarter -213.00  43.00  -12.32  149.00  99.40  

AP Bio12:Annual precipitation 82.00  919.00  806.30  1480.00  409.61  

PWM Bio13:Precipitation of wettest month 18.00  186.00  168.60  305.00  63.03  

PDM Bio14:Precipitation of driest month 0.00  9.00  15.04  44.00  14.62  

PS Bio15:Precipitation seasonality(coefficient of variation) 39.00  86.00  83.35  138.00  26.64  

PWEQ Bio16:Precipitation of wettest quarter 47.00  461.00  423.70  815.00  171.80  

PDQ Bio17:Precipitation of driest quarter 2.00  38.00  56.64  160.00  55.12  

PWAQ Bio18:Precipitation of warmest quarter 47.00  443.00  403.20  676.00  157.02  

PCQ Bio19:Precipitation of coldest quarter 2.00  39.00  60.01  175.00  59.59  

 

The unit for all the temperature was (°C * 10), for all the precipitation was (mm). 

Min: the smallest observation;  

Median: the median value of all the observations; 

Mean: the mean value of all the observations; 

Max: the largest observation; 

SD: the standard deviation. 



Part I: Synthesis 

20 
 

 





Part I: Synthesis 

20 
 

2.2.3 Data for ecosystem mass-balance model 

A total of 23 functional groups were defined to establish the mass-balance model 

of Bao’an Lake. Groups were classified according to their trophic habits (mainly diet), 

abundance and the availability of information (Christensen et al., 2004). Some 

commercial fish species and Chinese mitten crab (Eriocheir sinensis)

For all functional groups, the key input data used to construct the model usually 

included biomass (B

 were grouped 

separately due to their importance to fishery yield and stocking (see details in Table 

3). 

i), production/biomass ratio (Pi/Bi), consumption/biomass ratio 

(Qi/Bi), ecotrophic efficiency (EEi) and food composition (DCji

The specific approaches to these parameters are summarized as follows. 

) (Christensen et al., 

2005). Normally, fishery capture of some commercial products (such as fish, crabs, 

shrimps, etc) was also contained in the model in order to discuss the effects of fishing. 

Here the fishing yield data were also compiled with the monographs. Because many 

ecological and fisheries studies had been carried out in Bao’an Lake since the 1980s, 

especially during the period of 1992-1993, abundant first-hand data on the lake could 

be collected and compiled from published papers (Hu and Huang, 1991; Liang and 

Liu, 1995), dissertations (Zhang, 2005; Yan, 1998; Jin, 2003), and unpublished data. 

Fish 

The biomass and P/B of the small fish group in the lake were estimated directly by 

Zhang (1999; 2005). For other fish groups, the biomass and P/B values were 

calculated from the following equations: 

B=Y/F                                                                  (2) 

F=Z-M                                                                  (3) 

Z=P/B=
LL
LLK
′−

−
⋅ ∞                                                        (4) 

where B, Y, F, Z and M represent biomass, yield, fishing mortality, total mortality and 

natural mortality of fish; ∞L , L  and L′  represent the asymptotic length, mean 

length and cut-off length of fish (Beverton and Holt, 1957; Allen, 1971). 



Modelling lake fish assemblages and ecosystem properties in China 

21 
 

Tab. 3 Species composition of each functional group for the Bao’an Lake ecosystem model 

 

NO. Functional group Dominant species composition 

1 Mandarin fish Siniperca chuatsi, Siniperca kneri  

2 Snakehead fish Channa argus  

3 Large culters Culter alburnus, Culter mongolicus, Culter dabryi  

4 Catfish Pelteobagrus fulvidraco  

5 Common carp Cyprinus carpio 

6 Crucian carp Carassius auratus  

7 Small fishes Pseudorasbora parva, Sqalidus nitens, Sarcocheilichthys nigripinnis, Hemiculter 

leucisculus, Toxabramis swinhonis, Gobiidae  

8 Silver carp Hypophthalmichthys molitrix  

9 Bighead carp Aristichthy nobilis  

10 Grass carp Ctenopharyngodon idellus 

11 Breams Megalobrama amblycephala, Parabramis pekinensis 

12 Crabs Eriocheir sinensis  

13 Shrimps Caridina nilotic gracilipes, Macrobrachium nipponense, Neocaridina denticulate 

sinensis 

14 Molluscs Bellamya aeruginosa, Alocinma longicornis, P. striatulus 

15 Oligochaeta Branchiura Sowerbyi, Limnodrilus hoffmeisteri 

16 Aquatic insecta Chironmoidae 

17 Microzooplankton Rorifers, Protozoans 

18 Cladocera Diaphanosoma leuchtenbergianum, Sida crystalline, Moina micrura  

19 Copepoda Cyclops vicinus, Mesocyclops leeckarti 

20 Submerged 

macrophyte 

Potamogeton maackianus, Myriophyllum spicatum, Vallisneria spiralis, 

Ceratophyllum demersum 

21 Phytoplankton Chlorophyta, Bacillariophyta, Cyanophyta 

22 Attached algae Chlorophyta, Bacillariophyta, Cyanophyta 

23 Detritus Bioseston, Abioseston 
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The consumption/biomass ratio (Q/B) of fish was estimated from the empirical 

equation presented by Palomares and Pauly (1998): 

dhATWBQ 398.0532.0083.0965.1log204.0964.7)/log( +++′−−= ∞
                  (5) 

where 
∞W  is the asymptotic weight (g), T ′ the mean temperature of the lake 

expressed by T ′=1000/Kelvin (Kelvin=°C+273.15), A is the aspect ratio (A=H2/S, H 

is the height of caudal fin and S is the surface area) for a given fish, h is a dummy 

variable expressing food type (1 for herbivores, and 0 for detritivores and carnivores), 

and d is a dummy variable also expressing food type (1 for detritivores, and 0 for 

herbivores and carnivores). The morphometric data for estimating Q/B was derived 

from Zhang (2005). The diet compositions (DCji

Macrocrustaceans 

) of fish groups were also modified 

from Zhang (2005). 

The biomass of the Chinese mitten crab was calculated according to its stocking 

biomass and recapture rate surveyed during 1991-1993 in the lake (Liu et al., 1995; 

Jin, 2001), and the biomass of shrimps was estimated directly by Qin et al. (2003) 

with a pop-net. Since there has been no exact P/B or Q/B data for the 

macrocrustaceans in the lake until now, we assumed the value of EE and P/Q to be 

0.85 and 0.075 respectively according to a similar study in Lake Taihu (Li et al., 

2009). The dietary composition came from Jin et al. (2001) for Chinese mitten crab 

and Li et al. (2009) for shrimps. 

Zoobenthos and Zooplanktons 

An extensive and detailed plankton survey had been carried out during 1992-1993 

in Bao’an Lake and the relevant results were compiled in the book “Resource, 

environment and fishery ecological management of macrophytic lakes” (Liang and 

Liu, 1995). Therefore, the biomasses of molluscs, oligochaetes, aquatic insecta, 

microzooplankton, cladocera, copepoda were taken directly from the published 

materials. The P/B ratio of mollucks, oligochaetes and aquatic insecta in the lake were 

estimated directly by Yan et al. (1998), and the P/Q were assumed to be 0.05 (Yan et 
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al. 2003). For the groups of microzooplankton, cladocera, copepoda, 0.05 and 0.95 

were adopted for the values of P/Q and EE (Park et al., 1974; Scavia et al., 1974). All 

the dietary compositions were modified from Liu (1999) with slight adjustments to 

balance the model if necessary. 

Primary producers and detritus 

Phytoplankton, attached algae and submerged macrophytes were defined as the 

three groups of primary producers. The biomasses of the three groups were 

investigated directly and reported in the published book (Liang and Liu, 1995). A P/B 

ratio of 185 year-1 for phytoplankton (Sun et al., 1999), 250.7 year-1 for attached algae 

(Wang et al., 1995) and 1.25 year-1 

 

for macrophytes (Liu, 1992) were used in the same 

lake. The biomass of detritus was also calculated directly in the lake by Hu and Huang 

(1991). 

2.3 Model Techniques 

2.3.1 Species distribution mdoelling 

   In our study, a novel technique for modeling species-environment relationships, 

MRT, was used as the main tree model to explore the relationships between fish 

species and environments. MRT is the tree model based on the same recursive 

partitioning principles as Classification and Regression Trees (CART) but extended to 

multivariate response variables, which is an important consideration for the 

community studies. MRT splits objects (e.g. sampling sites) into homogenous groups 

according to the response, with the splits constrained by explanatory variables. The 

tree is grown by splitting the data a large number of times, and then it is subsequently 

pruned (reduction of the number of groups) via a re-sampling method called v-fold 

cross-validation (Breiman et al., 1984) to obtain the best predictive tree size. The 

model was run with 100 replicates to be certain that the results were not simply 

obtained by chance. An unconstrained cluster (hclust) was also presented to compare 

with the MRT groups, a Kruskall-Wallis test and multiple comparison tests were then 
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conducted in order to assess the differences in species richness between each 

assemblage (Giraudoux, 2006). Here, the new R package “MVPART wrap” (Ouellette 

et al., 2012) was used instead of the package “mvpart” (De’ath, 2002) to get more 

detailed information from the MRT model. 

Moreover, in the context of ensemble modelling, a total of nine different 

statistical models, contained: Generalized Linear Models (GLM, McCullagh and 

Nelder, 1989), Generalized Additive Models (GAM, Hastie and Tibshirani, 1990), 

Classification and Regression Tree (CART, Breiman et al., 1984), Random Forest (RF, 

Breiman, 2001), Multivariate Adaptive Regression Splines (MARS, Friedman, 1991), 

Artificial Neural Networks (ANN, Ripley, 1996), RF, Mixture Discriminant Analysis 

(MDA), Generalized Boosted Models (GBM), SRE (Surface Range Envelop or 

usually called “BIOCLIM”, Busby 1991), were used to predict the presence-absence 

data of each fish species in the assemblage. All the models were performed in R (R 

Development Core Team 2013) with the package of “biomod2” (Thuiller et al., 2003). 

For each of the 92 species, nine models were constructed respectively with a random 

70% subset, and the remaining 30% dataset were used to evaluate the model 

performance. The split-sample procedure was repeated 100 times for each species 

(Fig.8). 

 

 
Fig.8 General schematic representation of the ensemble modelling approach 
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2.3.2 Ecopath modelling approach 

A static mass-balance trophic model was constructed using the Ecopath with 

Ecosim, version 6.2 (freely available at www.ecopath.org; Christensen et al., 2004). 

2.3.3 Model evaluation 

Evaluation for Species distribution modelling 

For the species distribution modelling, the predictive model performance were 

evaluated using three main kinds of accuracy measures: Area under the receiver 

operating characteristic curve (AUC; Fielding and Bell, 1997), Cohen’s Kappa 

(Cohen, 1960) and True skill statistic (TSS; Bohning et al., 2008). 

Area under the receiver operating characteristic curve (AUC) is one kind of 

threshold-independent measures, A ROC (receiver operating characteristic curve) plot 

is obtained by plotting all sensitivity values (true positive fraction) on the y axis 

against their equivalent (1-specificity) values (false positive fraction) for all available 

thresholds on the x axis. The area under the ROC function (AUC) is usually taken to 

be an important index because it provides a single measure of overall accuracy that is 

not dependent upon a particular threshold (Deleo, 1993; Fielding and Bell, 1997). The 

value of the AUC ranged from 0 to 1, with a score of 1 indicating a perfect fit, scores 

from 0.9 to 1 representing an excellent fit, scores from 0.8 to 0.9 representing good fit, 

and those scores from 0.5 to 0.6 implying discrimination that was no better than 

random (Swets, 1988). 

Cohen’s kappa (1960) has been adopted to alleviate the problem of 

overestimating accuracy. It measures the extent to which the agreement between 

observed and predicted is higher than that expected by chance alone. This statistic is 

used to assess inter-rater reliability when observing or otherwise coding qualitative / 

categorical variables. Kappa is considered to be an improvement over using % 

agreement to evaluate this type of reliability. Kappa has a range from 0-1.00, with 

larger values indicating better reliability. 

TSS (True skill statistic) is defined as the average of the net prediction success 

rate for presence sites and that for absence sites. It has gained considerable theoretical 
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interest over many years (Bohning et al., 2008), and it is considered the best available 

summary measure of model performance in medical diagnostic tests by some 

researchers (Biggerstaff, 2000). TSS takes into account both omission and 

commission errors, and success as a result of random guessing, and the values range 

from −1 to 1, where 1 indicates perfect agreement and values of zero or less indicate a 

performance no better than random. This index is closely related to the arithmetic 

mean of sensitivity and specificity.  

Overall accuracy (OA), defined as the probability that a site (either presence or 

absence) is correctly predicted, is the most common measure used in various 

disciplines including ecology. 

Evaluation for the Ecopath Model 

After all the necessary parameters had been entered, the model could be balanced 

by checking the estimated values: are the EE values possible (less than 1) and are the 

GE (=P/Q) values physiologically realistic (0.1-0.3) for most groups? Usually, in 

order to balance a model we modified the input data manually: subtle adjustment 

should always be made, especially for diet composition (Christensen et al., 2005). 

To facilitate this task and to make the process more transparent, we implemented a 

‘pedigree’ routine (Funtowicz and Ravetz, 1990), which serves a dual purpose by 

describing the origin of the data and by assigning confidence intervals to data based 

on their origin (Pauly et al., 2000). This index can be understood as a coded statement 

categorizing the origin of a given input and specifying the likely uncertainty 

associated with it (Christensen et al., 2005). For each input value, a description should 

be made on the data source and its confidence (high or low precision, estim ated by 

model, "guesstimated", approximate or indirect method, from other models, or from 

literature, etc.). Percentage ranges of uncertainty, based on a set of qualitative choices 

relative to the origin of B, P/B, Q/B, catch and diet composition input were used in 

the routine and resulted in an index value scaled from 0 (not rooted in local data) to 1 

(fully rooted in local data) for each input data point. Based on the individual pedigree 

index values, an overall ‘pedigree index’ (P) of the information in ECOPATH was 

calculated: 
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where ijl is the pedigree index for model group i and parameter j, n is the total 

number of modeled groups (Christensen and Walters, 2004). 

Apart from the pedigree index (P), we also used a measure of fit (t*) to scale the 

model uncertainty based on the number of living groups in the ecosystem. The 

measure of fit describes how well a given model is rooted in local data, and is 

calculated as: 

)1(/)2(* 2PnPt −−=∗    

  

3. Results 

3.1 Large-scale patterns of fish species distribution and 

assemblage 

3.1.1 Comprehensive description of fish composition 

    A total of 425 species and subspecies from 15 orders, 42 families had been 

recorded in the 135 studied lakes. Rank-order species richness is sigmoid (Fig.9a): 

around 5% of the sites had high species richness (species richness >80), 45% 

contained moderate richness (20<species richness < 80), and 50% with low richness 

(species richness< 20). While Fig.9b shows that most of the recorded species are 

uncommon or rare species, about 80% of the species have an occurrence of less than 

20% in all the sites, among which around 47% of the species occurred only once. 

About 8% of the species are recorded as moderately common species that occurred in 

more than 30% of the sites. Only 8 species occurred in more than 80 sites and are thus 

recorded as the most abundant species in our research (Pseudorasbora parva 

(Temminck et Schegel, Hypophthalmichthys molitrix (Cuvier et Valenciennes), 
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Ctenophaxyngodon idellus (Cuvier et Valenciennes), Aristichthys nobilis 

(Richardson), Carassius auratus Linnaeus, Cyprinus(cyprinus) carpio Linnaeus, 

Misgurnus anguillicaudatus (Cantor), Hemiculter leucisculus (Basilewsky)). 

 

 
Fig. 9 Rank-ordered distribution plots of fishes in Chinese lakes 

a Sites rank-ordered by species richness in each site (X axis represent the % of the 135 sites; Y axis represent 

the richness per site);  

b Species (percentage) rank-ordered by percentage of sites where each species encountered (X axis represent 

the % of 435 species; Y axis represents the total percentage of sites where the species present) 
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3.1.2 Fish diversity and assemblages in Chinese lakes 

In the MRT model, a robust decision tree with five terminal nodes was identified 

to minimize the cross-validated relative error and the complexity instead of the “1-se 

rule” as suggested by Breiman et al., (1984) (Fig. 10a). Comparisons of the 

constrained clustering from MRT models with similar numbers of unconstrained 

cluster groups (using K-means clustering and Euclidean distance) showed that the 

constrained and unconstrained groups are similarly homogeneous, which indicates the 

species clusters were spatially contiguous and the environmental variables adequately 

accounted for the species variance (De’ath, 2002). Although the MRT tree only 

accounted for 35.2% of the variation in the species data (Fig. 10b), De’ath described it 

as common because of the large number of low occurring species (Devantier et al., 

2006). 

Therefore, all the 135 lakes were patterned into five assemblages according to 

the similarity of fish composition and the determinants (Fig. 10b). Two main clusters 

were defined as the first split (Cluster I and Cluster II), and this split identified two 

regions: high altitude region (plateau) and low altitude region (plain). In addition, five 

sub-clusters which we considered as five assemblages were also sub-divided, and 

contained 61, 26, 38, 4, 6 lakes respectively, named Ia, Ib, IIa1, IIa2, IIb. 
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Fig. 10 The output of MRT model for the fish species and environmental variables 

a Fish distribution patterns and assemblages defined by MRT model (alt: Altitude of the site; bio6: Minimum 

temperature of coldest month; bio7: Temperature annual range; bio14: Precipitation of driest month; the terminal 

nodes represent five fish assemblages Ia, Ib, IIa1, IIa2, IIb, see text for details) 

b Cross-validation of the Multi-variable Regression Tree analysis (the upper line is cross-validation relative 

error while the lower line is re-substitution error, the red circled point is the model with the greatest cross-validated 

predictive accuracy) 
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Box-plots of species richness in each assemblage are shown in Figure 11. The 

Kruskall-Wallis test revealed that species richness varied significantly among the 

different assemblages (p<0.05), while the multiple comparison test showed that 

species richness in each of the three assemblages in cluster II were significantly 

different from the two assemblages in cluster I (p<0.05). However, there is no 

significant difference between each assemblage in the same cluster. To simplify, we 

defined the richness in each lake as “lake richness” while the diversity in the 

assemblage as “fauna diversity” hereinafter. Cumulative species richness showed that 

only Ia did not reach an asymptote compared to the other four (Fig. 12). However, Ia 

contained the highest rates of species’ accumulation as well as the highest fauna 

diversity (280 species; abbreviated as sp. hereinafter), although the species richness in 

each lake was the lowest (median=12 sp.; Fig.3 and Fig.4). Lake richness in IIa2 and 

IIb showed higher values (median values are 84 sp. and 88.5 sp. respectively) but 

with lowest accumulative rates, while IIa2 also contained the lowest fauna diversity 

with only 84 species. Assemblage IIa1 had moderate lake richness (median value = 

55 sp.) as well as for the fauna diversity (184 sp.). Unfortunately, Ib seemed to be the 

one that contained both lower lake richness (median value = 22.5 sp.) and fauna 

diversity (99sp.) than the other four assemblages (Fig.5 and Fig.6).  

3.1.3 Determinants of fish distribution and assemblages in Chinese lakes 

Five assemblages were thus mapped (Fig. 13) geographically: cluster I (Ia and Ib) 

mostly indicated the lakes distributed in Meng-Xin plateau, Yun-Gui plateau, 

Qinghai-Tibet plateau and the North-East plain, while clusterⅡ(Ⅱa1,Ⅱa2,Ⅱb) 

mainly indicated the lakes distributed in the Eastern plain, with the majority along the 

Yangtze River basin. From the tree (Fig.10b), we can see that altitude accounted for 

most of the variation in species distribution (23.22%), and explained about 65.9% of 

the total variation. Followed by the annual temperature range (bio7; accounted for 

4.54%), the minimum temperature of the coldest month (bio6; accounted for 4.04%) 

and precipitation in the driest month (bio 14; accounted for 3.36%). 
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Fig. 11 Box-plot for the species richness of each assemblage (Ia, Ib, IIa1, IIa2, IIb were the 

five assemblages defined in Fig.4; for each box plot hereinafter in the paper, the median (line 
within the box), first and third quartiles (box), non-outlier range (whiskers), and outliers (dot) are 
shown). 

 

Fig. 12 Species accumulation curves for the five assemblages (figure a shows the global picture 
of the species accumulation for all the five assemblages, while the small figure b show the precise 
details of IIa2, IIb, not clearly shown in figure a.) 

For these four determinants, Ia was characterized by high altitude (1908.85  
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1050.96 m) and lower annual temperature range (32.58 10.54℃), while Ib in terms 

of relative high altitude (220.15±202.38m) and higher annual temperature range 

(51.54±1.47℃). However, clusterⅡ,Ⅱa1 was characterized mostly by the lower 

altitude (19.45 19.25m), a lower minimum temperature of the coldest month 

(-0.71±2.62℃ ) and lower precipitation in the driest month (29.97±9.28mm), while 

Ⅱa2 was characterized by lower altitude (14±0.82m), lower minimum temperature 

in the coldest month (1.12±0.12℃) and higher precipitation in the driest month 

(42.75 ±1.5mm ). AssemblageⅡ a2 was divided from assemblageⅡ a1 mainly 

depending on the higher precipitation of the driest month. InⅡb, lakes were 

determined in terms of lower altitude (21.16 ±5.84m ) and higher minimum 

temperature of the coldest month (2.1±3.84℃). 

 

Fig. 13 Map of the five assemblages displayed in mainland China 
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3.1.4 Indicator species of assemblages 

A total of 107 indicator species were indentified in five assemblages (contained 1 

sp., 8 sp., 1 sp., 59 sp. and 38 sp. respectively) (see Table 3 for details). Cyprinus 

(cyprinus) chilia (Wu et al.) is the only indicator species for Ia, since this assemblage 

mostly consisted of the plateau fish fauna: fish distributed in these lakes were mostly 

stenochoric species, with some species even occurring only once. The main indicator 

species in assemblage Ib were Rhodeus sericeus (Pallas), Sarcocheilichthys lacustris 

(Dybowsky), Ladislavia taczanowski (Dybowsky), Gobio lingyuanensis (Mori), 

Gobio gobio cynocephalus (Dybowsky), Carassius auratus gibelio (Bloch), 

Misgurnus mohoity (Dybowski), Perccottus glohni (Dybowski). Coilia nasus 

(Schlegel) was the indicator species of Ⅱa1. Notably, clusterⅡa2 andⅡb comprised 

only 10 of the 135 lakes but contained 92.3% of the total indicator species, with all 

the indicator species in these two assemblages being common species in the shallow 

lakes along the middle-lower Yangtze River. Therefore, Ia contains most of the 

plateau species, Ⅱa1, Ⅱa2 and Ⅱb contained mostly the plain fish, while Ib seems 

to be the transition zone between plateau and plain as it contained both plain fish and 

plateau fish. 

3.2 Predicting fish species richness and assemblages in current 

status 

An MRT model was constructed with six terminal nodes which can be qualified 

as six clusters of fish assemblages (Fig. 14a). The tree size was selected by 

cross-validation which showed the lowest predictive error (Fig. 14b) in the calibration 

dataset. The coefficient of determination (R2) is a commonly used measure of 

explanatory power in linear modeling which represents the proportion of variation of 

the response variables explained by a model. In this model R2=47.7%, which showed 

that all the variables we used in the model can explain 47.7% of the total variance. 

Ultimately, six fish assemblages were mainly determined by four explanation 

variables. Overall, altitude (ALT, 30.43%) contributed the most to fish assemblages  
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Fig.14 Multivariate response tree validated model for lake fish species distributed in China 

a. MRT tree model predicting the species distributions in Chinese lakes (see Table 2 for details of the 

variables) b. Selection of the tree size by cross-validation method 
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Followed by precipitation of the driest month (PDM, 10.47%), annual temperature 

range (TAR, 3.62%) and annual mean temperature (AMT, 3.15%) (Fig.14a). 

Assemblage 1 and 2 contained the fish species which were linked to an altitude 

greater than 50 m and separated by an annual temperature range lower or higher than 

50℃. Fish species in assemblage 5 and 6 were related tightly at altitudes lower than 

50 m, and a high precipitation during the dry season (superior than 36.5 mm). 

However, fish species in assemblage 3 and 4 were determined by a relatively lower 

altitude, and lower precipitation during the dry season (< 36.5 mm), while assemblage 

3 preferred a mean annual temperature lower than assemblage 4 (Fig. 14a). 

 
Fig.15 The evaluation results of the MRT model by Overall Accuracy and AUC measures 

 

In order to evaluate the model performance, AUC (threshold-independent 

measure), overall accuracy (threshold-dependent) and Cohen’s Kappa were used. The 

results showed that the MRT model could accurately predict the fish species 

distributions in terms of assemblage level, with AUC values ranging from 0.53 to 0.99 

(with a median value of 0.87), the overall accuracy ranging from 0.61 to 0.98 (with a 

median value of 0.84) (Fig. 15), and the Kappa values range from 0.012 to 0.91 (with 
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a median value of 0.55) (Fig. 16). All three accuracy measures showed significantly 

that most of the species were accurately predicted by the model. However three 

species (Opsariichthys uncirostris bidens, Clarias fuscus and Paracheilognathus 

iimberbis) were not accurately predicted, with kappa values lower than 0.2. This 

indicated the predictions were in ‘slight agreement’, while the other 74 indicator 

species were predicted from ‘fair agreement’ to ‘perfect agreement’ (Fig. 10). These 

evaluated results imply that the discrimination of the MRT model was no better than 

random and thus demonstrated to be robust and informative for the prediction of fish 

species distributions.  

 
Fig. 16 The species-rank kappa value for the MRT model evaluation. a. Cleveland dot plots of the 
kappa values b. Boxplot of the kappa values 

 

For species richness, a species richness index was used as the response variable. 

The AUC value (0.5) for the MRT model showed that the model results for species 

richness is no better than random and thus could be used for fish species richness 

prediction in Chinese lakes. Simultaneously, precipitation of driest month, maximum 
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temperature of warmest month and lake area were identified to be the most important 

factors related to fish species richness in Chinese lakes. Lakes with higher 

precipitation of driest month (bio14≥16.5 mm) and larger lake surface area (area ≥

216.1 km2

 

) were predicted to support more fish species, approximately 80 species per 

lake; while the lakes with lower precipitation of driest month (bio14 < 16.5 mm) and 

lower maximum temperature of warmest month (bio5 < 26 ℃) were predicted to 

support the fewest fish species, approximately 8 species per lake (Fig. 17). 

Fig.17 MRT model predicting the fish species richness in Chinese lakes. The AUC value for this model 
is 0.5 

 

3.3 Ensemble modeling of fish diversity and distributions in 

China and the uncertainties 

Overall, the nine SDMs performed well and showed good capacity on species 

prediction, as the three different evaluation methods (AUC, Kappa, TSS) and overall 

accuracy showed significantly high values, with the median values of AUC ranging 

from 0.680 to 0.891, overall accuracy ranging from 0.85 to 0.90, Kappa ranging from 

0.358 to 0.658, TSS values ranging from 0.360 to 0.752 (Fig. 18). Among the entire 

model techniques, RF always yield the best models  since the median AUC value is 
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0.891, median accuracy score is 0.90, median Kappa value is 0.658 and median TSS 

value is 0.752, all the values are the highest. Followed by GBM, FDA and GLM 

respectively, while SRE always gives the relative worst predictive performance with 

median AUC value of 0.680, accuracy value of 0.85, Kappa value of 0.358 and TSS 

value of 0.360, which showed the relative lowest values among all the models (Fig. 

18). It is worth noting that even if the RF model which performs the best couldn’t 

give the equal and best predictions for all species, while SRE could also yield very 

good quality models for some species. 

Results from the MANOVA showed that there is no significant difference 

between the three evaluations used in measuring the performance of nine models 

(p>0.01). 

    In order to explore the relationship between species prevalence and model 

performance, outcomes of all the nine models were taken into account. In the context, 

only the results of RF model were presented in Fig. 14. Among all the three 

evaluations, there is a nonlinear relationship between model performance and species 

prevalence. The species prevalence around 30% could yield more accurately 

predictive models, while species prevalence below 30%, model performance showed 

slightly positive relationship with species prevalence (Fig.14). 
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Fig.18 Performance of different SDMs 

AUC: Area under the receiver operating characteristic curve; KAPPA: Cohen’s Kappa; TSS; True 

skill statistic; ACCURACY: Overall accuracy. SRE (Surface Range Envelop); CTA (Classification Tree 

Analysis) ;MARS(Multivariate Adaptive Regression Splines) ; RF (Random Forest) ;FDA (Mixture Discriminant 

Analysis); GBM (Generalized Boosted Models) ; ANN (Artificial Neural Networks); GLM (Generalized Linear 

Models); GAM (Generalized Additive Models)  

 

Here in our study, we determined three kinds of ecological range size, altitude, 

temperature and precipitation ranges. Relationships between species prevalence and 

species range size were found to be all positively related with all the three 
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environmental range size (Fig.19). 

 

 
Fig.19 Relationships between species prevalence and three environmental range size 

 

However, when take into account the species ecological range size, the altitude 

range size and precipitation range size were significantly negative related with the 

model performance, while unfortunately, temperature range size were found not 

significantly influence the model performance. Besides, performance of FDA and 

SRE seems only affected by species prevalence (Tab.3), but not correlated with 

species characteristics like temperature range size, precipitation range size and 

altitude range size. Moreover, influence from the uncertainty source on each of the 

nine models was also showed difference. 
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Tab. 3 Relations between model techniques and species characteristics 

 

ALTR 

 

TR 

 

PR 

 

PV 

 SRE AUC NS 

 

NS 

 

NS 

 

0.208 *** 

CTA AUC -3.057E-05 *** NS 

 

-1.03E-04 ** 0.193 *** 

MARS AUC -2.42E-05 ** NS 

 

-9.72E-05 ** 0.185 *** 

RF AUC -3.43E-05 *** NS 

 

-1.16E-05 *** 0.172 *** 

FDA AUC NS 

 

NS 

 

-1.28E-04 ** 0.233 *** 

GBM AUC -3.08E-05 *** NS 

 

1.32E-04 *** 0.178 *** 

ANN AUC -4.41E-05 *** NS 

 

-1.12E-04 *** 0.206 *** 

GLM AUC -3.43E-05 *** NS 

 

-6.04E-05 * 0.253 *** 

GAM AUC -3.87E-05 *** NS 

 

-7.89E-05 * 0.192 *** 

SRE KAP NS 

 

NS 

 

-1.93E-04 * 0.419 *** 

CTA KAP -4.43E-05 * NS 

 

-2.12E-04 * 0.614 *** 

MARS KAP -3.73E-05 * NS 

 

-1.52E-04 * 0.344 ** 

RF KAP -3.62E-05 * NS 

 

-1.73E-04 * 0.283 *** 

FDA KAP NS 

 

NS 

 

-1.81E-04 * 0.371 *** 

GBM KAP -4.00E-05 * NS 

 

-2.26E-04 ** 0.435 *** 

ANN KAP -6.09E-05 *** NS 

 

-1.74E-04 * 0.49 *** 

GLM KAP -4.94E-05 ** NS 

 

-1.44E-04 * 0.63 *** 

GAM KAP -5.32E-05 ** NS 

 

-1.95E-04 * 0.4399 *** 

SRE TSS NS 

 

NS 

 

NS 

 

0.3666 *** 

CTA TSS -5.55E-05 *** NS 

 

-2.01E-04 ** 0.3626 *** 

MARS TSS -4.25E-05 ** NS 

 

-1.78E-04 ** 0.268 *** 

RF TSS -5.73E-05 *** NS 

 

-2.23E-04 *** 0.229 *** 

FDA TSS NS 

 

NS 

 

-2.19E-04 *** 0.261 *** 

GBM TSS -5.20E-05 *** NS 

 

-2.16E-04 *** 0.209 *** 

ANN TSS -7.89E-05 *** NS 

 

-1.81E-04 *** 0.307 *** 

GLM TSS -5.66E-05 *** NS 

 

-1.04E-04 * 0.382 *** 

GAM TSS -5.81E-05 *** NS 

 

-1.25E-04 * 0.268 *** 
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The model techniques: SRE (Surface Range Envelop); CTA (Classification Tree 

Analysis) ;MARS(Multivariate Adaptive Regression Splines) ; RF (Random Forest) ;FDA (Mixture Discriminant 

Analysis); GBM (Generalized Boosted Models) ; ANN (Artificial Neural Networks); GLM (Generalized Linear 

Models); GAM (Generalized Additive Models) ;The evaluation techniques: AUC (Area Under the receiver 

operating characteristic Curve); KAP(Cohen’s Kappa); TSS (True skill statistic);The species characteristics: 

ALTR (Altitude); TR(Temperature Range); PR(Precipitation Range); PV(Prevalence);    NS: Not Significant 
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Fig.20 Relationships between species prevalence and model performance 
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Tab. 4 Basic input and estimated parameters (in bold) for the 23 functional groups of the 
Bao’an Lake ecosystem model (see details of the abbreviations in 2.2 of the text). 

 

Group 

Number 
Group name TL 

Biomass 

(t/km2

P/B 

) (year-1

Q/B 

) (year-1
EE 

) 
P/Q 

1 Mandarin fish 3.138  1.44  0.78  3.57  0.554  0.219  

2 Snakehead fish 3.131  1.38  1.31  3.46  0.680  0.380  

3 Large culters 3.143  4.04  0.96  7.88  0.797  0.122  

4 Catfish  3.080  0.32  1.42  7.07  0.704  0.201  

5 Common carp 2.812  3.26  1.97  9.17  0.787  0.215  

6 Crucian carp 2.126  3.80  2.23  17.02  0.940  0.131  

7 Small fishes 2.151  18.00  2.30  8.92  0.785  0.258  

8 Silver carp 2.021  2.91  1.15  12.24  0.970  0.094  

9 Bighead carp 2.315  3.07  1.02  8.62  0.858  0.118  

10 Grass carp 2.000  10.42  1.65  12.41  0.770  0.133  

11 Breams  2.006  6.17  1.55  18.31  0.516  0.085  

12 Crabs 2.227  2.76  2.12  8.48  0.770  0.250  

13 Shrimps 2.196  3.97  4.50  24.40  0.429  0.184  

14 Molluscs 2.000  99.10  4.30  86.00  0.126  0.050 

15 Oligochaeta 2.076  2.01  5.00  100.00  0.959  0.050 

16 Aquatic insecta 2.056  0.72  6.20  124.00  0.913  0.050 

17 Microzooplankton 2.000  0.70  32.02  640.37  0.950 0.050 

18 Cladocera 2.016  0.23  48.67  973.41  0.900 0.050 

19 Copepoda 2.016  0.67  25.29  505.81  0.900 0.050 

20 Submerged macrophyte 1.000  1627.00  1.25   0.120   

21 Attached algae 1.000  41.30  250.70   0.089   

22 Phytoplankton 1.000  2.43  185.00   0.376   

23 Detritus 1.000  3.45    0.645   
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3.4 Modelling the lake ecosystem properties and functioning  

3.4.1 Basic input and estimates 

After balancing the Ecopath model, a series of estimates and analyses were given 

by the model. The pedigree index (0.50) lies in the upper range (0.16–0.68) from 150 

EwE models (Morissette et al., 2006), and the measure of fit is 2.582 for this model, 

indicating that the input parameters of the model were based on reliable sources and 

the model was robust with high confidence (Table 4; Christensen et al., 2000). 

The basic input with the estimated parameters given by the EwE for the Baoan 

Lake ecosystem are shown in Table 4, and the diet matrix for each group is presented 

in Table 5. 

For the Bao’an Lake model, the EE values of all groups were less than 1, and 

most of the P/Q values were between 0.1~0.3, meeting the requirements of a balanced 

model (Christensen et al., 2005). Generally, the EE values of all the commercial 

fishery groups were higher than 0.5, and some were even as high as 0.97 (silver carp) 

and 0.94 (crucial carp). However, the EE of attached algae was extraordinarily low 

(0.089), followed by submerged macrophytes (0.120) and molluscs (0.126). 

 

3.4.2 Food web structure and trophic analysis 

Trophic structure 

Fractional trophic levels as suggested by Odum and Heald (1975) were calculated 

by the Ecopath model. All ecological groups were assigned discrete trophic levels 

according to Lindeman (1942) with the approach suggested by Ulanowicz (1995). The 

routine assigns definitional trophic levels (TL) of 1 to producers and detritus and a 

trophic level of 1 + [the weighted average of preys' TLs] to consumers (Christensen et 

al., 2005). The fractional trophic levels of all of the 23 groups in Bao'an Lake varied 

from 1 (primary producer and detritus) to 3.143 (large culters) (Table 4). The primary 

producers consisted of submerged macrophytes, attached algae and phytoplankton, 

and the piscivorous fish such as large culter, mandarin fish and snakehead fish 

occupied the top trophic level in the lake ecosystem. 
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Two main types of food chains in the Bao’an Lake ecosystem can be discerned 

from the model: a detrital-based food chain and a grazing food chain. The former 

chain transferred more energy and matter than the latter one. There were 9055 t 

km-2 y-1 matter flowing to trophic level II in the detrital-based food chain, compared 

with 1333 t km-2 y-1 in the grazing food chain, although the biomass of the primary 

producers was extremely high (1671 t km-2 y-1

Transfer efficiencies 

) (Fig. 15). 

In order to describe the proportion of energy transferred from one trophic level to 

the next, all ecological groups in the Bao’an Lake model were assigned to one of eight 

discrete trophic levels (TL) (Lindeman, 1942). However, only the first five trophic 

levels were taken into consideration since the flows through TL VI to VIII were 

extremely small (Fig. 15). The transfer efficiency (TE) of matter is the ratio between 

the sum of exports and flows predated by the next level and the throughput on the 

trophic level. For the grazing food chains of the Bao’an Lake ecosystem, the TEs 

from TL III to TL V were 5.85%, 9.11%, 12.0% respectively. For the detrital food 

chain, TEs were 1.11%, 13.3% and 10.8% respectively. A mean TE of 8.96% was 

calculated for the grazing food chain and 8.40% for the detrital food chain. The 

geometric mean of the trophic transfer efficiency for the Bao’an Lake ecosystem was 

8.68%. 
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Fig.21 Lindeman spine of Bao’an Lake ecosystem during 1991-1993 (details of the units see Tab. 
5). 

 

Mixed trophic impacts 

A modified input -output analysis with the procedure “Mixed Trophic Impacts 

(MTI)” described by Ulanowicz and Puccia (1990) was implemented in the EwE. The 

MTI describes how any group (including fishing fleets) impacts trophically on all the 

other groups in an ecosystem. It includes both direct and indirect impacts, i.e. both 

predatory and competitive interactions (Christensen, et al., 2004). From the mixed 

trophic impact analysis on the Bao’an Lake ecosystem (Fig. 22), piscivorous fish like 

mandarin fish and snakehead fish had strong negative effects on crucian carp as well 

as each other. In addition, large culters also exerted strong negative effects on small 

fish, shrimps, catfish and themselves, while they had moderate negative effects on 

mandarin fish and snakehead fish. 

As the main energy sources in the lake ecosystem, detritus and phyplankton had 

obvious positive effects on many other functional groups. Fishing had strong negative 

effects on all the commercial fish and crabs, but was beneficial for the small fish and 

crucian carp (Fig.22). Nearly all the fish groups had obvious negative effects on 

forage resources, including forage fish (crucian carps, small fish), zooplankton 

(microzooplankton, cladocera, copepoda), zoobenthos (molluscs, oligochaeta, aquatic 

insecta) and algae (attached algae, phytoplankton). On the other hand, the fish groups 

seemed to have more negative effects on each other mainly due to trophic 

competition. 
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Fig.22 Mixed trophic impacts of Bao’an Lake ecosystem (white blanks above the line represent a 

positive impact whereas black blanks underneath the line indicate a negative impact, and the 

heights of the bars are proportionate to the degree of the impacts). 

 

3.4.3 Ecosystem properties and indicators 

According to the ecosystem theories implemented by Odum (1969; 1971) and 

Ulanowicz (1986), a series of indicators that describe ecosystem properties were 

calculated by the Ecopath to assess the stability and maturity of the ecosystem 

(Christensen et al., 2005). Summary statistics and flow indices of the Bao’an Lake 

ecosystem are listed in Table 6. 

The total system throughput of the lake ecosystem reached 37418.040 t km-2 y-1, 

of which 28.2% derived from consumption (10549.570 t km-2 y-1), 13.4% from 

exports (5009.366 t km-2 y-1), 20.9% from respiration (7827.842 t km-2 y-1) with 37.5% 

(14031.260 t km-2 y-1) eventually flowing into detritus. The sum of all production (TP) 

was 13449.030 t km-2 y-1, and the calculated total net primary production (TPP) and 

the net system production (NSP) were 13449.030 and 5009.368 t/km2
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/y respectively. 

Thus, the ratio of total primary production/total respiration (TPP/TR) and total 

primary production/total biomass (TPP/TB) were 1.640 and 6.993 respectively. The 
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mean trophic level of catch was calculated as 2.262, and the gross efficiency 

(catch/net primary production) was 0.003 in the lake ecosystem. 

Flow indices, including connectance index (CI) and system omnivory index 

(SOI), were used to describe whether the food web is web-like or linear. The values of 

CI and SOI in the Bao’an Lake ecosystem were 0.205 and 0.058 respectively. Finn’s 

cycling index (FCI; Finn, 1976) and Finn’s mean path length (FML) calculated by the 

model were 9.25% and 2.915 respectively. 

Ecosystem information indices, ascendancy (A) and system overhead (O), are 

derived from information theory as a measure of the average mutual information in a 

system (Ulanowicz and Norden, 1990). In the Bao’an Lake ecosystem, the values of 

ascendancy and overhead were 38.7% and 61.3% respectively (Table 6). 
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Group Prey \ predator 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 Mandarin fish                    

2 Snakehead fish                    

3 Large culters                    

4 Catfish                    

5 Common carp                    

6 Crucian carp 0.666 0.786                  

7 Small fishes 0.223 0.205 0.790 0.580 0.010       0.150        

8 Silver carp                    

9 Bighead carp                    

10 Grass carp                    

11 Breams                    

12 Crabs                    

13 Shrimps 0.110 0.008 0.193 0.315 0.007               

14 Molluscs  0.001  0.019 0.778  0.132      0.095       

15 Oligochaeta    0.003 0.008 0.007      0.050 0.080       
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Tab.5 Diet compositions of 23 functional groups in the Bao’an Lake ecosystem mode

16 Aquatic insecta   0.001 0.011 0.005 0.008 0.002        0.015     

17 Microzooplankton    0.002    0.006 0.005  0.006  0.005  0.050 0.010  0.016 0.016 

18 Cladocera   0.001   0.027 0.008 0.007 0.141    0.003  0.005 0.020    

19 Copepoda      0.081 0.009 0.008 0.164    0.007  0.005 0.025    

20 Submerged Macrophyte          0.977 0.950 0.446        

21 Attached algae      0.050 0.380 0.214 0.200 0.020 0.020 0.149 0.355 0.030 0.380 0.090 0.350 0.537 0.537 

22 Phytoplankton      0.022 0.249 0.621 0.383 0.003 0.010 0.005 0.050   0.005 0.150 0.037 0.037 

23 Detritus 0.001  0.015 0.070 0.192 0.805 0.220 0.144 0.107  0.014 0.200 0.405 0.970 0.545 0.850 0.500 0.410 0.410 

 Sum 1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  
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Fig.23 Schematic diagram of trophic flows and food web structure in the Bao’an Lake 

ecosystem (for biomass the units are t/km2

 

). 

4. Discussion 

4.1Fish distribution patterns and the impacts of climate change 

The present study is the first to have assessed the patterns of fish species 

distribution and assemblages as well as their determinants in a large scale in China. 

Our research provided precisely understanding of fish diversity and distribution 

patterns, clarified the main drivers, identified the indicator fish species, verified the 

hypothesis and examined the capacities of MRT model. Rather than some single 

models that assume species are independent, MRT is a novel tree method that directly 

determines the assemblages in terms of environment variables. This is suitable and 

essential for community analysis and produces more creditable results (De’ath, 2002). 
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Tab.6 Summary statistics of the Bao’an Lake ecosystem properties 

 

 

 

 

 

Attribute parameters Value Units 

Sum of all consumption (TC) 10549.570  t/km2/year 

Sum of all exports (TE) 5009.366  t/km2

Sum of all respiratory flows (TR) 

/year 

7827.842  t/km2

Sum of all flows into detritus (TD) 

/year 

14031.260  t/km2

Total system throughput (TST) 

/year 

37418.040  t/km2

Sum of all production (TP) 

/year 

13449.030  t/km2

Mean trophic level of the catch (TLc) 

/year 

2.262  - 

Gross efficiency (catch/net primary production) 0.003  - 

Calculated total net primary production (TPP) 12837.210  t/km2

Total primary production/total respiration (TPP/TR) 

/year 

1.640  - 

Net system production (NSP) 5009.368  t/km2

Total primary production/total biomass (TPP/TB) 

/year 

6.993  - 

Total biomass (excluding detritus) (TB) 1835.691  t/km

Connectance index (CI) 

2 

0.205  - 

System omnivory index (SOI) 0.058  - 

Finn’s cycling index (FCI) 9.250  % of total throughput 

Finn’s mean path length (FML) 2.915  - 

Ascendancy (A) 0.387  - 

System overhead (O) 0.613  - 

Ecopath pedigree index 0.500  - 

Measure of fit ( t*) 2.582  - 
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4.1.1Fish diversity and assemblages in Chinese lakes 

In the present study, five assemblages (Ia, Ib,Ⅱa1,Ⅱa2,Ⅱb) were ultimately 

redefined according to the determinants and the fish composition, distinguished from 

the previous studies: nine administrative regions (Kang et al., 2013) and the five 

physiographic regions (Zhao et al., 2006; Wang and Dou, 1998). Both the lake 

richness and fauna diversity showed significant differences in each assemblage: lake 

richness in the plateaus was clearly lower than the plains, while the diversity of the 

fauna was the highest. 

AssemblageⅠa mainly consisted of the lakes distributed in the three famous 

plateaus (Qinghai-Tibet plateau, Yun-Gui plateau, Meng-Xin plateau) in China. Due 

to the particular natural environments and climatic conditions in plateaus (Wang and 

Dou, 1998), only one indicator species was found since most are stenochoric species. 

However, the number of lakes contained in this assemblage was as high as 61. This 

may partly explain why the lake richness in this cluster was lower (median value = 

12sp.) but the fauna diversity was the highest (280 sp.). On the other hand, fish fauna 

diversity in the assemblage will be even higher with the increasing of research lakes 

since the species accumulation curve still has not approached the asymptote (Fig. 4). 

Meanwhile, in these plateaus, the complex of river systems and geographic situation, 

the specific climate and less effect of human activity made these areas easier for 

energy to be obtained, and thus could support a high number of species (Wang & Dou 

1998; Yang et al., 2004; Zhao et al., 2006; Kang et al., 2013). Zhao et al. (2006) also 

argued that the low lake richness in plateau was the result of the young geological age 

for new species colonization and speciation. In the authors' opinion, the results 

sustained the plausibility of the species-energy hypothesis. 

Lakes contained in assemblageⅠb were mainly distributed in North-east China. 

In fact, the lakes in this assemblage mainly belong to the Song-Nen plain. However, 

compared with the low altitude in clusterⅡ, Ⅰb was also divided as high altitude 

area (altitude>=50m). Indicator species found in Ⅰb were all especially distributed 

in northern China water systems with low economic value (Yang et al., 2010). A few 

previous reports considered that although the weather in north-east China was very 
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cold in winter, the fauna richness in this region is not so low (Zhang, 1999; Zhao et al., 

2006). Whereas the fauna diversity (99sp.) was even lower than other assemblages in 

our study, so was the lake richness (median=22.5sp.). Our conclusion was supported 

by many field investigations (Ren, 1994; Yang et al., 2010), which indicated that the 

fish diversity in north-east China was significantly lower than in other areas. Overall, 

assemblagesⅠb seems to be the transition region from the plateau to the plain since 

clusterⅡall contained the lakes in the plains with plain fish fauna. 

Generally, lakes contained in cluster Ⅱ could roughly be considered as the 

eastern plain in terms of lower altitude (altitude<50m), coinciding with the 

classification of Zhang (1954) and Li (1981). Assemblage Ⅱa1 consisted of the 

largest part of eastern region lakes (38 in total of 48) with Coilia nasus (Schlegel) as 

the sole indicator species. Simultaneously, lakes contained in assemblage Ⅱa1 

contained moderate lake richness (median value = 55 sp.) and fauna diversity (184 sp.) 

compared with other assemblages. From the map, we can see that the assemblage 

occupied two parts, some few lakes distributed in the 3H plain region (Huanghe, 

Huaihe and Haihe) (Kang et al., 2013), but most of them distributed in the 

middle-lower Yangtze plain region. The superiority of the natural environment along 

with the abundance of lake resources has turned the lakes in this area into one of the 

most important freshwater fishery bases in central China (Cui and Li, 2005).  

AssemblageⅡa2 only contained 4 lakes that were also distributed in the middle 

Yangtze River basin. The proper climatic conditions along with ample natural 

resources in the middle Yangtze River basin showed advantages for supporting more 

fish species (Liang and Liu, 1995; Cui and Li, 2005; Zhang, 2005), and also 

concurred with the species-energy hypothesis (Wright, 1983). 59 indicator species 

were identified in the assemblage. All the indicator species were common and 

dominant species in the lakes along the middle-lower Yangtze River basin. 

Assemblage Ⅱb consisted of 6 lakes distributed along the central Yangtze River 

basin, which contained the highest lake richness (with median value of 88.5 sp.) 

among all five assemblages. 38 indicator species were thus identified in the 
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assemblage, similar to assemblage Ⅱa2, the indicator species in assemblage Ⅱb 

were also common plain species in the central-lower Yangtze River. In fact, lakes 

contained in assemblage Ⅱa2 and Ⅱb were either connected to the Yangtze River 

(e.g. Dongting lake, Poyang lake, Junshan lake, Wuhu lake) or isolated from some 

large lakes (e.g. Huanghu lake and Huangdahu lake). Moreover, these lakes used to be 

connected to the Yangtze River (Shi, 1989) which supported even more common fish 

species (Fu et al., 2003). Due to the historical river-lake connection, fish composition 

showed highly homogeneity in these lakes (Ⅱa2 and Ⅱb, no significant difference), 

and therefore contained most of the indicative species (87.8% of all the indicator 

species). Therefore, it is no wonder that lakes distributed along the Yangtze River 

basin have higher lake richness compared with other assemblages. This result was 

also consistent with recent studies (Zhao et al., 2006; Kang et al., 2013). 

Consequently, compared with Ⅱa2 and Ⅱb, Ⅱa1 demonstrated lower lake richness 

( median value = 55 sp.) mostly because of the disconnection of the lakes and the 

river (Liu and Wang, 2010; Fang et al., 2006). Furthermore, lake degradation, 

environmental pollution and irrational fishing modes in these lakes can also decrease 

the fish richness (Cui and Li, 2005; Fang et al., 2006).  

4.1.2 Determinants of fish distribution and assemblages 

Overall, altitude, temperature annual range (TAN), precipitation in the driest 

month (PDM) and the minimum temperature of the coldest month (MTCM) were 

ultimately identified as the key factors for determining fish distribution and 

assemblages in Chinese lakes, among which altitude was the most important 

determinant. Altitude, precipitation and temperature have long been acknowledged to 

determine the distribution of organisms in various ecosystems, such as plants (Pottier 

et al., 2013), riverine and marine fish and invertebrates (Bussion et al., 2008; Cheung 

et al., 2009). 

Our results fitted very well with previous research that showed that altitude 

considerably affects fish distribution in aquatic ecosystems (Amarasinghe and 

Welcomme, 2002; Yoon et al., 2011; Barradas et al., 2012; Stojkovic et al., 2013). 
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However, altitude is a complex variable: it can cause direct and indirect effects on fish 

distribution. Some preview studies have explored the two different influences 

(Legendre, 1993; Hawkins et al., 2003; Zhao et al., 2006), and have shown that 

indirect influences were even greater than direct effects, since altitude contained many 

other factors that could affect fish distribution. 

Temperature was an important factor that influenced fish distribution through its 

affect on fish metabolism (Gillooly et al., 2001), breeding (Mills and Mann, 1985), 

development and growth (Mann, 1996; Wolter, 2007) and behavior (Taniguchi et al., 

1998). Here in our study, two kinds of temperature (TAN and MTCM) have been 

defined as the important factors which determine the fish distribution, consistent with 

Crisp (1996) and Mann (1996) who considered these two factors as having great 

importance in freshwater fish biological requirements. TAN heavily contributed in 

dividing cluster Ⅰinto two parts, the thermal range appeared to be important in the 

present study partly because of its vast variability (21.2℃-56.1℃). Since fish are 

poikilothermal animals they will suffer considerably from the environment 

temperature change as demonstrated on some European freshwater fish (Buisson et al., 

2008; Pont et al., 2005) and American species (Rathert et al., 1999). Although each 

fish species has a thermal preference and can usually be characterized by a tolerance 

range of temperatures varying by a few degrees, they are flexible and can adapt to a 

certain extent by physiological adjustments or behavioral thermoregulation. However, 

thermal ranges that exceed the proper range will without doubt affect fish lives and 

distributions (Gislason et al., 2010). This is the explanation as to why the MTCM was 

a major determinant of the fish distribution and assemblages in our study. In the 

present study, MTCM acted as the main determinants in cluster Ⅱ. This may be 

mainly because the fishes distributed in assemblage Ⅱ were adapted to temperate 

and a subtropical zone climate. Globally, MTCM had also been defined as the most 

important factor that determines the fish distributions and lives (Rubidge et al., 2011; 

Yu et al., 2013; Aguilar-Kirigin and Naya, 2013). Other than these two factors, 

precipitation has always been considered as one of the most important climatic factors 

in numerous recent studies (Zhao et al., 2006; Buisson et al., 2008; Buisson and 
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Grenouillet, 2009), because the precipitation could influence the stream flows and 

hydrological conditions. The hydrology was even more complex and concerns diverse 

fields such as meteorology, geomorphology, geology or geography which could all 

affect fish assemblages and distribution. The PDM was also considered as having 

major impacts on niche shifts of freshwater species (Lauzeral et al., 2011), and thus 

affect fish distribution. Indeed, the PDM modifies the hydrological conditions of lakes 

directly, such as water content, water depth and transparency, and nutrients (Wetzel, 

2001), which in turn affect fish lives and distributions (Brazner and Beals, 1997; Petry 

et al., 2003; Mello et al., 2009; Kang et al., 2013). Indeed, besides these factors, there 

are still many others that could affect and hinder fish distribution and biodiversity, 

such as land-cover, geographical variables, topological variables, biological invasion, 

artificial impacts and even net primary production (Park et al., 2006; Buisson et al., 

2008; Gevrey et al., 2009; Maloney et al., 2013; Kang et al., 2013). Thus in future 

studies, more impact factors should be considered comprehensively in order to obtain 

more powerful results and deeper explanations about the fish distributions and 

assemblages in lakes. 

In conclusion, altitude, precipitation and temperature which could also be 

attributed to the energy availability explain the fish diversity and distribution patterns 

across China. However, lake area that have always been considered as the key factor 

to determine fish dispersal, failed to explain the patterns. All the findings in the 

current study interpreted that fish species distribution pattern seems to support the 

species-energy hypothesis rather than the species-area hypothesis. 

4.1.3 Potential implications for biodiversity conservation 

Our results provide useful perspectives, not only on the current distribution of 

fish species, but also on the future scenarios under global change. These results 

revealed important perspectives on species conservation as well as the management of 

aquatic ecosystems in the future, and thus will be of interest to conservation biologists 

and environment managers. 

Overall, in terms of our findings, the three plateaus that comprised cluster Ⅰa 
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should receive high conservation priority on fish conservation since Ⅰa possessed of 

the highest fauna diversity and richness of endemic fish species. Potential natural 

reserves should be considered for the conservation of endemic and endangered fish 

species. Indeed, the construction of natural reserves has long been considered as one 

of the effective approaches to conserve fish resources (Park et al., 2003; 2004; Zhao et 

al., 2006; Kang et al., 2013). These conservation strategies are mostly focused on the 

endemic fish since they are abundant in Chinese lakes and rivers (Park et al., 2003; Fu 

et al., 2004; He et al., 2011). However, we still cannot ignore the impacts of invasive 

species since they are considered as one of the greatest threats to global biodiversity 

(Butchart et al., 2010; Vorosmarty et al., 2010). This is especially true for freshwater 

ecosystems that are particularly vulnerable to biological invasions (Cucherousset and 

Olden, 2011). 

Otherwise, in the authors' opinion, the most important plain region, Ⅱa1, that 

contains most of the plain fish fauna together with the highest lake richness needs 

extra consideration, since Ⅱa1 contains most of the lakes which provide major 

commercial freshwater fisheries in central China (Cui and Li, 2005). As conservation 

should be carried out in a networked region rather than a single reserve (Bonn and 

Gaston, 2005), different conservation strategies should be proposed aimed at different 

objectives. By contrast, with Ⅰa, the conservation strategies here should be to 

upgrade the fisheries to an eco-friendly modes, to improve the fish diversity and the 

health of the ecosystem (Guo et al., 2013). Moreover, one suggestion for the 

conservation of fish diversity in this area was the connection of the lakes with the 

Yangtze River (Fu et al., 2003; Liu et al., 2010). 

4.2 Predicting fish species richness and distributions 

Numerous studies have evaluated the predictive performance of different 

modeling techniques over the last decade. In the current study, the capacity of MRT 

models in predicting fish species assemblage patterns and species richness patterns 

based upon geographical and climatic variables was examined in Chinese lakes. 
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Generally, we emphasize that MRT was a robust modeling technique for species 

prediction under global changes; ecologically, our results highlight the significance of 

climatic and geographical variables in determining fish assemblages and distributions 

in aquatic ecosystems. 

4.2.1 Model performance and technique assessment  

MRT is used as the main approach for species distribution prediction. A 100 

cross-validation test was employed here to strike a balance between explanatory and 

predictive power and to obtain a more “honest” assessment of the model, with avoid 

the over-fits of the multivariate regression tree analysis. Thus the minimum 

cross-validated error tree with six nodes was selected in this study (De’ath and 

Fabricus, 2000).  

AUC, overall accuracy and Cohen’s Kappa were employed to better evaluate the 

model performance and assess the possibilities of MRT modeling for species 

distribution prediction. AUC is always considered as one of the most useful and 

popular performance measures in common ecological model studies (e.g. Manel et 

al.,1999; 2001; Guisan and Zimmermann, 2000; Pearce and Ferrier, 2000; Luck, 2002; 

Gibson et al., 2004; Araujo et al., 2005; Luoto et al., 2006; Buisson et al., 2008a; 

2008b; Buisson et al., 2009; Grenouillet et al., 2011). It is considered to be the 

strictest performance measure by some researchers, because it is an independent 

threshold measure of quality (Fielding and Bell, 1997; Buisson et al., 2008a). AUC 

scores of 0.5 indicate that a model has no discriminatory ability, while a score of 1 

indicates that presence and absence are perfectly discriminated. In our study, AUC 

values of the indicator species varied from 0.53 to 0.99 with an average value of 0.87, 

indicating that almost all the species seemed to be perfectly predicted by the MRT 

model. The same was observed for overall accuracy, where the results varied from 

0.61 to 0.98 with an average of 0.84, also indicating that all the species could be 

accurately predicted by the MRT model with strong discrimination. 

Some researchers criticize that AUC and overall accuracy may overestimate 

model performance (Lobo et al., 2008; Peterson et al., 2008; Jimenez-Valverde, 2012). 

However Cohen’s Kappa is considered as one of the good solutions to the 
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overestimate problems observed with AUC and overall accuracy (Liu et al., 2011) as 

the Kappa index  can provide a proportional accuracy for predicted presence and 

absence (Cohen 1960), and provide a robust evaluation of a model’s performance. 

Kappa has already been widely used in recent ecological studies (Manel et al., 2001; 

Liu et al., 2005; Virkkala et al., 2005; Buisson et al., 2008a; Gevrey et al., 2009). 

Cohen’s Kappa values in the current study varied from 0.012 to 0.91 with a mean 

value of 0.55. A mean Kappa value of 0.55 also indicates that most of the species 

were accurately predicted by the MRT model, except the three species (Opsariichthys 

uncirostris bidens, Clarias fuscus and Paracheilognathus iimberbis) which have 

lower kappa values between 0 and 0.2. There are many factors, such as lower 

prevalence, spatial autocorrelation, species attributes, environmental range size and, 

potentially, the model technique, which may result in the observed low accuracy of 

prediction for these three species.. In the current study, the results may mainly be 

affected by low occurrence and the environmental range of the three species. 

Normally for some rare species, poor performance measures would be obtained. 

Buisson et al. (2008a) found that rainbow trout was the rare species which obtained 

the low Kappa value. Actually, this phenomenon is common in some previews studies 

(Manel et al., 2001; Liu et al., 2005; Gevrey et al., 2009). The species’ environmental 

range could also be one of the main factors which drive the uncertainty of the 

prediction of the three species in this study, as numerous studies validate that species 

with a smaller range can be better predicted than species with a larger environmental 

range (Hernandez et al., 2006; Grenouillet et al., 2011). 

Overall, MRT models have been evaluated to be effective and robust enough for 

species distribution prediction from the ensemble evaluated measurements, even 

though the kappa values were marginally affected by some rare species. In conclusion, 

the model performance values provided optimistic estimates of the true predictive 

capability of MRT modeling (Araujo et al., 2005). Therefore, MRT is a robust and 

appropriate approach for modeling similar datasets, as it can handle complex 

ecological data with mixed change and high-order interactions (De’ath, 2002; 

Davidson et al., 2010). 
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Currently, although numerous studies focus on defining fish distribution patterns 

in conjunction with the correlated environmental factors, most are based on the 

species-specific models (LM, GLM, GAM, CART, RF) which typically assume that 

each species is independent from the others that occur at the same location (Larsen 

and Speckman, 2004; Guisan and Thuiller, 2005). However, in natural ecosystems, 

one species always coexists with many other species to form a community, within 

which all species are sensitive to resource competition (Wetzel, 2001). Thus, 

species-specific models fitted to each species would ignore the inter-specific 

relationships that would provide alternative and variable information about species 

distribution (Yin, 1990), while the prediction approach at the community scale could 

overcome the disadvantages of the traditional species-specific focus (Joy and De’ath, 

2004; Olden et al., 2006). 

4.2.2 Prediction and determinants of fish species assemblages in Chinese lakes 

From the validated MRT model, we conclude that ALT (altitude), PDM 

(precipitation of driest month), TAR (temperature annual range) and AMT (annual 

mean temperature) were ultimately identified as the key factors in predicting the fish 

species distribution in Chinese lakes, among which altitude was the most important 

determinant. In fact, altitude, precipitation and temperature have long been 

acknowledged as determinants of the distribution of organisms, such as plants (Prasad 

et al., 2006; Pottier et al., 2013) and riverine and marine fish and invertebrates 

(Bussion et al., 2008a; Cheung et al., 2009).  

Altitude generally impacts distribution and life history traits of organisms 

globally (Amarasinghe and Welcomme, 2002; Zhao et al., 2006; Yoon et al., 2011; 

Barradas et al., 2012; Stojkovic et al., 2013). As a complex variable, it can have direct 

and indirect impacts on fish distribution. Previous studies that have explored these 

impacts (Legendre, 1993; Hawkins et al., 2003; Zhao et al., 2006), indicated that 

indirect impacts were even more significant than direct impacts, since so many other 

factors that could affect fish distribution also vary with altitude. 

Without doubt, temperature is an important factor that influences fish distribution 

through fish metabolism (Gillooly et al., 2001), breeding (Mills and Mann, 1985), 



Part I: Synthesis 

64 
 

development and growth (Mann, 1991; Wolter, 2007) and behavior (Taniguchi et al., 

1998). In our study, two kinds of temperature statistics (TAR and AMT) were defined 

as important in the determination of fish distribution, which is consistent with Crisp 

(1996) and Mann (1996) who considered these two factors as of high importance for 

the biological requirements of freshwater fish. The influence from TAR in the present 

study may be partly due to the vast variability of the temperature (21.2 - 56.1℃), as 

fish are poikilothermal animals and therefore highly sensitive to changes in 

temperature. Some European freshwater fishes (Buisson et al., 2008a; Pont et al., 

2005; Crisp, 1996; Mann, 1996) and American species (Rathert et al., 1999) were also 

demonstrated to be great impacted by the TAR. Although each fish species has a 

thermal preference characterized by a tolerance range of temperatures, they are 

flexible and can adapt to a certain extent with physiological adjustments (Johnson & 

Kelsch, 1998) or behavioral thermoregulation (Heggenes et al., 1993). However, 

thermal ranges exceeding the normal range will impact fish populations and 

distributions (Gale et al., 2013; Gislason et al., 2010). Extremely low temperatures 

may affect metabolism, breeding, growth, behavior, and thereby fish distributions 

(Ruibidge et al., 2011; Yu et al., 2013; Aguilar-Kirigin and Naya, 2013).  

Apart from altitude and temperature, precipitation has been considered as one of 

the most important climatic factors in numerous recent studies (Zhao et al., 2006; 

Buisson et al., 2008a; b; Buisson and Grenouillet, 2009). Precipitation may impact 

stream flows and hydrological conditions, while hydrology is even more complex and 

concerns diverse factors such as meteorology, geomorphology, geology or geography, 

which could all affect fish assemblages and distribution. The PDM is also considered 

as having a large impact on niche shifts of freshwater species (Lauzeral et al., 2011), 

and thereby affecting fish distribution. Indeed, the PDM can modify the hydrological 

conditions of lakes directly, such as water content, water depth and transparency, 

nutrient supplements (Wetzel, 2001), which in turn affect fish populations and 

distributions (Brazner and Beals, 1997; Petry et al., 2003; Mello et al., 2009; Cheng et 

al., 2012; Kang et al., 2013). 

The set of the eight variables used in this study was relatively successful in 
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predicting and explaining the fish assemblages using the MRT model. However, a 

number of factors have been identified as potentially affecting fish distribution and 

diversity globally, such as land-cover, geographic variables, topological variables, 

biological invasion, artificial impacts and net primary production (Park et al., 2006; 

Buisson et al., 2008a,b; Gevrey et al., 2009; Maloney et al., 2013; Kang et al., 2013). 

Further research therefore requires the inclusion of such factors in order to obtain 

more powerful explanations. More important, as we live in a changing world, 

predictions of species distributions based on possible future scenarios are more 

desirable than the explanation of the current situation. Thus, more efforts should be 

made to improve the understanding of the potential distribution and impacts of fish 

species associated with the global climate change. 

 

4.2.3 Prediction and determinants of fish species richness in Chinese lakes 

Species richness is one of the most important biodiversity indicators in ecology. 

At this level, our research revealed that fish species richness was highly related to 

precipitation of driest month (PDM), maximum temperature of warmest month 

(MTWM) and lake area (A). As seen previously, fish species distributions are highly 

related to precipitation and temperature, it therefore follows that species richness 

should also be affected by precipitation and temperature. Results also showed that 

higher fish species richness is predicted in lakes with sufficient precipitation and a 

larger surface area. This is in agreement with the actual situation in China where lakes 

distributed along the middle reach of the Yangtze River, such as Dongting lake, 

Liangzi lake, Hongze lake, Poyang lake, have  a higher fish richness as they are 

exposed to an appropriate temperature, abundant rainfall and are lakes with relatively 

larger areas (Cui and Li, 2005). However, lakes distributed in parts of Qinghai-Tibet, 

Meng-Xing and north-east China have relatively lower fish richness due to the lower 

precipitation and lower temperature (Zhao et al., 2006). In fact, several hypotheses 

have been presented on species richness patterns, among which the species-area 

hypothesis and the species-energy hypothesis (Wright, 1983) are the most popular. In 

this study, we found that PDM, MTWM and lake area best explained the variability of 
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fish species richness patterns in China. These results therefore support the plausibility 

of both hypotheses for the fish of Chinese lakes. Our results support the 

species-energy hypothesis, which claims that environments with higher energy 

availability could support more species, as well as supporting the hypothesis that large 

surface areas could support more fish species, although in this study lake area was not 

the highest contributer to the prediction of species richness. The lake area effects may 

be overshadowed by the large variations of the climatic variables in our study. Our 

findings were generally consistent with some studies in terrestrial ecosystems (Wright 

et al., 1999; Hawkins et al., 2003a), and freshwater ecosystems (Zhao et al., 2006). 

Some other studies, with a smaller scale focus, also argued that fish species richness 

was highly related with water depth (Cheng et al., 2012), habitat (Petry et al., 2003) 

and other organisms (Xie et al., 2001) in lakes.  

 The results of the current study may provide a basis for future research using 

MRT as well as contributing to conservation of fish biodiversity under global 

changes.  

In conclusion, our research focuses on the understanding of fish species 

richness and distributions patterns as well as the potential driving factors behind these 

parameters in Chinese lakes. The recursive partitioning and regression tree models 

MRT were used and thus be examined. Simultaneously, we have drawn regarding the 

relative roles of the environmental and climatic variables in driving the lake fish 

species distribution and richness patterns.  

4.3 Ensemble modeling of fish species distribution and the 

uncertainties 

It is important to understand why and how species distribution models perform 

differently for different species before using the model predictions to make 

conservation decisions. Up until now, our research is the first study which quantified 

the uncertainties and impacts comprehensively from model techniques, environmental 

range size and species prevalence on the SDM performance in lake ecosystems in so 
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large geographical scale. Overall, our results have compared the performance of nine 

widely used species distribution models; clarified that evaluation measures won’t 

influence the model outcome; confirmed that species prevalence and environmental 

range size can strongly affect model performance and ecological predictions; and 

verified the hypothesis that specialized species could be better predicted than 

generalized species is plausible in aquatic ecosystems. 

  Among all the statistical techniques, RF was found to be the most reliable model 

for species prediction, while SRE predicted the worst. However, the predictions from 

different models varied a lot, even if for one given species, outcomes of prediction 

may vary from model to model. In view of that each predicts models relied on 

different mathematical functions, SDM will give the variety of results without doubt. 

Up until now, numerous of studies have compared the accuracy and performance of 

the predictions from different statistical techniques (Elith et al., 2007), and confirmed 

that results derived from different model techniques or different model-building 

assumptions can occasionally differ grossly (Thuiller, 2003; Luoto et al., 2004). 

Nevertheless, it was not so surprise since RF model gives the predictions by 

generating thousands of trees and aggregated with an average (Breiman, 2001), and 

the algorithm allow the model to avoid over-fit, this procedure could improve the 

predictive performance and reduce the variance (Elith et al., 2008). Thus, RF could be 

a robust technical modeling for species distribution prediction (He et al., 2010; Cheng 

et al., 2012; Grenouillet et al., 2011). Actually, plenty of publications have noted the 

algorithm which Random Forest relied on, they thus present the ensemble modelling 

framework which aggregated several single models and given the average or 

consensus results (Araujo and New, 2007). Several former studies have verified that 

among plenty of mathematical models, only RF could show the equal performance 

with the average outcomes of several model techniques. Therefore ensemble 

modelling was also regarded as the best solutions to reduce the single model 

uncertainties and bias (Grenouillet et al., 2011; Buisson et al., 2010b). 

Considered that some authors argued that AUC statistic may be biased for the 

species that occupy a small proportion of the study area (Lobo et al., 2008), in current 
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research, three different measurements have been adopted in order to reduce the 

potential bias may emerge from single measurement. However, in current study, 

among all the evaluation results from AUC, TSS and Kappa, there is no significant 

difference between the three evaluate methods, which interpret that the use of 

evaluation measures didn’t interrupt the outcomes of statistical models, we can thus 

verified that the relationship between species characteristics and model performance 

was not artificial associated with use of accuracy measures (Newbold et al., 2009). 

  In some previous studies, publicized effects of species prevalence on model 

performance showed complicated with both positive and negative relationships 

(Luoto et al., 2005; Brotons et al., 2004; Mantel et al., 2001). In current study, we 

found that species with prevalence around 30% could yield more accurate model 

performance, however, the relationships between species prevalence and model 

performance was nonlinear, model performance increased slightly with species 

prevalence values below 0.3. Actually, these results were completely in consistent 

with the former research which argued that species with high prevalence will occupy 

large areas with variety of habitat environments which would produce more overall 

errors (Segurado and Araujo, 2004; Luoto et al., 2005). Actually, species prevalence 

has long been reported which will affect model performance, however few ecologist 

take into account the species prevalence when they make the species distribution 

modeling (Fielding and Bell, 1997). Manel et al. (2001) revealed that model 

performance were highly associated with species prevalence and thus recommend that 

species distribution model with presence-absence data should take more attention of 

species prevalence. 

Overall in our study, the performance and ecological predictions of the species 

distribution modelling was negatively associated with geographical and 

environmental range size, such as altitude range size and precipitation range size. 

Actually, A general pattern has been widely acknowledged is that species with smaller 

geographical extent and strict ecological requirements (i.e. specialists) yield models 

with higher accuracy than those with larger areas of occupancy (i.e. generalists), this 

hypothesis have been verified in various of ecosystems, among the species as butterfly, 
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insect, reptile, bird, and mammal (Stockwell and Peterson, 2002; Brotons et al, 2004; 

Segurado and Araujo 2004; Kadmon et al., 2003; Seggurado and Araujo, 2004; 

Hernandez et al., 2006; Tsoar et al., 2007; Franklin et al., 2009). Our research has 

verified this hypothesis to be plausible to fish species in lake ecosystems. To our 

knowledge, the current research is the first research which takes into account fish 

species in lakes in so large scale, therefore, it would not only contribute to understand 

the uncertainty of species distribution models, but also help to improve the quality of 

fish species prediction which will ultimate benefit to the fish biodiversity 

conservation and biodiversity management all over the world. 

When considering about the reason why specialized species could yield more 

accurate model prediction than generalized one, some authors argued that species with 

larger distribution area contained discrete populations that show different response to 

the environment and thus decrease the accuracy of the model prediction (Stockwell 

and Peterson, 2002; Brotons et al., 2004). Some others explained these as the 

difference of species’ niche width, since former studies have found that species with 

narrow, well-defined niches which also have better-defined climate and habitat 

requirements could be better modeled than those with broader niches (Boone and 

Krohn, 1999; Pearce et al., 2001; Kadmon et al., 2003). But our data couldn’t well 

support and explain the species niche hypothesis, further study should take more 

factors into account in order to better understand the mechanism of uncertainty in 

species distribution models from species attributes and characteristics. Last but not 

least, McPherson and Jetz (2007) attributed the effects of species’ ecological 

characteristic on SDMs were influenced by the available data quality or by making it 

difficult to statistically capture the relationship between the species distribution and 

environmental conditions. Following these hypothesis, we can conclude that endemic 

species were modeled more accurately than non-endemic species. Given all of these, 

greater consideration should therefore be taken on the predictions of fish species with 

larger elevation range size and precipitation range size in China under the future 

impacts of global climate change, since the projections may somehow unreliable for 

the conservation and management purpose. On contrary, ecological predictions for the 
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endemic fish species which showed better defined climate and habitat requirements 

should be more accurately. These results will benefit a lot to the conservation of 

biodiversity for fish species in China, since there are numerous of endemic and 

specialized fish species lived in the lakes across China, and urgent stages were 

planned to conserve the fish species based on the prediction results (He et al., 2010). 

However, it is worth noting that in our study, temperature range size didn’t show a 

significantly affect on the model performance, this founding contradicted some 

former results in fish species (Grenouillet et al., 2011). In the author’s opinion, we 

contributed this to the large range size of the geographical factor, and the effects of 

the temperature range may be hidden since that altitude is a complicated factor. 

   To conclude, we strongly recommend paying more attention on the following 

aspects when predicting the potential impacts of global climate change on fish 

biodiversity and distribution using species distribution models. First of all, more 

suitable model should be implemented and more statistical model techniques should 

be taken into account in the ensemble model framework; Second, high quality fish 

presence-absence dataset should be compiled; Last but not least, species ecological 

and geographical characteristic should be taken into account when predicting the 

species distribution and diversity. Following these recommendations, predictions and 

projections of fish species distribution based on the results of SDM could be more 

reliable and therefore robust enough for management and conservation decisions 

made under the future impacts of global climate change. 

4.4 Effects of anthoropogenic activities on the lake ecosystem 

properties and functions 

The current study contributes to the establishment of a mass-balance model to 

describe the features of food web structure and ecosystem properties in a shallow 

macrophtyic lake with the objectives of claiming the effects of artificial activities as 

fish stocking on the lake ecosystem functions and properties. The results could also be 

viewed as guiding the development of an eco-friendly fishery and the protection and 
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restoration of submerged plants, since the Ecopath with Ecosim model is a systematic 

and comprehensive model. This model seems to be the first one established in one of 

the thousands of shallow macrophtyic lakes distributed along the middle reaches of 

Yangtze River basin. It provides in-depth knowledge of shallow macrophtyic lakes 

and thus can help to direct us more sustainably in the development and utilizition of 

lake resources. 

In the Bao’an lake ecosystem, the EE values for most fish groups were high, 

especially for some commercial and stocked fish groups, such as silver carp, bighead 

carp and grass carp, bream, common carp, mandarin fish and large culters. 

Additionally, some prey fish groups, such as small fish and crucian carp also showed 

extremely high EE values. This suggests that commercial fish species are suffering 

from overexploitation while prey fish suffer from a combination of pressures from 

predation by piscivores as well as humans, which has lead to a sharp decline in fishery 

resources (Hu and Huang, 1991). In former times, traditional Chinese carp like silver 

carp, bighead carp and grass carp were considered to be the main economic stocking 

species which explains why these fish groups have reached such high biomass in the 

lake. Another notable feature in the macrophtyic lake is that the biomass of small fish 

(18 t km-2) and molluscs (99.10 t km-2

In contrast, the EE values of primary producers, such as submerged plants, 

attached algae and phytoplankton were as low as 0.12, 0.089 and 0.376 respectively, 

while the gross efficiency (fishery catch/net primary production) was only 0.003, even 

lower than Taihu lake (0.0087; Li et al., 2009). This means that primary production 

was not efficiently utilized and thus very little was transferred into fishery products. 

Nevertheless, the efficiency of Bao’an Lake is still higher than the global average 

(0.02%) (Christensen et al., 2005). Large parts of primary production (89.62% of total 

primary production, about 11504 t km

) is much higher than in other lakes, possibly 

because submerged plants provide sanctuary for small fish and an attachment matrix 

for molluscs (Li et al., 2010; Xie et al., 2006), and thus these resources have not been 

utilized sufficiently due to the traditional fishery model. 

-2 y-1) flowed into detritus. Additionally, the 

food resource of the Bao’an Lake Ecosystem was derived mainly from detritus 
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(87.17%) with little from primary production (12.83%), indicating that the Bao’an 

lake ecosystem depended much more on a detritus-based food chain than a grazing 

food chain, which is also consistent with the suggestion by Odum (1969) that a 

mature system may depend more on the detrital pathway. The fact that the Bao’an 

lake food web relies on two energy sources may enhance the plasticity and resilience 

of the ecosystem (Fetahi et al., 2011). According to the MTI analysis, the two main 

food sources in the Bao’an lake ecosystem, i.e. detritus and primary producers 

(especially attached algae and phytoplankton), had significant positive effects on 

other groups. Other important information from the MTI is that fishing pressure may 

have more negative impacts on commercial fish groups but will be better for small 

fish resources, consistent with the fact that fish tend to miniaturization (Cao et al., 

1991). The MTI also showed that fishing pressure exerted stronger impacts on most 

functional groups than predation or competition (Christensen et al., 2004). 

The mean transfer efficiency among different trophic levels of the ecosystem was 

8.68% in our study, slightly lower than the 10% assumed by Lindeman (1942), but 

lying in the accepted range of EE values reported in the published literature (Libralato 

et al., 2008, Pauly and Christensen, 1995). The low transfer efficiency mainly results 

from transfer from TL II to TL III in the food chain. From the model, it is evident that 

a large amount of mollusc biomass was not utilized efficiently. 

As previously mentioned, no such model has been established for the lakes along 

the middle reaches of the Yangtze River, although there are some preliminary studies 

in some large lakes nearby: Taihu lake (Li et al., 2009) and Gehu lake (Jia et al., 2012) 

(Table 7). A comparison with these three lake ecosystems on some key parameters 

from network analysis would be helpful for accurately positioning and characterizing 

the Bao’an lake ecosystem (Table 6). Notably, the total system throughput in Bao’an 

Lake (37418.04 t km-2 y-1) is much higher than in Taihu Lake (13586 t km-2 y-1) or 

Gehu lake (12131.76 t km-2 y-1). This is mainly because the biomass of primary 

producers, such as submerged plants accompanied by attached algae was much higher 

than in the other two lakes, indicating that Bao’an lake is typically a lake dominated 

by submerged plants. 
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According to Odum (1971), the ratio of total primary production to total 

respiration (TPP/TR) is an important measure of ecosystem maturity; ecosystems with 

the values much higher or lower than 1 are thought to be immature, while only those 

with TPP/TR ratios approaching 1 are considered to be mature. In our study, the value 

of the TPP/TR ratio was 1.640, much lower than the 3.85 in Taihu or 2.761 in Gehu 

(Li et al., 2009; Jia et al., 2012), suggesting that the Bao’an lake ecosystem was more 

mature compared with the other two lakes. Additionally, as modified from Odum 

(1969), the lower TPP/TB ratio also characterizes a mature ecosystem. The ratio in 

this study was 6.99, between the immature ecosystem (Taihu Lake, 11.66) and the 

mature ecosystem (Gehu lake, 1.76). In Bao’an Lake, ascendancy (38.7%), a measure 

of ecosystem growth and development, is much higher than in Taihu Lake (25.9%) or 

Gehu lake (33.2%) which also suggests a mature system. 

 

Tab.7 Comparison of ecosystem attributes in different shallow lakes in China 

Parameters 
Taihu Lake

(1991-1995) 

a Gehu Lake

(1986-1989) 

b Bao’an Lake

(1991-1993) 

c 

Mean trophic level of catch (TLc) 2.92 2.78 2.26 

Total system thoughput (TST) 13586 12131.76 37418.04 

Total primary production/total respiration (TPP/TR) 3.85 2.761 1.64 

Total primary production/Total biomass (TPP/TB) 11.66 1.76 6.99 

Ascendancy (A) 0.259 0.332 0.387 

Connectance index (CI) 0.206 0.208 0.205 

System omnivory index (SOI) 0.042 0.086 0.058 

Finn’s cycling index (FCI) 11.58 14.76 9.25 

a. Li et al. (2009) 

b. Jia et al. (2012) 

c. Present study 
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FCI represents the fraction of an ecosystem’s throughput that is recycled 

compared to total system throughput (Finn, 1976; Table 3). The value of 9.25% for 

Bao’an Lake is much lower than in the other two lakes (Taihu lake, 11.58%; Gehu 

lake, 14.76%). Meanwhile, CI and SOI are two other important indices which 

describe system maturity since the food chain is expected to change from linear to 

web-like as the system matures (Odum, 1971). However, in Bao’an Lake, we can see 

that the value of CI and SOI (0.205 and 0.058 respectively) were both relatively low. 

Although these values are nearly in the same order of magnitude as some mature 

systems such as Gehu (Jia et al., 2012), Qiandaohu (Liu et al.2008) and Taihu lakes(Li 

et al., 2009), there is still a large gap (especially SOI) with some other mature systems 

such as Hayq lake (SOI=0.224; Fetahi et al., 2011), Lake Toya (SOI=0.12; Hossain et 

al.,2010) and Lake Kuvi (SOI=0.148; Villanueva et al., 2008). 

Consequently, the high values of TPP/TR and ascendancy and the low values of 

TPP/TB, and the more important detritus dominated food chain, all illustrate that the 

Bao’an lake ecosystem is a mature and stable system according to the theories of 

Odum (1969). However, the moderate value of FCI along with extremely low values 

of CI and SOI still shows that the food web structure of the lake tends to lack 

complexity (Odum, 1969). Thus we conclude that the Bao'an lake ecosystem is a 

mature system but with a simple and vulnerable food web structure. This is mainly 

caused by unsustainable fish stocking and overfishing, since we know that prior to our 

study, piscivorious fish were targeted for removal from the lake, so that more 

traditional carp could be released. This resulted in significant changes in the fish 

community structure (Zhang et al., 1997; unpublished data). It has resulted in the 

mean trophic level of catch in Bao'an lake being only 2.26, far lower than Taihu lake 

(2.92) or Gehu lake (2.78), which indicates that Bao’an lake is suffering from 

overfishing and unsustainable fish stocking with too many low trophic level fish fry 

being released and caught in the lake leading to the simple food web structure. 

Generally, this is the first ecosystem model of a shallow macrophytic lake in the 

middle reaches of the Yangtze River basin, which can quantitatively describe the food 

web structure and ecosystem properties. Based on the ecosystem analysis in Bao’an 
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Lake, we suggest that fish stocking in this lake should aim at increasing species 

richness, because numerous studies have showed that predator diversity can 

strengthen ecosystem function and food web structure (Griffin et al., 2008; Carey et 

al., 2011; Hargrave, 2009). We suggest that the lake be stocked with piscivorous and 

omnivorous species since these two groups seemed to be the key factors in mediating 

biodiversity–ecosystem functioning relationships (Petchey et al. 2004; Bruno et al., 

2005). This fishery practice can also fully utilize the resources in this type of lake and 

increase the system’s SOI. This suggestion is also consistent with the former studies 

in these kinds of lakes (Xie et al., 2000; Cui and Li, 2005), which recommended that 

mandarin fish (S. chuatsi) and Chinese mitten crab (Eriocheir sinensis) can be 

reasonably stocked. 

Additional attention should be given to the utilization of macrophytes. Some 

studies have indicated that dense vegetation could result in low feeding efficiency and 

poor growth of both small fish and piscivorous fishes (Col le and Shireman 1980; 

Miranda and Pugh 1997; Xie et al. 2005). Thus, herbivorous species with high 

economic value such as Chinese mitten crab (Eriocheir sinensis) and Megalobrama 

amblycephala Yih could be stocked moderately (Cui and Li, 2005). 

5. General conclusions and perspective 

Generally, the present study modeled the climate and anthropogenic effects on 

lake fish diversity and distribution patterns as well as the ecosystem structure and 

properties. Our results have drew the first global perspective on the lake fish 

distribution patterns, highlighted that climate variables have significant potential 

impacts on the fish diversity and distribution. We also examined the capacity of a new 

model approach MRT in predicting fish assemblages and species richness, defined the 

potential drive factors for the prediction. The results also highlighted the 

improvements of ensemble framework of SDM in modeling and predicting species 

distribution. Finally, a case study in a shallow lake also showed that anthropogenic 
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activities could affect lake ecosystem function and structure, more precisely 

management activities should be taken to conserve and manage the lake ecosystem 

and aquatic resoureces. 

However, further investigations are encouraged to go deeply on the mechanism 

of how fish diversity and distribution patterns response to climate change and human 

activities, more research also need to be taken to examine the interactions between 

global changes and anthropogenic effects. Further study of this approach using more 

accurate predictive models should be encouraged to advance our understanding of the 

profound influence of global change on species distribution under future scenarios. 

While for the lake ecosystem structure, it should be acknowledged that the 

Ecopath model is just a steady-state model and therefore it cannot forecast the 

dynamic effects of fish stocking on the other organisms within the food web. The 

current study is just part of ongoing studies in these lakes, and further studies should 

be implemented to probe the carrying capacity of multi-species stocking based on the 

whole food web and ecosystem using the dynamic model (Ecosim). That will give 

more credible direction and prediction of the effects of fish stocking in this kind of 

lake. 
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a  b  s  t  r  a  c  t

There  are  numerous  shallow  macrophytic  lakes  distributed  in the  middle  reaches  of  the Yangtze  River
basin,  which  are  an  important  fishery  resource  for  this  part  of  China.  However,  there  is limited  knowledge
about  the  food  web structure  and  energy  flows  of  these  highly  disturbed  ecosystems,  mainly  due  to  lack  of
suitable  ecosystem  approaches  applied  to the  abundant  but  isolated  ecological  data  from  these  lakes.  To
better  manage  the important  ecosystems,  Ecopath  with  Ecosim  was applied  to establish  a mass-balance
model  for  a  typical  shallow  macrophytic  lake (Bao’an  Lake)  as a case  study,  with  the  aim  of  describing  the
food  web  structure  and  the  properties  of  the  ecosystem  to evaluate  the  ecological  implications  for  fishery
resource  management  and  the  protection  of the aquatic  ecosystem  of these  lakes.  Given  that  there  were
extensive  first-hand  data  available  for the  target  lake,  a credible  trophic  model  including  23 functional
groups  was  constructed.  The  results  showed  that  all the commercial  fish groups  suffered  from  high  fishing
pressure  for their  higher  ecotrophic  efficiency  (EE)  values,  normally  more  than  0.5.  On the  contrary,  forage
resources  such  as  attached  algae,  submerged  plants  and  molluscs  were  not  fully utilized  by the lake
fishery,  with  EE  values  even  as low  as  0.089,  0.120  and  0.126  respectively.  The  discrete  trophic  level  of
large  culters  was  highest  (3.143)  in the  lake  ecosystem,  followed  by  mandarin  fish  (3.138)  and  snakehead
fish  (3.131).  For  the  transfer  efficiencies  in the  food  web  structure,  a  mean  value  of  8.68%  was calculated
for  the  lake  ecosystem.  Ecosystem  maturity  indices  such  as  TPP/TR  (1.640),  TPP/TB  (6.993),  as  well as
ascendency  (0.387)  which  were  derived  from  the network  analysis  together  with  the  revealed  detritus-
based  trophic  flow,  illustrated  that the Bao’an  Lake  ecosystem  was  a mature  system  according  to  Odum’s
theory.  However  when  compared  with  some  other  lake  ecosystems,  the  Bao’an  Lake  ecosystem,  as  well  as
some  China  lake  ecosystems,  showed  extremely  low  values  of CI (Connectance  index),  FCI  (Finn’s  cycling

index)  and  SOI (system  omnivory  index),  indicating  that  the  food  web  structures  of  these  Chinese  lake
ecosystems  tended  to be simpler  and  more  linear  than  lake  ecosystems  in  other  countries.  Consequently,
this  study  established  the  first  food  web model  for a shallow  macrophytic  lake  and  provided  overall
insights  and  ecosystem  knowledge  for  this  kind  of shallow  macrophytic  lake,  and  indicated  an  urgent
need  for fishery  resources  management  to shift  from  traditional  population-based  to  ecosystem-based
models.
. Introduction

There are numerous freshwater lakes distributed in the mid-

le reaches of the Yangtze River basin (MYRB), which cumulatively
epresents about 30% of the total lake area in China (Liu and
e, 1992). These subtropic lakes are generally shallow and highly
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productive, with a diverse fish community (40–70 species or even
more in some lakes), abundant invertebrate resources and dense
submerged macrophytes (Liu, 1984; Xie and Chen, 1996), thus rep-
resenting one of the most important fishery bases in China (Cui
and Li, 2005). Due to their significant ecological value, submerged
macrophytes in shallow lakes are usually known as “underwater

forest”, and they provide high quality food as well as appropri-
ate habitats for aquatic animals (Hu and Huang, 1991). However,
local fisheries have heavily exploited living aquatic resources in
these shallow macrophytic lakes during the past few decades.
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spectrum, which makes it appropriate for quantitative assessment
of ecosystem structure and function systematically (Christensen,
1995). The basic mass-balance equation of EwE can be described
as:

Table 1
Physicochemical parameters of water quality in Bao’an Lake during 1992–1993.

Parameters Unit Annual average

Water temperature ◦C 18.9
Secchi disk depth cm 148
pH – 8.06
Conductivity �s/cm 267.4
Alkalinity – 46.54
C. Guo et al. / Ecological M

pecifically, overstocking of grass carp (Ctenopharyngodon idellus),
ighead carp (Aristichthys nobilis), silver carp (Hypophthalmichthys
olitrix) and common carp (Cyprinus carpio) was common in these

akes (Liu and He, 1992). Such fishery practices often caused water
uality problems and even ecological deterioration, as overstocking
f grass carp can result in a drastic reduction or total elimina-
ion of submerged macrophytes and a subsequent increase in algal
iomass. To obtain higher yields of bighead and silver carp in the

akes, sewage and fertilizers have often been introduced to increase
lankton production (Chen, 1989). Additionally, the economic ben-
fit associated with the fisheries dropped sharply year after year as

 result of unsuitable management (Hu and Huang, 1991).
In  order to reconcile fishery development with environmental

rotection in the lakes, the key question is to determine how to
ransform the traditional fishery management approaches to use
he resources more rationally (Hu and Huang, 1991; Liang and
iu, 1995; Cui and Li, 2005). As part of this objective, two  key
esearch projects focusing on lake fishery resources and environ-
ental management were launched in the 1990s by the Ministry

f Agriculture of China in two successive 5-year periods, covering
he period of “the seventh five-year plan” and “the eighth five-
ear plan”. Bao’an Lake, a typical shallow macrophtyic lake in the
YRB, was included as an important experimental and demon-

tration lake in the two projects. Thus extensive first-hand data
n the Bao’an Lake ecosystem was collected during that period
Hu and Huang, 1991; Liang and Liu, 1995). However, due to the
imited use of ecosystem approaches, most of those studies focused
n descriptive studies of individual organisms, environment, or
ough assessments of single species stocking capacity, mostly tradi-
ional Chinese carp, and thus lacked an analysis of the interactions
etween different components in the ecosystem. Therefore conclu-
ions may  be of limited value since food web structure and trophic
nteractions between major components within an ecosystem are
xtraordinarily complicated (Odum, 1969). Quantitative studies on
he food web structure, energy flows and ecosystem properties of
ao’an Lake are therefore urgently required for fishery develop-
ent and model transformation.
Ecopath  with Ecosim (EwE) (Christensen et al., 2005) has been

idely considered to be an appropriate tool for the analysis of
ood webs. The Ecopath model is ecosystem-based software, and
ike other ecosystem models, can summarize and view changes
n species interactions within an ecosystem (Christensen et al.,
005; Xu et al., 2011b). Both direct and indirect effects of species
hanges in the ecosystem can be explored and effects on the over-
ll functioning of the ecosystem can be estimated (Heymans et al.,
004). Furthermore, the suitability of this approach is its appli-
ation to a broad field of theories that are useful for ecosystem
tudies, e.g. thermodynamic concepts, information theory, trophic
evel description and network analysis (Xu et al., 2011a). EwE was
rst introduced to China by Tong (1999) and thereafter has been
sed in several aquatic ecosystems to manage fisheries in China,
specially in ocean systems. However, few EwE models have been
onstructed for China’s lake ecosystems except Li et al. (2009) and
ia et al. (2012). So far, no EwE model is available for the shallow

acrophytic lakes in the MYRB, which have long been used for
tocking fish. These lakes have unique aquatic living resources and
nvironmental conditions.

Therefore,  currently, a EwE  model of Bao’an Lake was  con-
tructed using the extensive data already collected. This study will
e significant not only for environment and ecosystem conser-
ation, but on the ecological utilization and management of lake
shery resources all over the world. The current model was carried

ut as a case study aimed at (1) modeling the food web  struc-
ure and energy flows in a typical shallow macrophtyic lake, (2)
escribing quantitatively the ecosystem properties and maturity
f Bao’an Lake, and (3) proposing suggestions for the improvement
Fig. 1. Geographic location and sketch map  of Bao’an Lake.

of fishery resource management in this kind of macrophytic
lake.

2. Materials and methods

2.1.  Study area

Bao’an  Lake (Fig. 1), with a total area of 39.3 km2, is a typical
shallow macrophytic lake (usually with an average water depth
of 2.1 m)  located on the south bank of the Yangtze River basin
within Hubei Province, Central China (Guan, 1995). This lake used
to be part of a larger lake, Liangzi Lake, which was connected to
the Yangtze River by a channel. According to a survey, the area
covered with aquatic macrophytes in the lake reached 75% of the
whole lake, dominated by Vallisneria spiralis L., Myriophyllum spica-
tum L. and Nelunbo nucefera G. (Su et al., 1995). The physicochemical
parameters of water quality during the study period are listed in
Table 1.

2.2.  Ecopath modeling approach

A static mass-balance trophic model was  constructed using
the Ecopath with Ecosim, version 6.2 (freely available at
http://www.ecopath.org; Christensen and Walters, 2004), which
focuses  on energy transfer between trophic levels and is now
widely used in aquatic ecosystem research (Fetahia et al., 2011;
Li et al., 2009; Byron et al., 2011; Xu et al., 2011a,b). It differs from
other modeling approaches because it encompasses the full trophic
Dissolved oxygen mg/L 9.82
Chemical oxygen demand mg/L 3.60
Total nitrogen mg/L 1.460
Total phosphorus mg/L 0.037

http://www.ecopath.org/
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Table  2
Species composition of each functional group for the Bao’an Lake ecosystem model.

No. Functional group Dominant species composition

1 Mandarin fish Siniperca chuatsi, Siniperca kneri
2 Snakehead fish Channa argus
3  Large culters Culter alburnus, Culter mongolicus,

Culter  dabryi
4  Catfish Pelteobagrus fulvidraco
5  Common carp Cyprinus carpio
6  Crucian carp Carassius auratus
7  Small fishes Pseudorasbora parva, Sqalidus nitens,

Sarcocheilichthys nigripinnis, Hemiculter
leucisculus, Toxabramis swinhonis,
Gobiidae

8 Silver carp Hypophthalmichthys molitrix
9  Bighead carp Aristichthy nobilis
10  Grass carp Ctenopharyngodon idellus
11  Breams Megalobrama amblycephala, Parabramis

pekinensis
12 Crabs Eriocheir sinensis
13  Shrimps Caridina nilotic gracilipes,

Macrobrachium nipponense,
Neocaridina  denticulate sinensis

14  Molluscs Bellamya aeruginosa, Alocinma
longicornis,  P. striatulus

15  Oligochaeta Branchiura Sowerbyi, Limnodrilus
hoffmeisteri

16  Aquatic insecta Chironmoidae
17 Microzooplankton Rorifers, Protozoans
18  Cladocera Diaphanosoma leuchtenbergianum,  Sida

crystalline, Moina micrura
19  Copepoda Cyclops vicinus, Mesocyclops leeckarti
20 Submerged macrophyte Potamogeton maackianus,

Myriophyllum spicatum, Vallisneria
spiralis, Ceratophyllum demersum

21  Phytoplankton Chlorophyta, Bacillariophyta,
Cyanophyta

22  Attached algae Chlorophyta, Bacillariophyta,
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Cyanophyta
23  Detritus Bioseston, Abioseston

Production = catches + predation mortality + biomass accumula-
ion + net migration + other mortality or re-expressed concisely and
ntelligibly as:

i ·
(

P

B

)
i
· EEi −

n∑
j=1

Bj ·
(

Q

B

)
j
· DCji − EXi = 0 (1)

here Bi is the biomass of group i; (P/B)i represents the produc-
ion/biomass ratio of group i, which is equal to the coefficient of
otal mortality Z under steady-state conditions (Allen, 1971); EEi is
he ecotrophic efficiency of group i; Bj is the biomass of predator
; (Q/B)j is the consumption/biomass ratio of predator j; DCji is the
ontribution of prey i in the diet of predator j; EXi is the export of
roup i (Christensen and Walters, 2004; Christensen et al., 2005).
or each functional group, the composition of the diet and at least
hree of the four parameters (B, P/B, EE, and Q/B) must be input to
stablish the model, and the other parameters which are unknown
an be estimated by the model (Table 2).

.3. Data collection and parameter estimation

A total of 23 functional groups were defined to establish the
ass-balance model of Bao’an Lake. Groups were classified accord-

ng to their trophic habits (mainly diet), abundance and the
vailability of information (Christensen and Walters, 2004). Some
ommercial fish species and Chinese mitten crab (Eriocheir sinensis)

ere grouped separately due to their importance to fishery yield

nd stocking (see details in Table 6).
For all functional groups, the key input data used to construct

he model usually included biomass (Bi), production/biomass ratio
ng 267 (2013) 138– 147

(Pi/Bi), consumption/biomass ratio (Qi/Bi), ecotrophic efficiency
(EEi) and food composition (DCji) (Christensen et al., 2005). Nor-
mally, fishery capture of some commercial products (such as fish,
crabs, shrimps, etc.) was  also contained in the model in order to
discuss the effects of fishing. Here the fishing yield data were also
compiled with the monographs. Because many ecological and fish-
eries studies had been carried out in Bao’an Lake since the 1980s,
especially during the period of 1992–1993, abundant first-hand
data on the lake could be collected and compiled from published
papers (Hu and Huang, 1991; Liang and Liu, 1995), dissertations
(Zhang, 2005; Yan, 1998; Jin, 2003), and unpublished data.

The  specific approaches to these parameters are summarized as
follows.

2.3.1. Fish
The  biomass and P/B of the small fish group in the lake were

estimated directly by Zhang (1999) and Zhang (2005). For other
fish groups, the biomass and P/B values were calculated from the
following equations:

B = Y

F
(2)

F  = Z − M (3)

Z  = P

B
= K · L∞ − L

L − L′ (4)

where B, Y, F, Z and M represent biomass, yield, fishing mortality,
total mortality and natural mortality of fish; L∞, L and L′ repre-
sent the asymptotic length, mean length and cut-off length of fish
(Beverton and Holt, 1957; Allen, 1971).

The consumption/biomass ratio (Q/B) of fish was estimated from
the empirical equation presented by Palomares and Pauly (1998):

log
(

Q

B

)
= 7.964 − 0.204 log W∞ − 1.965T ′ + 0.083A

+ 0.532h + 0.398d (5)

where W∞ is the asymptotic weight (g), T′ the mean temperature
of the lake expressed by T′ = 1000/K (K = ◦C + 273.15), A is the aspect
ratio (A = H2/S, H is the height of caudal fin and S is the surface
area) for a given fish, h is a dummy  variable expressing food type
(1 for herbivores, and 0 for detritivores and carnivores), and d is a
dummy variable also expressing food type (1 for detritivores, and
0 for herbivores and carnivores). The morphometric data for esti-
mating Q/B was  derived from Zhang (2005). The diet compositions
(DCji) of fish groups were also modified from Zhang (2005).

2.3.2.  Macrocrustaceans
The  biomass of the Chinese mitten crab was  calculated accord-

ing to its stocking biomass and recapture rate surveyed during
1991–1993 in the lake (Liu et al., 1995; Jin, 2001), and the biomass of
shrimps was estimated directly by Qin et al. (2005) with a pop-net.
Since there has been no exact P/B or Q/B data for the macrocrus-
taceans in the lake until now, we assumed the value of EE and P/Q
to be 0.85 and 0.075 respectively according to a similar study in
Lake Taihu (Li et al., 2009). The dietary composition came from Jin
(2001) for Chinese mitten crab and Li et al. (2009) for shrimps.

2.3.3.  Zoobenthos and zooplanktons
An  extensive and detailed plankton survey had been carried out

during 1992–1993 in Bao’an Lake and the relevant results were
compiled in the book “Resource, environment and fishery eco-

logical management of macrophytic lakes” (Liang and Liu, 1995).
Therefore, the biomasses of molluscs, oligochaetes, aquatic insecta,
microzooplankton, cladocera, copepoda were taken directly from
the published materials. The P/B ratio of mollucks, oligochaetes and
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Table  3
Basic  input and estimated parameters (in bold) for the 23 functional groups of the Bao’an Lake ecosystem model (see details of the abbreviations in Section 2.2 of the text).

Group number Group name TL Biomass (t km−2) P/B (year−1) Q/B (year−1) EE P/Q

1 Mandarin fish 3.138 1.44 0.78 3.57 0.554 0.219
2  Snakehead fish 3.131 1.38  1.31 3.46 0.680 0.380
3  Large culters 3.143 4.04 0.96 7.88 0.797 0.122
4  Catfish 3.080 0.32 1.42 7.07 0.704 0.201
5  Common carp 2.812 3.26 1.97 9.17 0.787 0.215
6  Crucian carp 2.126 3.80 2.23 17.02 0.940 0.131
7  Small fishes 2.151 18.00 2.30 8.92 0.785 0.258
8  Silver carp 2.021 2.91 1.15 12.24 0.970 0.094
9  Bighead carp 2.315 3.07 1.02 8.62 0.858 0.118
10  Grass carp 2.000 10.42 1.65 12.41 0.770 0.133
11  Breams 2.006 6.17 1.55 18.31 0.516 0.085
12  Crabs 2.227 2.76 2.12 8.48 0.770 0.250
13  Shrimps 2.196 3.97 4.50 24.40 0.429 0.184
14  Molluscs 2.000 99.10 4.30 86.00 0.126 0.050
15  Oligochaeta 2.076 2.01 5.00 100.00 0.959 0.050
16  Aquatic insecta 2.056 0.72 6.20 124.00 0.913 0.050
17  Microzooplankton 2.000 0.70 32.02 640.37 0.950 0.050
18  Cladocera 2.016 0.23 48.67 973.41 0.900 0.050
19  Copepoda 2.016 0.67 25.29 505.81 0.900 0.050
20  Submerged macrophyte 1.000 1627.00 1.25 0.120
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21  Attached algae 1.000 41.3
22  Phytoplankton 1.000 2.4
23  Detritus 1.000 3.4

quatic insecta in the lake were estimated directly by Yan et al.
1998), and the P/Q were assumed to be 0.05 (Yan et al., 2003).
or the groups of microzooplankton, cladocera, copepoda, 0.05 and
.95 were adopted for the values of P/Q and EE (Park et al., 1974;
cavia et al., 1974). All the dietary compositions were modified
rom Liu (1999) with slight adjustments to balance the model if
ecessary.

.3.4. Primary producers and detritus
Phytoplankton, attached algae and submerged macrophytes

ere defined as the three groups of primary producers. The
iomasses of the three groups were investigated directly and
eported in the published book (Liang and Liu, 1995). A P/B ratio
f 185 year−1 for phytoplankton (Sun et al., 1999), 250.7 year−1 for
ttached algae (Wang and Liang, 1995) and 1.25 year−1 for macro-
hytes (Liu, 1992) were used in the same lake. The biomass of
etritus was also calculated directly in the lake by Hu and Huang
1991).

.4. Model balancing and uncertainty

After all the necessary parameters had been entered, the model
ould be balanced by checking the estimated values: are the EE
alues possible (less than 1) and are the GE (=P/Q) values phys-
ologically realistic (0.1–0.3) for most groups? Usually, in order
o balance a model we modified the input data manually: subtle
djustment should always be made, especially for diet composition
Christensen et al., 2005).

To  facilitate this task and to make the process more transpar-
nt, we implemented a ‘pedigree’ routine (Funtowicz and Ravetz,
990), which serves a dual purpose by describing the origin of
he data and by assigning confidence intervals to data based on
heir origin (Pauly et al., 2000). This index can be understood as a
oded statement categorizing the origin of a given input and spec-
fying the likely uncertainty associated with it (Christensen et al.,
005). For each input value, a description should be made on the
ata source and its confidence (high or low precision, estimated
y model, “guesstimated”, approximate or indirect method, from

ther models, or from literature, etc.). Percentage ranges of uncer-
ainty, based on a set of qualitative choices relative to the origin
f B, P/B, Q/B, catch and diet composition input were used in the
outine and resulted in an index value scaled from 0 (not rooted in
250.70 0.089
185.00 0.376

0.645

local data) to 1 (fully rooted in local data) for each input data point.
Based on the individual pedigree index values, an overall ‘pedigree
index’ (P) of the information in ECOPATH was calculated:

P =
n∑

i=1

∑
j=1

lij
n

(6)

where lij is the pedigree index for model group i and parameter j,
n is the total number of modeled groups (Christensen and Walters,
2004).

Apart from the pedigree index (P), we also used a measure of fit
(t*) to scale the model uncertainty based on the number of living
groups in the ecosystem. The measure of fit describes how well a
given model is rooted in local data, and is calculated as:

t∗ = P ∗
√

(n − 2)√
(1 − P2)

(7)

3. Results

3.1. Basic input and estimates

After  balancing the Ecopath model, a series of estimates and
analyses were given by the model. The pedigree index (0.50) lies
in the upper range (0.16–0.68) from 150 EwE  models (Morissette
and Hammill, 2006), and the measure of fit is 2.582 for this model,
indicating that the input parameters of the model were based on
reliable sources and the model was  robust with high confidence
(Table 4; Christensen et al., 2000).

The basic input with the estimated parameters given by the EwE
for the Baoan Lake ecosystem are shown in Table 3, and the diet
matrix for each group is presented in Table 4.

For the Bao’an Lake model, the EE values of all groups were less
than 1, and most of the P/Q values were between 0.1 and 0.3, meet-
ing the requirements of a balanced model (Christensen et al., 2005).
Generally, the EE values of all the commercial fishery groups were

higher than 0.5, and some were even as high as 0.97 (silver carp) and
0.94 (crucial carp). However, the EE of attached algae was extraor-
dinarily low (0.089), followed by submerged macrophytes (0.120)
and molluscs (0.126).
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Table  4
Diet  compositions of 23 functional groups in the Bao’an Lake ecosystem model.

Group Prey\predator 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 Mandarin fish
2 Snakehead fish
3  Large culters
4 Catfish
5 Common carp
6 Crucian carp 0.666 0.786
7  Small fishes 0.223 0.205 0.790 0.580 0.010 0.150
8 Silver carp
9 Bighead carp
10 Grass carp
11 Breams
12 Crabs
13 Shrimps 0.110 0.008 0.193 0.315 0.007
14 Molluscs 0.001 0.019 0.778 0.132 0.095
15 Oligochaeta 0.003 0.008 0.007 0.050 0.080
16 Aquatic insecta 0.001 0.011 0.005 0.008 0.002 0.015
17  Microzooplankton 0.002 0.006 0.005 0.006 0.005 0.050 0.010 0.016 0.016
18  Cladocera 0.001 0.027 0.008 0.007 0.141 0.003 0.005 0.020
19 Copepoda 0.081 0.009 0.008 0.164 0.007 0.005 0.025
20 Submerged Macrophyte 0.977 0.950 0.446
21 Attached algae 0.050 0.380 0.214 0.200 0.020 0.020 0.149 0.355 0.030 0.380 0.090 0.350 0.537 0.537
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22  Phytoplankton 0.022 0.249
23  Detritus 0.001 0.015 0.070 0.192 0.805 0.220

Sum  1.000 1.000 1.000 1.000 1.000 1.000 1.000

.2. Food web structure and trophic analysis

.2.1. Trophic structure
Fractional  trophic levels as suggested by Odum and Heald (1975)

ere calculated by the Ecopath model. All ecological groups were
ssigned discrete trophic levels according to Lindeman (1942) with
he approach suggested by Ulanowicz (1995). The routine assigns
efinitional trophic levels (TL) of 1 to producers and detritus and

 trophic level of 1 + [the weighted average of preys’ TLs] to con-
umers (Christensen et al., 2005). The fractional trophic levels of all
f the 23 groups in Bao’an Lake varied from 1 (primary producer
nd detritus) to 3.143 (large culters) (Table 3). The primary pro-
ucers consisted of submerged macrophytes, attached algae and
hytoplankton, and the piscivorous fish such as large culter, man-
arin fish and snakehead fish occupied the top trophic level in the

ake ecosystem.
Two main types of food chains in the Bao’an Lake ecosystem

an be discerned from the model: a detrital-based food chain and
 grazing food chain. The former chain transferred more energy
nd matter than the latter one. There were 9055 t km−2 year−1

atter flowing to trophic level II in the detrital-based food chain,
ompared with 1333 t km−2 year−1 in the grazing food chain,
lthough the biomass of the primary producers was extremely high
1671 t km−2 year−1) (Fig. 2).

.2.2. Transfer efficiencies
In  order to describe the proportion of energy transferred from

ne trophic level to the next, all ecological groups in the Bao’an
ake model were assigned to one of eight discrete trophic levels
TL) (Lindeman, 1942). However, only the first five trophic levels
ere taken into consideration since the flows through TL VI to VIII
ere extremely small (Fig. 2). The transfer efficiency (TE) of matter

s the ratio between the sum of exports and flows predated by the
ext level and the throughput on the trophic level. For the grazing

ood chains of the Bao’an Lake ecosystem, the TEs from TL III to TL
 were 5.85%, 9.11%, and 12.0% respectively. For the detrital food

hain, TEs were 1.11%, 13.3% and 10.8% respectively. A mean TE
f 8.96% was calculated for the grazing food chain and 8.40% for
he detrital food chain. The geometric mean of the trophic transfer
fficiency for the Bao’an Lake ecosystem was 8.68%.
1 0.383 0.003 0.010 0.005 0.050 0.005 0.150 0.037 0.037
4 0.107 0.014 0.200 0.405 0.970 0.545 0.850 0.500 0.410 0.410
0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3.2.3. Mixed trophic impacts
A  modified input–output analysis with the procedure “Mixed

Trophic Impacts (MTI)” described by Ulanowicz and Puccia (1990)
was implemented in the EwE. The MTI  describes how any group
(including fishing fleets) impacts trophically on all the other groups
in an ecosystem. It includes both direct and indirect impacts,
i.e. both predatory and competitive interactions (Christensen and
Walters, 2004). From the mixed trophic impact analysis on the
Bao’an Lake ecosystem (Fig. 3), piscivorous fish like mandarin fish
and snakehead fish had strong negative effects on crucian carp as
well as each other. In addition, large culters also exerted strong neg-
ative effects on small fish, shrimps, catfish and themselves, while
they had moderate negative effects on mandarin fish and snake-
head fish (Fig. 3).

As  the main energy sources in the lake ecosystem, detritus and
phyplankton had obvious positive effects on many other functional
groups. Fishing had strong negative effects on all the commercial
fish and crabs, but was beneficial for the small fish and crucian carp
(Fig. 3). Nearly all the fish groups had obvious negative effects on
forage resources, including forage fish (crucian carps, small fish),
zooplankton (microzooplankton, cladocera, copepoda), zooben-
thos (molluscs, oligochaeta, aquatic insecta) and algae (attached
algae, phytoplankton). On the other hand, the fish groups seemed
to have more negative effects on each other mainly due to trophic
competition.

3.3. Ecosystem properties and indicators

According to the ecosystem theories implemented by Odum
(1969), Odum (1971) and Ulanowicz (1986), a series of indicators
that describe ecosystem properties were calculated by the Ecopath
to assess the stability and maturity of the ecosystem (Christensen
et al., 2005). Summary statistics and flow indices of the Bao’an Lake
ecosystem are listed in Table 4.

The total system throughput of the lake ecosystem
reached  37,418.040 t km−2 year−1, of which 28.2% derived
from consumption (10,549.570 t km−2 year−1), 13.4% from

exports (5009.366 t km−2 year−1), 20.9% from respiration
(7827.842 t km−2 year−1) with 37.5% (14,031.260 t km−2 year−1)
eventually flowing into detritus. The sum of all production (TP)
was 13,449.030 t km−2 year−1, and the calculated total net primary
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P
34.31

1671

1333 II
3.562

149.5

23.11

953.3

54.88
0.0585 III

0.147

14.28

3.127

36.77

1.875
0.0911 IV

0.00501

1.183

0.182

1.151

0.0430
0.120 V

0.000115

0.0142

0.00476

0.0265

D
37.49

3.450

9055 II
24.20

131.3

2.808

6772

97.92
0.0111 III

0.262
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roduction (TPP) and the net system production (NSP) were
3,449.030 and 5009.368 t km−2 year−1 respectively. Thus, the
atio of total primary production/total respiration (TPP/TR) and
otal primary production/total biomass (TPP/TB) were 1.640 and
.993 respectively. The mean trophic level of catch was calculated

s 2.262, and the gross efficiency (catch/net primary production)
as 0.003 in the lake ecosystem.

Flow indices, including connectance index (CI) and system
mnivory index (SOI), were used to describe whether the food web
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is web-like or linear. The values of CI and SOI in the Bao’an Lake
ecosystem were 0.205 and 0.058 respectively. Finn’s cycling index
(FCI; Finn, 1976) and Finn’s mean path length (FML) calculated by
the model were 9.25% and 2.915 respectively.

Ecosystem information indices, ascendancy (A) and system

overhead (O), are derived from information theory as a measure of
the average mutual information in a system (Ulanowicz and Nor-
den, 1990). In the Bao’an Lake ecosystem, the values of ascendancy
and overhead were 38.7% and 61.3% respectively (Table 5).
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. Discussion

The current study contributes to the establishment of a mass-

alance model to describe the features of food web structure and
cosystem properties in a shallow macrophtyic lake with the objec-
ives of guiding the development of an eco-friendly fishery and the

able 5
ummary statistics of the Bao’an Lake ecosystem properties.

Attribute parameters Value Units

Sum of all consumption
(TC)

10,549.570 t km−2 year−1

Sum of all exports (TE) 5009.366 t km−2 year−1

Sum of all respiratory flows
(TR)

7827.842 t km−2 year−1

Sum of all flows into
detritus  (TD)

14,031.260 t km−2 year−1

Total system throughput
(TST)

37,418.040 t km−2 year−1

Sum of all production (TP) 13,449.030 t km−2 year−1

Mean trophic level of the
catch  (TLc)

2.262 –

Gross efficiency (catch/net
primary  production)

0.003 –

Calculated total net
primary  production (TPP)

12,837.210 t km−2 year−1

Total primary
production/total
respiration (TPP/TR)

1.640 –

Net system production
(NSP)

5009.368 t km−2 year−1

Total primary
production/total biomass
(TPP/TB)

6.993 –

Total biomass (excluding
detritus)  (TB)

1835.691 t km−2

Connectance index (CI) 0.205 –
System omnivory index

(SOI)
0.058 –

Finn’s cycling index (FCI) 9.250 % of total throughput
Finn’s mean path length

(FML)
2.915 –

Ascendancy (A) 0.387 –
System overhead (O) 0.613 –
Ecopath pedigree index 0.500 –
Measure of fit (t*) 2.582 –
 the Bao’an Lake ecosystem (for biomass the units are t km−2).

protection and restoration of submerged plants, since the Ecopath
with Ecosim model is a systematic and comprehensive model. This
model seems to be the first one established in one of the thousands
of shallow macrophtyic lakes distributed along the middle reaches
of Yangtze River basin. It provides in-depth knowledge of shallow
macrophtyic lakes and thus can help to direct us more sustainably
in the development and utilization of lake resources.

In the Bao’an Lake ecosystem, the EE values for most fish groups
were high, especially for some commercial and stocked fish groups,
such as silver carp, bighead carp and grass carp, bream, common
carp, mandarin fish and large culters. Additionally, some prey fish
groups, such as small fish and crucian carp also showed extremely
high EE values. This suggests that commercial fish species are
suffering from overexploitation while prey fish suffer from a combi-
nation of pressures from predation by piscivores as well as humans,
which has lead to a sharp decline in fishery resources (Hu and
Huang, 1991). In former times, traditional Chinese carp like silver
carp, bighead carp and grass carp were considered to be the main
economic stocking species which explains why these fish groups
have reached such high biomass in the lake. Another notable feature
in the macrophtyic lake is that the biomass of small fish (18 t km−2)
and molluscs (99.10 t km−2) is much higher than in other lakes, pos-
sibly because submerged plants provide sanctuary for small fish
and an attachment matrix for molluscs (Li et al., 2010; Xie et al.,
2006), and thus these resources have not been utilized sufficiently
due to the traditional fishery model (Fig. 4).

In contrast, the EE values of primary producers, such as sub-
merged plants, attached algae and phytoplankton were as low as
0.12, 0.089 and 0.376 respectively, while the gross efficiency (fish-
ery catch/net primary production) was  only 0.003, even lower than
Taihu lake (0.0087; Li et al., 2009). This means that primary produc-
tion was not efficiently utilized and thus very little was  transferred
into fishery products. Nevertheless, the efficiency of Bao’an Lake
is still higher than the global average (0.02%) (Christensen et al.,
2005). Large parts of primary production (89.62% of total pri-
mary production, about 11,504 t km−2 year−1) flowed into detritus.
Additionally, the food resource of the Bao’an Lake ecosystem was

derived mainly from detritus (87.17%) with little from primary
production (12.83%), indicating that the Bao’an Lake ecosystem
depended much more on a detritus-based food chain than a grazing
food chain, which is also consistent with the suggestion by Odum
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Table  6
Comparison of ecosystem attributes in different shallow lakes in China.

Parameters Taihu Lakea

(1991–1995)
Gehu  Lakeb

(1986–1989)
Bao’an Lakec

(1991–1993)

Mean trophic level of catch (TLc) 2.92 2.78 2.26
Total system throughput (TST) 13,586 12,131.76 37,418.04
Total primary production/total respiration (TPP/TR) 3.85 2.761 1.64
Total primary production/total biomass (TPP/TB) 11.66 1.76 6.99
Ascendancy (A) 0.259 0.332 0.387
Connectance index (CI) 0.206 0.208 0.205
System omnivory index (SOI) 0.042 0.086 0.058
Finn’s  cycling index (FCI) 11.58 14.76 9.25
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a Li et al. (2009).
b Jia et al. (2012).
c Present study.

1969) that a mature system may  depend more on the detrital path-
ay. The fact that the Bao’an Lake food web relies on two  energy

ources may  enhance the plasticity and resilience of the ecosys-
em (Fetahia et al., 2011). According to the MTI  analysis, the two

ain food sources in the Bao’an Lake ecosystem, i.e. detritus and
rimary producers (especially attached algae and phytoplankton),
ad significant positive effects on other groups. Other important

nformation from the MTI  is that fishing pressure may  have more
egative impacts on commercial fish groups but will be better

or small fish resources, consistent with the fact that fish tend to
iniaturization (Cao et al., 1991). The MTI  also showed that fishing

ressure exerted stronger impacts on most functional groups than
redation or competition (Christensen and Walters, 2004).

The  mean transfer efficiency among different trophic levels of
he ecosystem was 8.68% in our study, slightly lower than the 10%
ssumed by Lindeman (1942), but lying in the accepted range of EE
alues reported in the published literature (Libralato et al., 2008;
auly and Christensen, 1995). The low transfer efficiency mainly
esults from transfer from TL II to TL III in the food chain. From the
odel, it is evident that a large amount of mollusc biomass was  not

tilized efficiently.
As  previously mentioned, no such model has been established

or the lakes along the middle reaches of the Yangtze River,
lthough there are some preliminary studies in some large lakes
earby: Taihu lake (Li et al., 2009) and Gehu lake (Jia et al.,
012) (Table 6). A comparison with these three lake ecosystems
n some key parameters from network analysis would be help-
ul for accurately positioning and characterizing the Bao’an Lake
cosystem (Table 6). Notably, the total system throughput in Bao’an
ake (37,418.04 t km−2 year−1) is much higher than in Taihu Lake
13,586 t km−2 year−1) or Gehu lake (12,131.76 t km−2 year−1). This
s mainly because the biomass of primary producers, such as sub-

erged plants accompanied by attached algae was  much higher
han in the other two lakes, indicating that Bao’an Lake is typically

 lake dominated by submerged plants.
According to Odum (1971), the ratio of total primary production

o total respiration (TPP/TR) is an important measure of ecosys-
em maturity; ecosystems with the values much higher or lower
han 1 are thought to be immature, while only those with TPP/TR
atios approaching 1 are considered to be mature. In our study,
he value of the TPP/TR ratio was 1.640, much lower than the
.85 in Taihu or 2.761 in Gehu (Li et al., 2009; Jia et al., 2012),
uggesting that the Bao’an Lake ecosystem was more mature com-
ared with the other two lakes. Additionally, as modified from
dum (1969), the lower TPP/TB ratio also characterizes a mature
cosystem. The ratio in this study was 6.99, between the immature
cosystem (Taihu Lake, 11.66) and the mature ecosystem (Gehu

ake, 1.76). In Bao’an Lake, ascendancy (38.7%), a measure of ecosys-
em growth and development, is much higher than in Taihu Lake
25.9%) or Gehu lake (33.2%) which also suggests a mature sys-
em.
FCI represents the fraction of an ecosystem’s throughput that is
recycled compared to total system throughput (Finn, 1976; Table 3).
The value of 9.25% for Bao’an Lake is much lower than in the other
two lakes (Taihu Lake, 11.58%; Gehu Lake, 14.76%). Meanwhile, CI
and SOI are two  other important indices which describe system
maturity since the food chain is expected to change from linear to
web-like as the system matures (Odum, 1971). However, in Bao’an
Lake, we  can see that the value of CI and SOI (0.205 and 0.058
respectively) were both relatively low. Although these values are
nearly in the same order of magnitude as some mature systems
such as Gehu (Jia et al., 2012), Qiandaohu (Liu et al., 2007) and
Taihu lakes (Li et al., 2009), there is still a large gap (especially SOI)
with some other mature systems such as Hayq Lake (SOI = 0.224;
Fetahia et al., 2011), Lake Toya (SOI = 0.12; Hossain et al., 2010) and
Lake Kuvi (SOI = 0.148; Villanueva et al., 2008).

Consequently, the high values of TPP/TR and ascendancy and the
low values of TPP/TB, and the more important detritus dominated
food chain, all illustrate that the Bao’an Lake ecosystem is a mature
and stable system according to the theories of Odum (1969). How-
ever, the moderate value of FCI along with extremely low values
of CI and SOI still shows that the food web  structure of the lake
tends to lack complexity (Odum, 1969). Thus we  conclude that the
Bao’an Lake ecosystem is a mature system but with a simple and
vulnerable food web structure. This is mainly caused by unsustain-
able fish stocking and overfishing, since we know that prior to our
study, piscivorious fish were targeted for removal from the lake,
so that more traditional carp could be released. This resulted in
significant changes in the fish community structure (Zhang et al.,
1997, unpublished data). It has resulted in the mean trophic level
of catch in Bao’an Lake being only 2.26, far lower than Taihu Lake
(2.92) or Gehu Lake (2.78), which indicates that Bao’an Lake is suf-
fering from overfishing and unsustainable fish stocking with too
many low trophic level fish fry being released and caught in the
lake leading to the simple food web structure.

5. Conclusions and suggestions for fishery management
improvement in macrophyte-dominated lakes

Generally, this is the first ecosystem model of a shallow macro-
phytic lake in the middle reaches of the Yangtze River basin, which
can quantitatively describe the food web  structure and ecosys-
tem properties. Based on the ecosystem analysis in Bao’an Lake,
we suggest that fish stocking in this lake should aim at increas-
ing species richness, because numerous studies have showed that
predator diversity can strengthen ecosystem function and food web
structure (Griffin et al., 2008; Carey and Wahl, 2011; Hargrave,

2009). We  suggest that the lake be stocked with piscivorous and
omnivorous species since these two  groups seemed to be the
key factors in mediating biodiversity–ecosystem functioning rela-
tionships (Petchey et al., 2004; Bruno and O’Connor, 2005). This
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shery practice can also fully utilize the resources in this type of
ake and increase the system’s SOI. This suggestion is also con-
istent with the former studies in these kinds of lakes (Xie et al.,
000; Cui and Li, 2005), which recommended that mandarin fish
S. chuatsi) and Chinese mitten crab (E. sinensis) can be reasonably
tocked.

Additional attention should be given to the utilization of macro-
hytes. Some studies have indicated that dense vegetation could
esult in low feeding efficiency and poor growth of both small fish
nd piscivorous fishes (Colle and Shireman, 1980; Miranda and
ugh, 1997; Xie et al., 2005). Thus, herbivorous species with high
conomic value such as Chinese mitten crab (E. sinensis) and Mega-
obrama amblycephala Yih could be stocked moderately (Cui and Li,
005).

It should be acknowledged that the Ecopath model is just a
teady-state model and therefore it cannot forecast the dynamic
ffects of fish stocking on the other organisms within the food web.
he current study is just part of ongoing studies in these lakes,
nd further studies should be implemented to probe the carrying
apacity of multi-species stocking based on the whole food web and
cosystem using the dynamic model (Ecosim). That will give more
redible direction and prediction of the effects of fish stocking in
his kind of lake.
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Summary 

1.This work contributed to the building of the first global perspective on the fish 

distribution and assemblage patterns, as well as the understanding of the potential 

drivers in a large geographical scale across China, using a novel multi-species 

approach fitted by the multivariate regression tree.  

2.A total of 425 fish species and subspecies recorded in 135 lakes were modeled with 

19 potential determinants. Finally, five fish assemblages were defined by the 

constrained clustering, 107 indicator species were thus identified. Species diversity 

showed significantly differences among each assemblage: fish species richness in 

plateau lakes was significantly lower than plain lakes; however the diversity of the 

whole assemblage in plateaus was higher than other regions.  

3.Altitude, minimum temperature of the coldest month, annual temperature range and 

precipitation during the driest month were found to be the most important 

determinants affecting fish assemblages and distribution patterns in Chinese lakes.  

4.Overall, our results highlighted the plausibility of the species-energy hypothesis 

rather than species-area hypothesis for fish species distribution patterns in large scale. 

In addition, we emphasized that climate change will severely affect the lake fish 

diversity and distribution. These findings could have important implications for fish 

species conservation and natural resources management all over the world. 

 

 

Keywords: China, Distribution patterns, Fish assemblage, Geographical and climatic 

variables, Multivariate regression tree 
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Introduction 

During the last several decades, ongoing global climate change, environment 

pollution and anthropogenic disturbance have contributed to a dramatic change in 

biodiversity all over the world (DeFries et al., 2004; Fang et al., 2009). This situation 

is very significant for fish, and likely to continue in the future, as for them adaptation 

to the pressure from complex global changes has proven difficult (Buisson et al., 2008; 

Magurran, 2009). Therefore, identifying the determinants that affect the patterns of 

fish assemblages and distributions becomes a global research hotspot in ecology, 

biogeography, evolution and conservation sciences (He et al., 2011; Park et al., 2006; 

Sharma et al., 2007; Buisson et al., 2008; Grenouillet et al., 2011; Maloney et al., 

2013). Furthermore, detailed knowledge of species’ ecological and geographic 

distributions is fundamental for effective fish conservation and forecasting (Rushton 

et al., 2004). However, for a long time, it is too difficult to assess and monitor 

organisms in a large scale, while in this case, species distribution models (SDM) 

which could integrate fragmental information of species and habitats globally showed 

it’s advantages (Guisan and Zimmermann, 2000). Species distribution models (SDMs) 

are generally developed to quantify the association between species’ occurrence or 

abundance and environmental, climatic or geographical predictors (e.g. Guisan & 

Zimmerman, 2000; Araújo & Guisan, 2006; Elith et al., 2007), and different kinds of 

SDMs have been widely used for (1) predicting distribution patterns or assemblages 

from the current habitat status (e.g. Park et al., 2006; Buisson et al., 2008; Grenouillet 

et al., 2011), (2) evaluating the potential spreading capacity of invasive species (e.g. 

Roura-Pascual et al., 2009; Brummer et al., 2013), and (3) assessing biological 

responses and occurrences to global changes (e.g. Thuiller et al., 2005; Araujo et al., 

2006; Buisson & Grenouillet, 2009; Tisseuil et al., 2012; Yu et al., 2013). With the 

rapid development of computing capacity and large databases, the SDMs have been 

widely used in both basic and applied ecology and increasing novel and robust models 

have emerged. For instance, multivariate regression trees (MRT), one form of a 

multi-response regression tree model (De’ath, 2002), can be regarded as a constrained 

clustering method with each cluster described by a set of environmental variables and 

http://onlinelibrary.wiley.com/doi/10.1111/j.2006.0906-7590.04596.x/full#b87�
http://onlinelibrary.wiley.com/doi/10.1111/j.2006.0906-7590.04596.x/full#b87�
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representing an assemblage type. The most important advantage of the MRT analysis 

over the individual species analyses, such as generalized linear models (GLM), 

generalized additive models (GAM), classification and regression trees (CART), and 

random forest (RF), is the capacity and facility in modeling and predicting 

multi-species data. Simultaneously, regression tree analysis has long proved to give 

more accurate and robust predictions than linear models, especially for analyzing 

complex ecological data (De’ath & Fabricius 2000; Vayssieres et al., 2000). To date, 

MRT has been widely used as a constrained cluster method (DeVantier et al., 2006; 

Davidson et al., 2010; Hamann et al., 2011).  

In aquatic ecosystems, a growing concern has highlighted the application of 

different SDMs or even ensemble models to describe and predict the patterns of fish 

assemblages and distributions with diverse determinants (e.g. Park et al., 2006; 

Buisson et al., 2008; He et al., 2011; Maloney et al., 2013).However, most of these 

studies only focused on a small geographical range, in some rivers or streams. 

Large-scale patterns of fish diversity and distribution still lack of global insights and 

studies. Moreover, compare with other aquatic ecosystems, lakes remain poorly 

studied despite the fact that they are among the most important aquatic ecosystems on 

earth and can be ideal fields for studying fish distribution and assemblage since they 

are natural bio-geographical islands (Wang & Dou, 1998; Zhao et al., 2006). Chinese 

lakes, occupying significantly different natural environments, climatic factors and fish 

biota due to the vast area, have always been considered as the ‘centre of dispersal’ for 

fish species (Wu, 1964; 1977). More than 400 fish species and subspecies live in these 

lakes (Wang & Dou, 1998), making them more than suitable for the case studies of 

large-scale patterns of fish diversity and distributions, as well as the relationships with 

environment and climatic variations. However, for a long time, fish studies in these 

lakes have been focused on population biology (e.g. Zhang et al., 2005), community 

structure (e.g. Xie et al., 2001; Ye et al., 2006) and fishery management (e.g. Cui & 

Li, 2005) in single or several lakes on regional scale, while a few studies focused on 

the national scale but with limited data and analysis (Zhao et al., 2006; Kang et al., 

2013). 
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Up until now, there is nearly no global understanding of fish assemblages and 

distribution patterns with the potential determinants in Chinese, especially in large 

scale. Conversely, fish fauna in the lakes across China have been extensively 

surveyed from the 1950s, and the improvement in statistical and modeling approaches 

are routinely available nowadays. Thus a more comprehensive and complete picture 

of the fish assemblages and distribution patterns as well as their driving factors with a 

global perspective is urgently required, which in turn serves to benefit biodiversity 

conservation and management and the health of ecosystems. 

Therefore, in this context, a multi-response model fitted by a multivariable 

regression tree on a national scale was constructed, using more reliable and ideal fish 

presence-absence data (Cawsey et al., 2002; Elith et al., 2007). Generally, our 

research contributed to draw up the first global perspective on fish diversity and 

distribution patterns in China, identify the importance of factors in driving the fish 

diversity, verify the hypothesis appropriated for fish distribution and assemblage 

patterns, and provide eco-solutions for the conservation and management of fish 

biodiversity and natural resources. 

Methods 

Study area 

  Lakes in China always had with complicated natural environments and large 

geological variations. In the present study, a total of 135 lakes (21.9-48.9º N and 

81.2-132.6º E) distributed across China with creditable fish presence-absence data 

were selected. The surface areas of these lakes ranged from 0.0006 to 2933 km2. The 

detailed location and limnological characteristics of each lake are summarized in 

Table 1. 

Fish data  

   The presence-absence data of fish in the 135 lakes were compiled from published 

fish surveys since the 1950s (see Appendix S1 for details). To ensure the quality and 

authenticity of the data, fish compositions derived from long-term monitoring and 

surveying were adopted, while the data with insufficient sampling were omitted. For 
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the lakes that had fish fauna data from several time periods, normally the earliest were 

preferred as they may have suffered from fewer artificial disturbances. Fish 

composition data were then revised according to the monograph “Fauna Sinica” and 

Wu (1977; 1964) to deal with possible nomenclatural changes (e.g. synonyms, newly 

discovered and named fish species). Consequently, 425 fish species and subspecies 

were included. 

Climatic and environmental variables 

  A set of climatic and lake geographic variables were used as the explanatory 

variables. The climatic variables were derived from the WordClim database (Hijimans 

et al., 2005, available at http://www.worldclim.org) using Arcgis 10.1 (ESRI). This 

database was developed from compiled monthly averages of climate as measured at 

weather stations from a large number of global, regional, national and local sources, 

mostly from the 1950–2000 period, using the Thin Plate  

http://www.worldclim.org/�
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Table.1 Comprehensive description of all the variables used in this study 

 

Variables Variable type Min 1st Qu Median Mean 3rd Qu Max SD 

Latitude Mean latitude  21.90  28.45  31.10  34.42  41.67  48.90  7.90  

Longitude Mean Longitude 81.20  103.00  114.40  111.60  118.40  132.60  10.47  

alt Elevation of the site 2.00  23.50  144.00  911.70  1773.00  4947.00  1154.56  

area Surface area of the lake 0.01  6.72  27.95  225.80  122.33  4930.00  544.82  

bio1 Annual mean temperature -5.00  50.00  140.00  113.70  170.00  217.00  61.45  

bio2 Mean diurnal range: mean of monthly (max temp–min temp) 70.00  82.00  110.00  104.50  118.00  146.00  19.95  

bio3 Isothermality: (Bio2/Bio7) *100 21.00  24.00  25.00  30.16  36.50  53.00  9.78  

bio4 Temperature seasonality (SD *100) 3242.00  6903.00  8807.00  9305.00  12168.00  15770.00  3468.65  

bio5 Maximum temperature of warmest month 130.00  258.00  286.00  284.40  323.50  340.00  46.71  

bio6 Minimum temperature of coldest month -295.00  -196.50  -22.00  -79.59  9.50  93.00  109.16  

bio7 Temperature annual range (Bio5–Bio6) 212.00  306.50  331.00  364.00  452.50  561.00  103.52  

bio8 Mean temperature of wettest quarter 78.00  199.50  216.00  214.30  244.50  283.00  40.57  

bio9 Mean temperature of driest quarter -208.00  -117.00  50.00  -2.47  79.50  162.00  104.59  

bio10 Mean temperature of warmest quarter 78.00  202.00  221.00  227.00  272.00  286.00  48.12  
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bio11 Mean temperature of coldest quarter -213.00  -119.50  43.00  -12.32  57.00  149.00  99.40  

bio12 Annual precipitation 82.00  418.50  919.00  806.30  1177.50  1480.00  409.61  

bio13 Precipitation of wettest month 18.00  132.50  186.00  168.60  225.00  305.00  63.03  

bio14 Precipitation of driest month 0.00  2.00  9.00  15.04  31.50  44.00  14.62  

bio15 Precipitation seasonality(coefficient of variation) 39.00  55.00  86.00  83.35  106.50  138.00  26.64  

bio16 Precipitation of wettest quarter 47.00  291.00  461.00  423.70  573.00  815.00  171.80  

bio17 Precipitation of driest quarter 2.00  8.00  38.00  56.64  122.00  160.00  55.12  

bio18 Precipitation of warmest quarter 47.00  291.00  443.00  403.20  516.00  676.00  157.02  

bio19 Precipitation of coldest quarter 2.00  8.00  39.00  60.01  129.50  175.00  59.59  
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Smoothing Spline (TPS) algorithm that yielded climate surfaces for monthly 

maximum, minimum, mean temperatures and total monthly precipitation (Hutchinson, 

1995). In order to improve the accuracy of our analyses, we choose the highest 

resolution (30 arc-seconds (~1 km)). A PCA (principal component analysis) was 

performed to eliminate the variables with high correlation, and finally 19 variables are 

included. 

Data analysis  

MRT model 

   In our study, a novel technique for modeling species-environment relationships, 

MRT, was used as the main tree model to explore the relationships between fish 

species and environments. MRT is the tree model based on the same recursive 

partitioning principles as Classification and Regression Trees (CART) but extended to 

multivariate response variables, which is an important consideration for the 

community studies. MRT splits objects (e.g. sampling sites) into homogenous groups 

according to the response, with the splits constrained by explanatory variables. The 

tree is grown by splitting the data a large number of times, and then it is subsequently 

pruned (reduction of the number of groups) via a re-sampling method called v-fold 

cross-validation (Breiman et al., 1984) to obtain the best predictive tree size. The 

model was run with 100 replicates to be certain that the results were not simply 

obtained by chance. An unconstrained cluster (hclust) was also presented to compare 

with the MRT groups, a Kruskall-Wallis test and multiple comparison tests were then 

conducted in order to assess the differences in species richness between each 

assemblage (Giraudoux, 2006). Here, the new R package “MVPART wrap” (Ouellette 

et al., 2012) was used instead of the package “mvpart” (De’ath, 2002) to get more 

detailed information from the MRT model. 

Indicator species 

    Indicator species in each assemblage were defined by the model using the 

module of “Indval”. For a given species and a given group of sites, the indicator value 

is defined as the product of the mean species abundance occurring in the group 

divided by the sum of the mean abundances in all other groups (a type of specificity), 
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multiplied by the proportion of sites within the group where the species occurs 

(fidelity) (Dufrene & Legendre, 1997). Each species was associated with the tree node 

(community) where its maximum indicator value occurred:  species with high 

indicator values were used as characteristic members of each community, and the 

spatial extent of the group indicated the region where the species was predominantly 

found (DeVantier et al., 2006). 

Data analysis was all performed in R program (R Core Team 2013) with different 

packages. 

Results 

Comprehensive description of fish composition 

   A total of 425 species and subspecies from 15 orders, 42 families had been 

recorded in the 135 studied lakes. Rank-order species richness is sigmoid (Fig.1a): 

around 5% of the sites had high species richness (species richness >80), 45% 

contained moderate richness (20<species richness < 80), and 50% with low richness 

(species richness< 20). While Fig.1b shows that most of the recorded species are 

uncommon or rare species, about 80% of the species have an occurrence of less than 

20% in all the sites, among which around 47% of the species occurred only once. 

About 8% of the species are recorded as moderately common species that occurred in 

more than 30% of the sites. Only 8 species occurred in more than 80 sites and are thus 

recorded as the most abundant species in our research (Pseudorasbora parva 

(Temminck et Schegel, Hypophthalmichthys molitrix (Cuvier et Valenciennes), 

Ctenophaxyngodon idellus (Cuvier et Valenciennes), Aristichthys nobilis 

(Richardson), Carassius auratus Linnaeus, Cyprinus(cyprinus) carpio Linnaeus, 

Misgurnus anguillicaudatus (Cantor), Hemiculter leucisculus (Basilewsky)). 
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Fig. 1 Rank-ordered distribution plots of fishes in Chinese lakes 

a Sites rank-ordered by species richness in each site (X axis represent the % of the 135sites; Y axis represent 

the richness per site);  
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b Species (percentage) rank-ordered by percentage of sites where each species encountered (X axis represent 

the % of 435 species; Y axis represents the total percentage of sites where the species present) 

Fish diversity and assemblages in Chinese lakes 

In the MRT model, a robust decision tree with five terminal nodes was identified 

to minimize the cross-validated relative error and the complexity instead of the “1-se 

rule” as suggested by Breiman et al., (1984) (Fig. 2a). Comparisons of the constrained 

clustering from MRT models with similar numbers of unconstrained cluster groups 

(using K-means clustering and Euclidean distance) showed that the constrained and 

unconstrained groups are similarly homogeneous, which indicates the species clusters 

were spatially contiguous and the environmental variables adequately accounted for 

the species variance (De’ath, 2002). Although the MRT tree only accounted for 35.2% 

of the variation in the species data (Fig. 2b), De’ath described it as common because 

of the large number of low occurring species (Devantier et al., 2006). 

Therefore, all the 135 lakes were patterned into five assemblages according to 

the similarity of fish composition and the determinants (Fig. 2b). Two main clusters 

were defined as the first split (Cluster I and Cluster II), and this split identified two 

regions: high altitude region (plateau) and low altitude region (plain). In addition, five 

sub-clusters which we considered as five assemblages were also sub-divided, and 

contained 61, 26, 38, 4, 6 lakes respectively, named Ia, Ib, IIa1, IIa2, IIb.  
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Fig. 2 The output of MRT model for the fish species and environmental variables 

a Fish distribution patterns and assemblages defined by MRT model (alt: Altitude of the site; bio6: Minimum 

temperature of coldest month; bio7: Temperature annual range; bio14: Precipitation of driest month; the terminal 

nodes represent five fish assemblages Ia, Ib, IIa1, IIa2, IIb, see text for details) 

b Cross-validation of the Multi-variable Regression Tree analysis (the upper line is cross-validation relative 

error while the lower line is re-substitution error, the red circled point is the model with the greatest cross-validated 
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predictive accuracy) 

 

Box-plots of species richness in each assemblage are shown in Fig.3. The 

Kruskall-Wallis test revealed that species richness varied significantly among the 

different assemblages (p<0.05), while the multiple comparison test showed that 

species richness in each of the three assemblages in cluster II were significantly 

different from the two assemblages in cluster I (p<0.05). However, there is no 

significant difference between each assemblage in the same cluster. To simplify, we 

defined the richness in each lake as “lake richness” while the diversity in the 

assemblage as “fauna diversity” hereinafter. Cumulative species richness showed that 

only Ia did not reach an asymptote compared to the other four (Fig. 4). However, Ia 

contained the highest rates of species’ accumulation as well as the highest fauna 

diversity (280 species; abbreviated as sp. hereinafter), although the species richness in 

each lake was the lowest (median=12 sp.; Fig.3 and Fig.4). Lake richness in IIa2 and 

IIb showed higher values (median values are 84 sp. and 88.5 sp. respectively) but 

with lowest accumulative rates, while IIa2 also contained the lowest fauna diversity 

with only 84 species. Assemblage IIa1 had moderate lake richness (median value = 

55 sp.) as well as for the fauna diversity (184 sp.). Unfortunately, Ib seemed to be the 

one that contained both lower lake richness (median value = 22.5 sp.) and fauna 

diversity (99sp.) than the other four assemblages (Fig.3 and Fig.4).  
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Fig. 3 Box-plot for the species richness of each assemblage (Ia, Ib, IIa1, IIa2, IIb were the five 

assemblages defined in Fig.3; for each box plot hereinafter in the paper, the median (line within 

the box), first and third quartiles (box), non-outlier range (whiskers), and outliers (dot) are shown). 
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Fig. 4 Species accumulation curves for the five assemblages (figure a shows the global picture of 

the species accumulation for all the five assemblages, while the small figure b show the precise 

details of IIa2, IIb, not clearly shown in figure a.) 

Determinants of fish distribution and assemblages in Chinese lakes 

Five assemblages were thus mapped (Fig. 5), geographically: cluster I (Ia and Ib) 

mostly indicated the lakes distributed in Meng-Xin plateau, Yun-Gui plateau, 

Qinghai-Tibet plateau and the North-East plain, while clusterⅡ(Ⅱa1,Ⅱa2,Ⅱb) 

mainly indicated the lakes distributed in the Eastern plain, with the majority along the 

Yangtze River basin. From the tree (Fig.2b), we can see that altitude accounted for 

most of the variation in species distribution (23.22%), and explained about 65.9% of 

the total variation. Followed by the annual temperature range (bio7; accounted for 

4.54%), the minimum temperature of the coldest month (bio6; accounted for 4.04%) 

and precipitation in the driest month (bio 14; accounted for 3.36%). 

For these four determinants, Ia was characterized by high altitude (1908.85  

1050.96 m) and lower annual temperature range (32.58 10.54℃), while Ib in terms 

of relative high altitude (220.15±202.38m) and higher annual temperature range 

(51.54±1.47℃). However, clusterⅡ,Ⅱa1 was characterized mostly by the lower 

altitude (19.45 19.25m), a lower minimum temperature of the coldest month 

(-0.71±2.62℃ ) and lower precipitation in the driest month (29.97±9.28mm), while 

Ⅱa2 was characterized by lower altitude (14±0.82m), lower minimum temperature 

in the coldest month (1.12±0.12℃) and higher precipitation in the driest month 

(42.75 ±1.5mm ). AssemblageⅡ a2 was divided from assemblageⅡ a1 mainly 

depending on the higher precipitation of the driest month. InⅡb, lakes were 

determined in terms of lower altitude (21.16 ±5.84m ) and higher minimum 

temperature of the coldest month (2.1±3.84℃). 
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Fig. 5 Map of the five assemblages displayed in mainland China 

Indicator species of assemblages 

A total of 107 indicator species were indentified in five assemblages (contained 1 

sp., 8 sp., 1 sp., 59 sp. and 38 sp. respectively) (see Table. 2 for details). Cyprinus 

(cyprinus) chilia (Wu et al.) is the only indicator species for Ia, since this assemblage 

mostly consisted of the plateau fish fauna: fish distributed in these lakes were mostly 

stenochoric species, with some species even occurring only once. The main indicator 

species in assemblage Ib were Rhodeus sericeus (Pallas), Sarcocheilichthys lacustris 

(Dybowsky), Ladislavia taczanowski (Dybowsky), Gobio lingyuanensis (Mori), 

Gobio gobio cynocephalus (Dybowsky), Carassius auratus gibelio (Bloch), 

Misgurnus mohoity (Dybowski), Perccottus glohni (Dybowski). Coilia nasus 

(Schlegel) was the indicator species of Ⅱa1. Notably, clusterⅡa2 andⅡb comprised 

only 10 of the 135 lakes but contained 92.3% of the total indicator species, with all 

the indicator species in these two assemblages being common species in the shallow 
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lakes along the middle-lower Yangtze River. Therefore, Ia contains most of the 

plateau species, Ⅱa1, Ⅱa2 and Ⅱb contained mostly the plain fish, while Ib seems 

to be the transition zone between plateau and plain as it contained both plain fish and 

plateau fish. 

Discussion 

The present study is the first to have assessed the patterns of fish species 

distribution and assemblages as well as their determinants in a large scale in China. 

Our research provided precisely understanding of fish diversity and distribution 

patterns, clarified the main drivers, identified the indicator fish species, verified the 

hypothesis and examined the capacities of MRT model. Rather than some single 

models that assume species are independent, MRT is a novel tree method that directly 

determines the assemblages in terms of environment variables. This is suitable and 

essential for community analysis and produces more creditable results (De’ath, 2002). 

Fish diversity and assemblages in Chinese lakes 

In the present study, five assemblages (Ia, Ib,Ⅱa1,Ⅱa2,Ⅱb) were ultimately 

redefined according to the determinants and the fish composition, distinguished from 

the previous studies: nine administrative regions (Kang et al., 2013) and the five 

physiographic regions (Zhao et al., 2006; Wang & Dou, 1998). Both the lake richness 

and fauna diversity showed significant differences in each assemblage: lake richness 

in the plateaus was clearly lower than the plains, while the diversity of the fauna was 

the highest. 

AssemblageⅠa mainly consisted of the lakes distributed in the three famous 

plateaus (Qinghai-Tibet plateau, Yun-Gui plateau, Meng-Xin plateau) in China. Due 

to the particular natural environments and climatic conditions in plateaus (Wang & 

Dou, 1998), only one indicator species was found since most are stenochoric species. 

However, the number of lakes contained in this assemblage was as high as 61. This 

may partly explain why the lake richness in this cluster was lower (median value = 

12sp.) but the fauna diversity was the highest (280 sp.). On the other hand, fish fauna 

diversity in the assemblage will be even higher with the increasing of research lakes 
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since the species accumulation curve still has not approached the asymptote (Fig. 4). 

Meanwhile, in these plateaus, the complex of river systems and geographic situation, 

the specific climate and less effect of human activity made these areas easier for 

energy to be obtained, and thus could support a high number of species (Wang & Dou 

1998; Yang et al., 2004; Zhao et al., 2006; Kang et al., 2013). Zhao et al. (2006) also 

argued that the low lake richness in plateau was the result of the young geological age 

for new species colonization and speciation. In the authors' opinion, the results 

sustained the plausibility of the species-energy hypothesis. 

Lakes contained in assemblageⅠb were mainly distributed in North-east China. 

In fact, the lakes in this assemblage mainly belong to the Song-Nen plain. However, 

compared with the low altitude in clusterⅡ, Ⅰb was also divided as high altitude 

area (altitude>=50m). Indicator species found in Ⅰb were all especially distributed 

in northern China water systems with low economic value (Yang et al., 2010). A few 

previous reports considered that although the weather in north-east China was very 

cold in winter, the fauna richness in this region is not so low (Zhang, 1999; Zhao et al., 

2006). Whereas the fauna diversity (99sp.) was even lower than other assemblages in 

our study, so was the lake richness (median=22.5sp.). Our conclusion was supported 

by many field investigations (Ren, 1994; Yang et al., 2010), which indicated that the 

fish diversity in north-east China was significantly lower than in other areas. Overall, 

assemblagesⅠb seems to be the transition region from the plateau to the plain since 

clusterⅡall contained the lakes in the plains with plain fish fauna. 
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Code Scientific name P  
Asse

 

Code      Scientific name                     P         Assem 

 Cch Cyprinus (cyprinus) chilia Wu et al. 0.029 Ⅰa Ssm Silurus soldatovi meridioalis Chen 0.002 Ⅱa2 

Rse Rhodeus sericeus (Pallas) 0.01 Ⅰb Cfus Clarias fuscus 0.003 Ⅱa2 

Slac Sarcocheilichthys lacustris (Dybowsky) 0.047 Ⅰb Pvac Pseudobagrus vachelli (Richardson) 0.001 Ⅱa2 

Lta Ladislavia taczanowski (Dybowsky) 0.028 Ⅰb Ppg Pseudobagrus pratti Gunther 0.001 Ⅱa2 

Gli Gobio lingyuanensis Mori 0.005 Ⅰb Lni Liobagrus nigricauda (Regan) 0.002 Ⅱa2 

Ggc Gobio gobio cynocephalus Dybowsky 0.006 Ⅰb Aja Anguilla japonica T.et S. 0.006 Ⅱa2 

Cag Carassius auratus gibelio (Bloch) 0.001 Ⅰb Ola Oryzias latipes (Schlegel) 0.021 Ⅱa2 

Mmo Misgurnus mohoity (Dybowski) 0.022 Ⅰb Sch Siniperca scherzeri Steindachner 0.033 Ⅱa2 

Pglo Perccottus glohni (Dybowski) 0.001 Ⅰb Cro Coresiniperca roulai Wu 0.002 Ⅱa2 

Cna Coilia nasus (Schlegel) 0.028 Ⅱa1 Mch Macropodus chinensis (Bloch) 0.017 Ⅱa2 

Cbr Coilia brachygnathus (Kreyenberg et 

 

0.007 Ⅱa2 Oob Odontobutis obscura (Temminck et Schlegel) 0.015 Ⅱa2 

Ntt Neosalanx tankankei taihuensis Chen 0.004 Ⅱa2 Mmy Mugilogobius myxodermus (Herre) 0.001 Ⅱa2 

Nol Neosalanx oligodontis Chen 0.005 Ⅱa2 Ccl Ctenogobius cliffordpopei (Nichols) 0.002 Ⅱa2 

Eba Elopichthys bambusa (Richardson) 0.012 Ⅱa2 Cgi Ctenogobius giurinus (Rutter) 0.026 Ⅱa2 

Oel Ochetobius elongatus (Kner) 0.004 Ⅱa2 Asi Acipenser sinensis Gray 0.01 Ⅱb 

Scu Squaliobarbus curriculus (Richardson) 0.008 Ⅱa2 Pgl Psephurus gladius (Martens) 0.008 Ⅱb 

Obi Opsariichthys bidens (Gunther) 0.004 Ⅱa2 Mre Macrura reevesi (Richardson) 0.02 Ⅱb 

Tsw Toxabramis swinhonis (Gunther) 0.01 Ⅱa2 Cec Coilia ectenes (Jordan et Seale) 0.001 Ⅱb 

Hbw Hemiculter bleekeri Warpachowsky 0.01 Ⅱa2 Hbr Hemisalanx branchyrostralis (Fang) 0.005 Ⅱb 

Ppek Parabramis pekinensis (Basilewsky) 0.028 Ⅱa2 Lma Luciobrama macrocephalus (Lacepede) 0.001 Ⅱb 

Psi Pseudolaubuca sinensis (Bleeker) 0.001 Ⅱa2 Zpl Zacco platypus (Temminck et Schlegel) 0.003 Ⅱb 

Psim Pseudobrama simoni(Bleeker) 0.001 Ⅱa2 Oub Opsariichthys uncirostris bidens (Gunther) 0.006 Ⅱb 

Mte Megalobrama terminalis (Richardson) 0.015 Ⅱa2 Tar Toxabramis argentifer 0.001 Ⅱb 

Eda Erythroculter dabryi (Bleeker) 0.008 Ⅱa2 Parg Pseudobagrus argentivitatus(Regan) 0.001 Ⅱb 

Emo Erythroculter mongolicus (Basilewsky) 0.014 Ⅱa2 Paen Parapelecus engraulis (Nichols) 0.001 Ⅱb 

Cox Culter oxycephalus (Bleeker) 0.001 Ⅱa2 Mam Megalobrama amblycephala Yih 0.029 Ⅱb 

Eil Erythroculter ilishaeformis (Bleeker) 0.036 Ⅱa2 Eox Erythroculter oxycephaloides Kreyenberg et 

 

0.002 Ⅱb 

Xda Xenocypris davidi Bleeker 0.005 Ⅱa2 Pmi Plagiognathops microlepis (Bleeker) 0.005 Ⅱb 

Xmi Xenocypris microlepis Bleeker 0.001 Ⅱa2 Dtu Distoechodon tumirostris Peters 0.001 Ⅱb 

Xar Xenocypris argentea (Gunther) 0.008 Ⅱa2 Asim Acanthobrama simoni (Bleeker) 0.003 Ⅱb 

Dhu Distoechodon hupeinensis (Yih) 0.001 Ⅱa2 Pli Psendoperilampus lighti 0.001 Ⅱb 

Roc Rhodeus ocellatus (Kner) 0.016 Ⅱa2 Ahy Acheilognathus hypselonotus Bleeker 0.001 Ⅱb 

Rfa Rhodeus fangi Fang 0.001 Ⅱa2 Sca Spinibarbus caldwelli (Nichols) 0.001 Ⅱb 

Rli Rhodeus Lighti Wu 0.002 Ⅱa2 Spa Schizopyge parvus Tsao 0.001 Ⅱb 

Pii Paracheilognathus iimberbis (Gunther) 0.001 Ⅱa2 Ski Sarcocheilichthys kiangsiensis Nichols 0.001 Ⅱb 

Aba Acheilognathus barbatulus Gunther 0.001 Ⅱa2 Rcy Rhinogobio cylindricus Gunther 0.001 Ⅱb 

Amac Acheilognathus macropterus (Bleeker) 0.032 Ⅱa2 Sdu Saurogobio dumerili Bleeker 0.001 Ⅱb 

Ach Acheilognathus chankaensis (Dybowsky) 0.007 Ⅱa2 Gic Gobiobotia ichangensis Fang 0.003 Ⅱb 
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Table 2 Indicator species in each assemblage in Chinese lakes 

 

 

Ato Acheilognathus tonkinensis (Vaillant) 0.003 Ⅱa2 Cma Cobitis macrostigma Dabry 0.001 Ⅱb 

Pgu Paracanthobrama guichenoti Bleeker 0.007 Ⅱa2 Pfa Parabotia fasciata Dabry 0.001 Ⅱb 

Hma Hemibarbus maculatus Bleeker 0.021 Ⅱa2 Lel Leptobotia elongata (Bleeker) 0.01 Ⅱb 

Sss Sarcocheilichthys sinensis sinensis Bleeker 0.006 Ⅱa2 Mda Misgurnus dabryanus Sauvage 0.004 Ⅱb 

Snn Sarcocheilichthys nigripinnis nigripinnis 

 

0.014 Ⅱa2 Peu Pseudobagrus eupogon (Boul.) 0.001 Ⅱb 

Snit Squalidus nitens (Gunther) 0.001 Ⅱa2 Pal Pseudobagrus albomarginatus (Rendhal) 0.001 Ⅱb 

Sar Squalidus argentatus (Sauvage et Dabry) 0.001 Ⅱa2 Llo Leiocassis longirostris Gunther 0.05 Ⅱb 

Che Coreius heterodon(Bleeker) 0.001 Ⅱa2 Lcr Leiocassis crassilabris Gunther 0.034 Ⅱb 

Rty Rhinogobio typus Bleeker 0.007 Ⅱa2 Lus Leiocassis ussuriensis (Dybowski) 0.046 Ⅱb 

Mtu Microphysogobio tungtingensis (Nichols) 0.042 Ⅱa2 Hmac Hemibagrus macropterus Bleeker 0.014 Ⅱb 

Mki Microphysogobio kiatingensis (Wu) 0.001 Ⅱa2 Gsi Glyptothorax sinensis (Regan) 0.004 Ⅱb 

Sda Saurogobio dabryi Bleeker 0.012 Ⅱa2 Hku Hemirhamphus kurumeus (Jordan et Starks) 0.012 Ⅱb 

Sgy Saurogobio gymnocheilus Lo Yao et Chen 0.001 Ⅱa2 Skn Siniperca kneri Garman 0.019 Ⅱb 

Csi Cobitis sinensis (Sauvage et Dabry) 0.001 Ⅱa2 Ssc Siniperca scherzeri Steindachner 0.001 Ⅱb 

Pba Parabotia banarescui (Nalbant) 0.001 Ⅱa2 Mop Macrodus opercularis (Linnaeus) 0.001 Ⅱb 

Lpu Leptobotia purpurea (Nichols) 0.001 Ⅱa2 
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Generally, lakes contained in cluster Ⅱ could roughly be considered as the 

eastern plain in terms of lower altitude (altitude<50m), coinciding with the 

classification of Zhang (1954) and Li (1981). Assemblage Ⅱa1 consisted of the 

largest part of eastern region lakes (38 in total of 48) with Coilia nasus (Schlegel) as 

the sole indicator species. Simultaneously, lakes contained in assemblage Ⅱa1 

contained moderate lake richness (median value = 55 sp.) and fauna diversity (184 sp.) 

compared with other assemblages. From the map, we can see that the assemblage 

occupied two parts, some few lakes distributed in the 3H plain region (Huanghe, 

Huaihe and Haihe) (Kang et al., 2013), but most of them distributed in the 

middle-lower Yangtze plain region. The superiority of the natural environment along 

with the abundance of lake resources has turned the lakes in this area into one of the 

most important freshwater fishery bases in central China (Cui & Li, 2005).  

AssemblageⅡa2 only contained 4 lakes that were also distributed in the middle 

Yangtze River basin. The proper climatic conditions along with ample natural 

resources in the middle Yangtze River basin showed advantages for supporting more 

fish species (Liang & Liu, 1995; Cui & Li, 2005; Zhang, 2005), and also concurred 

with the species-energy hypothesis (Wright, 1983). 59 indicator species were 

identified in the assemblage. All the indicator species were common and dominant 

species in the lakes along the middle-lower Yangtze River basin. Assemblage Ⅱb 

consisted of 6 lakes distributed along the central Yangtze River basin, which 

contained the highest lake richness (with median value of 88.5 sp.) among all five 

assemblages. 38 indicator species were thus identified in the assemblage, similar to 

assemblage Ⅱa2, the indicator species in assemblage Ⅱb were also common plain 

species in the central-lower Yangtze River. In fact, lakes contained in assemblage Ⅱ

a2 and Ⅱb were either connected to the Yangtze River (e.g. Dongting lake, Poyang 

lake, Junshan lake, Wuhu lake) or isolated from some large lakes (e.g. Huanghu lake 

and Huangdahu lake). Moreover, these lakes used to be connected to the Yangtze 

River (Shi, 1989) which supported even more common fish species (Fu et al., 2003). 

Due to the historical river-lake connection, fish composition showed highly 
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homogeneity in these lakes (Ⅱa2 and Ⅱb, no significant difference), and therefore 

contained most of the indicative species (87.8% of all the indicator species). 

Therefore, it is no wonder that lakes distributed along the Yangtze River basin have 

higher lake richness compared with other assemblages. This result was also consistent 

with recent studies (Zhao et al., 2006; Kang et al., 2013). Consequently, compared 

with Ⅱa2 and Ⅱb, Ⅱa1 demonstrated lower lake richness ( median value = 55 sp.) 

mostly because of the disconnection of the lakes and the river (Liu & Wang, 2010; 

Fang et al., 2006). Furthermore, lake degradation, environmental pollution and 

irrational fishing modes in these lakes can also decrease the fish richness (Cui & Li, 

2005; Fang et al., 2006).  

Determinants of lake fish distribution and assemblages 

Overall, altitude, temperature annual range (TAN), precipitation in the driest 

month (PDM) and the minimum temperature of the coldest month (MTCM) were 

ultimately identified as the key factors for determining fish distribution and 

assemblages in Chinese lakes, among which altitude was the most important 

determinant. Altitude, precipitation and temperature have long been acknowledged to 

determine the distribution of organisms in various ecosystems, such as plants (Pottier 

et al., 2013), riverine and marine fish and invertebrates (Bussion et al., 2008; Cheung 

et al., 2009). 

Our result fitted very well with previous research that showed that altitude 

considerably affects fish distribution in aquatic ecosystems (Amarasinghe & 

Welcomme, 2002; Yoon et al., 2011; Barradas et al., 2012; Stojkovic et al., 2013). 

However, altitude is a complex variable: it can cause direct and indirect effects on fish 

distribution. Some preview studies have explored the two different influences 

(Legendre, 1993; Hawkins et al., 2003; Zhao et al., 2006), and have shown that 

indirect influences were even greater than direct effects, since altitude contained many 

other factors that could affect fish distribution. 

Temperature was an important factor that influenced fish distribution through its 

affect on fish metabolism (Gillooly et al., 2001), breeding (Mills & Mann, 1985), 
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development and growth (Mann, 1996; Wolter, 2007) and behavior (Taniguchi et al., 

1998). Here in our study, two kinds of temperature (TAN and MTCM) have been 

defined as the important factors which determine the fish distribution, consistent with 

Crisp (1996) and Mann (1996) who considered these two factors as having great 

importance in freshwater fish biological requirements. TAN heavily contributed in 

dividing cluster Ⅰinto two parts, the thermal range appeared to be important in the 

present study partly because of its vast variability (21.2℃-56.1℃). Since fish are 

poikilothermal animals they will suffer considerably from the environment 

temperature change as demonstrated on some European freshwater fish (Buisson et al., 

2008; Pont et al., 2005) and American species (Rathert et al., 1999). Although each 

fish species has a thermal preference and can usually be characterized by a tolerance 

range of temperatures varying by a few degrees, they are flexible and can adapt to a 

certain extent by physiological adjustments or behavioral thermoregulation. However, 

thermal ranges that exceed the proper range will without doubt affect fish lives and 

distributions (Gislason et al., 2010). This is the explanation as to why the MTCM was 

a major determinant of the fish distribution and assemblages in our study. In the 

present study, MTCM acted as the main determinants in cluster Ⅱ. This may be 

mainly because the fishes distributed in assemblage Ⅱ were adapted to temperate 

and a subtropical zone climate. Globally, MTCM had also been defined as the most 

important factor that determines the fish distributions and lives (Rubidge et al., 2011; 

Yu et al., 2013; Aguilar-Kirigin & Naya, 2013). Other than these two factors, 

precipitation has always been considered as one of the most important climatic factors 

in numerous recent studies (Zhao et al., 2006; Buisson et al., 2008; Buisson & 

Grenouillet, 2009), because the precipitation could influence the stream flows and 

hydrological conditions. The hydrology was even more complex and concerns diverse 

fields such as meteorology, geomorphology, geology or geography which could all 

affect fish assemblages and distribution. The PDM was also considered as having 

major impacts on niche shifts of freshwater species (Lauzeral et al., 2011), and thus 

affect fish distribution. Indeed, the PDM modifies the hydrological conditions of lakes 

directly, such as water content, water depth and transparency, and nutrients (Wetzel, 
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2001), which in turn affect fish lives and distributions (Brazner & Beals, 1997; Petry 

et al., 2003; Mello et al., 2009; Kang et al., 2013). Indeed, besides these factors, there 

are still many others that could affect and hinder fish distribution and biodiversity, 

such as land-cover, geographical variables, topological variables, biological invasion, 

artificial impacts and even net primary production (Park et al., 2006; Buisson et al., 

2008; Gevrey et al., 2009; Maloney et al., 2013; Kang et al., 2013). Thus in future 

studies, more impact factors should be considered comprehensively in order to obtain 

more powerful results and deeper explanations about the fish distributions and 

assemblages in lakes. 

In conclusion, altitude, precipitation and temperature which could also be 

attributed to the energy availability explain the fish diversity and distribution patterns 

across China. However, lake area that have always been considered as the key factor 

to determine fish dispersal, failed to explain the patterns.All the findings in the current 

study interpreted that fish species distribution pattern seems to support the 

species-energy hypothesis rather than the species-area hypothesis. 

Potential implications for biodiversity conservation 

Our results provide useful perspectives, not only on the current distribution of 

fish species, but also on the future scenarios under global change.These results 

revealed important perspectives on species conservation as well as the management of 

aquatic ecosystems in the future, and thus will be of interest to conservation biologists 

and environment managers. 

Overall, in terms of our findings, the three plateaus that comprised cluster Ⅰa 

should receive high conservation priority on fish conservation since Ⅰa possessed of 

the highest fauna diversity and richness of endemic fish species. Potential natural 

reserves should be considered for the conservation of endemic and endangered fish 

species. Indeed, the construction of natural reserves has long been considered as one 

of the effective approaches to conserve fish resources (Park et al., 2003; 2004; Zhao 

et al., 2006; Kang et al., 2013). These conservation strategies are mostly focused on 

the endemic fish since they are abundant in Chinese lakes and rivers (Park et al., 2003; 
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Fu et al., 2004; He et al., 2011). However, we still cannot ignore the impacts of 

invasive species since they are considered as one of the greatest threats to global 

biodiversity (Butchart et al., 2010; Vorosmarty et al., 2010). This is especially true for 

freshwater ecosystems that are particularly vulnerable to biological invasions 

(Cucherousset & Olden, 2011). 

Otherwise, in the authors' opinion, the most important plain region, Ⅱa1, that 

contains most of the plain fish fauna together with the highest lake richness needs 

extra consideration, since Ⅱa1 contains most of the lakes which provide major 

commercial freshwater fisheries in central China (Cui & Li, 2005). As conservation 

should be carried out in a networked region rather than a single reserve (Bonn & 

Gaston, 2005), different conservation strategies should be proposed aimed at different 

objectives. By contrast, with Ⅰa, the conservation strategies here should be to 

upgrade the fisheries to an eco-friendly modes, to improve the fish diversity and the 

health of the ecosystem (Guo et al., 2013). Moreover, one suggestion for the 

conservation of fish diversity in this area was the connection of the lakes with the 

Yangtze River (Fu et al., 2003; Liu et al., 2010).  
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Abstract: 

Predicting species richness and distribution patterns has long been the focus of 

theoretical and applied ecology, especially in the context of global climate change. 

Currently, a novel technique, Multivariate Regression Trees (MRT), have been used to 

predict both species richness and species distribution in order to improve the 

management and conservation of fish species in China. Our main objectives were (1) 

predicting the fish species distribution patterns and potential determinants in China; (2) 

identifying the species richness patterns and the drive factors; and (3) examining the 

predictive performance and accuracy of the novel multi-response tree model. Three 

accuracy measures were adopted to better evaluate the performance of the MRT: area 

under the curve (AUC), Cohen’s Kappa, and overall accuracy. The MRT model 

demonstrated good or very good performance values for most of the species with high 

AUC, Cohen’s Kappa and overall accuracy scores (median values of 0.87, 0.55 and 

0.84 respectively). At the species composition level, altitude was the main 

determinant for fish distribution in Chinese lakes (30.43%), followed by precipitation 

of the driest month (10.47%), temperature annual range (3.62%) and annual mean 

temperature (3.15%). While at the richness level, the median AUC value of 0.5 

interpret that MRT model could also better predict the fish species richness. 

Precipitation of driest month, maximum temperature of warmest month and lake area 

act as the main drivers of the fish species richness patterns. Overall, our results have 

provided the first comprehensive assessment of fish species composition and richness 

patterns on a national scale, identified the key ecological determinants, and showed 

both the species-energy hypothesis and species-area hypothesis to be plausible for fish 

species in China. Moreover, we demonstrated that MRT is a reliable and ideal 

community-based predictive technique for multi-species prediction. 

Key words: Multi-species prediction, MRT, Fish distribution patterns, Richness 

patterns, China, Geographical and climatic impacts 
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1. Introduction 

On-going global climate change has long been acknowledged to affect natural 

species and ecosystems (Fang et al., 2006; Buisson et al., 2010). Knowledge of 

species distribution and communities in ecosystems is a prerequisite for the 

understanding of ecosystem properties and processes as well as for effective 

conservation and spatial planning issues under global change (Reiss et al., 2011). 

Conservation and management decisions should always rely on the accurate 

assessment of large, or even global, scale species richness and distribution patterns, 

however it is too difficult to assess and monitor organisms globally. Thus species 

distribution models (SDM) became more important and suitable for integrating 

fragmental information of species and habitats (Guisan and Zimmermann, 2000). 

SDMs are generally developed to quantify the association between species occurrence 

or abundance and environmental, climatic or geographical predictors (e.g. Guisan and 

Zimmerman, 2000; Araújo and Guisan, 2006; Elith et al., 2007). They are usually 

used to explore, describe and even predict relationships between species data and 

environmental variables. During the last decade variations of SDMs have been 

substantially developed and widely applied to a variety of ecosystems, such as 

terrestrial ecosystems (e.g. Pottier et al., 2013), riverine ecosystems (e.g. Sharma et al., 

2007) and marine ecosystems (e.g. Reiss et al., 2011).  These models have been used 

to, for example, (1) explore distribution patterns or assemblages in existing habitats 

(e.g. Park et al., 2006; Grenouillet et al., 2011; Cheng et al., 2012), (2) evaluate the 

potential spread capacity of invasive species (e.g. Mika et al., 2008; Roura-Pascual et 

al., 2009; Brummer et al., 2013), and (3) assess biological responses to global changes 

(e.g. Peterson et al., 2002; Thuiller et al., 2005; Araujo et al., 2006; Buisson & 

Grenouillet, 2009; Tisseuil et al., 2012; Yu et al., 2013). Population modeling has 

increasingly emphasized prediction rather than description and explanation. 

Previously predictive models have been applied to the potential patterns and 

environmental effects of climate change on a series of taxa, including plants (e.g., 

Thuiller, 2004; Ohlemüller et al., 2006; Pottier et al., 2013), insects (e.g., Peterson et 

al., 2004), mammals (e.g., Thuiller et al. 2006a; Levinsky et al. 2007), amphibians 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2699.2006.01482.x/full�
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and reptiles (e.g., Araujo et al., 2006), birds (e.g., Peterson, 2003;Virkkala et al., 2008) 

and fish (e.g., Bussion et al., 2008a;b; Tisseuil et al., 2012; Yu et al., 2013). 

Nevertheless, most of the previous studies only focused on the species-specific 

model, which considers only individual species, such as generalized linear models 

(GLM; McCullagh & Nelder, 1983), generalized additive models (GAM; Hastie and 

Tibshirani, 1990), classification and regression trees (CART; Breiman et al., 1984), 

and random forest (RF; Breiman, 2001). As organisms are considered to co-occur as 

an assemblage, the species-specific models will be inadequate for multi-species data 

or community analysis. Guisan and Wilfried (2005) stated that SDMs currently face 

the challenge of reconstructing current and future patterns of communities from 

individual species predictions and assembly rules. It is important to fit the 

co-occurrence of a group of species related to environmental variables in a single 

process. 

MRT (Multivariate Regression Trees, De’ath, 2002; Larsen and Speckman, 

2004), the natural extension of CART, is an important consideration for community 

studies. Tree models have long been acknowledged as producing better predictions 

than some simple models (like LM, GLM), as tree approaches are well suited for 

analysis of complex ecological data (Breiman et al., 1984; De’ath and Rabricius, 

2000). MRT forms clusters of sites by splitting the data in terms of environmental 

values, and each cluster represents a species assemblage with its environmental values 

being defined as its associated habitat. MRT has been widely used in ecology recently 

(DeVantier et al., 2006; Davidson et al., 2010; Hamann et al., 2011), yet these studies 

focused on the description and explanation capacity of MRT for constrained clusters 

definition. Until now, no attempt has been made to assess the capacity of MRT for 

predicting multi-species distributions, even though it is known as a predictive model 

for species composition when environmental variables are available (De’ath, 2002). 

Moreover, predictions of future scenarios of species distribution could vary 

considerably depending on the performance of statistical models (Araujo et al., 2005; 

Lawler et al., 2006; Pearson et al., 2006). If MRT is expected to be increasingly and 

widely used in conservation and management studies, thorough examination, 
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including model validation and evaluation of model performance for species 

distribution predictions, is necessary. 

Currently, in contrast with plants and birds, studies assessing the impacts of 

global change on fish using species distribution models are lacking. This is despite the 

general acceptance of species richness of fish assemblages and species distribution 

patterns as effective and important indicators of ecological processes as well as the 

state of aquatic ecosystems (Lek et al., 2005; Park et al., 2006). However, very few 

publications demonstrating fish species richness and distributions in Chinese lakes 

could be found in the literature. Importantly lakes, among the most important aquatic 

ecosystems on the earth, can be ideal for studying fish distribution and assemblage 

since they are natural bio-geographical islands. Moreover, due to the vast geographic 

area of China, its lakes present significantly different natural environments, climatic 

factors and abundance of fish species (Wang & Dou, 1998), ideal for the study of fish 

distributions in association with environmental and climatic variables.  

Therefore, patterns at species-level (species distribution patterns) and 

assemblage level (species richness patterns) for fish species in Chinese lakes were 

modeled and predicted using MRT. In order to further assess the accuracy of MRT 

predictions, three different but complementary accuracy measures (overall accuracy 

(OA), Cohen’s Kappa statistic of similarity and area under the receiver operating 

characteristic curve (AUC)) were implemented. Our main objectives were (1) 

predicting the fish species distribution patterns and potential determinants in China; (2) 

identifying the species richness patterns and the drive factors; and (3) examining the 

predictive performance and accuracy of the novel multi-response tree model. 

 

2. Materials and methods 

2.1 Study area 

 Lakes in China were covered with complicated natural environments and large 

geological variations (Wang and Dou, 1998). In the present study, data from a total of 

135 lakes (21.9-48.9º N and 81.2-132.6º E, Fig.1) across mainland China with 

creditable fish presence-absence data were compiled. The surface areas of these lakes 
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range from 0.0006-2933 km2. The location and characteristics of each lake are 

summarized in Appendices Table S1. 

 

 

Fig.1 Locations of the study lakes in mainland China 

 

2.2 Response variables 

In accordance with the research objectives, two response variables, fish species 

composition and fish richness, were thus defined and predicted. Totally, 425 fish 

species were recorded in the 135 Chinese lakes; presence-absence data of 77 common 

indicator species with prevalence higher than 6% were compiled and used in the 

model (see Appendices Table S1 for details). Species richness index (SR), calculated 

for all the lakes, and was used as the richness level response variable. 

Presence-absence data were used because of advantages in modeling species 

distributions and assemblages and yielding more accurate predictions (Cawsey et al., 

2002; Elith et al., 2007). To ensure the data quality and authenticity, only fish 

composition data derived from long-term monitoring and surveying were adopted, 

while data with insufficient sampling effort were omitted. For the lakes with fish data 



Modelling the lake fish assemblages and ecosystem properties in China 

146 
 

from several time periods, normally the earliest one was preferred as it was presumed 

that they may suffer from fewer artificial disturbances. Fish composition data were 

then revised according to the monograph Wu (1977; 1964) and “Fauna Sinica” to deal 

with possible nomenclatural changes (e.g. synonyms, newly discovered and named 

fish species).  

2.3 Predictor variables 

  For the predictor variables, we used a set of climatic and geographic variables. 

The climatic variables were derived from the WorldClim database (Hijimans et al. 

2005, available at http://www.worldclim.org), and then extracted with Arcgis 10.1 

(ESRI). This database was developed from compiled monthly averages of climate as 

measured at weather stations from a large number of global, regional, national and 

local sources, mostly from 1950–2000, using the Thin Plate Smoothing Spline (TPS) 

algorithm that yielded climate surfaces for monthly maximum, minimum, mean 

temperatures and total monthly precipitation (Hutchinson 1995). In order to improve 

the accuracy of our analyses, we chose the highest resolution (30 arc-seconds (~1 

km)). These climatic variables have been widely used in ecological modeling all over 

the world. However, since correlation between predictors might produce spurious 

results (Phillips et al. 2006), a PCA (principal component analysis) is performed 

before the modeling in order to eliminate the variables with high correlation. 

Consequently, a total of 9 environmental variables including Elevation of the site, 

Lake area, Annual mean temperature, Mean diurnal range (max temp–min temp), 

mean monthly temperature, Isothermality, Maximum temperature of warmest month, 

Precipitation of driest month, Precipitation of coldest quarter, are contained in the 

analysis (Table 1). 

 

 

 

 

 

http://www.worldclim.org/�
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Table1 The description of the predictor variables used in the study (The variables with bold are selected to be used in the predictive model) 

Variables 

abbreviation 

Variable type Min Median Mean Max SD 

Latitude Mean latitude 21.90  31.10  34.42  48.90  7.90  

Longitude Mean Longitude 81.20  114.40  111.60  132.60  10.47  

ALT Elevation of the site 2.00  144.00  911.70  4947.00  1154.56  

A Surface area of the lake 0.01  27.95  225.80  4930.00  544.82  

AMT Annual mean temperature -5.00  140.00  113.70  217.00  61.45  

MDR Mean diurnal range: mean of monthly (max temp–min temp) 70.00  110.00  104.50  146.00  19.95  

ISO Isothermality: (Bio2/Bio7) *100 21.00  25.00  30.16  53.00  9.78  

TS Temperature seasonality (SD *100) 3242.00  8807.00  9305.00  15770.00  3468.65  

MTWM Maximum temperature of warmest month 130.00  286.00  284.40  340.00  46.71  

MTCM Minimum temperature of coldest month -295.00  -22.00  -79.59  93.00  109.16  

TAR Temperature annual range (Bio5–Bio6) 212.00  331.00  364.00  561.00  103.52  

MTWE Mean temperature of wettest quarter 78.00  216.00  214.30  283.00  40.57  

MTDQ Mean temperature of driest quarter -208.00  50.00  -2.47  162.00  104.59  

MTWA Mean temperature of warmest quarter 78.00  221.00  227.00  286.00  48.12  
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MTCQ Mean temperature of coldest quarter -213.00  43.00  -12.32  149.00  99.40  

AP Annual precipitation 82.00  919.00  806.30  1480.00  409.61  

PWM Precipitation of wettest month 18.00  186.00  168.60  305.00  63.03  

PDM Precipitation of driest month 0.00  9.00  15.04  44.00  14.62  

PS Precipitation seasonality(coefficient of variation) 39.00  86.00  83.35  138.00  26.64  

PWEQ Precipitation of wettest quarter 47.00  461.00  423.70  815.00  171.80  

PDQ Precipitation of driest quarter 2.00  38.00  56.64  160.00  55.12  

PWAQ Precipitation of warmest quarter 47.00  443.00  403.20  676.00  157.02  

PCQ Precipitation of coldest quarter 2.00  39.00  60.01  175.00  59.59  

The unit for all the temperature was (°C * 10), for all the precipitation was (mm). 

Min: the smallest observation;  

Median: the median value of all the observations; 

Mean: the mean value of all the observations; 

Max: the largest observation; 

SD: the standard deviation. 
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2.4 Data analysis 

2.4.1 Modeling techniques 

Our study was conducted at two levels: species level and assemblage level. 

Multivariate regression trees (MRT) are a species-driven but community-based 

technical approach, with regression trees as the results, where constrained clusters are 

always split and all species in the assemblage are explained and predicted by a series 

of environmental values. 

MRT applies a recursive partitioning algorithm that splits objects (e.g. sampling 

sites) into homogenous groups according to the response, with the splits constrained 

by explanatory variables. The tree is grown by splitting the data a large number of 

times, and then it is subsequently pruned (reduction of the number of groups) via a 

re-sampling method called v-fold cross-validation (Breiman et al., 1984) to obtain the 

best predictive tree size. Each MRT model was replicated 100 times to ensure results 

were not obtained by chance.  

The lakes were randomly subdivided into two data subsets: calibration dataset 

(70% of the dataset) and validation dataset (the remaining 30%). The calibration 

dataset was used to generate the prediction models while the validation dataset was 

used to evaluate the predictive performance of the model. The results of species 

distribution predictions from MRT modeling were then converted into binary values 

using one of the threshold methods, maximizing the sum of two measures: sensitivity 

(measures the percentage of presence correctly predicted) and specificity (measures 

the percentage of absence correctly predicted) (Fielding and Bell 1997). 

2.4.2 Model evaluation 

To better assess the performance and accuracy of the MRT models, two 

threshold-dependent accuracy measures (overall accuracy (OA) and Cohen’s Kappa 

statistic of similarity) and one threshold-independent accuracy measure (area under 

the receiver operating characteristic curve (AUC)) were adopted. For the prediction of 

species richness, only AUC was used to assess the model performance. 

Overall accuracy, the probability that a site (either presence or absence) is 

correctly predicted, is known as the most common measure used in assessing model 
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performance. Its application can date back to Finley (1884) who employed this 

measure for assessing the accuracy of tornado activity forecasts. The overall accuracy 

is based on binary predictions and measures the percentage of both presence and 

absence correctly predicted, enabling the quantification of the match between 

predicted and observed distributions easily with an independent data set. 

Cohen’s Kappa statistic of similarity (Cohen, 1960) is one of the most used 

accuracy measures in various disciplines, especially in species distribution models. 

Cohen’s Kappa is acknowledged to be one of the most robust evaluations and was 

shown to alleviate the overestimate problem of overall accuracy (Liu et al., 2011). 

There are classifications for the kappa value:0 - 0.2 = “Slight agreement”; 0.2 - 0.4 = 

"Fair agreement"; 0.4 - 0.6 = "Moderate agreement"; 0.6 - 0.8 = "Substantial 

agreement"; 0.8 - 1.0 = "Almost perfect agreement" (Landis and Koch, 1977). 

AUC is another widely used accuracy measure in various disciplines, including 

ecology. However it is one of the threshold-independent accuracy measures. AUC 

ranges from 0 to 1, with values greater than 0.5 indicating that the model’s 

discrimination is no better than random, 1 implying the model discriminates perfectly 

(Swets 1988; Elith and Burgman, 2002).  

Data analysis was conducted in R (R Core Team 2013). “MVPART wrap” 

(Ouellette et al. 2012) and “mvpart” (De’ath 2002) were used to extract detailed 

information from the MRT model, especially the output, including graphs and 

numerical results. 

3. Results 

An MRT model was constructed with six terminal nodes which can be qualified 

as six clusters of fish assemblages (Fig. 2a). The tree size was selected by 

cross-validation which showed the lowest predictive error (Fig. 2b) in the calibration 

dataset. The coefficient of determination (R2) is a commonly used measure of 

explanatory power in linear modeling which represents the proportion of variation of 

the response variables explained by a model. In this model R2=47.7%, which showed 

that all the variables we used in the model can explain 47.7% of the total variance. 

Ultimately, six fish assemblages were mainly determined by four explanation 

http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0587.2011.07050.x/full#b7�
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variables. Overall, altitude (ALT, 30.43%) contributed the most to fish assemblages, 

followed by precipitation of the driest month (PDM, 10.47%), annual temperature 

range (TAR, 3.62%) and annual mean temperature (AMT, 3.15%) (Fig. 2a). 

Assemblage 1 and 2 contained the fish species which were linked to an altitude 

greater than 50 m and separated by an annual temperature range lower or higher than 

50℃. Fish species in assemblage 5 and 6 were related tightly at altitudes lower than 

50 m, and a high precipitation during the dry season (superior than 36.5 mm). 

However, fish species in assemblage 3 and 4 were determined by a relatively lower 

altitude, and lower precipitation during the dry season (< 36.5 mm), while assemblage 

3 preferred a mean annual temperature lower than assemblage 4 (Fig. 2a). 
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Fig.2 Multivariate response tree validated model for lake fish species distributed in China. 

a. MRT tree model predicting the species distributions in Chinese lakes (see Table 1 for 

details of the variables) 

b. Selection of the tree size by cross-validation method. 

 

In order to evaluate the model performance, AUC (threshold-independent 

measure), overall accuracy (threshold-dependent) and Cohen’s Kappa were used. The 

results showed that the MRT model could accurately predict the fish species 

distributions in terms of assemblage level, with AUC values ranging from 0.53 to 0.99 

(with a median value of 0.87), the overall accuracy ranging from 0.61 to 0.98 (with a 

median value of 0.84) (Fig. 3), and the Kappa values range from 0.012 to 0.91 (with a 

median value of 0.55) (Fig. 4). All three accuracy measures showed significantly that 

most of the species were accurately predicted by the model. However three species 

(Opsariichthys uncirostris bidens, Clarias fuscus and Paracheilognathus iimberbis) 

were not accurately predicted, with kappa values lower than 0.2. This indicated the 

predictions were in ‘slight agreement’, while the other 74 indicator species were 

predicted from ‘fair agreement’ to ‘perfect agreement’ (Fig. 4). These evaluated 

results imply that the discrimination of the MRT model was no better than random 

and thus demonstrated to be robust and informative for the prediction of fish species 
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distributions. 

For species richness, a species richness index was used as the response variable. 

The AUC value (0.5) for the MRT model showed that the model results for species 

richness is no better than random and thus could be used for fish species richness 

prediction in Chinese lakes. Simultaneously, precipitation of driest month, maximum 

temperature of warmest month and lake area were identified to be the most important 

factors related to fish species richness in Chinese lakes. Lakes with higher 

precipitation of driest month (bio14≥16.5 mm) and larger lake surface area (area ≥

216.1 km2) were predicted to support more fish species, approximately 80 species per 

lake; while the lakes with lower precipitation of driest month (bio14 < 16.5 mm) and 

lower maximum temperature of warmest month (bio5 < 26 ℃) were predicted to 

support the fewest fish species, approximately 8 species per lake (Fig. 5). 

 

 
Fig.3 The evaluation results of the MRT model by Overall Accuracy and AUC measures 
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4. Discussion 

Numerous studies have evaluated the predictive performance of different 

modeling techniques over the last decade. In the current study, the capacity of MRT 

models in predicting fish species assemblage patterns and species richness patterns 

based upon geographical and climatic variables was examined in Chinese lakes. 

Generally, we emphasize that MRT was a robust modeling technique for species 

prediction under global changes; ecologically, our results highlight the significance of 

climatic and geographical variables in determining fish assemblages and distributions 

in aquatic ecosystems. 

 

 
 

Fig.4 The species-rank kappa value for the MRT model evaluation 

a. Cleveland dot plots of the kappa values 

b. Boxplot of the kappa values 
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4.1 Model performance and technique assessment  

MRT is used as the main approach for species distribution prediction. A 100 

cross-validation test was employed here to strike a balance between explanatory and 

predictive power and to obtain a more “honest” assessment of the model, with avoid 

the over-fits of the multivariate regression tree analysis. Thus the minimum 

cross-validated error tree with six nodes was selected in this study (De’ath and 

Fabricus, 2000).  

AUC, overall accuracy and Cohen’s Kappa were employed to better evaluate the 

model performance and assess the possibilities of MRT modeling for species 

distribution prediction. AUC is always considered as one of the most useful and 

popular performance measures in common ecological model studies (e.g. Manel et al. 

1999, 2001; Guisan and Zimmermann 2000; Pearce and Ferrier 2000; Luck 2002; 

Gibson et al. 2004; Araujo et al. 2005; Luoto et al. 2006; Buisson et al, 2008a;2008b; 

Buisson et al. 2009; Grenouillet et al. 2011). It is considered to be the strictest 

performance measure by some researchers, because it is an independent threshold 

measure of quality (Fielding and Bell 1997; Buisson et al. 2008a). AUC scores of 0.5 

indicate that a model has no discriminatory ability, while a score of 1 indicates that 

presence and absence are perfectly discriminated. In our study, AUC values of the 

indicator species varied from 0.53 to 0.99 with an average value of 0.87, indicating 

that almost all the species seemed to be perfectly predicted by the MRT model. The 

same was observed for overall accuracy, where the results varied from 0.61 to 0.98 

with an average of 0.84, also indicating that all the species could be accurately 

predicted by the MRT model with strong discrimination. 
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Fig.5 MRT model predicting the fish species richness in Chinese lakes. The AUC value for 

this model is 0.5. 

 

Some researchers criticize that AUC and overall accuracy may overestimate 

model performance (Lobo et al., 2008; Peterson et al., 2008; Jimenez-Valverde, 2012). 

However Cohen’s Kappa is considered as one of the good solutions to the 

overestimate problems observed with AUC and overall accuracy (Liu et al., 2011) as 

the Kappa index  can provide a proportional accuracy for predicted presence and 

absence (Cohen 1960), and provide a robust evaluation of a model’s performance. 

Kappa has already been widely used in recent ecological studies (Manel et al. 2001; 

Liu et al. 2005; Virkkala et al. 2005; Buisson et al. 2008a; Gevrey et al. 2009). 

Cohen’s Kappa values in the current study varied from 0.012 to 0.91 with a mean 

value of 0.55. A mean Kappa value of 0.55 also indicates that most of the species 

were accurately predicted by the MRT model, except the three species (Opsariichthys 

uncirostris bidens, Clarias fuscus and Paracheilognathus iimberbis) which have 

lower kappa values between 0 and 0.2. There are many factors, such as lower 

prevalence, spatial autocorrelation, species attributes, environmental range size and, 

potentially, the model technique, which may result in the observed low accuracy of 

prediction for these three species.. In the current study, the results may mainly be 
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affected by low occurrence and the environmental range of the three species. 

Normally for some rare species, poor performance measures would be obtained. 

Buisson et al. (2008a) found that rainbow trout was the rare species which obtained 

the low Kappa value. Actually, this phenomenon is common in some previews studies 

(Manel et al. 2001; Liu et al. 2005; Gevrey et al. 2009). The species’ environmental 

range could also be one of the main factors which drive the uncertainty of the 

prediction of the three species in this study, as numerous studies validate that species 

with a smaller range can be better predicted than species with a larger environmental 

range (Hernandez et al., 2006; Grenouillet et al., 2011). 

Overall, MRT models have been evaluated to be effective and robust enough for 

species distribution prediction from the ensemble evaluated measurements, even 

though the kappa values were marginally affected by some rare species. In conclusion, 

the model performance values provided optimistic estimates of the true predictive 

capability of MRT modeling (Araujo et al., 2005). Therefore, MRT is a robust and 

appropriate approach for modeling similar datasets, as it can handle complex 

ecological data with mixed change and high-order interactions (De’ath, 2002; 

Davidson et al., 2010). 

Currently, although numerous studies focus on defining fish distribution patterns 

in conjunction with the correlated environmental factors, most are based on the 

species-specific models (LM, GLM, GAM, CART, RF) which typically assume that 

each species is independent from the others that occur at the same location (Larsen 

and Speckman, 2004; Guisan and Thuiller, 2005). However, in natural ecosystems, 

one species always coexists with many other species to form a community, within 

which all species are sensitive to resource competition (Wetzel, 2001). Thus, 

species-specific models fitted to each species would ignore the inter-specific 

relationships that would provide alternative and variable information about species 

distribution (Yin, 1990), while the prediction approach at the community scale could 

overcome the disadvantages of the traditional species-specific focus (Joy and De’ath, 

2004; Olden et al., 2006). 
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4.2 Prediction and determinants of fish species assemblages in Chinese lakes 

From the validated MRT model, we conclude that ALT (altitude), PDM 

(precipitation of driest month), TAR (temperature annual range) and AMT (annual 

mean temperature) were ultimately identified as the key factors determining the fish 

species distribution prediction in Chinese lakes, among which altitude was the most 

important determinant. In fact, altitude, precipitation and temperature have long been 

acknowledged as determinants of the distribution of organisms, such as plants (Prasad 

et al., 2006; Pottier et al., 2013) and riverine and marine fish and invertebrates 

(Bussion et al., 2008a; Cheung et al., 2009).  

Altitude generally impacts distribution and life history traits of organisms 

globally (Amarasinghe and Welcomme 2002; Zhao et al. 2006; Yoon et al. 2011; 

Barradas et al. 2012; Stojkovic et al. 2013). As a complex variable, it can have direct 

and indirect impacts on fish distribution. Previous studies that have explored these 

impacts (Legendre 1993; Hawkins et al. 2003; Zhao et al. 2006), indicated that 

indirect impacts were even more significant than direct impacts, since so many other 

factors that could affect fish distribution also vary with altitude. 

Without doubt, temperature is an important factor that influences fish distribution 

through fish metabolism (Gillooly et al., 2001), breeding (Mills & Mann, 1985), 

development and growth (Mann 1991; Wolter 2007) and behavior (Taniguchi et al. 

1998). In our study, two kinds of temperature statistics (TAR and AMT) were defined 

as important in the determination of fish distribution, which is consistent with Crisp 

(1996) and Mann (1996) who considered these two factors as of high importance for 

the biological requirements of freshwater fish. The influence from TAR in the present 

study may be partly due to the vast variability of the temperature (21.2 - 56.1℃), as 

fish are poikilothermal animals and therefore highly sensitive to changes in 

temperature. Some European freshwater fishes (Buisson et al., 2008a; Pont et al., 

2005; Crisp, 1996; Mann, 1996) and American species (Rathert et al., 1999) were also 

demonstrated to be great impacted by the TAR. Although each fish species has a 

thermal preference characterized by a tolerance range of temperatures, they are 

flexible and can adapt to a certain extent with physiological adjustments (Johnson & 
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Kelsch, 1998) or behavioral thermoregulation (Heggenes et al., 1993). However, 

thermal ranges exceeding the normal range will impact fish populations and 

distributions (Gale et al., 2013; Gislason et al., 2010). Extremely low temperatures 

may affect metabolism, breeding, growth, behavior, and thereby fish distributions 

(Ruibidge et al., 2011; Yu et al., 2013; Aguilar-Kirigin & Naya, 2013).  

Apart from altitude and temperature, precipitation has been considered as one of 

the most important climatic factors in numerous recent studies (Zhao et al., 2006; 

Buisson et al., 2008a;b; Buisson and Grenouillet, 2009). Precipitation may impact 

stream flows and hydrological conditions, while hydrology is even more complex and 

concerns diverse factors such as meteorology, geomorphology, geology or geography, 

which could all affect fish assemblages and distribution. The PDM is also considered 

as having a large impact on niche shifts of freshwater species (Lauzeral et al., 2011), 

and thereby affecting fish distribution. Indeed, the PDM can modify the hydrological 

conditions of lakes directly, such as water content, water depth and transparency, 

nutrient supplements (Wetzel, 2001), which in turn affect fish populations and 

distributions (Brazner and Beals, 1997; Petry et al., 2003; Mello et al., 2009; Cheng et 

al., 2012; Kang et al., 2013). 

The set of the eight variables used in this study was relatively successful in 

predicting and explaining the fish assemblages using the MRT model. However, a 

number of factors have been identified as potentially affecting fish distribution and 

diversity globally, such as land-cover, geographic variables, topological variables, 

biological invasion, artificial impacts and net primary production (Park et al., 2006; 

Buisson et al., 2008a,b; Gevrey et al., 2009; Maloney et al., 2013; Kang et al., 2013). 

Further research therefore requires the inclusion of such factors  in order to obtain 

more powerful explanations. More importantly, as we live in a changing world, 

predictions of species distributions based on possible future scenarios are more 

desirable than the explanation of the current situation. Thus, more efforts should be 

made to improve the understanding of the potential distribution and impacts of fish 

species associated with the global climate change. 

 



Modelling the lake fish assemblages and ecosystem properties in China 

160 
 

4.3 Prediction and determinants of fish species richness in Chinese lakes 

Species richness is one of the most important biodiversity indicators in ecology. 

At this level, our research revealed that fish species richness was highly related to 

precipitation of driest month (PDM), maximum temperature of warmest month 

(MTWM) and lake area (A). As seen previously, fish species distributions are highly 

related to precipitation and temperature, it therefore follows that species richness 

should also be affected by precipitation and temperature. Results also showed that 

higher fish species richness is predicted in lakes with sufficient precipitation and a 

larger surface area. This is in agreement with the actual situation in China where lakes 

distributed along the middle reach of the Yangtze River, such as Dongting lake, 

Liangzi lake, Hongze lake, Poyang lake, have  a higher fish richness as they are 

exposed to an appropriate temperature, abundant rainfall and are lakes with relatively 

larger areas (Cui and Li, 2005). However, lakes distributed in parts of Qinghai-Tibet, 

Meng-Xing and north-east China have relatively lower fish richness due to the lower 

precipitation and lower temperature (Zhao et al., 2006). In fact, several hypotheses 

have been presented on species richness patterns, among which the species-area 

hypothesis and the species-energy hypothesis (Wright, 1983) are the most popular. In 

this study, we found that PDM, MTWM and lake area best explained the variability of 

fish species richness patterns in China. These results therefore support the plausibility 

of both hypotheses for the fish of Chinese lakes. Our results support the 

species-energy hypothesis, which claims that environments with higher energy 

availability could support more species, as well as supporting the hypothesis that large 

surface areas could support more fish species, although in this study lake area was not 

the highest contributer to the prediction of species richness. The lake area effects may 

be overshadowed by the large variations of the climatic variables in our study. Our 

findings were generally consistent with some studies in terrestrial ecosystems (Wright 

et al., 1999; Hawkins et al., 2003a), and freshwater ecosystems (Zhao et al., 2006). 

Some other studies, with a smaller scale focus,, also argued that fish species richness 

was highly related with water depth (Cheng et al., 2012), habitat (Petry et al., 2003) 

and other organisms (Xie et al., 2001) in lakes.  
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 The results of the current study may provide a basis for future research using 

MRT as well as contributing to conservation of fish biodiversity under global 

changes.  

In conclusion, our research focuses on the understanding of fish species richness 

and distributions patterns as well as the potential driving factors behind these 

parameters in Chinese lakes. The recursive partitioning and regression tree models 

MRT were used and thus be examined. Simultaneously, we have drawn regarding the 

relative roles of the environmental and climatic variables in driving the lake fish 

species distribution and richness patterns. Further study of this approach using more 

accurate predictive models should be encouraged to advance our understanding of the 

profound influence of global change on species distribution under future scenarios. 
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Abstract: 

Species distribution models (SDM) have been routinely used for the purpose of 

species conservation and biodiversity management, especially in the context of global 

climate change. However, there is little knowledge about the uncertainty source on the 

SDM for the predictions in aquatic ecosystems, especially in the large-scale research. 

Therefore, we contribute to the first perspective on the uncertainties of SDMs in 

predicting fish species distribution in lake ecosystems. Totally, 92 fish species were 

predicted with climatic and geographical variables respectively using nine widely 

implemented species distribution models. Generally, we focused on explore the 

potential impacts from two main kinds of uncertainty sources: species characteristics 

(contained species prevalence, altitude range, temperature range and precipitation 

range) and model technique (calibration technique and evaluation technique). Finally, 

our results highlight that predictions from single SDM were so variety and unreliable 

for all species while ensemble approaches could yield more accurate predictions; we 

also found that there was no significant influence on the model outcomes from the 

evaluation measures; we emphasized that species characteristics as species prevalence, 

altitude range size and precipitation range size would strongly affect the outcomes of 

SDMs, but temperature range size didn’t show a significantly influence; our findings 

finally verified the hypothesis that species distributed with a smaller range size could 

be more accurately predicted than species with large range size to be plausible in 

aquatic ecosystems. Our research would provide promising insights into the 

predicting of fish species in aquatic ecosystems under the impacts of global climate 

change, especially for the conservation of endemic fish species in China which we 

inferred could be better predicted. Moreover, our results improved the understanding 

of uncertainties from species characteristics and model techniques in species 

distribution model. 

Keywords: Ensemble models; Uncertainties; Species characteristic; model technique; 

China; Fish species distribution and assemblage 
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Introduction 

Species distribution model (SDM), generally developed to quantify the 

association between species’ occurrence or abundance and environmental, climatic or 

geographical predictors (e.g. Guisan and Zimmerman, 2000; Araújo and Guisan, 2006; 

Elith et al., 2007), have been widely implemented in both basic and applied ecology 

recently, especially for species conservation and biodiversity management. Over the 

last decade, numerous of SDMs as Generalized Linear Models (GLMs, McCullagh 

and Nelder, 1989), Generalized Additive Models (GAMs, Hastie and Tibshirani, 

1990), Classification and Regression Tree (CART, Breiman et al., 1984), Random 

Forest (RF, Breiman, 2001), and even some multi-species model as Multivariate 

Adaptive Regression Splines (MARS, Friedman, 1991), Artificial Neural Networks 

(ANN, Ripley, 1996) and Multivariate Regression Trees (MRT, De’ath, 2002) have 

been documented and applied routinely for (1) predicting distribution patterns or 

assemblages from the current habitat status (e.g. Park et al., 2006; Buisson et al., 2008; 

Grenouillet et al., 2011), (2) evaluating the potential spreading capacity of invasive 

species (e.g. Roura-Pascual et al., 2009; Brummer et al., 2013), and (3) assessing 

biological responses and occurrences to global changes (e.g. Thuiller et al., 2005; 

Araujo et al., 2006; Buisson and Grenouillet, 2009; Tisseuil et al., 2012; Yu et al., 

2013).  However, variability and uncertainty about the outcomes of different 

statistical models, has been rarely considered and assessed. 

To date, along with the widely application of SDMs, increasingly publications 

began to focus on the accuracy and uncertainty of species prediction, results 

demonstrated that predictions from SDMs were not equally reliable for all species and 

thus the best performing models are not always the same for different species (Luoto 

et al., 2005; Segurado and Araujo, 2004; Barbet-Massin et al., 2009). Thus the 

outcomes and ecological predictions derived from alternative single models could be 

so variety as to affect the decision making (Guisan et al., 2007; Araujo and New, 2007; 

Buisson et al., 2010), while quantify the contribution from different sources of 

uncertainty will help to reduce the variance of ecological predictions and decide 

where to take into account in the future research to reduce variability and improve the 
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reliability in projections (Buisson et al., 2010). Due to the aforementioned issues, 

former studies have also managed to explore the uncertainty sources of the species 

distribution modelling. Up until now, model techniques, data characteristics, species 

prevalence, latitudinal range, spatial autocorrelation, rarity and species environmental 

ranges have all considered to be the potential uncertainty source which could affect 

the model performance (Manel et al., 2001; Segurado and Araujo, 2004; Boone and 

Krohn, 1999; Karl et al., 2000; Marmion et al., 2009b). However, very few researches 

quantify both of the uncertainties from species characteristic and model techniques 

synthetically, especially in aquatic ecosystems (But see Grenouillet et al., 2011), In 

addition, former researches only conducted in a small geographical scale, which 

would be constrained by the country border and thus hide the effects of geographical 

and environmental ranges (Grenouillet et al., 2011). While it is worth noting that the 

factors determine species distributions vary according to the scale of analysis 

(Whittaker et al., 2001). Nowadays, large-scale study of species distribution 

prediction in aquatic ecosystems could rarely be found. 

Over the last two decades, SDMs have been widely used across terrestrial 

ecosystem, stream ecosystems, marine systems, while lakes remain poorly studied 

despite the fact that they are among the most important aquatic ecosystems on earth 

and can be ideal fields for studying fish distribution and assemblage since they are 

natural bio-geographical islands (Wang and Dou, 1998; Zhao et al., 2006). Moreover, 

due to the large potential uncertainty sources existed in modeling the species 

distribution in aquatic ecosystems, there is nearly no evidence could be found for fish 

species prediction using SDMs in lake ecosystems in the world. Therefore, 

assessment of the uncertainty source and accuracy on the species distribution models 

in predicting fish distribution and diversity in lakes should be urgently addressed 

before the projections were used for decision making in the context of global change. 

Consequently, in this context, we designed our study which takes into account 

both of the uncertainties from species characteristics (species prevalence, altitude 

range, temperature range and precipitation range) and model techniques (9 SDMs × 

3 evaluation methods) in a large geographical scale in aquatic ecosystems. Finally, a 
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distribution of 92 fish species in 135 Chinese lakes were modeled with nine widely 

used species distribution models (GLM, RF, CTA, GAM, MARS, SRE, ANN, GBM 

and MDA), the performance were evaluated with Area under the receiver operating 

characteristic curve (AUC ; Fielding and Bell, 1997), Cohen’s Kappa (Cohen, 1960) 

and True skill statistic ( TSS ; Bohning et al., 2008). Generally, our main objectives 

were 1) to assess the accuracy and uncertainties of nine widespread species 

distribution models in the ensemble framework; 2) to quantify the relative 

contributions of different uncertainty sources on the ecological predictions; 3) to test 

the hypothesis that species with specialized range size could be more accurately 

predicted in aquatic ecosystems. We contributed to the better understanding of the 

uncertainties on species distribution models and make good basement for the future 

projection of fish species in the climate change context. 

 

Materials and methods 

Study area 

   The mainland China spanned over a large geographic area, and the lakes 

distributed across the country with significant different geographical and climatic 

conditions. Therefore, Chinese lakes, which occupy significantly different natural 

environments, climatic factors and fish biota due to the vast area, make them more 

than suitable for the case study of fish diversity and distributions in relation to 

environment and climatic variations in a large scale (Wang and Dou, 1998). To be 

comprehensively, total of 135 lakes with the locations spanned over 21.9︒ - 48.9︒ N 

and 81.2︒ - 132.6︒ E were extracted in the present study, the surface area of each 

lake ranged from 0.0006 km2-2933 km2 , the location and limnological characteristics 

were precisely summarized in Table S1. Most of all, these lakes were selected due to 

the available of high quality fish data. 
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Fig.1 Map of study lakes distributed in mainland China 

Fish data  

   In the current study, presence-absence data of fish in the 135 lakes were collected 

from published fish surveys since 1950s (see Appendix Table S1). However, in order 

to ensure the data quality and authenticity, fish assemblages’ data should be derived 

from long-term monitoring and surveying, the data without enough sampling efforts 

were omitted. For the lakes which have fish data surveyed in several time periods, 

normally the earliest dataset was preferred as they may suffer from aritificial 

disturbances. Fish assemblages’ data were also sifted seriously and then corrected 

according to the “Fauna Sinica” and Wu (1977; 1980) to integrate the species with 

confused names. Totally, 425 fish species and subspecies were contained in all the 

study lakes with presence-absence data compiled from published works, cause these 

data were proved to be more ideal for modelling species distributions and 

assemblages (Elith et al., 2007; Cawsey et al., 2002). However, to be efficiently, only 

fish species with occurrence than 10 times in all the sites were used in SDMs, 

therefore 92 fish species were ultimately predicted. 
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Climatic and environmental variables 

   For the explanatory variables, we used a set of climatic variables and lake 

geographic variables. The climatic variables derived directly from the WorldClim 

database (Hijimans et al., 2005, available at http://www.worldclim.org), and then 

extracted use Arcgis 10.1 (ESRI). This database was developed from compiled 

monthly averages of climate as measured at weather stations from a large number of 

global, regional, national and local sources, mostly from the 1950–2000 periods, 

using the Thin Plate Smoothing Spline (TPS) algorithm that yielded climate surfaces 

for monthly maximum, minimum, mean temperatures and total monthly precipitation 

(Hutchinson, 1995). In order to improve the accuracy of our analyses, we choose the 

highest resolution (30 arc-seconds (~1 km)); at last, 19 bioclim-variables as well as 

the altitude of the lake were extracted from the dataset. Moreover, lake surface area 

was also contained as an explanatory factor in the data set (Table 1). These climatic 

variables have been widely used in ecological modeling all over the world. However, 

due to some of them may provide similar environmental information, a PCA 

(principal component analysis) is performed to eliminate the high correlate and 

redundant variables. Since correlation between predictors might produce spurious 

results (Phillips et al., 2006). Consequently, only 8 environmental variables (alt, bio1,  

http://www.worldclim.org/�
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Variables Variable type Min 1st Qu Median Mean 3rd Qu Max SD 

Latitude Mean latitude 21.90  28.45  31.10  34.42  41.67  48.90  7.90  

Longitude Mean Longitude 81.20  103.00  114.40  111.60  118.40  132.60  10.47  

alt Elevation of the site 2.00  23.50  144.00  911.70  1773.00  4947.00  1154.56  

area Surface area of the lake 0.01  6.72  27.95  225.80  122.33  4930.00  544.82  

bio1 Annual mean temperature -5.00  50.00  140.00  113.70  170.00  217.00  61.45  

bio2 Mean diurnal range: mean of monthly (max temp–min temp) 70.00  82.00  110.00  104.50  118.00  146.00  19.95  

bio3 Isothermality: (Bio2/Bio7) *100 21.00  24.00  25.00  30.16  36.50  53.00  9.78  

bio4 Temperature seasonality (SD *100) 3242.00  6903.00  8807.00  9305.00  12168.00  15770.00  3468.65  

bio5 Maximum temperature of warmest month 130.00  258.00  286.00  284.40  323.50  340.00  46.71  

bio6 Minimum temperature of coldest month -295.00  -196.50  -22.00  -79.59  9.50  93.00  109.16  

bio7 Temperature annual range (Bio5–Bio6) 212.00  306.50  331.00  364.00  452.50  561.00  103.52  

bio8 Mean temperature of wettest quarter 78.00  199.50  216.00  214.30  244.50  283.00  40.57  

bio9 Mean temperature of driest quarter -208.00  -117.00  50.00  -2.47  79.50  162.00  104.59  

bio10 Mean temperature of warmest quarter 78.00  202.00  221.00  227.00  272.00  286.00  48.12  

bio11 Mean temperature of coldest quarter -213.00  -119.50  43.00  -12.32  57.00  149.00  99.40  

bio12 Annual precipitation 82.00  418.50  919.00  806.30  1177.50  1480.00  409.61  
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bio13 Precipitation of wettest month 18.00  132.50  186.00  168.60  225.00  305.00  63.03  

bio14 Precipitation of driest month 0.00  2.00  9.00  15.04  31.50  44.00  14.62  

bio15 Precipitation seasonality(coefficient of variation) 39.00  55.00  86.00  83.35  106.50  138.00  26.64  

bio16 Precipitation of wettest quarter 47.00  291.00  461.00  423.70  573.00  815.00  171.80  

bio17 Precipitation of driest quarter 2.00  8.00  38.00  56.64  122.00  160.00  55.12  

bio18 Precipitation of warmest quarter 47.00  291.00  443.00  403.20  516.00  676.00  157.02  

bio19 Precipitation of coldest quarter 2.00  8.00  39.00  60.01  129.50  175.00  59.59  
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*Min: the smallest observation;  

1st Qu: a value that separates the largest 75% of the observations from the smallest 25%; 

Median: the median value of all the observations; 

Mean: the mean value of all the observations; 

3rd Qu: a value that separates the largest 25% of the observations from the smallest 75%; 

Maximum: the largest observation; 

SD: The standard deviation. 

 

bio2, bio3, bio7, bio5, bio14, bio19; see details in Table 1) were contained in the 

analysis.  

Ensemble modelling of species distributions 

A total of nine different statistical models, contained: GLM, GAM, MARS, CTA, 

RF, MDA, ANN, GBM, SRE (Surface Range Envelop or usually called BIOCLIM, 

Busby 1991), were used to predict the presence-absence data of each fish species in 

the assemblage. All the models were performed in R (R Development Core Team 

2013) with the package of “biomod2” (Thuiller et al., 2003). For each of the 92 

species, nine models were constructed respectively with a random 70% subset, and 

the remaining 30% dataset were used to evaluate the model performance. The 

split-sample procedure was repeated 100 times for each species. 

Model evaluation 

The predictive model performance were evaluated using three main kinds of 

accuracy measures: Area under the receiver operating characteristic curve (AUC; 

Fielding and Bell, 1997), Cohen’s Kappa (Cohen, 1960) and True skill statistic ( TSS ; 

Bohning et al., 2008). 

Area under the receiver operating characteristic curve (AUC) is one kind of 

threshold-independent measures, A ROC (receiver operating characteristic curve) plot 

is obtained by plotting all sensitivity values (true positive fraction) on the y axis 

against their equivalent (1-specificity) values (false positive fraction) for all available 

thresholds on the x axis. The area under the ROC function (AUC) is usually taken to 

be an important index because it provides a single measure of overall accuracy that is 
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not dependent upon a particular threshold (Deleo 1993; Fielding and Bell, 1997). The 

value of the AUC ranged from 0 to 1, with a score of 1 indicating a perfect fit, scores 

from 0.9 to 1 representing an excellent fit, scores from 0.8 to 0.9 representing good fit, 

and those scores from 0.5 to 0.6 implying discrimination that was no better than 

random (Swets, 1988). 

Cohen’s kappa (1960) has been adopted to alleviate the problem of 

overestimating accuracy. It measures the extent to which the agreement between 

observed and predicted is higher than that expected by chance alone. This statistic is 

used to assess inter-rater reliability when observing or otherwise coding qualitative / 

categorical variables. Kappa is considered to be an improvement over using % 

agreement to evaluate this type of reliability. Kappa has a range from 0-1.00, with 

larger values indicating better reliability. 

TSS (True skill statistic) is defined as the average of the net prediction success 

rate for presence sites and that for absence sites. It has gained considerable theoretical 

interest over many years (Bohning et al., 2008), and it is considered the best available 

summary measure of model performance in medical diagnostic tests by some 

researchers (Biggerstaff, 2000). TSS takes into account both omission and 

commission errors, and success as a result of random guessing, and the values range 

from −1 to 1, where 1 indicates perfect agreement and values of zero or less indicate a 

performance no better than random. This index is closely related to the arithmetic 

mean of sensitivity and specificity. Overall accuracy (OA), defined as the probability 

that a site (either presence or absence) is correctly predicted, is the most common 

measure used in various disciplines including ecology.  

MANOVA (Multivariate Analysis Of Variance) were conducted to explore the 

potential impacts of different evaluation methods on model performance. 

Species characteristics definition 

For each species predicted, species prevalence was defined as the fish occurrence 

rate in all the studied lakes. In addition, three main environmental ranges were 

determined and calculated for altitude, temperature and precipitation. The species 

altitude range was expressed as the difference between the average of the 10% highest 
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altitude values and the 10% lowest altitude values among all the sites which species 

occurred. Temperature range described as the difference between the average of the 

10% highest annual temperature and the 10% lowest annual temperature. While the 

precipitation range was defined as the difference between the average of the 10% 

highest annual mean precipitation and the 10% lowest mean precipitation among the 

sites which species occurred, respectively. 

 To investigate the observed difference between model performances and species 

characteristics, generalized liner model (GLM) was therefore applied. 

Results 

Overall, the nine SDMs performed well and showed good capacity on species 

prediction, as the three different evaluation methods (AUC, Kappa, TSS) and overall 

accuracy showed significantly high values, with the median values of AUC ranging 

from 0.680 to 0.891, overall accuracy ranging from 0.85 to 0.90, Kappa ranging from 

0.358 to 0.658, TSS values ranging from 0.360 to 0.752 (Fig. 2). Among the entire 

model techniques, RF always yield the best models  since the median AUC value is 

0.891, median accuracy score is 0.90, median Kappa value is 0.658 and median TSS 

value is 0.752, all the values are the highest. Followed by GBM, FDA and GLM 

respectively, while SRE always gives the relative worst predictive performance with 

median AUC value of 0.680, accuracy value of 0.85, Kappa value of 0.358 and TSS 

value of 0.360, which showed the relative lowest values among all the models (Fig. 2). 

It is worth noting that even if the RF model which performs the best couldn’t give the 

equal and best predictions for all species, while SRE could also yield very good 

quality models for some species. 

Results from the MANOVA showed that there is no significant difference 

between the three evaluations used in measuring the performance of nine models 

(p>0.01). 

    In order to explore the relationship between species prevalence and model 

performance, outcomes of all the nine models were taken into account. In the context, 

only the results of RF model were presented in Fig. 4. Among all the three evaluations, 

there is a nonlinear relationship between model performance and species prevalence. 
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The species prevalence around 30% could yield more accurately predictive models, 

while species prevalence below 30%, model performance showed slightly positive 

relationship with species prevalence (Fig.4). 

 

Fig.2 Performance of different SDMs 

AUC: Area under the receiver operating characteristic curve; KAPPA: Cohen’s Kappa; TSS; True 

skill statistic; ACCURACY: Overall accuracy. 

SRE (Surface Range Envelop); CTA (Classification Tree Analysis) ;MARS(Multivariate Adaptive Regression 

Splines) ; RF (Random Forest) ;FDA (Mixture Discriminant Analysis); GBM (Generalized Boosted Models) ; 

ANN (Artificial Neural Networks); GLM (Generalized Linear Models); GAM (Generalized Additive Models)  
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Here in our study, we determined three kinds of ecological range size, altitude, 

temperature and precipitation ranges. Relationships between species prevalence and 

species range size were found to be all positively related with all the three 

environmental range size (Fig.3). 

 

 
Fig.3 Relationships between species prevalence and three environmental range size 

 

However, when take into account the species ecological range size, the altitude 

range size and precipitation range size were significantly negative related with the 

model performance, while unfortunately, temperature range size were found not 

significantly influence the model performance. Besides, performance of FDA and 

SRE seems only affected by species prevalence (Tab.2), but not correlated with 

species characteristics like temperature range size, precipitation range size and 

altitude range size. Moreover, influence from the uncertainty source on each of the 

nine models was also showed difference. 
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Tab. 2 Relations between model techniques and species characteristics 

 

ALTR 

 

TR 

 

PR 

 

PV 

 SRE AUC NS 

 

NS 

 

NS 

 

0.208 *** 

CTA AUC -3.057E-05 *** NS 

 

-1.03E-04 ** 0.193 *** 

MARS AUC -2.42E-05 ** NS 

 

-9.72E-05 ** 0.185 *** 

RF AUC -3.43E-05 *** NS 

 

-1.16E-05 *** 0.172 *** 

FDA AUC NS 

 

NS 

 

-1.28E-04 ** 0.233 *** 

GBM AUC -3.08E-05 *** NS 

 

1.32E-04 *** 0.178 *** 

ANN AUC -4.41E-05 *** NS 

 

-1.12E-04 *** 0.206 *** 

GLM AUC -3.43E-05 *** NS 

 

-6.04E-05 * 0.253 *** 

GAM AUC -3.87E-05 *** NS 

 

-7.89E-05 * 0.192 *** 

SRE KAP NS 

 

NS 

 

-1.93E-04 * 0.419 *** 

CTA KAP -4.43E-05 * NS 

 

-2.12E-04 * 0.614 *** 

MARS KAP -3.73E-05 * NS 

 

-1.52E-04 * 0.344 ** 

RF KAP -3.62E-05 * NS 

 

-1.73E-04 * 0.283 *** 

FDA KAP NS 

 

NS 

 

-1.81E-04 * 0.371 *** 

GBM KAP -4.00E-05 * NS 

 

-2.26E-04 ** 0.435 *** 

ANN KAP -6.09E-05 *** NS 

 

-1.74E-04 * 0.49 *** 

GLM KAP -4.94E-05 ** NS 

 

-1.44E-04 * 0.63 *** 

GAM KAP -5.32E-05 ** NS 

 

-1.95E-04 * 0.4399 *** 

SRE TSS NS 

 

NS 

 

NS 

 

0.3666 *** 

CTA TSS -5.55E-05 *** NS 

 

-2.01E-04 ** 0.3626 *** 

MARS TSS -4.25E-05 ** NS 

 

-1.78E-04 ** 0.268 *** 

RF TSS -5.73E-05 *** NS 

 

-2.23E-04 *** 0.229 *** 

FDA TSS NS 

 

NS 

 

-2.19E-04 *** 0.261 *** 

GBM TSS -5.20E-05 *** NS 

 

-2.16E-04 *** 0.209 *** 

ANN TSS -7.89E-05 *** NS 

 

-1.81E-04 *** 0.307 *** 

GLM TSS -5.66E-05 *** NS 

 

-1.04E-04 * 0.382 *** 

GAM TSS -5.81E-05 *** NS 

 

-1.25E-04 * 0.268 *** 
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The model techniques: SRE (Surface Range Envelop); CTA (Classification Tree 

Analysis) ;MARS(Multivariate Adaptive Regression Splines) ; RF (Random Forest) ;FDA (Mixture Discriminant 

Analysis); GBM (Generalized Boosted Models) ; ANN (Artificial Neural Networks); GLM (Generalized Linear 

Models); GAM (Generalized Additive Models) ; 

The evaluation techniques: AUC (Area Under the receiver operating characteristic Curve); KAP(Cohen’s 

Kappa); TSS (True skill statistic); 

The species characteristics: ALTR (Altitude); TR(Temperature Range); PR(Precipitation Range); 

PV(Prevalence);    NS: Not Significant 

 

 



Modelling the lake fish assemblages and ecosystem properties in China 

188 
 

 
Fig.4 Relationships between species prevalence and model performance 

 

Discussion 

It is important to understand why and how species distribution models perform 

differently for different species before using the model predictions to make 

conservation decisions. Up until now, our research is the first study which quantified 

the uncertainties and impacts comprehensively from model techniques, environmental 

range size and species prevalence on the SDM performance in lake ecosystems in so 

large geographical scale. Overall, our results have compared the performance of nine 

widely used species distribution models; clarified that evaluation measures won’t 

influence the model outcome; confirmed that species prevalence and environmental 

range size can strongly affect model performance and ecological predictions; and 

verified the hypothesis that specialized species could be better predicted than 

generalized species is plausible in aquatic ecosystems. 

  Among all the statistical techniques, RF was found to be the most reliable model 

for species prediction, while SRE predicted the worst. However, the predictions from 

different models varied a lot, even if for one given species, outcomes of prediction 

may vary from model to model. In view of that each predicts models relied on 

different mathematical functions, SDM will give the variety of results without doubt. 

Up until now, numerous of studies have compared the accuracy and performance of 
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the predictions from different statistical techniques (Elith et al., 2007), and confirmed 

that results derived from different model techniques or different model-building 

assumptions can occasionally differ grossly (Thuiller, 2003; Luoto et al., 2004). 

Nevertheless, it was not so surprise since RF model gives the predictions by 

generating thousands of trees and aggregated with an average (Breiman, 2001), and 

the algorithm allow the model to avoid over-fit, this procedure could improve the 

predictive performance and reduce the variance (Elith et al., 2008). Thus, RF could be 

a robust technical modeling for species distribution prediction (He et al., 2010; Cheng 

et al., 2012; Grenouillet et al., 2011). Actually, plenty of publications have noted the 

algorithm which Random Forest relied on, they thus present the ensemble modelling 

framework which aggregated several single models and given the average or 

consensus results (Araujo and New, 2007). Several former studies have verified that 

among plenty of mathematical models, only RF could show the equal performance 

with the average outcomes of several model techniques. Therefore ensemble 

modelling was also regarded as the best solutions to reduce the single model 

uncertainties and bias (Grenouillet et al., 2011; Buisson et al., 2010b). 

Considered that some authors argued that AUC statistic may be biased for the 

species that occupy a small proportion of the study area (Lobo et al., 2008), in current 

research, three different measurements have been adopted in order to reduce the 

potential bias may emerge from single measurement. However, in current study, 

among all the evaluation results from AUC, TSS and Kappa, there is no significant 

difference between the three evaluate methods, which interpret that the use of 

evaluation measures didn’t interrupt the outcomes of statistical models, we can thus 

verified that the relationship between species characteristics and model performance 

was not artificial associated with use of accuracy measures (Newbold et al., 2009). 

  In some previous studies, publicized effects of species prevalence on model 

performance showed complicated with both positive and negative relationships 

(Luoto et al., 2005; Brotons et al., 2004; Mantel et al., 2001). In current study, we 

found that species with prevalence around 30% could yield more accurate model 

performance, however, the relationships between species prevalence and model 
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performance was nonlinear, model performance increased slightly with species 

prevalence values below 0.3. Actually, these results were completely in consistent 

with the former research which argued that species with high prevalence will occupy 

large areas with variety of habitat environments which would produce more overall 

errors (Segurado and Araujo, 2004; Luoto et al., 2005). Actually, species prevalence 

has long been reported which will affect model performance, however few ecologist 

take into account the species prevalence when they make the species distribution 

modeling (Fielding and Bell, 1997). Manel et al. (2001) revealed that model 

performance were highly associated with species prevalence and thus recommend that 

species distribution model with presence-absence data should take more attention of 

species prevalence. 

Overall in our study, the performance and ecological predictions of the species 

distribution modelling was negatively associated with geographical and 

environmental range size, such as altitude range size and precipitation range size. 

Actually, A general pattern has been widely acknowledged is that species with smaller 

geographical extent and strict ecological requirements (i.e. specialists) yield models 

with higher accuracy than those with larger areas of occupancy (i.e. generalists), this 

hypothesis have been verified in various of ecosystems, among the species as butterfly, 

insect, reptile, bird, and mammal (Stockwell and Peterson, 2002; Brotons et al, 2004; 

Segurado and Araujo 2004; Kadmon et al., 2003; Seggurado and Araujo, 2004; 

Hernandez et al., 2006; Tsoar et al., 2007; Franklin et al., 2009). Our research has 

verified this hypothesis to be plausible to fish species in lake ecosystems. To our 

knowledge, the current research is the first research which takes into account fish 

species in lakes in so large scale, therefore, it would not only contribute to understand 

the uncertainty of species distribution models, but also help to improve the quality of 

fish species prediction which will ultimate benefit to the fish biodiversity 

conservation and biodiversity management all over the world. 

When considering about the reason why specialized species could yield more 

accurate model prediction than generalized one, some authors argued that species with 

larger distribution area contained discrete populations that show different response to 
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the environment and thus decrease the accuracy of the model prediction (Stockwell 

and Peterson, 2002; Brotons et al., 2004). Some others explained these as the 

difference of species’ niche width, since former studies have found that species with 

narrow, well-defined niches which also have better-defined climate and habitat 

requirements could be better modeled than those with broader niches (Boone and 

Krohn, 1999; Pearce et al., 2001; Kadmon et al., 2003). But our data couldn’t well 

support and explain the species niche hypothesis, further study should take more 

factors into account in order to better understand the mechanism of uncertainty in 

species distribution models from species attributes and characteristics. Last but not 

least, McPherson and Jetz (2007) attributed the effects of species’ ecological 

characteristic on SDMs were influenced by the available data quality or by making it 

difficult to statistically capture the relationship between the species distribution and 

environmental conditions. Following these hypothesis, we can conclude that endemic 

species were modeled more accurately than non-endemic species. Given all of these, 

greater consideration should therefore be taken on the predictions of fish species with 

larger elevation range size and precipitation range size in China under the future 

impacts of global climate change, since the projections may somehow unreliable for 

the conservation and management purpose. On contrary, ecological predictions for the 

endemic fish species which showed better defined climate and habitat requirements 

should be more accurately. These results will benefit a lot to the conservation of 

biodiversity for fish species in China, since there are numerous of endemic and 

specialized fish species lived in the lakes across China, and urgent stages were 

planned to conserve the fish species based on the prediction results (He et al., 2010). 

However, it is worth noting that in our study, temperature range size didn’t show a 

significantly affect on the model performance, this founding contradicted some 

former results in fish species (Grenouillet et al., 2011). In the author’s opinion, we 

contributed this to the large range size of the geographical factor, and the effects of 

the temperature range may be hidden since that altitude is a complicated factor. 

    To conclude, we strongly recommend paying more attention on the following 

aspects when predicting the potential impacts of global climate change on fish 
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biodiversity and distribution using species distribution models. First of all, more 

suitable model should be implemented and more statistical model techniques should 

be taken into account in the ensemble model framework; Second, high quality fish 

presence-absence dataset should be compiled; Last but not least, species ecological 

and geographical characteristic should be taken into account when predicting the 

species distribution and diversity. Following these recommendations, predictions and 

projections of fish species distribution based on the results of SDM could be more 

reliable and therefore robust enough for management and conservation decisions 

made under the future impacts of global climate change. 
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