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1 Introduction

In this paper we deal with the characterization of the subdifferential of the point-
wise supremum f := supt∈T ft of a family of convex functions ft : X → R∪{±∞},
t ∈ T , with T being an arbitrary nonempty set, defined on a separated locally
convex space X. We obtain new characterizations which allow us to unify both the
compact continuous and the non-compact non-continuous setting ([8], [9], [27], [30],
etc.). The first setting relies on the following standard conditions in the literature
of convex analysis and non-differentiable semi-infinite programming:

T is compact and the mappings f(·)(z), z ∈ X, are upper semi-continuous.

In the other framework, called the non-compact non-continuous setting, we do not
assume the above conditions. In other words (see, i.e., [14], [15], [21], [18], [29],
[30], [31], etc.):

T is an arbitrary set, possibly infinite and without any prescribed topology,

and no requirement is imposed on the mappings f(·)(z).

Going from the non-continuous to the continuous setting, we follow an approach
based on the Stone-Čech compactification of the index set T . At the same time, we
build an appropriate enlargement of the original family ft, t ∈ T, which ensures the
fulfillment of the upper semi-continuity property required in the compact setting.
Since the new setting is naturally compact, by applying the results in [8,9], we
obtain new characterizations given in terms of the exact subdifferential at the
reference point of the new functions and the extended active set. In this way, we
succeed in unifying both settings. In [10], we gave the first steps in this direction,
using compactification arguments, but in the current paper we go further into the
subject with some enhanced formulas.

To move in the other direction, we rewrite the subdifferential of these new regu-
larizing functions in terms of the original data, and this also leads us to new results
on the subdifferential of the supremum. In this last case, the characterizations are
given upon limit processes on the ε-subdifferentials at the reference point of the
almost-active original functions. These limit processes also involve approximations
by finite-dimensional sections of the domain of the supremum function.

The main results of this paper are applied to derive formulas for the subd-
ifferential of the conjugate function ([3], [4], [5]). Our approach permits simple
proofs of these results, with the aim of relating the solution set of a nonconvex
optimization problem and its convexified relaxation. Additionally, our results give
rise to new Fritz-John and KKT conditions in convex semi-infinite programming.

The paper is organized as follows. After a short section introducing the nota-
tion, in section 3 we present some preliminary results in the continuous setting. In
section 4 we apply our compactification approach to obtain, in Theorem 4, a first
characterization of the subdifferential of the supremum. Such a theorem constitutes
an improved version of the main result in [10], as the requirement of equipping
T with a completely regular topology is eliminated. Theorem 4 is enhanced in
Section 5, allowing for a more natural interpretation of the regularized functions.
The main result in section 6 is Theorem 11, involving only the ε-subdifferentials
of the original data functions. This theorem, whose proof is based on Lemmas 9
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and 10, is crucial in the proposed approach to move from the continuous to the
non-continuous setting. Finally, in section 7, we give two applications. The first
one addresses the extension of the classical Fenchel duality to nonconvex func-
tions, and the second one establishes Fritz-John and KKT optimality conditions
for convex semi-infinite optimization.

2 Notation

Let X be a (real) separated locally convex space, with topological dualX∗ endowed
with the w∗-topology. By NX (NX∗) we denote the family of closed, convex, and
balanced neighborhoods of the origin in X (X∗), also called θ-neighborhoods. The
spaces X and X∗ are paired in duality by the bilinear form (x∗, x) ∈ X∗ × X 7→

〈x∗, x〉 := 〈x, x∗〉 := x∗(x). The zero vectors in X and X∗ are both denoted by θ.
We use the notation R := R ∪ {−∞,+∞} and R∞ := R ∪ {+∞}, and adopt the
convention (+∞) + (−∞) = (−∞) + (+∞) = +∞.

Given two nonempty sets A and B in X (or in X∗), we define the algebraic (or
Minkowski) sum by

A+B := {a+ b : a ∈ A, b ∈ B}, A+ ∅ = ∅+A = ∅. (1)

By co(A), cone(A), and aff(A), we denote the convex, the conical convex, and
the affine hulls of the set A, respectively. Moreover, int(A) is the interior of A,
and clA and A are indistinctly used for denoting the closure of A. We use ri(A) to
denote the (topological) relative interior of A (i.e., the interior of A in the topology
relative to aff(A) if aff(A) is closed, and the empty set otherwise).

Associated with A 6= ∅ we consider the polar set and the orthogonal subspace

given respectively by

A◦ :=
{
x∗ ∈ X∗ : 〈x∗, x〉 ≤ 1 for all x ∈ A

}
,

and
A⊥ :=

{
x∗ ∈ X∗ : 〈x∗, x〉 = 0 for all x ∈ A

}
.

The following relation holds

⋂
L∈F

(A+ L⊥) ⊂ clA, (2)

where F is the family of finite-dimensional linear subspaces in X.

If A ⊂ X is convex and x ∈ X, we define the normal cone to A at x as

NA(x) :=
{
x∗ ∈ X∗ : 〈x∗, z − x〉 ≤ 0 for all z ∈ A

}
,

if x ∈ A, and the empty set otherwise.

The basic concepts in this paper are traced from [23,28]. Given a function
f : X −→ R, its (effective) domain and epigraph are, respectively,

dom f := {x ∈ X : f(x) < +∞} and epi f := {(x, λ) ∈ X ×R : f(x) ≤ λ}.

We say that f is proper when dom f 6= ∅ and f(x) > −∞ for all x ∈ X. By cl f and
cof we respectively denote the closed and the closed convex hulls of f , which are
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the functions such that epi(cl f) = cl(epi f) and epi(cof) = co(epi f). We say that
f is lower semicontinuous (lsc, for short) at x if (cl f)(x) = f(x), and lsc if cl f = f.

Given x ∈ X and ε ≥ 0, the ε-subdifferential of f at x is

∂εf(x) = {x∗ ∈ X∗ : f(y) ≥ f(x) + 〈x∗, y − x〉 − ε for all y ∈ X},

when x ∈ dom f, and ∂εf(x) := ∅ when f(x) /∈ R. The elements of ∂εf(x) are called
ε-subgradients of f at x. The subdifferential of f at x is ∂f(x) := ∂0f(x), and its
elements are called subgradients of f at x. If f and g are convex functions such that
one of them is finite and continuous at a point of the domain of the other one,
then Moreau-Rockafellar’s theorem says that

∂(f + g) = ∂f + ∂g. (3)

Given a function f : X → R, the (Fenchel) conjugate of f is the function f∗ : X∗ →
R defined as

f∗(x∗) := sup
x∈X

{〈x∗, x〉 − f(x)}.

The indicator and the support functions of A ⊂ X are respectively defined as

IA(x) :=

{
0, if x ∈ A,

+∞, if x ∈ X \A,

and
σA := I∗A.

Provided that f∗ is proper, by Moreau’s theorem we have

f∗∗ = cof, (4)

where f∗∗ := (f∗)∗. For example, if {fi, i ∈ I} is a nonempty family of proper lsc
convex functions, then

(supi∈I fi)
∗ = co(infi∈I f

∗
i ), (5)

provided that the supremum function supi∈I fi is proper. Thus, given a nonempty
family of closed convex sets Ai ⊂ X, i ∈ I, such that ∩i∈IAi 6= ∅, we have
I∩i∈IAi

(x) = supi∈I IAi
(x) and, so, by taking the conjugate in the equalities

I∩i∈IAi
(x) = supi∈I IAi

(x) = supi∈I σ
∗
Ai

(x), we obtain

σ∩i∈IAi
= (I∩i∈IAi

)∗ = (supi∈I IAi
)∗ = co(infi∈I σAi

).

3 Preliminary results in the continuous framework

In Section 4 we develop a compactification process addressed to give new char-
acterizations of the subdifferential of the pointwise supremum, with the aim of
unifying both the compact and non-compact settings. In this section we gather
some preliminary results in the continuous setting.

Given the family of convex functions ft : X → R, t ∈ T, and the supremum
function f := supt∈T ft, we start from the following characterization of ∂f(x) in
the continuous setting, given in [8, Proposition 2], where the following notation is
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used:

F(x) := {L ⊂ X : L is a finite-dimensional linear subspace containing x} , (6)

and
Tε(x) := {t ∈ T : ft(x) ≥ f(x)− ε} ,

for ε ≥ 0; we set T (x) := T0(x).

Proposition 1 [8, Proposition 2] Fix x ∈ X and ε > 0 such that Tε(x) is compact

Hausdorff and, for each net (ti)i ⊂ Tε0(x) converging to t,

lim supi fti(z) ≤ ft(z) for all z ∈ dom f ; (7)

that is, the functions f(·)(z) are upper semi-continuos (usc, in brief) relatively to

Tε0(x). Then we have

∂f(x) =
⋂

L∈F(x)
co

{⋃
t∈T (x)

∂(ft + IL∩dom f )(x)

}
. (8)

It is worth recalling that the intersection over the L’s in (8) is removed in finite
dimensions ([8, Theorem 3]) and, more generally, if ri(dom f) 6= ∅ and f|aff(dom f)

is continuous on ri(dom f), then we have (see [9, Corollary 3.9])

∂f(x) = co

{⋃
t∈T (x)

∂(ft + Idom f )(x)

}
.

Consequently, if f is continuous somewhere in its domain, then ([9, Theorem 3.12])

∂f(x) = co

{⋃
t∈T (x)

∂ft(x)

}
+Ndom f (x),

and the closure is removed in finite dimensions. In particular, when f is continuous
at the reference point x, the normal cone above collapses to θ and we recover
Valadier’s formula in [30].

On the other hand, in the general setting, when either T is not compact and/or
some of the mappings t→ ft(z), z ∈ dom f, fail to be usc, the active index set T (x)
as well as the subdifferential sets ∂ft(x) may be empty. To overcome this situation,
the following result given in [15, Theorem 4] (see, also, [14] for finite dimensions)
appeals to the ε-active set Tε(x) and the ε-subdifferentials.

Proposition 2 If

cl f = sup
t∈T

(cl ft), (9)

then for every x ∈ X

∂f(x) =
⋂

ε>0,L∈F(x)
co

{⋃
t∈Tε(x)

∂εft(x) + NL∩dom f (x)

}
. (10)

Also here, the intersection over the L’s is dropped out if ri(dom f) 6= ∅ ([15,
Corollary 8]). Moreover, if f is continuous somewhere, so that (9) holds automat-
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ically ([15, Corollary 9]), then the last formula reduces to

∂f(x) = Ndom f (x) +
⋂

ε>0
co

{⋃
t∈Tε(x)

∂εft(x)

}
.

Hence, provided that f is continuous at x, we obtain the formula in [31] (where
the underlying space X is additionally assumed to be normed).

Condition (9) guarantees the possibility of characterizing ∂f(x) by means of
the ft’s, and not via the augmented functions ft + IL∩dom f as in Proposition 1.
Thus, to complete the analysis, we give next a consequence of (10), which avoids
to appeal to condition (9).

Proposition 3 For every x ∈ X,

∂f(x) =
⋂

ε>0,L∈F(x)
co

{⋃
t∈Tε(x)

∂ε(ft + IL∩dom f )(x)

}
. (11)

Proof Fix x ∈ dom f and L ∈ F(x), and denote

gt := ft + IL∩dom f , t ∈ T ; g := supt∈T gt.

We have dom gt = L ∩ dom f and

dom g ∩ (∩t∈T ri(dom gt)) = (L ∩ dom f) ∩ ri(dom f ∩ L) = ri(dom f ∩ L) 6= ∅,

so that, by [15, Corollary 9(iv)], the family {gt, t ∈ T} satisfies condition (9). At
the same time we have, for all ε ≥ 0,

{t ∈ T : gt(x) ≥ g(x)− ε} = Tε(x).

Then, since that ∂f(x) ⊂ ∂(f + IL∩dom f )(x) = ∂g(x), by Proposition 2 we obtain
that

∂f(x) ⊂
⋂

ε>0
co

{⋃
t∈Tε(x)

∂εgt(x) + NL∩dom g(x)

}

⊂
⋂

ε>0
co

{⋃
t∈Tε(x)

∂ε(ft + IL∩dom f )(x)

}
,

and the inclusion “⊂” in (11) follows as L was arbitrarily chosen. The opposite
inclusion is straightforward, and we are done.

4 Compactification approach to the subdifferential

Our main objective in this section is to give a new characterization for ∂f(x), which
covers both formula (8) in the compact-continuous setting, using the active set and
the exact subdifferential, and formula (11) in the non-compact non-continuous
framework, given in terms of ε-active indices and ε-subdifferentials. To this aim,
we develop a compactification approach which works by extending the original
index set T to a compact set T̂ , and building new appropriate functions fγ , γ ∈ T̂ ,
that satisfy property (7) of Proposition 1. To make the paper self-contained, we
resume here the main features of the compactification process, which can be also
found in [10].
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We start by assuming that T is endowed with some topology τ , for instance
the discrete topology. If

C(T, [0, 1]) := {ϕ : T → [0,1] : ϕ is τ -continuous} , (12)

we consider the product space [0, 1]C(T,[0,1])
, which is compact for the product

topology (by Tychonoff theorem). We regard the index set T as a subset of

[0,1]C(T,[0,1]). For this purpose we consider the continuous embedding w : T →

[0,1]C(T,[0,1]) which assigns to each t ∈ T the evaluation function w(t) = γt, de-
fined as

γt(ϕ) := ϕ(t), ϕ ∈ C(T, [0, 1]). (13)

The closure of w(T ) in [0, 1]C(T,[0,1]) for the product topology is the compact set

T̂ := cl(m(T )), (14)

which is the so-called Stone-Čech compactification of T, also denoted by βT. The
convergence in T̂ is the pointwise convergence; i.e., for γ ∈ T̂ and a net (γi)i ⊂ T̂

we have γi → γ if and only if

γi(ϕ) → γ(ϕ) for all ϕ ∈ C(T, [0, 1]). (15)

Hence, provided that T is completely regular (when endowed with the discrete
topology, for isntance), the mapping w is an homeomorphism between T and w(T ),
and if γi = γti and γ = γt for some t, ti ∈ T, then γi → γ if and only if ti → t in T.

Next, we enlarge the original family {ft, t ∈ T} by introducing the functions
fγ : X → R, γ ∈ T̂ , defined by

fγ(z) := lim supγt→γ, t∈T ft(z). (16)

It can be easily verified that the functions fγ , γ ∈ T̂ , are all convex and satisfy
sup

γ∈T̂
fγ ≤ f. Moreover, if (tn)n ⊂ T verifies f(z) = limn ftn(z), with z ∈ X, then

there exist a subnet (ti)i of (tn)n and γ ∈ T̂ such that γti → γ. Hence,

fγ(z) ≥ lim supi fti(z) = limi fti(z) = limn ftn(z) = f(z),

and so sup
γ∈T̂

fγ ≥ f. In other words, the functions fγ provide the same supremum

f as the original ft’s,
sup

γ∈T̂
fγ = supt∈T ft = f.

If f(x) ∈ R and ε ≥ 0, then the extended ε-active index set of f at x is

T̂ε(x) :=
{
γ ∈ T̂ : fγ(x) ≥ f(x)− ε

}
, (17)

with T̂ (x) := T̂0(x); when f(x) 6∈ R we set T̂ε(x) := ∅ for all ε ≥ 0. By the
compactness of T̂ and the simple fact that, for each t ∈ T ,

fγt
(x) = lim sup

γs→γt

fs(x) = sup
{
lim
i
fti(x), γti → γt

}

≥ sup
{
lim
i
fti(x), ti → t

}
≥ ft(x),
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we verify that T̂ε(x) 6= ∅. Also, the closedness of T̂ε(x) comes by using a diagonal
process.

The way that the functions fγ , γ ∈ T̂ , are constructed ensures the fulfillment
of the upper semi-continuity property required in Proposition 1. More precisely,
assuming that f(x) ∈ R and ε ≥ 0, for every net (γi)i ⊂ T̂ε(x) with an accumulation
point γ ∈ T̂ε(x), and every z ∈ dom f , we verify that

lim supi fγi
(z) ≤ fγ(z). (18)

Indeed, we may assume without loss of generality that γi → γ and lim supi fγi
(z) =

limi fγi
(z) = α ∈ R. Next, for each i there exists a net (tij)j ⊂ T such that

γtij →j γi, fγi
(z) = limj ftij (z);

that is, (γtij , ftij (z)) →j (γi, fγi
(z)) and (γi, fγi

(z)) →i (γ, α). Then we can find a
diagonal net (tiji)i ⊂ T such that (γtiji

, ftiji (z)) →i (γ, α), and we obtain

fγ(z) ≥ lim supi ftiji (z) = α = lim supi fγi
(z).

The compactification process above covers in a natural way the compact frame-
work. Namely, if T is compact Hausdorff (hence, complete regular), then the family{
fγ , γ ∈ T̂

}
above turns out to be the family of the usc regularization of the func-

tions f(·)(z), given by
f̄t(z) := lim sup

s→t
fs(z).

In this case, the indexed set T does not change; i.e., T̂ = T. Consequently, if
additionally the functions f(·)(z), z ∈ dom f, are already usc, then we recover the
classical compact and continuous setting, originally proposed in [30].

The following theorem characterizes ∂f(x) in terms of the functions fγ (see
(16)) and the compact set T̂ (x), when τ is any topology on T . This result is
crucial in the subsequent sections.

Theorem 4 Let ft : X → R, t ∈ T, be convex functions and f = supt∈T ft. Then, for

every x ∈ X,

∂f(x) =
⋂

L∈F(x)
co

{⋃
γ∈T̂ (x)

∂(fγ + IL∩dom f )(x)

}
. (19)

Proof First, we consider that the topology τ in T is the discrete topology τd, so
that C(T, [0, 1]) := [0,1]T and T̂ is compact. Moreover, since (T, τd) is completely
regular, T̂ is Hausdorff (see, i.e., [24, §38]). Since f = sup

γ∈T̂
fγ and (18) holds,

Proposition 1 applies and yields

∂f(x) =
⋂

L∈F(x)
co

{⋃
γ∈T̂d(x)

∂(fdγ + IL∩dom f )(x)

}
, (20)

where fdγ and T̂ d(x) are defined as in (16) and (17), respectively, but with respect
to the topology τd.
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Now, let τ be any topology, so that τ ⊂ τd and, for any (γti)i ⊂ T̂ ,

γti →τd γ ⇐⇒ ϕ(ti) → γ(ϕ) for all ϕ ∈ [0, 1]T

=⇒ ϕ(ti) → γ(ϕ) for all ϕ ∈ C(T, [0,1])

⇐⇒ γti →τ γ;

hence, for every z ∈ X,

fdγ (z) = lim sup
γt→τd

γ, t∈T

ft(z) ≤ lim sup
γt→τγ, t∈T

ft(z) = fγ(z).

Moreover, since for all γ ∈ T̂ d(x) we have

f(x) = fdγ (x) ≤ fγ(x) ≤ f(x),

we deduce that

T̂ d(x) ⊂ T̂ (x) and ∂(fdγ + IL∩dom f )(x) ⊂ ∂(fγ + IL∩dom f )(x). (21)

Thus, by (20),

∂f(x) ⊂
⋂

L∈F(x)
co

{⋃
γ∈T̂ (x)

∂(fγ + IL∩dom f )(x)

}
,

and (19) follows as the opposite inclusion is straightforward.

It is worth observing, from the inclusions in (21), that the discrete topology
provides the simplest characterization of ∂f(x), since it possibly involves less and
smaller sets. Also observe that the intersection over finite-dimensional L in (19) is
superfluous in finite dimensions.

Theorem 4 covers the classical Valadier’s setting where T is compact Hausdorff
and the mappings f(·)(z), z ∈ dom f, are usc. In this case, formula (19) reduces to
(see Proposition 1)

∂f(x) =
⋂

L∈F(x)
co

{⋃
γ∈T (x)

∂(ft + IL∩dom f )(x)

}
.

Let us also observe that when T admits a one-point compactification TΩ :=
T ∪{Ω} (Ω /∈ T ), which occurs if and only if T is locally compact Hausdorff (hence,

complete regular), instead of
{
fγ , γ ∈ T̂

}
we can use the family

{
fγt

, t ∈ T ; fΩ
}
,

where
fΩ(z) := lim sup

t→Ω

ft(z), z ∈ X. (22)

Indeed, in this case the Stone-Čech compactification of T is

T̂ := {γt, t ∈ T} ∪
{
lim
i
γti : (ti)i ⊂ T, ti → Ω

}
,

where the limits limi γti and ti → Ω are in [0, 1]C(T,[0,1]) and TΩ , respectively. In
this way we obtain, for all t ∈ T,

fγt
= lim sup

γs→γt, s∈T

fs = lim sup
s→t, s∈T

fs, for t ∈ T, (23)
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due to the topological identification of T with w(T ), and

fγ = lim sup
γt→γ, t∈T

ft = lim sup
γt→γ, t→Ω, t∈T

ft, for γ ∈ T̂ \ T.

Now, we observe that

sup
γ∈T̂\T

fγ = sup
γ∈T̂\T

lim sup
γt→γ, t→Ω, t∈T

ft = lim sup
t→Ω

ft = fΩ .

It is clear that the family
{
fγt

, t ∈ T ; fΩ
}
and the (one-point compactification)

index set T ∪ {Ω} satisfy the assumption of Proposition 1, together with f =
sup

{
fγt

, t ∈ T ; fΩ
}
. Thus, it suffices to consider Theorem 4 with this new family{

fγt
, t ∈ T ; fΩ

}
instead of the one of the original fγ ’s.

In the particular case when T = N, endowed with the discrete topology, for
each n ∈ N we obtain

fγn
= lim sup

γk→γn, k∈N

fk = lim sup
k→n, k∈N

fk = fn,

so that the family to consider in Theorem 4 is

{fn, n ∈ N; f∞} ,

where
f∞ = lim sup

n→∞
fn.

Corollary 5 Assume that T is locally compact Hausdorff. Then for every x ∈ X

formula (19) holds with

T̂ (x) =

{{
γt, t ∈ T, fγt

(x) = f(x)
}
, if fΩ(x) < f(x),{

γt, t ∈ T, fγt
(x) = f(x), Ω

}
, if fΩ(x) = f(x),

and, when T = N,

T̂ (x) =

{
{n ∈ N, fn(x) = f(x)} , if f∞(x) < f(x),
{n ∈ N, fn(x) = f(x), ∞} , if f∞(x) = f(x).

5 From non-continuous to continuous. Enhanced formulas

We give in this section some new characterizations of ∂f(x), which provide addi-
tional insight to Theorem 4 and that are applied in Section 6.

According to Theorem 4, ∂f(x) only involves the active functions fγ , i.e., when
γ ∈ T̂ (x). The idea behind the following result is to replace these fγ ’s by the new
functions f̃γ : X → R∞, γ ∈ T̂ , defined as

f̃γ(z) := lim sup
γt→γ,ft(x)→f(x), t∈T

ft(z), (24)

considering only those nets (ti)i ⊂ T associated with functions fti approaching the
supremum function f at the nominal point x. Observe that if γ ∈ T̂ \ T̂ (x), then
f̃γ ≡ −∞ by the convention sup ∅ = −∞, and this function is ignored when taking
the supremum.
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Remember that T is endowed with any topology.

Theorem 6 For every x ∈ X we have

∂f(x) =
⋂

L∈F(x)
co

{⋃
γ∈T̂ (x)

∂(f̃γ + IL∩dom f )(x)

}
, (25)

where f̃γ and T̂ (x) are defined in (24) and (17), respectively.

Proof We only need to check the inclusion “⊂ ” when τ is the discrete topology τd,
and ∂f(x) 6= ∅; hence, f is lsc at x and proper, and we may suppose, without loss
of generality, that x = θ and f(θ) = 0. Let us fix a closed convex neighborhood
U of θ such that f(z) ≥ −1, for all z ∈ U, and denote by gt : X → R∞, t ∈ T, the
functions given by

gt(z) := max{ft(z),−1} . (26)

Thus, for all z ∈ U,

f(z) = max {f(z),−1} = supt∈T max {ft(z),−1} = supt∈T gt(z),

and so, applying (19) with the discrete topology τd on T to the family {gt, t ∈ T} ,

∂f(θ) = ∂(supt∈T gt)(θ) =
⋂

L∈F(θ)
co

{⋃
γ∈T̃ (θ)

∂(gγ + IL∩dom f )(θ)

}
, (27)

where gγ := lim sup
γt→γ, t∈T

gt and T̃ (θ) :=
{
γ ∈ T̂ : gγ(θ) = 0

}
.

Let us first verify that
T̃ (θ) = T̂ (θ). (28)

Indeed, if γ ∈ T̃ (θ) so that

0 = gγ(θ) = lim sup
γt→γ, t∈T

gt(θ) ≤ max{fγ(θ),−1} ≤ max {f(θ),−1} = 0,

then fγ(θ) = 0 and, so, γ ∈ T̂ (θ). Conversely, if γ ∈ T̂ (θ), then

0 = fγ(θ) ≤ gγ(θ) ≤ sup
γ∈T̂

gγ(θ) = sup
t∈T

gt(θ) = f(θ) = 0,

and so γ ∈ T̃ (θ).

Next, we fix γ ∈ T̃ (θ) and, by the definition of this set, let (t̄i)i ⊂ T be a net
such that γ t̄i → γ and limi gt̄i(θ) = 0; hence,

lim
i
ft̄i(θ) = lim

i
gt̄i(θ) = 0. (29)

We also introduce the functions ϕz, z ∈ dom f, defined on T as follows

ϕz(t) := (max{f(z) + 1,1})−1(gt(z) + 1),

which are (τd-)continuous functions such that ϕz(t) ∈ [0,1] for all t ∈ T, because

−1 ≤ gt(z) ≤ max {f(z),−1} < +∞ for all t ∈ T and z ∈ dom f.
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Hence, for every γti → γ we have ϕz(ti) →i γ(ϕz), and this entails

gti(z) →i −1 + (max {f(z) + 1,1})γ(ϕz) ∈ R. (30)

Consequently, by taking into account that γ t̄i → γ and limi ft̄i(θ) = 0 (see (29))
we obtain

gγ = lim sup
γt→γ, t∈T

gt = lim
γt→γ

gt = lim
γt→γ, ft(θ)→0

gt, (31)

which leads us to

gγ + IL∩dom f = lim
γt→γ,ft(θ)→0

(gt + IL∩dom f ) (32)

≤ max

{
lim sup

γt→γ,ft(θ)→0

(ft + IL∩dom f ),−1

}
. (33)

But the two functions on the left and the right have the same value 0 at θ, and so

∂(gγ + IL∩dom f )(θ) ⊂ ∂

(
max

{
lim sup

γt→γ,ft(θ)→0

ft + IL∩dom f ,−1

})
(θ)

= ∂

(
lim sup

γt→γ,ft(θ)→0

ft + IL∩dom f

)
(θ) = ∂

(
f̃γ + IL∩dom f

)
(θ),

where the first equality comes from Proposition 1 applied to the finite family{
f̃γ ,−1

}
. Finally, the desired inclusion follows thanks to (27) and (28).

Let us introduce a function which asigns to each given γ ∈ T̂ (x) a net (tγi )i ⊂ T

such that
γtγi

→ γ, ftγi (x) → f(x). (34)

Then, according to (33),

lim
γt→γ

(gt + Idom f ) = lim
i
(gtγ

i
+ IL∩dom f ) ≤ max

{
lim sup

i
(ftγ

i
+ IL∩dom f ),−1

}
,

and we obtain, reasoning as above,

∂f(x) =
⋂

L∈F(x)
co

{⋃
γ∈T̂ (x)

∂(lim sup
i

ftγ
i
+ IL∩dom f )(x)

}
. (35)

The use of the functions gt allows us to formulate ∂f(x) involving only limits
instead of upper limits. In fact, from (27), (28) and (31) we get

∂f(x) =
⋂

L∈F(x)
co

{⋃
γ∈T̂ (x)

∂

(
lim

γt→γ,ft(x)→f(x)
(gt + IL∩dom f )

)
(x)

}
. (36)
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Corollary 7 Suppose that the function f is finite and continuous somewhere. Then,

for every x ∈ X,

∂f(x) = co

{⋃
γ∈T̂ (x)

∂(lim supi ftγ
i
)(x)

}
+Ndom f (x) (37)

= co

{⋃
γ∈T̂ (x)

∂(lim supi ftγi )(x)

}
+Ndom f (x) (if X = R

n), (38)

where (tγi ) is defined in (34).

Proof Suppose, without loss of generality, that x = θ and f(θ) = 0. According to
(35), and using (3),

∂f(θ) =
⋂

L∈F(θ)
co

{⋃
γ∈T̂ (θ)

∂(lim supi ftγi + IL∩dom f )(θ)

}

=
⋂

L∈F(θ)

(
co

{⋃
γ∈T̂(θ)

∂(lim supi ftγ
i
)(θ)

}
+Ndom f (θ) + L⊥

)
,

and (38) follows. To prove (37) we first obtain, due to the last relation and (2),

∂f(θ) ⊂ cl (A+B) = ∂σA+B(θ) = ∂(σA + σB)(θ), (39)

where A := co
{⋃

γ∈T̂ (θ)
∂(lim supi ftγi )(θ)

}
and B := Ndom f (θ).

Since lim supi ftγ
i
≤ f and both functions coincide at θ, we have A ⊂ ∂f(θ).

There also exist m ≥ 0, x0 ∈ dom f and θ-neighborhood U ⊂ X such that f(x0 +
y) ≤ m, for all y ∈ U. Then

σA(x0 + y) ≤ σ∂f(θ)(x0 + y) ≤ f(x0 + y) ≤ m for all y ∈ U ; (40)

that is, σA is continuous at x0. Consequently, since σB(x0) ≤ 0, (39) and (3) entail

∂f(θ) ⊂ ∂σA(θ) + ∂σB(θ) = cl(A) + B,

and the inclusion “⊂” in (37) follows. The opposite inclusion is straightforward.

The following corollary provides a characterization of ∂f(x) in terms only of
the active original functions ft’s.

Corollary 8 Fix x ∈ X. If for each net (ti)i ⊂ T satisfying fti(x) → f(x), there exist

a subnet (tij )j ⊂ T of (ti)i and an index t ∈ T such that

lim supj ftij (z) ≤ ft(z) for all z ∈ dom f, (41)

then we have

∂f(x) =
⋂

L∈F(x)
co

{⋃
t∈T (x)

∂(ft + IL∩dom f )(x)

}
.

Proof Given any γ ∈ T̂ (x) such that γti → γ and fti(x) → f(x), for some net
(ti)i ⊂ T, we choose a subnet (tγij )j in (34) satisfying (41) for a certain tγ ∈ T.
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Then tγ ∈ T (x), taking into account (41) with z = x, and by (35)

∂f(x) =
⋂

L∈F(x)
co

{⋃
γ∈T̂ (x)

∂(lim supj ftγij
+ IL∩dom f )(x)

}

⊂
⋂

L∈F(x)
co

{⋃
γ∈T̂ (x)

∂(ftγ + IL∩dom f )(x)

}
,

where the last inclusion holds as lim supj ftγij
+IL∩dom f ≤ ftγ +IL∩dom f , by (41),

and these two functions take the same value at x. The inclusion “⊂” follows as we
have shown that tγ ∈ T (x). The opposite inclusion is immediate.

6 From continuous to non-continuous

In this section, we consider again a family ft : X → R, t ∈ T, of convex functions
defined on X, and the supremum function f := supt∈T ft. Based on the results of
the previous section we provide characterizations of ∂f(x) involving only the ft’s
and not the regularized ones, i.e, the fγ ’s. We shall need the following technical
lemmas. In what follows, cls stands for the strong topology on X∗ (usually denoted
by β(X∗, X)).

Lemma 9 Assume that the convex functions ft, t ∈ T, are proper, lsc, and such that

f|aff(dom f) is continuous on ri(dom f), assumed nonempty. Let x ∈ dom f and the net

(z∗i )i∈I ⊂ X∗ such that

lim
i
(
〈
z∗i , x

〉
− inft∈T f

∗
t (z

∗
i )) = f(x), (42)

and for all z ∈ dom f

lim sup
i

(〈
z∗i , z

〉
− inft∈T f

∗
t (z

∗
i )
)
> −∞. (43)

Then, there exist a subnet (z∗ij )j of (z∗i )i and z∗ ∈ X∗ such that

z∗ ∈ cl

(⋃
t∈Tε(x)

∂εft(x) + (aff(dom f))⊥
)
, for all ε > 0, (44)

and 〈
z∗ij − z∗, z

〉
→j 0, for all z ∈ aff(dom f). (45)

In particular, if dom f is finite-dimensional, then (44) also holds with cls instead of

cl .

Proof We may assume that x = θ and f(θ) = 0, and denote E := aff(dom f) which
is a closed subspace with dual E∗. We also denote h := inft∈T f

∗
t , so that (see (4))

h∗ = ( inf
t∈T

f∗t )
∗ = sup

t∈T

f∗∗t = sup
t∈T

ft = f, (46)

and
h∗(θ) + h(z∗i ) = f(θ) + h(z∗i ) = h(z∗i ) → 0. (47)
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Hence, for every fixed ε > 0, there is some i0 ∈ I such that for all i � i0

h∗(θ) + h(z∗i ) = sup
t∈T

ft(θ) + inf
t∈T

f∗t (z
∗
i ) = h(z∗i ) < ε, (48)

and so
(z∗i )i�i0 ⊂ ∂εh

∗(θ) = ∂εf(θ). (49)

Now, using the continuity assumption, we choose x0 ∈ dom f, a θ-neighborhood
U ⊂ X and r ≥ 0 such that

f(x0 + y) ≤ r for all y ∈ U ∩E, (50)

and, by (43) with z = x0 and (47),

lim sup
i

〈
z∗i , x0

〉
> −∞.

Therefore we may assume, up to some subnet, that infi 〈z
∗
i , x0〉 > −∞ and, so, by

(49) and (50), there is some m > 0 such that

〈
z∗i , y

〉
≤ f(x0 + y) + ε− inf

i

〈
z∗i , x0

〉
≤ m, for all y ∈ U ∩ E and for all i; (51)

that is (z∗i )i ⊂ (U ∩E)◦. Since the last set is weak*-compact in E∗, by the Alaoglu-
Banach-Bourbaki theorem, there exists a subnet (z∗ij |E)j and z̃∗ ∈ E∗ such that

〈
z∗ij |E − z̃∗, u

〉
→j 0 for all u ∈ E. (52)

Moreover, by the Hahn-Banach theorem, z̃∗ ∈ E∗ is extended to some z∗ ∈ X∗,

which satisfies

〈
z∗ij − z∗, u

〉
=
〈
z∗ij |E − z̃∗, u

〉
→j 0 for all u ∈ E. (53)

Now, using (48), we see that for each i there exists ti ∈ T such that

fti(θ) + f∗ti(z
∗
i ) ≤ f∗ti(z

∗
i ) < ε,

entailing that z∗i ∈ ∂εfti(θ) and

−fti(θ) =
〈
z∗i , θ

〉
− fti(θ) ≤ f∗ti(z

∗
i ) < ε;

that is, ti ∈ Tε(θ) and so,

z∗i ∈
⋃

t∈Tε(θ)
∂εft(θ).

We fix a weak* (strong, when dom f is finite-dimensional) θ-neighborhood V ⊂ X∗.

Since E∗ is isomorphic to the quotient space X∗
�E⊥ , then V|E :=

{
u∗|E : u∗ ∈ V

}
∈

NE∗ ([12]), where u∗|E denotes the restriction of u∗ to E∗. Consequently, writing

z∗ij |E ∈ A :=

{
u∗|E ∈ E∗ : u∗ ∈

⋃
t∈Tε(θ)

∂εft(θ)

}
,

and passing to the limit on j, (53) leads us to

z∗|E ∈ A+ V|E. (54)
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In other words, there are u∗ ∈
⋃

t∈Tε(θ)
∂εft(θ) and v∗ ∈ V such that z∗|E =

u∗|E + v∗|E ; that is, 〈
z∗, u

〉
=
〈
u∗ + v∗, u

〉
for all u ∈ E,

implying that

z∗ ∈ u∗ + v∗ + E⊥ ⊂
⋃

t∈Tε(θ)
∂εft(θ) + E⊥ + V.

The conclusion follows then by intersecting over V and, after, over ε > 0.

In the currrent framework, X̂∗ is the Stone-Čech compactification of X∗, with

respect to the discrete topology, and the mappings γz∗ : [0,1]X
∗

→ [0, 1] , z∗ ∈ X∗,

are defined as in (13), so that the convergence γz∗
i
→ γ for for a net (z∗i )i ⊂ X∗

and γ ∈ X̂∗ means

ϕ(z∗i ) → γ(ϕ) for all ϕ ∈ [0, 1]X
∗

.

Lemma 10 Assume in Lemma 9 that the net (γz∗
i
)i converges in X̂∗. Then for the

function

ψ(z) := lim sup
i

(〈
z∗i , z

〉
− inf

t∈T
f∗t (z

∗
i ) + Idom f (z)

)
, z ∈ X,

we have

∂ψ(x) ⊂ Ndom f (x) +
⋂

ε>0
cl

(⋃
t∈Tε(x)

∂εft(x) + (aff(dom f))⊥
)

⊂
⋂

ε>0
cl

(⋃
t∈Tε(θ)

∂εft(θ) + Ndom f (θ)

)
,

with cls instead of cl when dom f is finite-dimensional.

Proof We may suppose that x = θ and f(θ) = 0. By Lemma 9 there exist a subnet
(z∗ij )j of (z∗i )i and

z∗ ∈
⋂

ε>0
cl

(⋃
t∈Tε(x)

∂εft(x) + (aff(dom f))⊥
)

such that (z∗ij )j weak*-converges to z∗ in E∗ (where E = aff(dom f)).

We introduce the functions gu∗ : X → R∞, u∗ ∈ X∗, defined as

gu∗ := max
{
u∗ − h(u∗),−1

}
,

where h = inft∈T f
∗
t (already used in the proof of Lemma 9). Observe that (recall

(46))
−1 ≤ gu∗ ≤ max

{
h∗,−1

}
= max {f,−1} ,

and

ϕz(u
∗) :=

gu∗(z) + 1

max {f(z) + 1, 1}
∈ [0, 1] , for all z ∈ dom f.
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Hence, since ϕz is obviously continuous on X∗ endowed with the discrete topology,
the convergence assumption of (γz∗

i
)i ensures that, for each z ∈ dom f, the net

γz∗
i
(ϕz) =

gz∗
i
(z) + 1

max {f(z) + 1, 1}

also converges, as well as the net (gz∗
i
(z))i. Then, taking into account (42) and

(45), we obtain

lim
i
gz∗

i
(z) = lim

i
max

{〈
z∗i , z

〉
− h(z∗i ),−1

}

= lim
j

max
{〈
z∗ij , z

〉
,−1

}
= max

{〈
z∗, z

〉
,−1

}
,

which gives

lim sup
i

〈
z∗i , z

〉
≤ lim sup

i
(max{

〈
z∗i , z

〉
,−1}) = max{

〈
z∗, z

〉
,−1}.

But both functions lim supi z
∗
i +Idom f and max{z∗,−1}+Idom f coincide at θ, and

so

∂

(
lim sup

i
(z∗i + Idom f )

)
(θ) ⊂ ∂(max{z∗ + Idom f ,−1})(θ),

and (19) applied to the (finite) family {z∗ + Idom f ,−1} yields (recall (42))

∂ψ(θ) = ∂

(
lim sup

i
(z∗i + Idom f )

)
(θ)

⊂ z∗ +Ndom f (θ).

⊂ Ndom f (θ) +
⋂

ε>0
cl

(⋃
t∈Tε(θ)

∂εft(θ) + (aff(dom f))⊥
)

⊂
⋂

ε>0
cl

(⋃
t∈Tε(θ)

∂εft(θ) + Ndom f (θ)

)
.

Theorem 11 Let ft : X → R, t ∈ T, be convex functions and f = supt∈T ft. Then,

for every x ∈ X,

∂f(x) =
⋂

L∈F(x)
co

{⋂
ε>0

cls
(⋃

t∈Tε(x)
∂ε(ft + IL∩dom f )(x)

)}
. (55)

If, in addition,

cl f = sup
t∈T

(cl ft), (56)

then

∂f(x) =
⋂

L∈F(x)
co

{⋂
ε>0

cl

(⋃
t∈Tε(x)

∂εft(x) + NL∩dom f (x)

)}
. (57)

Remark 1 (before the proof) Formula (55) leads straightforwardly to the following
characterization of ∂f(x), using the strong closure

∂f(x) =
⋂

L∈F(x),ε>0
cos

{⋃
t∈Tε(x)

∂ε(ft + IL∩dom f )(x)

}
,
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improving the one of Proposition 3, which is given in terms of the weak*-closure.
However, on despite that both formulas involve similar elements, the order in tak-
ing the intersection over ε leads to different interpretations of ∂f(x). For instance,
if T is finite, T = T (x) and f is continuous, then (55) reads

∂f(x) = co

{⋃
t∈T (x)

∂ft(x)

}
,

giving Valadier’s formula (see, e.g., [30]), while Proposition 3 yields

∂f(x) =
⋂

ε>0
co

{⋃
t∈T (x)

∂εft(x)

}
,

which turns out to be the Brøndsted formula ([1]; see, also, [15, Corollary 12]).

Proof The inclusions “⊃” in both formulas are straightforward. We may suppose,
without loss of generality, that x = θ, f(θ) = 0 and ∂f(θ) 6= ∅; hence,

∂(cl f)(θ) = ∂f(θ) and f(θ) = (cl f)(θ) = 0. (58)

We proceed in three steps:
Step 1. We assume that all the ft’s are proper and lsc; hence, (56) obviously holds.
We fix L ∈ F(θ), and define the functions

f̃t := ft + IL, t ∈ T, and h := inft∈T f̃
∗
t . (59)

The f̃t’s are proper and lsc, and we have (see (4))

(f + IL)(z) = supt∈T f̃t(z) = supt∈T f̃
∗∗
t (z) = (inft∈T f̃

∗
t )

∗(z) = h∗(z); (60)

that is,
(f + IL)(z) = sup

{〈
z, z∗

〉
− h(z∗), z∗ ∈ X∗} ,

and (35) applied with T = X∗ (endowed with the discrete topology) yields

∂(f + IL)(θ) ⊂ co

{⋃
γ∈X̂∗(θ)

∂

(
lim sup

i
(z∗

γ

i − h(z∗
γ

i ) + IL∩dom f )

)
(θ)

}
, (61)

where X̂∗(θ) repesents the set T̂ (θ) given in (17); that is,

X̂∗(θ) =

{
γ ∈ X̂∗ : lim sup

γz∗→γ
(−h(z∗)) = 0

}
,

and (z∗
γ

i )i ⊂ X∗ is a fixed net such that γz∗γ

i
→ γ and h(z∗

γ

i ) → 0 (by (34)).

Consequenlty, for every γ ∈ X̂∗(θ), Lemma 10 applies and yields

∂

(
lim sup

i
(z∗

γ

i − h(z∗
γ

i ) + IL∩dom f )

)
(θ)

⊂
⋂

ε>0
cls
(⋃

t∈T 1
ε (θ)

∂εf̃t(θ) + NL∩dom f (θ)

)
, (62)

where
T 1
ε (θ) :=

{
t ∈ T : f̃t(θ) ≥ −ε

}
= Tε(θ). (63)



Subdifferential of the supremum function 19

Indeed, condition (43) is satisfied when the left-hand side in (62) is nonempty,
and thus the function lim supi(z

∗γ

i − h(z∗
γ

i ) + IL∩dom f ) is proper. Consequently,
combining (61), (62) and (63),

∂(f + IL)(θ) ⊂ co

{⋂
ε>0

cls
(⋃

t∈Tε(θ)
∂εf̃t(θ) + NL∩dom f (θ)

)}
, (64)

and the inclusion “⊂” in (55) follows since ∂f(θ) ⊂ ∂(f + IL)(θ) and

∂εf̃t(θ) + NL∩dom f (θ) ⊂ ∂ε(ft + IL∩dom f )(θ).

Moreover, due to the fact that ∂εf̃t(θ) ⊂ cl(∂εft(θ) + L⊥) (see, e.g., [17]), (64)
implies that

∂f(θ) ⊂ co

{⋂
ε>0

cls
(⋃

t∈Tε(θ)
cl(∂εft(θ) + L⊥) + NL∩dom f (θ)

)}

⊂ co

{⋂
ε>0

cls
(
cl

(⋃
t∈Tε(θ)

∂εft(θ) + NL∩dom f (θ)

))}

= co

{⋂
ε>0

cl

(⋃
t∈Tε(θ)

∂εft(θ) + NL∩dom f (θ)

)}
, (65)

which yields the inclusion “⊂” in (57).

Step 2. We suppose that (56) holds and we fix L ∈ F(θ). By (58) we choose a
θ-neighborhood U ⊂ X such that

f(z) ≥ (cl f)(z) ≥ −1, for all z ∈ U, (66)

and denote S := {t ∈ T : cl ft is proper} . We define the functions

gt := cl ft, if t ∈ S, and gt := max{cl ft,−1} , otherwise.

Then (see the proof of [15, Theorem 4], page 871) gt is proper, lsc and convex,

g(z) := sup
t∈T

gt(z) = (cl f)(z), for all z ∈ U ;

hence, g(θ) = 0,

{t ∈ T : gt(θ) ≥ −ε} ⊂ Tε(θ) ∩ S, ∀ε ∈ ]0, 1[ ,

∂εgt(θ) ⊂ ∂2εft(θ), ∂ε(gt + IL∩dom f )(θ) ⊂ ∂2ε(ft + IL∩dom f )(θ), ∀ε ∈ ]0, 1[ ,

and
∂f(θ) = ∂(cl f)(θ) = ∂g(θ). (67)

Consequently, by Step 1,

∂f(θ) = ∂g(θ) =
⋂

L∈F(θ)
co

{⋂
ε>0

cls
(⋃

t∈T, gt(θ)≥−ε
∂ε(gt + IL∩dom g)(θ)

)}

⊂
⋂

L∈F(θ)
co

{⋂
ε>0

cls
(⋃

t∈Tε(θ)
∂2ε(ft + IL∩dom f )(θ)

)}
,

entailing the desired inclusion “⊂” in (55).
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Similarly, (65) yields

∂f(θ) =
⋂

L∈F(θ)
co

{⋂
0<ε<1

cl

(⋃
t∈T, gt(θ)≥−ε

∂εgt(θ) + NL∩dom g(θ)

)}

⊂
⋂

L∈F(θ)
co

{⋂
0<ε<1

cl

(⋃
t∈Tε(θ)

∂2εft(θ) + NL∩dom f (θ)

)}
, (68)

which easily leads to the inclusion “⊂” in (57).
Step 3. We prove (55) in the general case, without assuming (56). We fix L ∈ F(θ)
and define

f̂t := ft + IL∩dom f ,

so that
fL := sup

t∈T

f̂t = f + IL∩dom f = f + IL,

f̂t(θ) = ft(θ), fL(θ) = 0, and dom fL = L ∩ dom f.

Moreover, the family
{
f̂t, t ∈ T

}
satisfies condition (56) (see the proof of Propo-

sition 3). Since (see [8, Lemma 3.1])

∂f(θ) =
⋂

L∈F(θ)
∂(f + IL)(θ) =

⋂
L∈F(θ)

∂fL(θ),

applying Step 2 to the family
{
f̂t, t ∈ T

}
we get

∂f(θ) =
⋂

L∈F(θ)
∂fL(θ)

⊂
⋂

L∈F(θ)
co

{⋂
ε>0

cls
(⋃

t∈T, f̂t(θ)≥−ε
∂ε(f̂t + IL∩dom fL)(θ)

)}

=
⋂

L∈F(θ)
co

{⋂
ε>0

cls
(⋃

Tε(θ)
∂ε(ft + IL∩dom f )(θ)

)}
,

and the inclusion “⊂” in (55) follows.

The following corollary closing this section considers a frequent hypothesis in
the literature.

Corollary 12 Let ft : X → R, t ∈ T, be convex functions. If f = supt∈T ft is finite

and continuous at some point, then for every x ∈ X

∂f(x) = Ndom f (x) + co

{⋂
ε>0

cl

(⋃
t∈Tε(x)

∂εft(x)

)}

= Ndom f (x) + co

{⋂
ε>0

cl

(⋃
t∈Tε(x)

∂εft(x)

)}
(if X = R

n).

Proof The proof is similar to the one of Theorem 11, but with the use of the
formulas in Corollary 7 instead of formula (35).

We close this section with an extension of Theorem 11 to nonconvex functions.
We also refer to [22], and references therein, for other studies on the subdifferential
of the supremum of nonconvex functions.
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Corollary 13 Let ft : X → R, t ∈ T, be a family of non-necessarily convex functions

and f := supt∈T ft. Assume that

f∗∗ = sup
t∈T

f∗∗t .

Then (57) holds.

Proof It suffices to prove the inclusion “⊂” in (57) for x such that ∂f(x) 6= ∅; hence,
f∗ is proper, f(x) = f∗∗(x) and ∂f(x) = ∂(cof)(x) = ∂f∗∗(x). Thus, applying the
second statement in Theorem 11 to the family {f∗∗t , t ∈ T} ,

∂f(x) = ∂f∗∗(x) =
⋂

L∈F(x)
co

{⋂
ε>0

cl

(⋃
t∈T 1

ε (x)
∂εf

∗∗
t (x) + NL∩dom f∗∗(x)

)}
,

where T 1
ε (x) := {t ∈ T : f∗∗t (x) ≥ f(x)− ε} . Observe that every t ∈ T 1

ε (x) satisfies

ft(x) ≥ f∗∗t (x) ≥ f(x)− ε ≥ ft(x)− ε;

hence, t ∈ Tε(x) and ∂εf
∗∗
t (x) ⊂ ∂2εft(x). Additionally, the inequality f∗∗ ≤ f

implies that NL∩dom f∗∗(x) ⊂ NL∩dom f (x), and the desired inclusion follows.

7 Two applications in optimization

First, in this section, we apply the previous results to extend the classical Fenchel
duality to the nonconvex framework. This will lead us to recover some of the results
in [3,4,5] (see, also, [26]), relating the solution set of a nonconvex optimization
problem and its convexified relaxation. Second, we establish Fritz-John and KKT
optimality conditions for convex semi-infinite optimization problems, improving
similar results in [8].

Given a function g : X → R∞, we recall that the Fenchel conjugate of g is the
function f : X∗ → R, given by

f(x∗) := sup
x∈X

(
〈
x, x∗

〉
− g(x)). (69)

When g is proper, lsc and convex, the classical Fenchel duality, together with (4),
yields

∂f = (∂g)−1. (70)

We extend this relation to non-necessarily convex functions. We denote below the
closure with respect to the weak topology in X by clw.

Proposition 14 Assume that the function f is proper. Then, for every x∗ ∈ X∗,

∂f(x∗) =
⋂

L∈F(x∗)
co
{⋂

ε>0
clw

(
(∂εg)

−1(x∗) + NL∩dom f (x
∗)
)}

.

If, in addition, f is finite and (weak*-) continuous somewhere, then

∂f(x∗) = co
{(

(∂(clw g))−1(x∗)
)}

+Ndom f (x
∗)

= co
{(

(∂(cl g))−1(x∗)
)}

+Ndom f (x
∗) (if X = R

n),
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where clw g is the weak-lsc hull of g.

Proof We define the convex functions fx : X∗ → R, x ∈ X, as

fx(x
∗) :=

〈
x, x∗

〉
− g(x), x ∈ dom g,

so that fx are weak*-continuous and f = supx∈dom g fx. Then, according to formula
(57), for every x∗ ∈ X∗ we have

∂f(x∗) =
⋂

L∈F(x∗)
co

{⋂
ε>0

clw
(⋃

x∈Tε(x∗)
∂εfx(x

∗) + NL∩dom f (x
∗)

)}
,

where
Tε(x

∗) :=
{
x ∈ dom g : fx(x

∗) ≥ f(x∗)− ε
}
= (∂εg)

−1(x∗).

Consequently, the first formula comes from the fact that ∂εfx(x∗) = {x} .

Assume now that f is finite and weak*-continuous somewhere. Then, arguing
in a similar way, but using Corollary 12 instead of (57),

∂f(x∗) = co
{⋂

ε>0
clw

(
(∂εg)

−1(x∗)
)}

+Ndom f (x
∗)

= co
{⋂

ε>0
cl
(
(∂εg)

−1(x∗)
)}

+Ndom f (x
∗) (if X = R

n).

The desired formulas follow as
⋂

ε>0
clw

(
(∂εg)

−1(x∗)
)
= (∂(clw g))−1(x∗), (71)

according to [6, Lemma 2.3].

Observing that Argmin(cog) = ∂f(θ), the previous proposition gives:

Corollary 15 Assume that the function f is proper. Then we have

Argmin(cog) =
⋂

L∈F(θ)
co
{⋂

ε>0
clw

(
ε-Argmin g +NL∩dom f (θ)

)}
.

If, in addition, f is finite and continuous at some point, then

Argmin(cog) = co(Argmin(clw g)) + Ndom f (θ)

= co(Argmin(cl g)) + Ndom f (θ) (if X = R
n).

When X is a normed space, the set ∂f(x∗) is also seen as a subset of the
bidual space, whereas Proposition 14 characterizes only the part of ∂f(x∗) in the
subspace X of X∗∗. A light adaptation of Proposition 14 allows us to have a
complete picture of ∂f(x∗), as a proper set of the bidual space X∗∗. In such a
setting, we denote the weak*-topology σ(X∗∗, X∗) in X∗∗ by w∗∗, and introduce

the function gw
∗∗

: X∗∗ → R defined by

gw
∗∗

(y) = lim inf
x→w∗∗

y
g(x), y ∈ X∗∗.

We refer, e.g., to [2, Chapter 1] for these concepts.
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Proposition 16 Assume that X is a normed space and X∗ is endowed with the dual

norm topology. If the function f is proper, then for every x∗ ∈ X∗

∂f(x∗) =
⋂

L∈F(x∗)
co
{⋂

ε>0
clw

∗∗
(
(∂εg)

−1(x∗) + NL∩dom f (x
∗)
)}

.

If, in addition, f is finite and (norm-) continuous somewhere, then

∂f(x∗) = co
{
(∂gw

∗∗

)−1(x∗)
}
+Ndom f (x

∗).

Proof Following similar arguments as those used in [4], we apply Proposition 14
in the duality pair ((X∗∗, w∗∗), (X∗, ‖‖∗)), replacing the function g in (69) by the
function ĝ defined on X∗∗ as

ĝ(y) = g(y), if y ∈ X∗∗; +∞, otherwise .

Observe that the w∗∗-lsc hull of ĝ is precisely the function gw
∗∗

.

Now, as in [8,10], we consider the following convex semi-infinite optimization
problem

(P) : Inf f0(x), subject to ft(x) ≤ 0, t ∈ T,

where T is a given set, and f0, ft : R
n → R∞, t ∈ T , are proper and convex. We

assume, without loss of generality, that 0 /∈ T , and denote

f := supt∈T ft.

The following result establishes new Fritz-John and KKT optimality conditions
for problem (P), improving similar results in [8,10]. Here we adopt the convention
R+∅ = {0n} .

Proposition 17 Let x̄ be an optimal solution of (P) such that f(x̄) = 0. Then we

have

0n ∈ co

{
∂(f0 + Idom f )(x̄) ∪

⋂
ε>0

cl

(⋃
t∈Tε(x̄)

∂ε(ft + Idom f∩dom f0
)(x̄)

)}
.

(72)
Moreover, if the Slater condition holds; that is, f(x0) < 0 for some x0 ∈ dom f0, then

0n ∈ ∂(f0 + Idom f )(x̄) + cone
⋂

ε>0
cl

(⋃
t∈Tε(x̄)

∂ε(ft + Idom f∩dom f0
)(x̄)

)
(73)

and, provided in addition that f is continuous at some point in dom f0 ∩ dom f,

0n ∈ ∂f0(x̄) + cone
⋂

ε>0
cl

(⋃
t∈Tε(x̄)

∂εft(x̄)

)
+Ndom f (x̄). (74)

Proof We consider the function g : Rn → R ∪ {+∞}, defined as

g(x) := sup{f0(x)− f0(x̄), ft(x), t ∈ T} = max{f0(x)− f0(x̄), f(x)} ,

so that dom g = dom f0 ∩ dom f. Then x̄ is a global minimum of g; that is, 0n ∈

∂g(x̄). To proceed, we first apply Proposition 1 to the (finite) family {f0−f0(x̄), f}
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and obtain
0n ∈ co

{
∂(f0 + Idom f )(x̄) ∪ ∂(f + Idom f0

)(x̄)
}
. (75)

But Theorem 11, applied to the family
{
ft + Idom f0

, t ∈ T
}
, yields

∂(f + Idom f0
)(x̄) = co

{⋂
ε>0

cl

(⋃
t∈Tε(x̄)

∂ε(ft + Idom f∩dom f0
)(x̄)

)}
, (76)

and (72) follows from (75).

Finally, it can be easily seen from (75) that the Slater condition precludes
that 0n ∈ ∂(f + Idom f0

)(x̄). So, (73) follows from (72). Under the supplementary
continuity condition, Corollary 12 ensures that

∂(f + Idom f0
)(x̄) = Ndom f0

(x̄) + ∂f(x̄)

= Ndom f0
(x̄) + Ndom f (x) + co

{⋂
ε>0

cl

(⋃
t∈Tε(x)

∂εft(x)

)}
,

and (74) follows, taking into account (3) and

0n ∈ ∂(f0 + Idom f )(x̄) +R+∂(f + Idom f0
)(x̄)

= ∂f0(x̄) + Ndom f (x̄) +R+∂(f + Idom f0
)(x̄)

= ∂f0(x̄) + cone

{⋂
ε>0

cl

(⋃
t∈Tε(x)

∂εft(x)

)}
+Ndom f0

(x̄) + Ndom f (x)

⊂ ∂f0(x̄) + cone

{⋂
ε>0

cl

(⋃
t∈Tε(x)

∂εft(x)

)}
+Ndom f (x).

8 Conclusions

The main conclusion of this work is that the compactification method proposed in
the paper allows us to move from the non-continuous setting to the continuous one
and the other way around, as well as to develop a unifying theory which inspires
new results and applications. The main results in relation to the subdifferential
of the supremum are stated in Theorems 4, 6, and 11, which are established in
the most general framework, free of assumptions on the index set and the data
functions. Our results cover most of the existing formulas such as those obtained
in [7,8,9,10,11,14,15,16,18,19,20,25,26,27,29,30,31]. The Fritz-John and KKT
conditions for convex semi-infinite optimization are expressed in the most general
scenario and, consequently, extend some previous results which can be found in
[11,13,16,20].
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10. R. Correa, A. Hantoute, M. A. López, Subdifferential of the supremum via compactification
of the index set. To appear in Vietnam J. Math. (2020).
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