
THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 23 Avril 2014 par :

Guillaume ESCAMOCHER

Forbidden Patterns in Constraint Satisfaction Problems

JURY
MARTIN C. COOPER Professeur d’Université Membre du Jury
MICHEL HABIB Professeur d’Université Rapporteur
PETER JONSSON Professor Rapporteur
FLORENT MADELAINE Maı̂tre de Conférences, HDR Membre du Jury
PIERRE RÉGNIER Maı̂tre de Conférences, HDR Membre du Jury

École doctorale et spécialité :
MITT : Domaine STIC : Intelligence Artificielle

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse

Directeurs de Thèse :
Martin C. COOPER et Pierre REGNIER

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Thèses en ligne de l'Université Toulouse III - Paul Sabatier

https://core.ac.uk/display/42968177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Résumé

Le problème de satisfaction de contraintes (CSP) est NP-complet, même dans le cas où
toutes les contraintes sont binaires. Cependant, certaines classes d’instances CSP sont traita-
bles. Récemment, une nouvelle méthode pour définir de telles classes a émergée. Cette ap-
proche est centrée autour des motifs interdits, ou l’absence locale de certaines conditions. Elle
est l’objet de ma thèse.

Nous définissons formellement ce que sont les motifs interdits, présentons les propriétés
qu’ils détiennent, et finalement les utilisons afin d’établir plusieurs résultats de complexité
importants. En utilisant différentes versions de motifs, toutes basées sur le même concept de
base, nous énumérons un nombre important de nouvelles classes traitables, ainsi que certaines
NP-completes. Nous combinons ces résultats pour révéler plusieurs dichotomies, chacune
englobant une large gamme de classes d’instances CSP.

Nous montrons aussi que les motifs interdits représentent un outil intéressant pour la sim-
plification d’instances CSPs. Nous donnons plusieurs nouveaux moyens de réduire la taille des
instances CSP, que ce soit en éliminant des variables ou en fusionnant les domaines, et mon-
trons comment ces méthodes sont activées par l’absence locale de certains modèles. Comme
les conditions de leur utilisation sont entièrement locales, nos opérations peuvent être utilisés
sur un large éventail de problèmes.

Mots clés:
problème de satisfaction de contraintes, motif interdit, classe traitable, élimination de variables

1

2

Abstract

The Constraint Satisfaction Problem (CSP) is NP-Complete, even in the case where all con-
straints are binary. However, some classes of CSP instances are tractable. Recently, a new
method for defining such classes has emerged. This approach is centered around forbidden
patterns, or the local absence of some conditions. It is the focus of my thesis.

We formally define what forbidden patterns are, exhibit the properties they hold, and even-
tually put them to use in order to establish several important tractability results. Using dif-
ferent versions of patterns, all based on the same core concept, we list a significant number of
new tractable classes, as well as some NP-Complete ones. We combine these results to reveal
several dichotomies, each one encompassing a large range of classes of CSP instances.

We also show how useful a tool forbidden patterns can be in the field of CSP instance
simplification. We give multiple new ways of decreasing the size of CSP instances, whether
by eliminating variables or fusioning domains, and prove how all these methods are enabled
by the local absence of some patterns. Since the conditions for their use are entirely local, our
operations can be used on a wide array of problems.

Keywords:
constraint satisfaction problem, forbidden pattern, tractable class, variable elimination

3

4

Thanks

First of all, I would like to thank Martin Cooper. Martin was of tremendous help throughout
all of my PhD. Not only was he, as my supervisor, the driving force directing my research efforts,
but he was also the one person who gave me the tools of the trade. In order to succeed in an
intellectual endeavor, one must possess logical thinking, and find what original ideas will lead to
the discovery of new results. Martin gave me the former and showed me the latter. If I acquired a
scientific mind during these last three years, I owe it to him.

I would also like to thank my co-supervisor Pierre Régnier. Whenever I had an enquiry, on any
topic, he was always available to answer my questions. In particular, Pierre helped me structure
my work when I was almost overwhelmed with the task ahead of me. Without him, the quality of
this thesis would have been far poorer than it is.

Standa Živný and Dave Cohen were co-authors of most of the papers we published during my
PhD. As such, their contributions can be directly seen in my thesis. I thank them immensely for
that.

I also thank Frédéric Maris, Philippe Jégou and all other members of the TUPLES project. The
project itself provided the necessary funding for my PhD, and the people I met within the project
gave me an invaluable insight into the scientific community.

I would like to thank my family and my friends as well. They were often on my mind during
all these years.

Finally, I would like to mention the people who kindly accepted to read, report or comment on
my thesis. Michel Habib, Peter Jonsson, Florent Madelaine and Emmanuel Hebrard showed great
interest in my work and for that I thank them.

5

Contents

1 Introduction 9
1.1 From Problems to Patterns . 9
1.2 A New Approach . 11
1.3 Goals . 16
1.4 Outline of the Thesis . 16

2 State of the Art 19
2.1 The Constraint Satisfaction Problem . 19
2.2 Tractable Classes . 19
2.3 Max-CSPs . 21
2.4 Variable Elimination . 22
2.5 Other Simplification Operations . 24

3 Patterns, Tools, Reductions 25
3.1 What Is A Pattern? . 25
3.2 Different Kinds of Patterns . 27

3.2.1 About Quantified Patterns . 27
3.2.2 About Existential Patterns . 28

3.3 Operations for CSP Instances . 31
3.3.1 Classical Operations . 31
3.3.2 Our Operations . 32

3.4 Reduction to a Pattern . 33
3.4.1 Reduction in the Flat Case . 33
3.4.2 Reduction in the Quantified Case . 34
3.4.3 Reduction in the Existential Case . 35
3.4.4 Reduction to a Different Kind of Pattern . 37

4 Tractable Classes 39
4.1 Dichotomy for Forbidden Patterns on Two Constraints 39

4.1.1 Flat Patterns on One Constraint . 39
4.1.2 Flat Patterns on Two Constraints . 41
4.1.3 Proof of Theorem 1 . 43
4.1.4 Some NP-Complete Existential Patterns on Two Constraints 57
4.1.5 Existential Patterns on Two Constraints . 63
4.1.6 The Dichotomy . 65

4.2 Forbidding Max-CSPs Subproblems . 66
4.2.1 Definitions and Basic Properties . 66
4.2.2 Dichotomy for Forbidding a Single Subproblem 67
4.2.3 Requirements for the Tractability of a Set of Subproblems 70

4.3 Forbidden Patterns on Three Variables . 72

6

4.3.1 Necessary Conditions for Tractability . 72
4.3.2 List of All Possible Tractable Patterns on Three Variables 77
4.3.3 Tractability Proofs . 84
4.3.4 Summary of the Section . 96

5 Simplification Operations 101
5.1 Variable Elimination . 101
5.2 Fusion of Subdomains . 111

6 Conclusion 117
6.1 What we have done . 117
6.2 What we can do next . 118

List of Definitions 120

List of Figures 122

References 124

7

8

1 Introduction

1.1 From Problems to Patterns

A main goal of Artificial Intelligence, or AI, is to produce decision makers. This can be decom-
posed in two parts, in the same way that Artificial Intelligence is composed of two words. The first
word is ”artificial” and it reflects ”produce”. Artificial means it does not come out of nowhere,
it is crafted. Artificial Intelligence does not just study theoretical properties, it crafts algorithms
and creates solutions. The second word in Artificial Intelligence is ”intelligence” and it reflects
”decision”. Intelligence is the core of the discipline, its driving force. It is what distinguishes it
from the rest of Art and Science. A builder constructs houses. A composer creates symphonies.
A pharmacologist produces cough syrup. These are all necessary or desirable items; they bring
shelter, entertainment and healthiness, and so their use and interest cannot be questioned. How-
ever, none of them possesses intelligence, or the ability to make insightful decisions. They are
useful, but lesser by essence than creations able to make decisions. Intelligence is what gives the
inanimate the freedom to choose its actions. It is what separates a thinking entity from a golem.
It provides the ability to evaluate different options, compare them, and ultimately make a choice.
Intelligence is about solving problems.

Some problems cannot be solved by any algorithm. It is the case for instance of the Halting
Problem (Turing, 1936). Other problems can be solved by some algorithm, but the time required to
do so would be so long, millions of years for the current best computers, that it is often not worth
the effort. One such example is the problem of whether or not two different regular expressions
represent the same language (Meyer & Stockmeyer, 1972). Fortunately, a lot of problems, including
most problems which arise in everyday life, can be solved in a relatively affordable time. They are
in NP, the set of problems solvable in polynomial time by a non-deterministic Turing machine.
Most work in computer science, or at least most work with the intent of solving problems, focuses
on problems from NP. If P6=NP, then NP-Complete problems, the hardest to solve problems in
NP, are not solvable in polynomial time, and may require algorithms with an exponential running
time to be solved completely. However, by focusing on a single NP-Complete problem, one can
still manage to find polynomial time algorithms which give interesting results. This can be done
by only focusing on a subset of all possible instances of this problem. If successful, this approach
leads to a tractable class. This can also be done by approximating, the act of finding a solution to
the problem which is non-optimal, but close enough to be useful. One such work is (Raghavendra,
2008). Additionally, one can use selected randomized algorithms. Such algorithms can give an
optimal solution in a polynomial time for any instance, but with a probability of only 1-ε, with ε
very small (Motwani & Raghavan, 1995).

NP is a very large class of very diverse problems. The Subset-Sum problem and the Travelling
Salesman problem seem to bear little ressemblance. However, despite this diversity, focusing on
each problem individually is not the way to go. Otherwise, all the work done on one problem
would be wasted when studying another distinct problem. All NP-Complete problems are re-
ducible in polynomial time to each other, so it is better to first search for efficient algorithms for
a select few NP-Complete problems, and then reduce other NP-Complete to these ”main” prob-

9

a

b

c

d

e

f

D1

D2 D3

Figure 1: An example of a CSP instance.

lems. Such problems, on which a lot of results have been found and to which many NP-Complete
problems are reduced to, include 3-SAT and the Constraint Satisfaction Problem, abbreviated CSP.

A CSP instance can be summarized as follows:

• Data

– A set of n variables {v1, . . . , vn}.

– A set of n domains {D1, . . . , Dn}. Each domain Di is the set of all the possible values
the variable vi can take. 〈vi, ai〉 represents the assignment of the value ai ∈ Di to the
variable vi.

– A set of m constraints {C1, . . . , Cm}, of respective arities k1, . . . , km. Each constraint
Ci has a scope composed of ki variables {vi,1, . . . , vi,ki

} and describes the ki-tuples of
assignments {〈vi,1, ai,1〉 , . . . , 〈vi,ki

, ai,ki
〉} that are not allowed for its scope.

• Question: Is there a set of n assignments {〈v1, a1〉 , . . . , 〈vn, an〉} satisfying all constraints?

Not all domains need to have the same size. A set of n assignments satisfying all constraints is
called a solution to the instance. For n′ ≤ n, a set of n′ assignments satisfying all constraints is called
a partial solution. An example of a CSP instance is given in Figure 1. There are three variables v1, v2
and v3, their associated domains D1 = {a}, D2 = {b, c}, and D3 = {d, e, f}, as well as three binary
constraints. Domains are represented by ovals, values in a domain are represented by points in the
oval representing the domain, pairs of compatible assignments (also called compatibility edges)
are represented by solid lines and pairs of incompatible assignments (also called incompatibility
edges) are represented by dashed lines. {〈v1, a〉 , 〈v2, b〉 , 〈v3, e〉} is a solution to the instance.

Since CSP is a NP-Complete problem, all problems in NP can be reduced in polynomial time to
some CSP instance. Furthermore, CSP is a very intuitive problem, so in many cases the reduction
will only take a short time. For instance, any 3-SAT instance can be reduced in linear time to a

10

a b c

Dv

a,b and c distinct

Figure 2: Forbidden pattern in a Binary Boolean CSP instance.

CSP instance. Therefore, finding results about the CSP will not only advance the CSP field, but
also help make progress for other seemingly unrelated NP-Complete problems.

Since CSP is NP-Complete, it is not possible to give a polynomial-time algorithm able to solve
all CSP instances. However, as stated above, one can look for sets of CSP instances for which
such an algorithm exists. Such sets are tractable classes. One example of a tractable class in CSP
is the set of binary CSP instances where the size of all domains is at most 2. This result can be
acquired by a reduction to 2-SAT. Tractable classes are part of what we have been looking for,
along with general improvements to already existing algorithms. These improvements we give
can decrease the size of instances satisfying some specific conditions. It does not reduce the worst-
case complexity of a given algorithm, but can diminish its running time.

In recent years (as of 2013), a novel approach on CSPs has been considered. This method,
which is the main subject of my thesis, focuses on patterns. A pattern is here a local behavior of
a CSP instance. The presence (or absence) of these local conditions in a CSP instance can exhibit
useful global properties that hold for this instance. Some of these properties include belonging to
a tractable class and redundancy of some variables and/or values. In the case of a redundancy,
we often can remove the appropriate variable and/or reduce the size of the domain containing
the redundant value. These operations result in an instance of smaller size.

Although the concept of forbidden patterns is relevant to any constraint arity, we only consid-
ered binary constraints during my PhD. There are two main reasons behind this choice. Firstly,
forbidden patterns are more natural in a binary environment. Binary patterns are easier to detect
and thus will be more likely to be used in real-life applications. Secondly, binary constraints are
more inclined to lead to dichotomic results when dealing with patterns. Dichotomies are often
sought after, because they present an efficient way to map the knowledge one has of a given field.

1.2 A New Approach

An example of a known tractable class in CSP that we mentioned previously is the set of all binary
CSP instances whose variables can only take two possible values, or Binary Boolean CSP. An
equivalent definition for this class would be to consider the set of CSP instances such that there
are never three distinct values in any domain. This subproblem, or pattern, which never occurs in
such an instance is represented in Figure 2.

Another example of a tractable class is the class ZOA. ZOA stands here for ”Zero One All”.
This class is composed of all CSP instances I such that: if c is a constraint between two variables

11

a

b

c

d

6=

Dv

Dv′

Figure 3: Forbidden pattern in a ZOA instance.

a

b c

Dv0

Dv1 Dv2

a

b c

Dv0

Dv1 Dv2

⇒

Figure 4: An example of condition on the graph of incompabilities.

v and v′ in I , and Dv and Dv′ are the domains of v and v′ respectively, then each value in Dv is
compatible with exactly zero values from Dv′ , or exactly one, or all of them. One can notice that in
a ZOA instance, the following pattern never occurs: a value a in a domain Dv which is compatible
with two distinct values b and c in a domain Dv′ , and which is incompatible with a value d in the
same domain Dv′ . This pattern is represented in Figure 3. Binary Boolean CSP is an example of
ZOA; since there are at most two values in each domain, the pattern from Figure 3 cannot appear
in a Binary Boolean CSP instance.

The class ZOA is defined by restrictions on the constraints. The class Binary Boolean CSP is
defined by restrictions on the domains. Since a constraint is defined on several domains, restric-
tions on the domains can be seen as a special case of restrictions on the constraints. Therefore,
Binary Boolean CSP is also defined by restrictions on the constraints.

Studying CSP instances defined by restrictions on their constraints has been one of the main
methods of finding tractable classes so far. Another widespread approach is to examine restric-
tions on some underlying graph of an instance. For instance, consider the following condition
on the graph of incompabilities, also known as the colored microstructure complement (Cohen,
Cooper, Creed, Marx, & Salamon, 2012): for all triples of domains Dv0 , Dv1 and Dv2 , if there is a
value a ∈ Dv0 which is incompatible with a value b ∈ Dv1 and also with another value c ∈ Dv2 ,
then the values b and c are incompatible. Figure 4 presents a graphical representation of this con-
dition. The set of CSP instances whose graph of incompabilities satisfies this condition forms the
class NEGTRANS. NEGTRANS is tractable (Cooper & Živný, 2011c) and includes for example
All-Diff CSP instances, where all variables must take different values.

12

a

b c

Dv0

Dv1 Dv2

Figure 5: Forbidden pattern in a NEGTRANS instance.

Note that NEGTRANS can also be equivalently defined by the set of CSP instances in which
the following pattern never occurs: three values a, b and c in the three distinct domains Dv0 , Dv1

and Dv2 respectively, such that a is incompatible with both b and c, and b is compatible with c.
This pattern is represented in Figure 5.

Restrictions on the constraints and restrictions on the subgraphs have been the two main ways
to look for tractable classes in CSP. The core of the idea behind the former is to forbid some con-
straints to occur in an instance, while usually allowing all possible subgraphs. The core of the idea
behind the latter is the opposite: forbidding some subgraphs, while generally allowing all possi-
ble constraints to appear in an instance. For example, ZOA forbids the constraint represented in
Figure 3, but all possible constraint graphs are represented in the ZOA class, with the constraint
graph of an instance being the graph whose vertices are composed of the variables of the instance,
and where there is an edge between two vertices if and only if there is a constraint between the
two corresponding variables in the original instance. As another example, NEGTRANS forbids
any projection of the graph of incompatibility edges on k values in k domains to be a tree if k > 2,
but all possible constraints are represented in the NEGTRANS class.

A forbidden pattern can define a tractable class, if we consider the set of CSP instances in which
the pattern never occurs. For example, the pattern from Figure 3 defines the class ZOA and the
pattern from Figure 5 defines the class NEGTRANS. In order to find tractable classes, forbidden
patterns can be used in methods focusing on the constraints, and they can also be used in methods
focusing on the subgraphs. But forbidden patterns are a hybrid class, and therefore offer many
more possibilities. Consider the pattern represented in Figure 6. As we will show in section 4.1,
the class of CSP instances it defines, which is the set of CSP instances in which it never occurs, is
tractable. This pattern combines restrictions on both the constraints (it is actually a generalization
of ZOA) and the subgraphs of an instance. By doing so, it allows all possible constraints in the
class it defines, as well as all possible constraint graphs.

Thanks to their inherent hybridity, forbidden patterns cover many classes not findable if only
using constraints-based restrictions, or only using graph-based restrictions. They can lead to far
more refined tractable classes. Furthermore, if a given forbidden pattern P defines a tractable
class, then not only there exists an algorithm able to solve in polynomial time any CSP instance
not containing P , but the same algorithm can be used to solve CSP instances in which P appears,
as long as the number of occurences is limited. This is done by isolating the small part of the

13

a

b

c

d

e

Dv0

Dv1

Dv2

Figure 6: An example of a forbidden pattern.

instance containing P , then solving independently the rest of the instance, in which P does not
occur. Additionally, the cost of the detection of a pattern in a CSP instance is polynomial. Thus
forbidden patterns can be safely integrated into the search for tractable classes: the presence of a
significant number of occurences of a forbidden pattern P in a given instance I won’t lead directly
to a polynomial-time algorithm able to solve I , but neither will it endanger the polynomiality of
the method used to study I .

Forbidden patterns pave the way to new characterizations of tractable classes which would
not have been possible otherwise. Unfortunately, not all already-known tractable classes can be
defined with a single pattern. For example, the set of CSP instances whose constraint graph is a
tree is tractable. This class is graph-based and is not included in any tractable class defined by
a single forbidden pattern. However, if we extend the language describing forbidden patterns,
we can still exhibit a class based on a forbidden pattern, which contains all CSP instances whose
constraint graph is a tree (Cooper, Jeavons, & Salamon, 2010). This class is called the Broken
Triangle Property, or BTP, and is defined in the following way: for a given CSP instance I , if
there exists an order (v1, v2, . . . , vn) on the n variables of I such that for all triple {vi, vj , vk} of
respective domains Dvi , Dvj and Dvk

, and with i < j < k, for all a ∈ Dvi , b ∈ Dvj , c, d ∈ Dvk
,

we have (a is compatible with b and c, b is compatible with d) implies (either a is compatible with
d or b is compatible with c), then I satisfies BTP. An illustration of the pattern forbidden by BTP
is presented in Figure 7. Allowing a forbidden pattern to appear, but controlling the conditions
under which the pattern can occur, like BTP does, expands considerably the number and diversity
of tractable classes based on a forbidden pattern.

Finding tractable classes is not the only use of forbidden patterns. Patterns can also be a tool
for variable and/or value elimination. In some way, they have already been used to this end for
a while. Indeed, common operations such as arc-consistency and neighborhood substitution can
be viewed as the consequence of the local absence of a specific forbidden pattern. A value a in a
domain Dv can be eliminated by arc-consistency if there exists a domain Dv′ such that no value
b ∈ Dv′ is compatible with a. This is equivalent to forbidding the value a and the domain Dv′ to
both be part of the forbidden pattern 1C composed of a single compatibility edge. The pattern 1C
is drawn in Figure 8. Note that arc-consistency does not require the pattern 1C to not appear at all
in the instance. The condition on the absence of 1C is only local.

Other simplication operations can also be seen as the local absence of a pattern. Neighborhood

14

b

a

c

d

Dvj

Dvi

Dvk

Figure 7: Pattern forbidden by the Broken Triangle Property.

a

Dv Dv′

Figure 8: The forbidden pattern 1C.

substitution, for instance, states that if there exists two values a and b in a same domain Dv such
that for any third value c in a different domain Dv′ we have (b is compatible with c) implies (a
is also compatible with c), then we can remove the value b. This is equivalent to forbidding the
values a and b to both be part of the forbidden pattern V +−, composed of a compatibility edge
and an incompatibility edge intersecting on a value c. The pattern V +− is represented in Figure 9.
Here again, the condition of absence on the pattern is only local.

To wrap-up the reasons why forbidden patterns represent a promising new approach to the
study of CSP:

• They allow a characterization of CSP classes in a way not possible with any of the previous
main methods.

a

b

cDv Dv′

Figure 9: The forbidden pattern V +−.

15

• They still are able to cover much of the work already done on tractable classes.

• Their language can be easily expanded and generalized, so to not only be used in a global
way in the search for tractable classes, but also in a local way in the context of simplification
operations.

1.3 Goals

The primary goal of my PhD was to find new tractable CSP classes using forbidden patterns.
It has arguably been a success. We have identified numerous novel tractable classes defined by
forbidding a specific pattern. We have established a dichotomy on the complexity of forbidden
patterns on two constraints; for any pattern on two constraints, we now know if the class it de-
fines, the set of CSP instances in which it never occurs, is tractable or NP-Complete (Cooper &
Escamocher, 2012). We also at the same time discovered new tractable classes outside the reach of
this dichotomy.

We then decided to generalize the results we found to Max-CSP and VCSP, as well as to con-
straints of any arity. Max-CSP is the optimization problem corresponding to the decision problem
CSP. In a Max-CSP instance, we want to minimize the number of incompatibilities present in a
solution. VCSP, short for Valued-CSP, is similar to Max-CSP with arbitrary costs imposed on in-
compatibility edges.

Our work on Max-CSP was extremely satisfying. We exhibited yet another dichotomy on the
complexity of Max-CSP forbidden patterns. We can now determine whether the class defined by
a single complete Max-CSP pattern is tractable or NP-Complete (Cooper, Escamocher, & Živný,
2012). We even exposed some minor results on forbidding several Max-CSP patterns at the same
time.

Unfortunately, our attempts to generalize our findings to VCSP and constraints of arity 3 or
greater were mostly unfruitful. How to properly define a forbidden pattern in a VCSP or in a CSP
with constraints of arbitrary arity was the main hurdle we tripped on. We deemed none of the
many definitions we tried satisfactory enough.

We then decided to orient our work in a different direction. Instead of forbidding patterns
globally in order to find tractable classes, we studied what simplification operations were possible
when forbidding patterns locally. We discovered new ways of decreasing the size of a CSP instance
using forbidden patterns. Some use a local absence of a pattern to eliminate a variable and/or a
value. Others merge several domains into a single domain, resulting in an equivalent instance of
smaller size whose satisfiability is the same as that of the original instance. The advances we made
in this domain (Cohen, Cooper, Escamocher, & Živný, 2013) not only led to more simplification
operations for CSP instances, but also to a more general definition of the concept behind forbidden
patterns, which in turn led us to new tractable classes, closing the circle.

1.4 Outline of the Thesis

This introductory chapter aimed to provide a first glance at what a pattern is. Since forbidden
patterns are the core notion of my thesis, it was important to familiarize, be it only informally,

16

the reader with them. We thus provided some explanations, as well as a few examples, helping
answer the crucial questions of what forbidden patterns are, why they represent a novel concept,
and in what ways we can use them.

The next chapter will present a brief state of the art, in order to indicate certain important
research results made in the field of the CSP. We will especially focus on the first few forays into
forbidden patterns and similar notions, as well as previous work in problem resolution, such as
tractable classes, and instance simplification.

The following chapter will formally define the objects, tools and properties used afterwards.
We will begin the section by the definitions of the different types of patterns we use, and of the
possible interactions they can have with each other. We then define, or remind the reader of,
several important operations on CSP instances. Some of them are known simplification tools
which are used ubiquitously in the CSP field. Others stem from our contributions and are needed
in the key parts of a couple of proofs. We will end the chapter by the presentation, explanation
and examination of the reduction between CSP patterns, a key concept which will be employed
throughout the thesis.

After having presented the bases necessary for a perfect understanding of the topic, we will
present most of the results discovered during the course of my research. They naturally fall into
two separate categories, so I simply elected to spread them over two corresponding chapters.
The first one concerns tractable classes. We will present dichotomy results for three different, but
related, types of patterns: flat patterns, existential patterns and Max-CSP patterns. We will then
close the section with miscellaneous tractability results.

The second chapter deals with instance simplification. It will be divided in two parts. The
first one will use the strict definition of forbidden patterns to give a dichotomic result on variable
elimination patterns. The second one will generalize a bit the main idea behind forbidden pat-
terns, and show what kind of simplification operations are available when some local conditions
are present, or equivalently when the complementary conditions are absent.

Lastly, I will conclude my PhD thesis by recalling where we went with forbidden patterns, and
wondering where else we can go with them.

17

18

2 State of the Art

2.1 The Constraint Satisfaction Problem

This thesis is centered around the study of the generic combinatorial problem known as the binary
constraint satisfaction problem (CSP) in which the aim is to determine the existence of an assign-
ment of values to n variables such that a set of constraints on pairs of variables are simultaneously
satisfied.

We can consider an instance of the binary CSP (constraint satisfaction problem) as a labelled
graph: vertices are the possible variable-value assignments (which we also call points), edges cor-
respond to pairs of compatible points, and each point is labelled by the corresponding variable.
Two assignments 〈vi, α〉, 〈vj , β〉 are compatible if vi, vj are distinct variables and the assignment
(α, β) belongs to the relation Rij associated with the constraint on variables (vi, vj). This repre-
sentation of a binary CSP instance is known as its colored microstructure, a version of the mi-
crostructure (Jégou, 1993) in which each point is labelled by its corresponding variable. A solution
to an n-variable CSP instance is simply a size-n set of pairwise compatible points in the (colored)
microstructure.

The generic nature of the CSP has led to diverse applications, notably in the fields of Artifi-
cial Intelligence and Operations Research (Rossi, Van Beek, & Walsh, 2006). It has also proved
to be a useful modelling tool in a variety of contexts, such as scheduling, timetabling, planning,
bio-informatics and computer vision (Dechter, 2003; Rossi et al., 2006; Lecoutre, 2009). Dedicated
solvers for constraint satisfaction are at the heart of the programming paradigm known as con-
straint programming. Theoretical advances on CSPs can thus potentially lead to the improvement
of generic combinatorial problem solvers.

Unfortunately, complete solution algorithms for constraint satisfaction are not polynomial
time unless P=NP, since the graph coloring problem, which is NP-complete, can be reduced to
binary constraint satisfaction (Dechter, 2003).

The binary CSP has diverse applications. In some it is only the satisfiability of the instance
which is of interest. For example in planning, to determine whether an action a among a set
of available actions A is indispensable (i.e. that it is present in all solution-plans) we need to
determine the satisfiability of a binary CSP representing the same planning problem using the set
of actions A \ {a} (Cooper, De Roquemaurel, & Régnier, 2001). All results presented in this thesis
are directly applicable to such problems.

2.2 Tractable Classes

A fundamental research question in complexity theory is the identification of tractable subprob-
lems of NP-complete problems. Classical approaches have consisted in identifying types of con-
straints which imply the existence of a polynomial-time algorithm. Among the most well-known
examples, we can cite linear constraints and Horn clauses. In an orthogonal approach, restrictions
are placed solely on the (hyper)graph of constraint scopes, known as the constraint (hyper)graph.
In some cases, dichotomies have even been proved characterizing all tractable classes definable by

19

a1

a2

a3

a4

Xi

Xj

Xk

Figure 10: Pattern forbidden by the broken-triangle property.

placing restrictions either on the constraint relations (Bulatov, Jeavons, & Krokhin, 2005; Bulatov,
2006, 2003) or on the constraint (hyper)graph (Grohe, 2007; Marx, 2010a, 2010b). Other com-
plexity results include the tractability of instances possessing a microstructure forming a perfect
graph (Salamon & Jeavons, 2008).

Recently, a new avenue of research has been investigated: the identification of tractable classes
of CSP instances defined by forbidding a specific (set of) subproblems. Novel tractable classes
have been discovered by forbidding simple 3-variable subproblems (Cooper et al., 2010; Cooper &
Živný, 2011b). A dichotomy has even been discovered for classes of binary CSP instances defined
by forbidding configurations of incompatibilities (Cohen et al., 2012).

One concrete example of a tractable class defined by forbidding a generic subproblem (known
as a pattern) is the set of binary CSP instances satisfying the broken-triangle property (Cooper
et al., 2010): a binary CSP instance on variables v1, . . . , vn satisfies the broken-triangle property if
∀i < j < k ∈ {1, . . . , n}, whenever the assignments a1 = 〈vi, a〉, a2 = 〈vj , b〉, a3 = 〈vk, c〉, a4 =
〈vk, d〉 are such that the pairs of assignments (a1, a2), (a1, a3), (a2, a4) are compatible, then at least
one of the pairs of assignments (a1, a4), (a2, a3) is also compatible. The forbidden subproblem is
shown in Figure 10. For example, any binary CSP instance whose constraint graph is a tree satisfies
the broken-triangle property for some ordering of its variables; furthermore such an ordering can
be determined in polynomial time. However, tractability is not due to a property of the constraint
graph, since instances satisfying the broken-triangle property exist for arbitrary constraint graphs.
As we will see later, the broken-triangle property also inspired our development of simplification
operations based on the absence of patterns of compatibilities and incompatibilities on particular
variables and values (that we refer to as existential patterns).

Two other examples of forbidden patterns which define tractable classes of binary CSP in-
stances are based on the transitivity of compatibilities or incompatibilities (Cooper & Živný, 2012).
The former class consists of all binary CSP instances in which for all triples of assignments a1 =
〈vi, a〉, a2 = 〈vj , b〉, a3 = 〈vk, c〉 to three distinct variables, whenever the pairs (a1, a2), (a2, a3) are
both compatible, the third pair (a1, a3) is also compatible. The latter class consists of all binary
CSP instances in which for all triples of assignments a1 = 〈vi, a〉, a2 = 〈vj , b〉, a3 = 〈vk, c〉 to three
distinct variables, whenever the pairs (a1, a2), (a2, a3) are both incompatible, the third pair (a1, a3)

20

is also incompatible. This property is satisfied, for example, by instances consisting of unary con-
straints and non-overlapping AllDifferent constraints (since a = b ∧ b = c ⇒ a = c). The class
of binary CSP instances satisfying this negative-transitivity property has been generalized to a
large tractable class of optimisation problems involving cost functions of arbitrary arity (Cooper
& Živný, 2011b, 2012).

Some tractable classes can be generalized to other versions of constraint satisfaction. For in-
stance the tractable class defined by BTP can be generalized to the QCSP (Gao, Yin, & Zhou, 2011))
and, as mentioned above, the class defined by the negative-transitivity property can be general-
ized to the Weighted CSP (Cooper & Živný, 2012)).

Any class of instances defined by a forbidden pattern is necessarily recognisable in polynomial
time by a simple exhaustive search for the pattern.

2.3 Max-CSPs

Some of the tractable classes we expose belong to the Max-CSP problem. Max-CSP is a generic
combinatorial optimization problem which consists in finding an assignment to the variables
which satisfies the maximum number of a set of constraints. Max-CSP is NP-hard, but much
research effort has been devoted to the identification of classes of instances that can be solved in
polynomial time.

One classic approach consists in identifying tractable constraint languages, i.e. restrictions on
the constraint relations which imply tractability. For example, if all constraints are supermod-
ular, then Max-CSP is solvable in polynomial time, since the maximization of a supermodular
function (or equivalently the minimization of a submodular function) is a well-known tractable
problem in Operations Research (Orlin, 2009). Over two-element domains (Creignou, Khanna,
& Sudan, 2001), three-element domains (Jonsson, Klasson, & Krokhin, 2006), and fixed-valued
languages (Deineko, Jonsson, Klasson, & Krokhin, 2008), a dichotomy has been given: supermod-
ularity is the only basic reason for tractability. However, over four-element domains it has been
shown that other tractable constraint languages exist (Jonsson, Kuivinen, & Thapper, 2011). Com-
prehensive results for the complexity of Max-CSP for all finite constraint languages over finite
domains have been given in (Thapper & Živný, 2012, 2013; Kolmogorov, 2013).

Another classic approach consists in identifying structural reasons for tractability, i.e. restric-
tions on the graph of constraint scopes (known as the constraint graph) which imply the existence
of a polynomial-time algorithm. In the case of binary CSP the only class of constraint graphs which
ensures tractability (subject to certain complexity theory assumptions) are essentially graphs of
bounded tree-width (Dalmau, Kolaitis, & Vardi, 2002; Grohe, 2007). It is well known that struc-
tural reasons for tractability generalize to optimisation versions of the CSP (Bertelé & Brioshi,
1972; Dechter, 2003).

Recently, a new avenue of research has led to the discovery of tractable classes of CSP or Max-
CSP instances defined by forbidding a specific (set of) subproblem(s). Novel tractable classes
have been discovered by forbidding simple 3-variable subproblems (Cooper et al., 2010; Cooper
& Živný, 2011b).

In a related avenue of research, other workers have defined tractable classes of binary CSP

21

•

Q
Q
Q

•

�
�
�•

A

����

��������
•

•

�
�
�•

B

����

��������
•

•

•

C

����

��������
•

•

•

D

����

��������
Figure 11: The subproblems A, B, C and D.

instances by excluding (sets of) induced subgraphs in the microstructure of the instance, where
the microstructure of a CSP instance is the graph 〈V,E〉 with V the set of all variable-value as-
signments and {p, q} ∈ E if and only if the pair of variable-value assignments p, q are compat-
ible (Jégou, 1993; Cohen, 2003; Salamon & Jeavons, 2008). These microstructure-based tractable
classes of CSP instances do not generalize to tractable classes of Max-CSP instances. Indeed, we
are not aware of any tractable classes of Max-CSP defined exclusively in terms of the microstruc-
ture.

The complexity of classes of binary Max-CSP instances defined by local properties of (in)compa-
tibilities have previously been characterized, but only for properties on exactly 3 assignments to
3 distinct variables (Cooper & Živný, 2011c). In the present thesis we consider classes defined
by forbidding subproblems of any size and possibly involving several assignments to the same
variable, thus allowing more refinement in the definition of classes of Max-CSP instances.

Certain known tractable classes can be defined by forbidding more than one subproblem. For
example, in (Cooper & Živný, 2011c) it was shown that F({A,B}), F({B,D}) and F({A,D}) are
all tractable (where A,B,C,D are the subproblems given in Fig. 11 and F({P, P ′}) denotes the
set of Max-CSP instances in which neither P nor P ′ occurs). The most interesting of these three
tractable classes is F({A,B}) which is equivalent to maximum matching in graphs.

2.4 Variable Elimination

During the course of our work, we became interested in finding new variable elimination rules.
A variable elimination rule allows the polynomial-time identification of certain variables whose
elimination does not affect the satisfiability of an instance. Variable elimination in the constraint
satisfaction problem can be used in preprocessing or during search to reduce search space size.
Decreasing the size of the search space is particularly welcome since constraint satisfaction is NP-
complete (Dechter, 2003).

Search algorithms for constraint problems usually proceed by transforming the instance into
a set of subproblems, for example, by selecting a variable and assigning to it successively each
value from its domain. This naive backtracking approach is recursive and explores the search tree
of partial assignments in a depth first manner. Even though the algorithm can take exponential
time it is often effective in practice. So, we would like to improve its efficiency.

There are many ways to improve naive backtracking by pruning the search space in ways
that cannot remove solutions. This is done by avoiding searching exhaustively in all generated
subproblems when certain kinds of discovered obstruction to solution exists. Such techniques
include Back-marking, Back-jumping, Conflict-Directed Back-jumping (Prosser, 1993; Chen & Van

22

Beek, 2001). As well as these look-back techniques it is also possible to look ahead by propagating
the consequences of early decisions or of the discovered structure. Of these look-ahead techniques
the most common is to maintain the local consistency property called generalized arc-consistency
(GAC) (Bessière, Régin, Yap, & Zhang, 2005). This technique identifies certain values for variables
that cannot possibly form part of a solution.

Of course, major savings can be made if we are able to eliminate variables from a sub-problem.
Since backtracking is in general of exponential time complexity, the elimination of variables to
reduce instance size is very likely to save search time. To maintain the soundness of search we
require that such eliminations do not change the satisfiability of the instance.

Variable elimination has been considered before in the literature. It is well known that in an
arc-consistent binary CSP instance, a variable x which is constrained by only one other variable
y can eliminated; by the definition of arc consistency, each assignment to y is compatible with
some assignment to x. It has been observed that a more general property, called the (local) Broken
Triangle Property (lBTP) (Cooper et al., 2010), if it holds at some variable, allows us to eliminate
that variable. One way of stating the lBTP is that there is no pair of compatible assignments
to two other variables y, z which have opposite compatibilities with two assignments to x. The
closure of a binary CSP instance under the elimination of all variables that satisfy the lBTP is
unique and can be found in O(ncd3) time, where n is the number of variables, c the number of
constraints and d the maximum domain size, which may well prove effective when compared
to the exponential cost of backtracking. The more general local min-of-max extendable property
(lMME) allows us to eliminate more variables than the lBTP, but requires the identification of a
particular domain order. Unfortunately, this domain order is NP-hard to discover (Cooper et al.,
2010) for unbounded domain size, and so the lMME is less likely to be effective in practice.

An alternative to simple variable elimination is used in Bucket Elimination (Larrosa & Dechter,
2003). In this algorithm a variable v is not simply eliminated. Instead it is replaced by a constraint
on its neighbourhood. This new constraint precisely captures those combinations of assignments
to the neighbourhood of v which can be extended to a consistent assignment to v. Such an ap-
proach may generate high order constraints, which are exponentially hard to process and to store.
The arity can be bounded by the induced treewidth of the instance, but this still limits the appli-
cability of Bucket Elimination. In the present thesis we restrict our attention to the identification
of variable elimination strategies which do not require the addition of compensatory constraints.

In this thesis we will characterize those local conditions under which we can eliminate vari-
ables in Binary CSPs without the need to add compensating constraints. By local conditions we
mean here configurations of variables, values and constraints which do not occur. That is, we will
identify (local) obstructions to variable elimination. We will call such constructions variable elim-
ination patterns. Searching for these local patterns takes polynomial time and need only be done
during the pre-processing stage, before search. Any discovered obstructions to elimination can
be effectively monitored during the subsequent search using techniques analogous to watched
literals (Gent, Jefferson, & Miguel, 2006). Whenever a variable no longer participates in any ob-
struction patterns it can safely be eliminated.

Variable elimination patterns can also define tractable classes. Indeed, if a variable elimination

23

pattern P allows us to eliminate all variables from a given CSP instance I , then I belongs to a
tractable class defined by P . Hence we are able to significantly extend the list of known tractable
classes defined by forbidden patterns since many tractable patterns, like pivots (Cohen et al., 2012)
and JWP (Cooper & Živný, 2012), do not allow variable elimination.

2.5 Other Simplification Operations

Variable elimination is not the only tool for simplifying the complexity of CSP instances. Simplifi-
cation of instances by eliminating values from domains is at the heart of many constraint solvers
via generalized arc consistency (GAC) operations. GAC eliminates domain elements that cannot
be part of any solution (an assignment to all variables satisfying all constraints). Special-purpose
polynomial-time GAC algorithms have been developed for many types of high-arity constraints
(known as global constraints). An alternative approach is the family of elimination rules based
on substitution: if all solutions in which variable v is assigned value b remain solutions when
the value of variable v is changed to another value a, then the value b can be eliminated from
the domain of variable v while conserving satisfiability of the instance. The most well-known
polynomial-time detectable substitution operation is neighbourhood substitution (Freuder, 1991),
but there are many other existing operations decreasing the size of a domain (Bessière & Debruyne,
2001; Elfe & Freuder, 1996; Bessière, Martinez, & Verfaillie, 1999).

The importance of the classic simplification operations based on consistency go beyond their
use in binary CSPs, since they have been generalized to Valued CSPs (Cooper, De Givry, Sanchez,
Schiex, Zytnicki, & Werner, 2010) and to global constraints (Rossi et al., 2006).

Besides elimination, merging is another possible simplification operation. One example of a
merging rule is that if two assignments 〈v, a〉, 〈v, b〉 have identical compatibilities with all assign-
ments to all other variables except concerning at most one other variable, then we can merge a
and b while conserving satisfiability of the instance (Likitvivatanavong & Yap, 2013).

The last part of this thesis studies alternative notions of simplification of binary CSP instances
which are based on reducing the total number of variable-value assignments. Unlike classical
reduction operations, such as arc consistency, the number of variables may decrease and certain
variable domains may increase in size, provided that search-space size and the total number of
variable-value assignments both decrease.

24

3 Patterns, Tools, Reductions

In this section, we give mainly definitions and properties. First we define the general notion
of what is a forbidden pattern. Then we define different kinds of patterns, for a total of three
different versions. After that, we expose several operations on CSP instances. Some of them are
well-known, others are new. We conclude the section by presenting the reduction to a pattern, an
important tool which enables us to greatly increase the scope of our subsequent results.

3.1 What Is A Pattern?

We first define the notion of a CSP pattern. A pattern can be seen as a generalisation of a binary
CSP instance; it represents a set of subproblems by leaving the consistency of some tuples unde-
fined. We use the term point to denote an assignment of a value to a variable, i.e. a pair a = 〈v, d〉
where d is in the domain of variable v. A pattern is a graph in which vertices correspond to points
and both vertices and edges are labelled. The label of a vertex corresponding to an assignment
〈v, d〉 is simply the variable v and the label of an edge between two vertices describes the compat-
ibility of the pair of assignments corresponding to the pair of vertices.

Definition 1 (pattern). A pattern, or flat pattern, is a quintuplet 〈V,A, var,E, cpt〉 comprising:

• a set V of variables.

• a set A of points (assignments).

• a variable function var : A→ V .

• a set E ⊆
(A

2
)

of edges (unordered pairs of elements of A) such that {a, b} ∈ E ⇒ var(a) 6= var(b).

• a Boolean-valued compatibility function cpt : E → {F, T}, where for notational simplicity, we write
cpt(a, b) instead of cpt({a, b}).

Definition 2 (CSP instance). A binary CSP instance is a pattern 〈V,A, var,E, cpt〉 such that E =
{{a, b} | (a, b) ⊆ A × A, var(a) 6= var(b)} (i.e. the compatibility of each pair of assignments to distinct
variables is specified by the compatibility function). The question corresponding to the instance is: does
there exist a consistent set of assignments to all the variables, that is a solutionA ⊆ A such that |A| = |V |,
(∀a, b ∈ A, var(a) 6= var(b)) and (∀e ∈

(A
2
)
∩ E, cpt(e) = T)?

For a pattern P = 〈V,A, var,E, cpt〉 and a variable v ∈ V , we use Av to denote the set of
assignments {a ∈ A | var(a) = v}.

Definition 3 (constraint). The constraint on variables v1, v2 ∈ V is the pattern 〈{v1, v2}, A12, var|A12 , E12, cpt|E12〉
where A12 = Av1 ∪Av2 and E12 = {{a, b} | a ∈ Av1 , b ∈ Av2} ∩ E.

Definition 4 (compatible points, compatibility edge). If cpt(a, b) = T then the two assignments
(points) a, b are compatible and {a, b} is a compatibility edge; if cpt(a, b) = F then the two assignments
a, b are incompatible and {a, b} is an incompatibility edge.

25

• •
•��

��
��

•

Y

�

�

�

�

�

�

�

�
a

b

c

d

• •
•��

��
��

•
PPPPPP

Z

�

�

�

�

�

�

�

�
•
•��

��
��

•

V

�
�

�
�

�

�

�

�
• •

•��
��
��

•
PPPPPP

X

�

�

�

�

�

�

�

�
Figure 12: Four patterns.

In a pattern, the compatibility of a pair of points a, b such that var(a) 6= var(b) and (a, b) /∈ E
is undefined. A pattern can be viewed as a compact means of representing the set of all instances
obtained by arbitrarily specifying the compatibility of such pairs. Two patterns P and Q are iso-
morphic if they are identical except for a possible renaming of variables and assignments.

In a CSP instance 〈V,A, var,E, cpt〉, we call the set {d | 〈v, d〉 ∈ A} of values that can be
assigned to variable v the domain of v and the set {(d1, d2) | (〈v1, d1〉 , 〈v2, d2〉) ∈ Av1 × Av2 ∧
cpt(〈v1, d1〉 , 〈v2, d2〉) = T} of compatible pairs of values that can be assigned to two variables
v1, v2 ∈ V the constraint relation on v1, v2.

Definition 5 (trivial constraint). The constraint between variables v1 and v2 in a CSP instance is non-
trivial if there is at least one incompatible pair of assignments, i.e. a ∈ Av1 and b ∈ Av2 such that
cpt(a, b) = F .

Definition 6 (constraint graph). The constraint graph of an instance 〈V,A, var,E, cpt〉 is 〈V,H〉,
where H is the set of pairs of variables v1, v2 ∈ V such that the constraint on v1, v2 is non-trivial.

Definition 7 (occurence in a pattern). We say that a pattern P occurs in a pattern P ′ (or that P ′

contains P) if P ′ is isomorphic to a pattern Q in the transitive closure of the following two operations
(extension and merging) applied to P :

extension P is a sub-pattern of Q (and Q an extension of P): if P = 〈VP , AP , varP , EP , cptP 〉 and
Q = 〈VQ, AQ, varQ, EQ, cptQ〉, then VP ⊆ VQ, AP ⊆ AQ, varP = varQ|AP

, EP ⊆ EQ, cptP =
cptQ|EP

.

merging Merging two points in P transforms P into Q: if P = 〈VP , AP , varP , EP , cptP 〉 and Q =
〈VQ, AQ, varQ, EQ, cptQ〉, then ∃a, b ∈ AP such that varP (a) = varP (b) and ∀c ∈ AP such
that {a, c}, {b, c} ∈ EP , cptP (a, c) = cptP (b, c). Furthermore, VP = VQ, AQ = AP \ {b},
varQ = varP |AQ

, EQ = (EP \{{b, x} | {b, x} ∈ EP }) ∪ {{a, x} | {b, x} ∈ EP } and cptQ(a, x) =
cptQ(b, x) if {b, x} ∈ EP , cptQ(e) = cptP (e) for all other e ∈ EQ.

Consider the four patterns shown in Figure 12. Assignments (points) are represented by bul-
lets, and assignments to the same variable v are grouped together within an oval representing Av.
Solid lines represent compatibility edges and dashed lines incompatibility edges. For example, Y
consists of 4 points a, b ∈ Av0 , c, d ∈ Av1 such that cpt(a, c) = cpt(b, c) = T and cpt(b, d) = F . Y
occurs in Z since Z is an extension of Y . Y occurs in V since V can be obtained from Y by merging
points a, b. Y also occurs in X by a merging followed by an extension.

26

Notation: Let P be a CSP pattern. We use CSP(P) to denote the set of binary CSP instances Q in
which P does not occur.

Definition 8 (tractable pattern). A pattern P is intractable if CSP(P) is NP-complete. It is tractable
if there is a polynomial-time algorithm to solve CSP(P).

Definition 9 (mergeable). A pattern P is mergeable (non-mergeable) if P can (cannot) be transformed
into a pattern Q 6= P by merging.

It is worth observing that, in a class of CSP instances defined by forbidding a pattern, there is
no bound on the size of domains. Recall, however, that CSP instances have finite domains since
the set of all possible assignments is assumed to be given in extension as part of the input.

Clearly, all classes of CSP instances CSP(P) defined by forbidding a pattern are hereditary:
I ∈ CSP(P) and I ′ ⊆ I (in the sense that I is an extension of I ′, according to Definition 7) together
imply that I ′ ∈ CSP(P). Furthermore, if I ∈ CSP(P) and I ′ is isomorphic to I , then I ′ ∈ CSP(P).
Forbidding a pattern therefore only allows us to define hereditary classes closed under arbitrary
permutations of variable domains.

3.2 Different Kinds of Patterns

In this subsection we consider different ways of defining a class of CSP instances by forbidding
patterns.

3.2.1 About Quantified Patterns

Definition 10 (quantified pattern). A quantified pattern 〈V,A, var,E, cpt, v〉 is a
pattern P =〈V,A, var,E, cpt〉 to which we add an existential quantifier on a distinguished variable v ∈ V .

Definition 11 (flat simplified pattern). If P =〈V,A, var,E, cpt, v〉 is a quantified pattern,
then P ′ =〈V,A, var,E, cpt〉 is the flat simplified pattern of P .

We now give versions of the definitions of extension, merging and occurrence generalized to
quantified patterns.

Definition 12 (occurence in a quantified pattern). We say that a quantified pattern P occurs in a
quantified pattern P ′ (or that P ′ contains P) if P ′ is isomorphic to a quantified pattern Q in the transitive
closure of the following two operations (extension and merging) applied to P :

extension P is a sub-pattern of Q (and Q an extension of P): if P = 〈VP , AP , varP , EP , cptP , vP 〉 and
Q = 〈VQ, AQ, varQ, EQ, cptQ, vQ〉, then VP ⊆ VQ, AP ⊆ AQ, varP = varQ|AP

, EP ⊆ EQ,
cptP = cptQ|EP

, and vQ = vP . We give an example in Figure 13.

merging Merging two points in P transforms P into Q: if P = 〈VP , AP , varP , EP , cptP , vP 〉 and Q =
〈VQ, AQ, varQ, EQ, cptQ, vQ〉, then ∃a, b ∈ AP such that varP (a) = varP (b) and ∀c ∈ AP such
that {a, c}, {b, c} ∈ EP , cptP (a, c) = cptP (b, c). Furthermore, VP = VQ, AQ = AP \ {b}, varQ =
varP |AQ

, EQ = (EP \{{b, x} | {b, x} ∈ EP })∪ {{a, x} | {b, x} ∈ EP }, cptQ(a, x) = cptQ(b, x) if
{b, x} ∈ EP , cptQ(e) = cptP (e) otherwise, and vQ = vP . We give an example in Figure 14.

27

P

v

∃v

Q

v

∃v

Figure 13: Example of extension of a quantified pattern P to produce the quantified pattern Q.

P

v

∃v

Q

v

∃v

Figure 14: Example of merging in a quantified pattern P to produce the quantified patten Q.

It follows from Definition 12 that an occurrence of a quantified pattern P in a quantified pattern
Q can also be viewed as the existence of an occurrence-function f : AP → AQ such that

1. ∀a, b ∈ AP , varQ(f(a)) = varQ(f(b)) if and only if varP (a) = varP (b).

2. ∀a, b ∈ AP such that {a, b} ∈ EP , {f(a), f(b)} ∈ EQ and cptQ(f(a), f(b)) = cptP (a, b).

3. ∀a ∈ AvP , f(a) ∈ AvQ .

Definition 13 (occurence in an instance). We say that a quantified pattern P =〈V,A, var,E, cpt, v〉
occurs in a CSP instance I if its flat simplified pattern P ′ =〈V,A, var,E, cpt〉 occurs in I .

3.2.2 About Existential Patterns

Definition 14 (existential pattern). An existential pattern is a pattern P with a set of existential points
e ⊆ Av, with e 6= ∅, for some distinguished variable v.

Thus, an existential pattern 〈V,A, var,E, cpt, e〉 is a pattern 〈V,A, var,E, cpt〉 to which we add
a set of existential points e ⊆ Av for some distinguished variable v ∈ V .

Definition 15 (quantified simplified pattern). If P =〈V,A, var,E, cpt, e〉 is an existential pattern
with some v ∈ V such that e ⊆ Av, then P ′ =〈V,A, var,E, cpt, v〉 is the quantified simplified pattern
of P .

Forbidding an existential pattern P means that for all variables x in the instance I , there is an
injective occurence function fx : e → Ax such that there is no occurrence of P in I in which each
p ∈ e maps to fx(p). Forbidding an existential version Q of a pattern P defines a much larger

28

1I ∃1I

a

Figure 15: A simple pattern 1I and an existential version ∃1I of the same pattern.

V− V−Middle

a

Figure 16: A pattern V− and an existential version V−Middle of the same pattern.

class CSP(Q) than CSP(P). Although we first introduced existential patterns to define variable
elimination rules (Cohen et al., 2013), they also can define new tractable classes.

As a simple example, consider the pattern 1I and its existential version ∃1I shown in Fig-
ure 15. In this figure, the label a on one of the points indicates that a is an existential point. This
convention will be used for all subsequent figures representing an existential pattern. Forbidding
1I in an instance means that all points are compatible with all other points in the instance, whereas
forbidding ∃1I imposes the less restrictive assumption that for each variable x there exists some
point fx(a) ∈ Ax which is compatible with all other points of the instance.

To see why existential patterns are not too trivial a tool, consider as a slightly more elaborate
example the pattern V− and its existential version V−Middle shown in Figure 16. Forbidding
V− in an instance means that all points in the instance are incompatible with points in at most
one other variable, whereas forbidding V−Middle imposes the less restrictive assumption that for
each variable x there exists some point fx(a) ∈ Ax which is incompatible with points in at most
one other variable. From Theorem 1, we know that the set of CSP instances in which we forbid the
pattern V− is tractable. Actually, if we only consider arc-consistent instances, there even exists a
linear time algorithm which can find a solution in any such instance. However, as we show later
in Lemma 29, the set of instances in which we forbid the pattern V−Middle is NP-Complete, even
when only considering arc-consistent instances.

We now give versions of the definitions of extension, merging, occurrence and tractability
generalized to existential patterns.

Definition 16 (occurence in an existential pattern). We say that an existential pattern P occurs in
an existential pattern P ′ (or that P ′ contains P) if P ′ is isomorphic to an existential pattern Q in the
transitive closure of the following two operations (extension and merging) applied to P :

extension P is a sub-pattern of Q (and Q an extension of P): if P = 〈VP , AP , varP , EP , cptP , eP 〉 and

29

P with eP = {a}
a

Q with eQ = {a}
a

Figure 17: Example of extension of an existential pattern P to produce the existential pattern Q.

P with eP = {a, b}
ba

Q with eQ = {a}
a

Figure 18: Example of merging in an existential pattern P to produce the existential patten Q.

Q = 〈VQ, AQ, varQ, EQ, cptQ, eQ〉, then VP ⊆ VQ, AP ⊆ AQ, varP = varQ|AP
, EP ⊆ EQ,

cptP = cptQ|EP
, and eP ⊆ eQ. We give an example in Figure 17.

merging Merging two points in P transforms P into Q: if P = 〈VP , AP , varP , EP , cptP , eP 〉 and Q =
〈VQ, AQ, varQ, EQ, cptQ, eQ〉, then ∃a, b ∈ AP such that varP (a) = varP (b), a ∈ eP ⇔ b ∈ eP

and ∀c ∈ AP such that {a, c}, {b, c} ∈ EP , cptP (a, c) = cptP (b, c). Furthermore, VP = VQ,
AQ = AP \ {b}, varQ = varP |AQ

, EQ = (EP \{{b, x} | {b, x} ∈ EP }) ∪ {{a, x} | {b, x} ∈ EP },
cptQ(a, x) = cptQ(b, x) if {b, x} ∈ EP , cptQ(e) = cptP (e) otherwise, and eQ = eP \ {b}. We give
an example in Figure 18.

It follows from Definition 16 that an occurrence of an existential pattern P in an existential
pattern Q can also be viewed as the existence of an occurrence-function f : AP → AQ such that

1. ∀a, b ∈ AP , varQ(f(a)) = varQ(f(b)) if and only if varP (a) = varP (b).

2. ∀a, b ∈ AP such that {a, b} ∈ EP , {f(a), f(b)} ∈ EQ and cptQ(f(a), f(b)) = cptP (a, b).

3. ∀a ∈ AP such that a ∈ eP , f(a) ∈ eQ.

Definition 17 (occurence on a set of points). Let I = 〈V,A, var,E, cpt〉 be a CSP instance. Let v be a
variable in V . Let S ⊆ Av. Let P = 〈VP , AP , varP , EP , cptP , eP 〉 be an existential pattern.

If P occurs in the existential pattern 〈V,A, var,E, cpt, S〉 with occurrence-function f : AP → A, such
that f |eP is a bijection, then we say that P occurs on S via f |eP . (If S is a singleton {a}, then to simplify
notation we simply say that P occurs on a).

Definition 18 (occurence in an instance). If I = 〈V,A, var,E, cpt〉 is a CSP instance, then an ex-
istential pattern P = 〈VP , AP , varP , EP , cptP , eP 〉 occurs in I (and I contains P) if ∃v ∈ V with
|Av| ≥ |eP | such that for all subsets S of Av with |S| = |eP | and all bijections g : eP → S, P occurs on
S via g. Conversely, P does not occur in I if ∀v ∈ V with |Av| ≥ |eP |, there is an injective occurence
function g : eP → Av such that P does not occur on g(eP) via g.

30

It is worth pointing out that we will show later that when eP ≥ 2 for some non-trivial exis-
tential pattern P , the set of CSP instances not containing P is NP-Complete. This explains why
no such pattern appears on the tractability side of the main result of Subsection 4.1.5 and why for
most of the thesis we only need to consider existential patterns P in which eP is a singleton.

Suppose that an existential pattern P does not occur in an instance I since for all variables v,
there is a subset Sv of Av and a bijection g : eP → Sv such that P does not occur on Sv via g.
Establishing arc consistency in I may eliminate some of the assignments in the sets Sv with the
consequence that P may now occur in the arc-consistent version of I . Since arc consistency is a
basic filtering operation applied by all constraint solvers to reduce the size of variable domains,
we choose to study only arc consistent CSP instances.

Notation: Let P be an existential pattern. We use CSPAC(P) to denote the set of arc-consistent
binary CSP instances I in which P does not occur.

Definition 19 (tractable existential pattern). An existential pattern P is intractable if CSPAC(P) is
NP-complete. It is tractable if there is a polynomial-time algorithm to solve CSPAC(P).

3.3 Operations for CSP Instances

3.3.1 Classical Operations

This subsection describes polynomial-time simplification operations on CSP instances. Assuming
that these operations have been applied facilitates the proof of tractability of many patterns.

Definition 20 (elimination of a single-valued variable). Let 〈V,A, var,E, cpt〉 be a CSP instance. If
for some variable v, Av is a singleton {a}, then the elimination of a single-valued variable corresponds
to making the assignment a and consists of eliminating v from V and eliminating a from A as well as all
assignments b which are incompatible with a.

Definition 21 (arc consistency). Given a CSP instance 〈V,A, var,E, cpt〉, arc consistency consists in
eliminating from A all assignments a for which there is some variable v 6= var(a) in V such that ∀b ∈ Av,
cpt(a, b) = F .

The notion of arc consistency can be traced back to the beginnings of Artificial Intelligence (Waltz,
1975; Mackworth, 1977) and there are well known optimal algorithms to establish it (Henderson
& Mohr, 1986; Bessière et al., 2005).

Definition 22 (neighborhood substitution). Given a CSP instance 〈V,A, var,E, cpt〉, if var(a) =
var(b) and for all variables v 6= var(a), ∀c ∈ Av, cpt(a, c) = T ⇒ cpt(b, c) = T , then we can eliminate a
from A by neighborhood substitution, since in any solution in which a appears, we can replace a by b.

Neighborhood substitution was first introduced in (Freuder, 1991).

Establishing arc consistency and eliminating single-valued variables until convergence pro-
duces a unique result, and the result of applying neighborhood substitution operations until con-
vergence is unique modulo isomorphism (Cooper, 1997). Since removing points or variables from

31

a CSP instance does not introduce any pattern, none of these three operations when applied to an
instance in CSP(P) can introduce the forbidden pattern P .

3.3.2 Our Operations

We now consider two new simplification operations. They are simplification operations that can
be applied to certain CSP instances. We can always perform the fusion of two variables v1, v2 in a
CSP instance into a single variable v whose set of assignments is the cartesian product of the sets of
assignments to v1 and to v2. Under certain conditions, we do not need to keep all elements of this
cartesian product and, indeed, the total number of assignments actually decreases. The semantics
of the two fusion operations defined below will become clear with the explanations given in the
proof of Lemma 1.

Definition 23 (simple fusion). Consider a CSP instance 〈V,A, var,E, cpt〉 with v1, v2 ∈ V . Suppose
that there is a fusion function f : Av1 → Av2 , such that ∀u ∈ Av1 , whenever u is in a solution S, there is
a solution S′ containing both u and f(u). Then we can perform the simple fusion of v2 and v1 to create a
new fused variable v. The resulting instance is 〈V ′, A′, var′, E′, cpt′〉 defined by:

• V ′ = (V \ {v1, v2}) ∪ {v}.

• A′ = A \Av2 .

• var′(u) = var(u) for all u ∈ A′ \Av1 and var′(u) = v for all u ∈ Av1 .

• E′ = {{p, q} ∈
(A′

2
)
| var′(p) 6= var′(q)}.

• cpt′(p, q) = cpt(p, q) if p, q ∈ A′ \Av1 , cpt′(u, q) = cpt(u, q) ∧ cpt(f(u), q) for all u ∈ Av1 and all
q ∈ A′ \Av1 .

Definition 24 (complex fusion). Consider a CSP instance 〈V,A, var,E, cpt〉 with v1, v2 ∈ V and a
hinge value a ∈ Av1 . Suppose that there is a fusion function f : Av1 \ {a} → Av2 , such that ∀u ∈
Av1 \ {a}, whenever u is in a solution S, there is a solution S′ containing both u and f(u). Then we
can perform the complex fusion of v2 and v1 to create a new fused variable v. The resulting instance is
〈V ′, A′, var′, E′, cpt′〉 defined by:

• V ′ = (V \ {v1, v2}) ∪ {v}.

• A′ = A \ {a}.

• var′(u) = var(u) for all u ∈ A′ \ (Av1 ∪Av2) and var′(u) = v for all u ∈ (Av1 \ {a}) ∪Av2 .

• E′ = {{p, q} ∈
(A′

2
)
| var′(p) 6= var′(q)},

• cpt′(p, q) = cpt(p, q) if p, q ∈ A′ \ (Av1 ∪ Av2), cpt′(u, q) = cpt(u, q) ∧ cpt(f(u), q) for all u ∈
Av1 \ {a} and all q ∈ A′ \ (Av1 ∪ Av2), cpt′(p, q) = cpt(a, q) ∧ cpt(p, q) for all p ∈ Av2 and all
q ∈ A′ \ (Av1 ∪Av2).

32

Lemma 1. If I is a CSP instance and I ′ the result of a (simple or complex) fusion of two variables in I ,
then I ′ is solvable iff I is solvable.

Proof. We give the proof only for the case of a complex fusion, since a simple fusion can be con-
sidered as a special case. Among the assignments in the cartesian product of Av1 and Av2 , it is
sufficient, in order to preserve solvability, to keep only those of the form (a, p) where p ∈ Av2 or
of the form (u, f(u)) where u ∈ Av1 \ {a}. So if I is solvable, then I ′ is solvable. To complete the
proof, it suffices to observe that in A′ we use p ∈ Av2 to represent the pair of assignments (a, p)
and u ∈ Av1 \ {a} to represent (u, f(u)). So if I ′ is solvable, then I is solvable.

Fusion preserves solvability and the total number of assignments decreases by at least 1 (in
fact, by |Av2 | in the case of a simple fusion). However, when solving instances I ∈ CSP(P), for
some pattern P , a fusion operation will only be useful if it does not introduce the forbidden pattern
P .

3.4 Reduction to a Pattern

3.4.1 Reduction in the Flat Case

In a pattern P = 〈VP , AP , varP , EP , cptP 〉, a point a which is linked by a single compatibility edge
to the rest of P is known as a dangling point. If an arc consistent instance I = 〈V,A, var,E, cpt〉
with |V | ≥ |VP | does not contain the pattern P then it does not contain the pattern P ′ which is
equivalent to P in which the dangling point a and the corresponding compatibility edge have
been deleted. Thus, since arc consistency is a polynomial-time operation which cannot introduce
a forbidden pattern, to decide tractability we only need to consider patterns without dangling
points.

Definition 25 (reduction to a flat pattern). We say that a pattern P can be reduced to a patternQ, and
that Q is a reduction of P , if Q = P or if Q is in the transitive closure of the two operations merging and
dp-elimination applied to P , where dp-elimination is the following operation:

dp-elimination Eliminating a dangling point, its corresponding compatibility edge and its corresponding
variable v (if Av becomes empty) from P transforms P into Q. We give an example in Figure 19.

P Q

Figure 19: Example of dp-elimination.

Lemma 2. Let P = 〈VP , AP , varP , EP , cptP 〉 and Q = 〈VQ, AQ, varQ, EQ, cptQ〉 be two patterns, such
that P can be reduced to a sub-pattern of Q. Let I = 〈V,A, var,E, cpt〉 be a CSP instance satisfying arc
consistency, with |V | ≥ |VP |. If Q occurs in I , then P also occurs in I .

33

Proof. By definition, reduction is a transitive relation. Therefore, by induction, it suffices to prove
the result for each of the individual operations: merging and dp-elimination. We supposeQ occurs
in I . If merging two points a and b in P transforms it into a sub-pattern Q′ of Q, then P actually
covers two different patterns: the one where a and b are different points, and the one where a and
b are the same point. The latter pattern is Q′. So the set of instances containing Q is a subset of the
set of instances containing (at least one of the two versions of) P and we have the result. If adding
a dangling point and its corresponding compatibility edge to a sub-pattern Q′ of Q transforms Q′

into P , then since I satisfies arc consistency P also occurs in I .

The following corollary follows immediately from the fact that arc consistency can be estab-
lished in polynomial time.

Corollary 1. Let P and Q be two patterns, such that P can be reduced to a sub-pattern of Q. Then

• If Q is tractable, then P is tractable.

• If P is intractable, then Q is intractable.

It follows that in order to find new tractable classes we only need to study those patterns that
cannot be reduced to a sub-pattern of a known tractable pattern and that do not have as a sub-
pattern a reduction of a known intractable pattern.

3.4.2 Reduction in the Quantified Case

In a quantified pattern P = 〈VP , AP , varP , EP , cptP , vP 〉, a point a which is linked by a single
compatibility edge to the rest of P is known as a dangling point. If an arc consistent instance
I = 〈V,A, var,E, cpt〉 with |V | ≥ |VP | does not contain the pattern P then it does not contain
the pattern P ′ which is equivalent to P in which the dangling point a and the corresponding
compatibility edge have been deleted.

Definition 26 (reduction to a quantified pattern). We say that a quantified pattern P can be reduced
to a quantified pattern Q, and that Q is a reduction of P , if Q = P or if Q is in the transitive closure of the
two operations merging and dp-elimination applied to P , where dp-elimination is the following operation:

dp-elimination Eliminating a dangling point, its corresponding compatibility edge and its corresponding
variable v (if Av becomes empty and v 6= vP) from P transforms P into Q. We give an example in
Figure 20.

Lemma 3. Let P = 〈VP , AP , varP , EP , cptP , vP 〉 and Q = 〈VQ, AQ, varQ, EQ, cptQ, vQ〉 be two quan-
tified patterns, such that P can be reduced to a sub-pattern of Q. Let I = 〈V,A, var,E, cpt〉 be a CSP
instance satisfying arc consistency, with |V | ≥ |VP |. If Q occurs in I , then P also occurs in I .

Proof. The result can be deduced from Definition 13 and Lemma 2.

34

P

v

∃v

Q

v

∃v

Figure 20: Example of dp-elimination in a quantified pattern P .

P with eP = {a}
a

Q with eQ = {a}
a

Figure 21: Example of dp-elimination in an existential pattern P to produce the existential pattern
Q.

3.4.3 Reduction in the Existential Case

The notions of dp-elimination and reduction can be similarly used in the context of existential
patterns. In an existential pattern P =〈VP , AP , varP , EP , cptP , eP 〉, a point p /∈ eP which is linked
by a single compatibility edge to the rest of P is known as a dangling point. If an arc consistent
instance I = 〈V,A, var,E, cpt〉 with |V | ≥ |VP | does not contain the existential pattern P then it
does not contain the pattern P ′ which is equivalent to P in which the dangling point p and the
corresponding compatibility edge have been deleted. Thus, to decide the tractability of CSPAC(P)
we only need to consider patterns P without dangling points.

Definition 27 (reduction to an existential pattern). We say that an existential pattern P can be re-
duced to an existential pattern Q, and that Q is a reduction of P , if Q = P or if Q is in the transitive
closure of the two operations merging and dp-elimination applied to P , where dp-elimination is the following
operation:

dp-elimination Eliminating a dangling point, its corresponding compatibility edge and its corresponding
variable v (if Av becomes empty) from P transforms P into Q. We give an example in Figure 21.

Lemma 4. Let P = 〈VP , AP , varP , EP , cptP , eP 〉 and Q = 〈VQ, AQ, varQ, EQ, cptQ, eQ〉 be two exis-
tential patterns, such that P is a sub-pattern of Q. Let I = 〈V,A, var,E, cpt〉 be an arc-consistent CSP
instance. If Q occurs in I , then P also occurs in I .

Proof. Suppose that Q occurs in I . So ∃v ∈ V such that Q occurs on all subsets S of Av of size
|S| = |eQ| and for all bijections g : eQ → S. Let T be any subset ofAv of size |eP | and let h : eP → T

be any bijection. We have to show that P occurs in I on T via h.
Let S be any subset of Av of size |eQ| such that T ⊆ S and let g : eQ → S be any bijection

such that g|eP = h. We know that Q occurs in the existential pattern 〈V,A, var,E, cpt, S〉 with an

35

occurrence-function f such that f |eQ = g. Since P is a sub-pattern of Q, P occurs in the existential
pattern 〈V,A, var,E, cpt, S ∩ f(eP)〉 with the occurrence-function f |AP

. Since eP ⊆ eQ by the
definition of a sub-pattern, we have f |eP = g|eP = h. Thus P occurs in I on T = h(eP) via h
and we are done.

Lemma 5. Let P = 〈VP , AP , varP , EP , cptP , eP 〉 and Q = 〈VQ, AQ, varQ, EQ, cptQ, eQ〉 be two ex-
istential patterns, such that P can be reduced to a sub-pattern of Q. Let I = 〈V,A, var,E, cpt〉 be an
arc-consistent CSP instance with |V | ≥ |VP |. If Q occurs in I , then P also occurs in I .

Proof. By definition, reduction is a transitive relation. Therefore, by induction, it suffices to prove
the result for each of the individual operations: merging and dp-elimination.

If merging two points a and b in P transforms it into a sub-pattern Q′ of Q, then P actually
covers two different patterns: the one where a and b are different points, and the one where a and b
are the same point. The latter pattern is Q′ which occurs in I , by Lemma 4, since it is a sub-pattern
of Q. So the set of instances containing Q is a subset of the set of instances containing (at least one
of the two versions of) P and we have the result.

We now suppose that eliminating a dangling point c ∈ vc, with vc ∈ VP , and its corresponding
compatibility edge from P transforms P into a sub-pattern Q′ of Q, where
Q′ =

〈
VQ′ , AQ′ , varQ′ , EQ′ , cptQ′ , eQ′

〉
. Since c is a dangling point, then from the definition of

dp-elimination we know that c /∈ eP . So eQ′ = eP . Let d be the point such that {c, d} is the
compatibility edge eliminated from P to produce Q′. Since Q′ is a sub-pattern of Q, by Lemma 4,
we know that Q′ occurs in I = 〈V,A, var,E, cpt〉. So ∃v ∈ V such that for all S ⊆ Av with
|S| = |eQ′ | and for all bijections g : eQ′ → S, Q′ occurs on S via g. Let f be the corresponding
occurrence-function. Since eP = eQ′ , it suffices to show that P also occurs on S via g. If vc ∈ VQ′ ,
then let v′c = var(f(vc)) be the variable in I corresponding to vc in this occurrence ofQ′. If vc /∈ VQ′

(due to being eliminated during dp-elimination), then |VQ′ | < |VP | ≤ |V |, and so we can set v′c ∈ V
to be a variable of I not corresponding to any variable in VQ′ in this occurrence of Q′. In both
cases, since I satisfies arc consistency, there is a point c′ ∈ v′c compatible with f(d). We can thus
extend f to an occurrence-function f ′ of P in I by setting: f ′(c) = c′, and f ′(p) = f(p) for all
p ∈ AP \ {c} = AQ′ . Hence P also occurs on S via g, since f and f ′ are identical on eP , which
completes the proof.

The following corollary follows immediately from the fact that arc consistency can be estab-
lished in polynomial time.

Corollary 2. Let P and Q be two existential patterns, such that P can be reduced to a sub-pattern of Q.
Then

• If Q is tractable, then P is tractable.

• If P is intractable, then Q is intractable.

It follows that in order to find new tractable classes we only need to study those existential
patterns that cannot be reduced to a sub-pattern of a known tractable existential pattern and that
do not have as a sub-pattern a reduction of a known intractable existential pattern.

36

3.4.4 Reduction to a Different Kind of Pattern

Let P = 〈V,A, var,E, cpt〉 be a flat pattern and let P ′ = 〈V,A, var,E, cpt, v〉 be a quantified pattern
such that P is the flat simplified pattern of P ′. From Definition 13, we know that if P ′ occurs in a
CSP instance I , then P also occurs in I . Therefore, we can say that P can be reduced to P ′ without
altering the fundamental properties of the reduction to a pattern.

Similarly, let P = 〈V,A, var,E, cpt, v〉 be a quantified pattern and let P ′ = 〈V,A, var,E, cpt, e〉
be an existential pattern such that P is the quantified simplified pattern of P ′. From Definitions 13
and 18, we know that if P ′ occurs in a CSP instance I , then P also occurs in I . Therefore, we can
say that P can be reduced to P ′ without altering the fundamental properties of the reduction to a
pattern.

37

38

4 Tractable Classes

This section is the first chapter in which we present our results. It focuses on complexity. We
give several tractable classes, and also prove some NP-Completeness results. There are two main
dichotomies, the first one is about patterns on two constraints, the other one is about Max-CSP
subproblems. The last part of the section exposes a lot of miscellaneous complexity results for
patterns on three variables.

4.1 Dichotomy for Forbidden Patterns on Two Constraints

4.1.1 Flat Patterns on One Constraint

In this subsection we prove a dichotomy for patterns composed of a single constraint. We also
prove some results concerning 1-constraint patterns that are essential for the proof of the 2-constraint
dichotomy given in Section 4.1.3.

Lemma 6. Let P be a pattern such that a constraint in P contains two distinct incompatibility edges that
cannot be merged. Then P is intractable.

Proof. Let P be a pattern such that a constraint in P contains two non-mergeable incompatibility
edges. Let SAT1 be the set of SAT instances with at most one occurrence of each variable in each
clause. SAT1 is trivially equivalent to SAT which is well known to be NP-complete (Cook, 1971).
To prove the lemma it suffices to give a polynomial reduction from SAT1 to CSP(P). We suppose
that we have a SAT1 instance I = {V, S} with V a set of variables {v1, v2, . . . , vn} and S a set of
clauses {C1, C2, . . . , Ck} such that each clause Ci is a disjunction of ci literals l1i ∨· · ·∨ l

ci
i . We create

the following CSP instance I ′:

• n+ k variables v′1, . . . , v
′
n+k.

• ∀v′i with 1 ≤ i ≤ n, two points vi and vi in Av′i
.

• ∀v′i with n+ 1 ≤ i ≤ n+ k, ci−n points l1i−n, . . . , l
ci−n

i−n in Av′i
.

• ∀1 ≤ i ≤ k, ∀1 ≤ j ≤ ci, an incompatibility edge between the point lji ∈ Av′n+i
and the point

in Av′1
, . . . , Av′n corresponding to the literal lji .

A solution to I ′ consists of a set of literals assigned true in a solution s to I together with for each
clause a literal from this clause which is assigned true in s. Therefore, by construction, I ′ has a
solution if and only if I has a solution. Furthermore, each time an incompatibility edge occurs in
a constraint C, this constraint C is between a CSP variable v′i representing the SAT1 variable vi

and another CSP variable v′n+j representing the SAT1 clause Cj . Since vi occurs at most once in
Cj , there is only one incompatibility edge in C. So I ′ does not contain the pattern P . So we have
reduced SAT1 to CSP(P), as required.

39

Definition 28 (explicitely compatible). Given a pattern P = 〈V,A, var,E, cpt〉, a variable v ∈ V , and
a point a ∈ Av, we say that a is explicitly compatible (respectively explicitly incompatible) if there is a
point b ∈ A such that a is compatible with b (respectively such that a is incompatible with b).

Lemma 7. Let P be a non-mergeable pattern. Then for every variable v in P , there is at most one point in
Av which is not explicitly incompatible.

Proof. Suppose we have a pattern P such that there are two points a and b with var(a) = var(b)
such that neither a nor b is explicitly incompatible. So no point in the pattern is incompatible with
either a or b. Hence, we can merge a and b, which is a contradiction.

Let Z be the pattern on two variables v and v′, shown in Figure 12, with points a, b ∈ Av

and points c, d ∈ Av′ such that a is compatible with both c and d, b is compatible with c and
incompatible with d.

Lemma 8. Z is intractable.

Proof. Since 3-COLORING is NP-complete (Garey & Johnson, 1979), it suffices to give a polynomial
reduction from 3-COLORING to CSP(Z), the set of CSP instances in which the pattern Z does not
occur.

For s, t ∈ {1, 2, 3}, define the relation Rs,t ⊆ {1, 2, 3}2 by

Rs,t = {〈u, v〉|(u = s ∧ v = t) ∨ (u 6= s ∧ v 6= t)}

It is easy to verify that Rs,t does not contain the pattern Z. Consider the 5-variable gadget with
variables vi, vj , u1, u2, u3, each with domain {1, 2, 3}, and with constraint relations Rk,k on vari-
ables (vi, uk) (k = 1, 2, 3) and constraint relations R1+(k mod 3),k on variables (uk, vj) (k = 1, 2, 3).
The joint effect of these six constraints is simply to impose the constraint vi 6= vj . Any instance
〈V,E〉 of 3-COLORING, with V = {1, . . . , n}, can be reduced to an instance of CSP(Z) with vari-
ables v1, . . . , vn by placing a copy of this gadget between every pair of variables (vi, vj) such that
{i, j} ∈ E. This reduction is clearly polynomial.

Let 1I be the pattern on two variables v and v′ with points a ∈ Av and b ∈ Av′ such that a and
b are incompatible. 1I is a trivial tractable pattern, because any CSP instance not containing 1I
contains only trivial constraints.

Lemma 9. Let P be a pattern on one constraint. Then either P is reducible to a sub-pattern of 1I , and thus
is tractable, or P is intractable.

Proof. Let P be a pattern on one constraint between two variables v and v′. From Lemma 6, we
know that if P has two non mergeable incompatibility edges, then P is intractable. If there is no in-
compatibility edge at all in P , then P is reducible by merging and/or dp-elimination to the empty
pattern, which is a sub-pattern of 1I . We therefore suppose that there is exactly one incompatibil-
ity edge in P , or that P can be reduced by merging to a pattern with only one incompatibility edge.
Let a ∈ Av and b ∈ Av′ be the points defining this edge. From Lemma 7, we know that we only

40

need to consider at most one other point c 6= a in Av and at most one other point d 6= b in Av′ . If all
three edges {a, d}, {c, b} and {c, d} are compatibility edges, then P is intractable from Lemma 8.
If only two or less of these edges are compatibility edges, then P is reducible by merging and/or
dp-elimination to 1I . So we have the lemma.

4.1.2 Flat Patterns on Two Constraints

Lemma 10. Let P be a pattern composed of two separate one-constraint patterns: P1 on variables v0, v1
and P2 on variables v2, v3, where all four variables are distinct. Then

1. If either P1 or P2 is intractable, then P is intractable too.

2. If both P1 and P2 are tractable, then P is tractable.

Proof. 1. P1 and P2 are sub-patterns of P . So if one of them is intractable, then P is intractable
too, by Corollary 1.

2. Suppose that both P1 and P2 are tractable. So there are two polynomial algorithms A1 and
A2 which solve CSP(P1) and CSP(P2), respectively. Let I be a CSP instance such that P does
not occur in I . If P1 does not occur in I then this can be detected in polynomial time and I

can be solved byA1. If P1 occurs on variables u, v in I1, then for each assignment of values to
the pair of variables u, v, the resulting instance I ′ cannot contain P2 and hence can be solved
by A2.

The following lemma concerns a pattern in which some structure is imposed on domain ele-
ments. It is essential for our two-constraint dichotomy.

Let 2V be the pattern on three variables v0, v1 and v2 with three points a, b, c ∈ Av1 , three points
d, e, f ∈ Av2 and six points g, h, i, j, k, l ∈ Av0 , such that a is compatible with h, b is compatible
with g and h, c is incompatible with i, d is incompatible with j, e is compatible with k and l, f is
compatible with l. The pattern 2V also has the associated structure (a 6= b or g 6= h) and (e 6= f or
k 6= l). The pattern 2V is pictured in Figure 22. When a pattern has an associated structure given
by a property P , the property P must be preserved by extension and reduction operations. For
example, if P is a 6= b then the points a and b cannot be merged during a reduction. It is worth
pointing out that in a CSP instance, all points are assumed to be distinct and hence a property
such as a 6= b is necessarily satisfied.

Lemma 11. 2V is intractable.

Proof. Let the gadget V + be the pattern on two variables v0, v1 with points a ∈ Av0 and b, c ∈ Av1

such that a is compatible with both b and c, together with the structure b 6= c. In the pattern 2V ,
either b is compatible with two different points g and h, or h is compatible with two different points
a and b. So, if 2V occurs in a CSP instance on variables v′0, v

′
1, v
′
2, then the gadget V + necessarily

occurs in the constraint between v′0 and v′1. By an identical argument, the gadget V + must also
occur in the constraint between v′0 and v′2.

41

j k lihg

a b c d e f

Figure 22: The pattern 2V .

•

•

•

�
�
��

•
Q
Q
QQ

T1

�
�

�
�

�
�

�
��

�
�
�

c

d

b

a

•

•

•

�
�
��

•PPPP
•

T2

�
�

�
�

�
�

�
�

�
�

�
�

•

•

•

�
�
�
�
•PPPP

•

T3

�
�

�
�

�
�

�
�

�
�

�
�

•

•

•

�
�
��

•
Q
Q
QQ

•
�
�
�
�

T4

�
�

�
�

�
�

�
��

�
�
� •

•

•

�
�
�
�
•

Q
Q
QQ

T5

�
�

�
�

�
�

�
��

�
�
�

Figure 23: The set of tractable patterns T .

We define an equality constraint between two variables v and v′ as the constraint consisting
of compatibility edges between identical values in the domains of v and v′ and incompatibility
edges between all pairs of distinct values. Thus, by definition, a point in an equality constraint
is compatible with only one point. Since the gadget V + contains a point a compatible with two
different points, V + does not occur in an equality constraint.

We will reduce CSP to CSP(2V). Let I be a CSP instance. For each pair of variables v, w in
I such that there is a non-trivial constraint between v and w, we introduce two new variables v′

and w′ such that the domain of v′ is the same as the domain of v, the domain of w′ is the same as
the domain of w. We add equality constraints between v and v′, and between w and w′, and we
add between v′ and w′ the same constraint as there was between v and w. All other constraints
involving v′ orw′ are trivial. We also replace the constraint between v andw by a trivial constraint.
After this transformation, v and w′ are the only variables which share a non trivial constraint with
v′. Let I ′ be the instance obtained after all such transformations are simultaneously performed on
I . By construction, I ′ has a solution if and only if I has a solution.

We now suppose that we have three variables v0, v1 and v2 in I ′ such that there are non-
trivial constraints between v0 and v1 and between v0 and v2. By construction, at least one of
these constraints is an equality constraint. Hence, the gadget V + cannot occur in both of these
constraints. It follows that 2V cannot occur in I ′. So we have reduced I to an instance without any
occurrence of the pattern 2V . This polynomial reduction from CSP to CSP(2V) shows that 2V is
intractable.

Let T be the set {T1, T2, T3, T4, T5} of patterns shown in Figure 23.
No pattern in T can be reduced to a sub-pattern of a different pattern in T . As we will show,

each Ti (i = 1, . . . , T5) defines a tractable class of binary CSP instances. For example, T4 defines a
class of instances which includes as a proper subset all instances with zero-one-all constraints (Co-

42

•
•��

��
��

•
•

��
��
��

Diamond

�
�

�
�

�

�

�

�

�
�

�
�

Figure 24: The pattern Diamond.

hen, Cooper, & Jeavons, 1994). Zero-one-all constraints can be seen as a generalisation of 2SAT
clauses to multi-valued logics.

Let 2I represent the pattern composed of two separate copies of 1I , i.e. 2I consists of four
points a, b, c, d such that var(a), var(b), var(c), var(d) are all distinct and both a, b and c, d are
pairs of incompatible points.

Definition 29 (irreducible pattern). We say that a pattern P is irreducible if we cannot apply merging
or dp-elimination on P .

Theorem 1. Let P be an irreducible flat pattern on two constraints. Then P is tractable if and only if P is
a sub-pattern of one of the patterns in T ∪ {2I}.

4.1.3 Proof of Theorem 1

Proof. ⇒: A two-constraint pattern involves either three or four distinct variables. Consider
first the latter case, in which P is composed of two separate irreducible one-constraint patterns
P1 and P2 on four distinct variables. By Lemma 10, P is tractable if and only if both P1 and P2
are tractable. Furthermore, by Lemma 9, all tractable one-constraint irreducible patterns are sub-
patterns of 1I . Thus, if P is tractable, then it is a sub-pattern of 2I , by a combination of P1 and P2
being sub-patterns of 1I . It only remains to study two-constraint patterns on three variables.

From Lemma 6, Lemma 8 and Corollary 1, we know that we only have to study patterns P
with at most one incompatibility edge in each constraint such that P does not contain the pattern
Z. If one of the constraints does not contain any incompatibility edge at all, then the pattern is
reducible by merging and/or dp-elimination to a pattern with only one constraint or to the pattern
Diamond, shown in Figure 24, which is a sub-pattern of T2, T3 and T4. So we can assume from
now on that there is exactly one incompatibility edge (p ∈ Av0 , b ∈ Av1) between v0 and v1, and
also exactly one incompatibility edge (p′ ∈ Av0 , c ∈ Av2) between v0 and v2. The “skeleton” of
incompatibility edges of an irreducible tractable pattern can thus take two forms according to
whether p = p′ (skeleton of type 1) or p 6= p′ (skeleton of type 2).

From Lemma 7 we know that |Av| ≤ 2 for each variable v with only one explicitly incompatible
point, and that |Av| ≤ 3 for each variable v with two explicitly incompatible points. We know from
Lemmas 8 and 11 that both Z and 2V are intractable, so by Corollary 1 we must look for patterns
in which neither one occurs. We know that we have two possible incompatibility skeletons to
study, each one implying a maximum number of points appearing in the pattern.

We first consider the incompatibility skeleton of type 1, shown in Figure 25.

43

a
b c

d

e

f

Figure 25: Incompatibility skeleton of type 1.

a
b c

d

e f

g

Figure 26: Incompatibility skeleton of type 2.

Suppose that a is a point in the pattern. Then there must be a compatibility edge between a

and e, otherwise we could merge a and b. There also must be a compatibility edge between a and
f , otherwise a would be a dangling point. Similarly, if d is a point in the pattern, then there must
be compatibility edges between d and e, and between d and f . So if both a and d are points in
the pattern, then the pattern 2V occurs. So, by Lemma 11 and Corollary 1, a and d cannot be both
points of the pattern. Since they play symmetric roles, we only have two cases to consider: either
a is a point in the pattern and not d, or neither a nor d is a point in the pattern.

If a is a point in the pattern and not d, then the only remaining edges to consider are {f, b} and
{f, c}. {f, b} cannot be a compatibility edge, because otherwise the pattern Z would occur. {f, c}
must be a compatibility edge, otherwise we could merge f and e. Thus the pattern is T2.

On the other hand, if neither a nor d is a point in the pattern, then the only remaining edges to
consider are {f, b} and {f, c}. If one of them is a compatibility edge but not the other, then f would
be a dangling point. So either both {f, b} and {f, c} are compatibility edges, or neither of them
is. However, the latter case is a sub-pattern of the former one which is T1. So the only possible
irreducible tractable patterns with this incompatibility skeleton are sub-patterns of T1 or T2.

We now consider the incompatibility skeleton of type 2, shown in Figure 26.
If g is a point in the pattern, then there must be a compatibility edge between g and b, otherwise

we could merge g and e. There also must be a compatibility edge between g and c, otherwise we
could merge g and f . We suppose, for a contradiction, that a is a point in the pattern. Then
there is a compatibility edge between a and e, otherwise we could merge a and b. There is also a
compatibility edge either between a and f or between a and g, otherwise a would be a dangling
point. We cannot have a compatibility edge between a and g, otherwise the patternZ would occur.
So there is a compatibility edge between a and f . There is a compatibility edge either between b
and f or between c and e, otherwise we could merge e and f . We cannot have a compatibility

44

edge between b and f , otherwise the pattern Z would occur. We cannot have a compatibility edge
between c and e, otherwise the pattern 2V would occur. So a cannot be a point in the pattern.
Since a and d play symmetric roles, we can also deduce that d cannot be a point in the pattern.
So the only remaining edges are {b, f} and {c, e}. At least one of them is a compatibility edge,
otherwise we could merge e and f . If both of them are compatibility edges, the pattern 2V occurs.
So exactly one of them is a compatibility edge. Since they play symmetric roles, we can assume
for instance that {b, f} is a compatibility edge while {c, e} is an unknown edge which means that
the pattern is T4.

We now consider the case in which g is not a point in the pattern. Suppose that a is a point
in the pattern. There is a compatibility edge between a and e, otherwise we could merge a and
b. There is also a compatibility edge between a and f , otherwise a would be a dangling point.
Similarly, if d is a point in the pattern, then there must be compatibility edges between d and e,
and between d and f . At least one of the edges {b, f} and {c, e} must be a compatibility edge,
otherwise we could merge e and f . In either case, Z occurs in the pattern. So a and d cannot both
be points of the pattern. Since they play symmetric roles, we only have two cases to consider:
either a is a point in the pattern and not d, or neither a nor d is a point in the pattern.

If a is a point in the pattern, then the only remaining edges to consider are {b, f} and {c, e}. At
least one of them is a compatibility edge, otherwise we could merge e and f . There is no compati-
bility edge between b and f , otherwise the pattern Z would occur. So there is a compatibility edge
between c and e. Hence the pattern is T3.

If neither a nor d is a point in the pattern, then the only remaining edges are {b, f} and {c, e}.
At least one of them is a compatibility edge, otherwise we could merge e and f . So either exactly
one of them is a compatibility edge, or they both are. However, the former case is a sub-pattern of
the latter which corresponds to pattern T5. So the only possible irreducible tractable patterns with
this incompatibility skeleton are sub-patterns of T3, T4 or T5.

So if P is a tractable irreducible pattern on two constraints, then P is reducible to a sub-pattern
of one of the patterns in T ∪ {2I}.

⇐: We now give the tractability proofs for all patterns in T ∪ {2I}. We assume throughout that
we have applied until convergence the preprocessing operations: arc consistency, neighborhood
substitution and single-valued variable elimination. The proof of tractability of T1 is by far the
longest of these proofs and will require a dozen lemmas showing that many simplification oper-
ations can be applied to instances in CSP(T1) without introducing the pattern T1 and describing
the structure of the simplified instance. The final step consists in observing that the simplified
instance belongs to a known tractable class (Cooper & Živný, 2011a). The proofs of tractability of
the other patterns are based on the same principle: simplification operations can be applied which
do not introduce the pattern and the resulting simplified instance belongs to a known, sometimes
trivial, tractable class.

Proof of tractability of T1 : Let I be an instance in CSP(T1). Let the gadget X be the pattern
on two variables v0, v1, shown in Figure 12, with points a, b ∈ Av0 and c, d ∈ Av1 such that a is
incompatible with c and compatible with d, and b is compatible with c and incompatible with d.

45

Av1 Av2

Av Av′

a1 a2

a a′

b b′

Figure 27: Introduction of the pattern T1.

Suppose that the gadget X is a sub-pattern of the instance I . Suppose a is in a solution S. Let
e ∈ Av2 be such that v2 6= v0, v2 6= v1 and e ∈ S. Let f be the point of S in v1.

If b is incompatible with e then a, b, d and e form the forbidden pattern. So b is compatible
with e. Similarly, if c is incompatible with e, then a, c, f and e form the forbidden pattern. So c is
compatible with e. So if we replace a by b and f by c in S, then we have another solution. So if a
is in a solution, then b is also in a solution. So we can remove a while preserving the solvability of
the instance.

So we can assume from now on that the gadget X is not a sub-pattern of the instance. We say
that an instance I ∈ CSP(T1) is simplified if we have applied neighborhood substitution operations
until convergence and all gadgets X have been eliminated from I . We say that I is fusion-simplified
if it is simplified and all (simple or complex) fusion operations have been performed that do not
introduce T1. The following lemma indicates when we can perform fusion operations.

Lemma 12. Consider a (simple or complex) fusion of two variables v, v′ in an instance I ∈ CSP(T1).
Suppose that whenever (a, a′) and (b, b′) are pairs of fused points during this fusion, such that a 6= b ∈ Av

and a′ 6= b′ ∈ Av′ , either a and b′ were incompatible in I or b and a′ were incompatible in I . Then the
pattern T1 cannot be introduced by this fusion.

Proof. By the definition of (simple or complex) fusion, the only way that T1 could be introduced is
when the two points in the central variable of T1 are created by the fusion of pairs of points (a, a′)
and (b, b′) such that the compatibilities of the points a, b ∈ Av and a′, b′ ∈ Av′ with the two other
points a1, a2 of T1 are as shown in Figure 27.

Now, if a and b′ were incompatible, then T1 was already present on points a1, a, b, b′ in the
original instance, and hence cannot be introduced by the fusion. Similarly, if b and a′ were incom-
patible, then T1 was already present on points b, a′, b′, a2 in the original instance.

46

Definition 30 (better than a point with respect to a variable). ∀v, v′, ∀a, b ∈ Av, we say that b is
better than a with respect to v′, which we denote by a ≤ b for (v, v′) (or for v′ if the variable v is obvious
from the context), if every point in Av′ compatible with a is also compatible with b.

It is easy to see that ≤ is a partial order. We also have the relations ≥, < and > derived in the
obvious way from ≤. We write a ≡ b if a ≤ b and b ≤ a.

Lemma 13. In a simplified instance I ∈ CSP(T1)

1. ∀(v, v′), the order ≤ on Av with respect to v′ is total.

2. ∀v, ∀a, b ∈ Av, there is v′ such that a < b for v′.

3. ∀v, ∀a, b ∈ Av, there is only one v′ such that a < b for v′.

Proof. 1. Because the gadget X cannot occur.

2. Otherwise b is dominated by a and we can remove it by neighborhood substitution.

3. Because of the initial forbidden pattern.

Lemma 14. In a simplified instance I ∈ CSP(T1), if a < b < c for (v0, v1), then there exists v2 6= v1 such
that c < b < a for (v0, v2).

Proof. Since we have a < b for (v0, v1), from Lemma 13.2 there is some v2 such that b < a for
(v0, v2). Since b < c for (v0, v1), c ≤ b for (v0, v2) by Lemma 13.3. If c < b for v2, then we have the
lemma. Otherwise, we have c ≡ b < a for v2. Since b < c for v1, there exists v3 6= v1, v2 such that
c < b for v3. Since a < b for v1, b ≤ a for v3. So c < b ≤ a for v3. So we have c < a for both v2 and
v3, which is not possible. So we must have c < b < a in v2.

Lemma 15. In a simplified instance I ∈ CSP(T1), ∀a, b, c, d ∈ Av0 , for all v1 6= v0 none of the following
is true:

1. a ≡ b < c < d for v1.

2. a < b ≡ c < d for v1.

3. a < b < c ≡ d for v1.

Proof. We give the proof only for the case 1, since the proofs of cases 2 and 3 are almost identical.
Since we have a < c < d for v1, from Lemma 14 there exists v2 such that d < c < a for v2. Likewise,
since b < c < d for v1, there exists v′2 such that d < c < b for v′2. Since d < c for both v2 and v′2,
v2 = v′2 by Lemma 13.3. This leaves three possibilities:

1. d < c < b < a for v2: from Lemma 14 we know there is v3 such that a < b < c for v3. So
we have a < c for both v1 and v3 with v1 6= v3 (since a ≡ b for v1), which is not possible by
Lemma 13.3. So we cannot have this possibility.

47

2. d < c < b ≡ a for v2: since a ≡ b for both v1 and v2, by Lemma 13.2 there is a different v3
such that a < b for v3. Since c < b for v2 and v3 6= v2, b ≤ c for v3. So a < c for v3. But we also
have a < c for v1 and v1 6= v3. So by Lemma 13.3 we cannot have this possibility.

3. d < c < a < b for v2: equivalent to the case d < c < b < a after interchanging a and b.

Corollary 3. In a simplified instance I ∈ CSP(T1), if for some (v0, v1), we have at least three equivalence
classes in the order on Av0 with respect to v1 then:

1. The order on Av0 with respect to v1 is strict.

2. There is v2 such that the order on Av0 with respect to v2 is the exact opposite to the order on Av0 with
respect to v1.

3. ∀v3 such that v3 6= v0, v1, v2, there is only one equivalence class in the order on Av0 with respect to
v3.

Proof. Points 1,2 and 3 follow respectively from Lemma 15, Lemma 14 and Lemma 13.

Lemma 16. In a simplified instance I ∈ CSP(T1), ∀a, b, c, d ∈ Av0 , there is no v1 such that a ≡ b < c ≡ d
for v1.

Proof. By Lemma 13.2, we know there is some v2 such that a < b for v2. Since we have a < c and
a < d for v1, by Lemma 13.3, we have c ≤ a and d ≤ a for v2. From Corollary 3, we cannot have
c < a < b or d < a < b for v2, so we have d ≡ c ≡ a < b for v2. Since we have c ≡ d for both v1 and
v2, we have a different variable v3 such that c < d for v3. Since c < b for v2 and v3 6= v2, b ≤ c for
v3. So b < d for v3. But we also have b < d for v1 and v1 6= v3. So, by Lemma 13.3, we cannot have
this possibility.

Lemma 17. In a simplified instance I ∈ CSP(T1), if for some (v, v′) there are at least three equivalence
classes in the order on Av with respect to v′, then there are the same number of points in both Av and Av′

and both the order on Av with respect to v′ and the order on Av′ with respect to v are strict.

Proof. Let d be the number of points in Av and d′ the number of points in Av′ . From Lemma 15 we
know that the order on Av with respect to v′ is strict. So we have a1 < a2 < · · · < ad for (v, v′).
So we have (a′1, a′2, . . . , a′d−1) such that ∀i ∈ {1, . . . , d}, ai and a′i are incompatible but ai+1 and
a′i are compatible. So ∀i ∈ {2, . . . , d} we have ai and a′i which are incompatible but ai and a′i−1
are compatible. So, by Lemma 13.1 we have a′1 > a′2 > · · · > a′d−1 for v. Moreover, since a1 is
incompatible with a′1, a1 is incompatible with all a′i for 1 ≤ i < d. By arc consistency, we have a′0
such that a1 and a′0 are compatible. So we have a′0 > a′1 > a′2 > · · · > a′d−1. So we have d ≤ d′ and
at least three equivalence classes in the order on Av′ with respect to v. By switching v and v′ in the
proof, we can prove the remaining claims of the Lemma.

We say that the pair of variables (v, v′) is a 3-tiers pair if there are at least 3 classes of equivalence
in the order on Av with respect to v′; we say that it is a 2-tiers pair otherwise.

48

Lemma 18. In a simplified instance I ∈ CSP(T1), suppose we have v and v′ such that (v, v′) is a 3-tiers
pair. Then we can perform the simple fusion of v, v′ without introducing T1.

Proof. Let d be the number of points in Av. From Lemma 17 we know that the points in Av can
be denoted a1 < a2 < · · · < ad for v′ and the points in Av′ can be denoted b1 < b2 < · · · < bd for
v. We will show that we can perform a simple fusion of v and v′ with fusion function f given by
f(ai) = bd+1−i (i = 1, . . . , d).

Claim: ∀1 ≤ i ≤ d, {bd+1−i, bd+1−i+1, . . . , bd} is the exact set of points compatible with ai.

If we have ai < aj for v′, it means ai is compatible with strictly less points in Av′ than aj . By
arc consistency, every point in Av is compatible with a point in Av′ . So ∀1 ≤ i ≤ d, we have d
possibilities (1, 2, . . . , d) for the number of points compatible with ai. Since we have d points in
Av, it means that ∀1 ≤ i ≤ d, ai is compatible with i points in Av′ . By definition of the order on a
variable with respect to another variable, the points in Av′ compatible with a point ai ∈ Av are the
greatest points for v. So we have the claim.

We now show that ∀1 ≤ i ≤ d, if ai is in a solution S, then there is a solution S′ such that
both bd+1−i and ai are in S′. Let b be the point of S in v′. If bd+1−i = b, then we have the result.
Otherwise, let c 6= b be a point of S. If c = ai, then from the above claim we know that c is
compatible with bd+1−i. Otherwise, let vc = var(c). So vc 6= v. From the above claim we have
bd+1−i < b for v. So b ≤ bd+1−i for vc. So bd+1−i is compatible with c. So bd+1−i is compatible with
all the points in S. So we have a solution S′ obtained by replacing b by bd+1−i in S which contains
both ai and bd+1−i.

We now perform the simple fusion of v and v′with fusion function f(ai) = bd+1−i for 1 ≤ i ≤ d;
we have just shown that this is a valid simple fusion. It only remains to show that the resulting
instance is in CSP(T1), since by Lemma 1 it is solvable if and only if the original instance was
solvable. Let a, b be two distinct points in Av. Without loss of generality, suppose that a < b for v′.
By choice of the fusion function f , b is the smallest (according to the order < for v′) of the points
in Av compatible with f(b). Therefore, a and f(b) are incompatible. The result then follows from
Lemma 12.

Therefore, from now on, in a fusion-simplified instance I ∈ CSP(T1), we can assume that each
pair (v, v′) is a 2-tiers pair. We call winner for (v, v′) the points in the greater equivalence class in
the order for (v, v′). The other points are called losers for this order. A same point can (and actually
will) be a winner for a given order and a loser for another order. If for a given order there is only
one equivalence class, then all the points are considered winners.

The winners for (v, v′) are compatible with all the points in Av′ . The losers for (v, v′) are only
compatible with the winners for (v′, v).

We say that a variable v is one-winner if ∀v′ 6= v, either only one point of Av is a winner for
(v, v′) or all the points in Av are. Similarly, we say that a variable v is one-loser if ∀v′ 6= v, either
only one point of Av is a loser for (v, v′) or all the points of Av are winners for (v, v′).

49

Lemma 19. In a simplified instance I ∈ CSP(T1), ∀v, if there is v′ such that there is only one winner for
(v, v′), then v is one-winner. Similarly, if there is v′ such that there is only one loser for (v, v′), then v is
one-loser.

Proof. Let a, b, c, d, e, f ∈ Av be such that there are v1 6= v2 with a ≡ b < c for v1, d < e ≡ f for v2,
a 6= b and e 6= f . If d 6= c, then from Lemma 16, we have a ≡ b ≡ d ≡ c for v1 and d < e ≡ f ≡ c for
v2. So d < c for both v1 and v2 with v1 6= v2 (which is a contradiction by Lemma 13.3). So we cannot
have d 6= c. So d = c. So we have c < e ≡ f for v2. From Lemma 16 we have c < e ≡ f ≡ a ≡ b

for v2. Since we have a ≡ b for both v1 and v2, by Lemma 13.2 there is a different variable v3 such
that a < b for v3. Since a < c for v1, c ≤ a for v3. So c < b for v3. So c < b for both v2 and v3 with
v2 6= v3. This is impossible by Lemma 13.3. So we have the Lemma.

Corollary 4. In a simplified instance I ∈ CSP(T1), ∀v, either v is one-winner or v is one-loser.

Proof. Lemma 13.2 tells us that there exists v′ and a, b ∈ Av such that a < b for v′. By Lemma 16,
either there is only one winner for (v, v′) or only one loser. The result follows directly from
Lemma 19.

Let E be the set of one-winner variables and F = V \ E with V being the set of all variables.
From Corollary 4, the variables in F are one-loser. Let va, vb ∈ E be such that there is a non-trivial
constraint between va and vb. Since va ∈ E, there is only one winner a for vb in va. Similarly, there
is only one winner b for va in vb. We can perform a complex fusion of va and vb with hinge value a
and fusion function the constant function f = b.

By Lemma 1, the instance resulting from this fusion is solvable if and only if the original in-
stance was solvable.

Lemma 20. The complex fusion of two one-winner variables va and vb in a simplified instance of CSP(T1)
does not create the forbidden pattern.

Proof. Suppose that (c, c′) and (d, d′) are corresponding pairs of points during this fusion, with
c 6= d ∈ Ava and c′ 6= d′ ∈ Avb

. Since va only has one winner for vb, we know that either c or d is a
loser for vb. Without loss of generality, suppose d is a loser for vb. Since vb only has one winner for
va, and losers are only compatible with winners, we know that d is incompatible with c′ (since it is
necessarily compatible with d′ for the fusion to take place). The result now follows directly from
Lemma 12.

We have shown that we can fusion any pair of variables in E between which there is a non-
trivial constraint. We now do the same for F , the set of one-loser variables.

Lemma 21. In a simplified instance I ∈ CSP(T1), let va, vb ∈ F (where F is the set of one-loser variables
of I) be such that there is a non-trivial constraint between va and vb. Let a ∈ Ava and b ∈ Avb

be such that
a is incompatible with b. If a′ ∈ Ava is in a solution S and a′ 6= a, then b is in a solution S′ containing a′.

50

Proof. Let b′ be the point of S in vb. If b′ = b, then we have the result. Since va is a one-loser
variable, we know that all points in Ava other than a are winners. Thus a′ is compatible with b. By
a symmetric argument, b′ is compatible with a. If we have c ∈ S such that b is incompatible with
c, then a, b′, c and b form the forbidden pattern. So b is compatible with all the points in S. So if
we replace b′ by b in S we get a solution S′ containing both a′ and b.

Lemma 22. Let va,vb both be one-loser variables in a simplified instance I ∈ CSP(T1) such that a ∈ Ava

and b ∈ Avb
are incompatible. Then we can perform the complex fusion of va and vb with hinge value a and

fusion function the constant function f = b without introducing the forbidden pattern T1.

Proof. It follows from Lemma 21 that we only need to consider solutions containing a or b. We
can therefore perform a complex fusion of va and vb with hinge value a and fusion function the
constant function f = b.

In all pairs (c, c′) of corresponding points in this fusion, we must have either c = a or c′ = b.
Suppose that (c, c′) and (d, d′) are corresponding pairs of points during the fusion, with c 6= d ∈
Ava and c′ 6= d′ ∈ Avb

. Without loss of generality, we can assume that c = a and d′ = b. But we
know that a was incompatible with b. From Lemma 12 we can deduce that the fusion does not
introduce the pattern T1.

We say a point a is weakly incompatible with a variable v if there exists some b ∈ Av such that a
is incompatible with b.

Lemma 23. Let v be a one-loser variable in a simplified instance I ∈ CSP(T1). Let f be a point in Av.
Then f is weakly incompatible with one and only one variable.

Proof. From the definition of a one-loser variable, we know that there is some variable v′ such that
f is a loser for (v, v′). So f is weakly incompatible with v′. From Lemma 13.3, we know that f is a
loser only for (v, v′). Furthermore, by arc consistency we know that f is compatible with all points
of Au, for all variables u such that f is not a loser for (v, u). So f is weakly incompatible with one
and only one variable, namely v′, and we have the Lemma.

We have shown that after all possible fusions of pairs of variables, we have two sets of variables
E (the set of one-winner variables) and F = V \ E (the set of one-loser variables) such that:

• ∀v, v′ ∈ E, there is no non-trivial constraint between v and v′.

• ∀v, v′ ∈ F , there is no non-trivial constraint between v and v′.

• ∀v ∈ F , ∀f ∈ Av, f is weakly incompatible with one and only one variable v′ ∈ E. This is
from Lemma 23. Furthermore, f is incompatible with all points of Av′ but one (since v′ ∈ E
is a one-winner variable).

• The only possible non-trivial constraint between a variable v1 ∈ E and another variable
v2 ∈ F is the following with d1 being the size of the domain of v1:

– There is a point b ∈ Av2 incompatible with exactly d1 − 1 points in Av1 .

51

Av1 Av2

bb

Figure 28: Constraint between a one-winner variable v1 and a one-loser variable v2.

– ∀b′ ∈ Av2 with b′ 6= b, b′ is compatible with all points in Av1 .

This is illustrated in Figure 28. It is easily seen that this constraint can be written (v2 = b)⇒
(v1 = a).

We call NOOSAT (for Non-binary Only Once Sat) the following problem:

• A set of variables V = {v1, v2, . . . , ve}.

• A set of values A = {a1, a2, . . . , an}.

• A set of clauses C = {C1, C2, . . . , Cf} such that:

– Each clause is a disjunction of literals, with a literal being in this case of the form vi = aj .

– ∀i, j, p, q((vi = aj) ∈ Cp) ∧ ((vi = aj) ∈ Cq)⇒ p = q.

Lemma 24. CSP(T1) can be reduced to NOOSAT in polynomial time.

Proof. The total number of assignments decreases when we fuse variables, so the total number of
(simple or complex) fusions that can be performed is linear in the size of the original instance.
Hence we can produce a fusion-simplified version of an instance I ∈ CSP(T1) in polynomial
time. Thus suppose we have a fusion-simplified instance in CSP(T1). We have shown that the
non-trivial constraints between variables v ∈ F and v′ ∈ E are all of the form v = b ⇒ v′ =
a. Furthermore, from Lemma 23 and the third bullet point in the description of a post-fusions
instance, each variable-value assignment v = b occurs in exactly one such constraint. For any
v ∈ F , we can replace the set of such constraints v = bi ⇒ vi = ai, for all values bi in the domain
of v, by the clause (v1 = a1) ∨ . . . ∨ (vd = ad). It only remains to prove that no literal appears in
two distinct clauses. Suppose that we have a literal v1 = a which occurs in two distinct clauses.

52

• •
•

PPPPPP•

a 6= b

N�

�

�

�

�

�

�

�
b

a

c

d
Av0 Av1

Figure 29: The gadget N.

Then there must have been two constraints v2 = b ⇒ v1 = a and v3 = c ⇒ v1 = a and with
v1 ∈ E, v2 6= v3 ∈ F . Let a′ 6= a be a point in Av1 . Then b and c are both incompatible with a′

but compatible with a. But this is precisely the forbidden pattern. This contradiction shows that
CSP(T1) can be reduced to NOOSAT.

The constraints in NOOSAT are convex when viewed as {0,∞}-valued cost functions on the
assignment-sets {〈v1, a1〉 , . . . , 〈dd, ad〉} (the cost being infinite if and only if the number of assign-
ments in this set is 0) and these assignment-sets (corresponding to clauses) are non overlapping.
So, from (Cooper & Živný, 2011a), it is solvable in polynomial time. Hence the forbidden pattern
T1 is tractable.

Proof of tractability of T2 : Let N be the gadget shown in Figure 29: two variables v0, v1 with
points a, b ∈ Av0 and c, d ∈ Av1 , such that a,b are both compatible with d, b is incompatible with c,
and with the structure a 6= b.

Suppose we are given a CSP instance containing the gadget N . Let v2 be a variable with
v2 6= v0, v2 6= v1 and let e be a point in Av2 such that a and e are compatible. If b is incompatible
with e, then we have the forbidden pattern T2 on d, c, b, a, e. So b is compatible with e. If all the
points in Av1 which are compatible with a are also compatible with b, then we can remove a by
neighborhood substitution. So, assuming that neighborhood substitution operations have been
applied until convergence, if we have the gadget N , then there is a point g ∈ Av1 compatible with
a and incompatible with b.

Let v3 6= v1 such that v3 6= v0. By arc consistency, there is h ∈ Av3 such that h is compatible
with a. If b and h are incompatible, then we have the forbidden pattern T2 on d, g, b, a, h. So b and
h are compatible. If there is i ∈ Av3 such that b and i are incompatible, then we have the forbidden
pattern on h, i, b, a, g. So b is compatible with all the points in Av3 . So, if we have the gadget N ,
then b is compatible with all the points of the instance outside v0, v1.

Definition 31 (functional constraint). A constraint C between two variables v and v′ is functional
from v to v′ if ∀a ∈ Av, there is one and only one point in Av′ compatible with a.

Let the gadget V − be the pattern comprising three variables v4, v5, v6 and points a ∈ Av4 ,
b ∈ Av5 , c ∈ Av6 such that a is incompatible with both b and c.

From now on, since V − is a tractable pattern (Cooper & Živný, 2012), we only need to consider
the connected components of the constraint graph which contain V −.

53

Av4

Av5 Av6
d b c e

a

f

Figure 30: The three variables v4, v5 and v6.

Lemma 25. If in an instance from CSP(T2), we have the gadget V −, then the constraint between v5 and
v4 is functional from v5 to v4 and the constraint between v4 and v6 is functional from v6 to v4.

Proof. By symmetry, it suffices to prove functionality from v5 to v4. We suppose we have the
gadget V −. Let d ∈ Av5 be compatible with a. Since a is weakly incompatible with two different
variables, a, b and d cannot be part of the gadget N . So the only point in Av4 compatible with d is
a. So if a point in Av5 is compatible with a, then it is only compatible with a. Likewise, if a point
in Av6 is compatible with a, then it is only compatible with a.

Let f 6= a be a point in Av4 . By arc consistency, we have d ∈ Av5 and e ∈ Av6 such that a
is compatible with d and with e. From the previous paragraph, we know that both d and e are
incompatible with f . So we have the situation illustrated in Figure 30.

So d, e and f form the gadget V −. So each point in Av5 and Av6 compatible with f is compat-
ible with only one point of Av4 . So each point in Av5 and Av6 compatible with a point in Av4 is
compatible with only one point of Av4 . By arc consistency, each point of Av5 and Av6 is compatible
with exactly one point of Av4 . So the constraint between v4 and v5 is functional from v5 to v4.

Lemma 26. In a connected component of the constraint graph containing V − of an instance from CSP(T2),
all constraints are either functional or trivial.

Proof. Let P (V) be the following property: V is a connected subgraph of size at least two of the
constraint graph and all constraints in V are either functional or trivial.

P ({v4, v5}) is true from Lemma 25.
Let Vall be the set of all variables of the connected subgraph of the constraint graph containing

V −. Let V be a maximum (with respect to inclusion) subset of Vall for which P (V) is true. Let
V ′ = Vall\V . Let v′ ∈ V ′. Let v ∈ V be such that C(v, v′) (the constraint on v, v′) is non-trivial.
So there is d ∈ Av and e ∈ Av′ such that d and e are incompatible. Since V is connected and of

54

cardinality at least two, there is v′′ ∈ V such that C(v, v′′) is functional. By arc consistency and
elimination of single-valued variables, there is necessarily a point f ∈ Av′′ such that d and f are
incompatible. So d, e and f form the gadget V −. From Lemma 25 we know C(v, v′) is functional.
So P (V) is true for all subsets of Vall.

Lemma 27. In an instance from CSP(T2), ∀v such that v is in a connected component of the constraint
graph containing V −, all points in Av are weakly incompatible with the exact same set of variables.

Proof. Let a ∈ Av be weakly incompatible with v′. So C(v, v′) is non trivial. So C(v, v′) is func-
tional.

If C(v, v′) is functional from v to v′, then a point in Av can be compatible with only one point
in Av′ . We can assume, by elimination of single-valued variables, that there are at least two points
in Av′ , so every point in Av is weakly incompatible with v′.

If C(v, v′) is functional from v′ to v, then let b 6= a in v. By arc consistency, we know there is
c ∈ Av′ such that a and c are compatible. Since C(v, v′) is functional from v′ to v, c is compatible
with only one point in Av, namely a, so b is incompatible with c. So every point in Av is weakly
incompatible with v′.

So ∀(v, v′), a ∈ Av weakly incompatible with v′ ⇒ ∀b ∈ Av, b weakly incompatible with v′.

Definition 32 (path of functionality). A sequence of variables (v0, v1, . . . , vk) is a path of functional-
ity if ∀i ∈ {0, . . . , k − 1}, C(vi, vi+1) is functional from vi to vi+1.

Lemma 28. In a connected component of the constraint graph containing V − of an instance from CSP(T2),
∀v, v′, either v′ is connected to only one other variable in the constraint graph, or there is a path of func-
tionality from v to v′.

Proof. Since we are in a connected component, there is a path of incompatibility (v0 = v, v1, v2, . . . , vk =
v′) with all vi different. If v′ is connected to at least two other variables in the constraint graph,
then we have a path of incompatibility (v0, v1, v2, . . . , vk−1, vk, vk+1) with vk+1 6= vk−1. From
Lemma 27 we have a path of incompatibility (a0 ∈ Av0 , a1 ∈ Av1 , . . . , ak ∈ Avk

, ak+1 ∈ Avk+1).
So ∀i ∈ {1, . . . , k}, ai−1, ai and ai+1 form the gadget V −. So from Lemma 25, ∀i ∈ {1, . . . , k},
C(vi−1, vi) is functional from vi−1 to vi. So we have a path of functionality from v to v′.

Variables which are connected to at most one other variable in the constraint graph can be
removed from the instance I since, by arc consistency, any solution on the remaining variables
can be extended to a solution for I . Once we have removed all such variables, for each connected
component of the constraint graph, we only have to set an initial variable v0 and see if the q chains
of implications (with q being the number of points in Av0) lead to a solution. Since this is clearly
polynomial-time, the pattern T2 is tractable.

Proof of tractability of T3 : Consider an instance from CSP(T3).
Suppose that the gadget N , shown in Figure 29, is a sub-pattern of the instance and let e be a

point in Av2 , with v2 6= v0, v1. If e is compatible with b but not with a, then we have the forbidden

55

•

•
•��

��
��

•

b 6= c

W

�
�

�
�

�

�

�

�
a

g

b

cAv0 Av1

Figure 31: The gadget W .

pattern T3. So if b is compatible with a point outside of Av1 , then a is also compatible with the
same point.

Let S be a solution containing b. Let f be the point of S in Av1 . If f is compatible with a, then
we can replace b by a in S while maintaining the correctness of the solution, since all the points in
the instance outside of Av1 which are compatible with b are also compatible with a.

If f is not compatible with a, then edges {a, f}, {f, b} and {b, d} form the gadget N . So, by our
previous argument, if f is compatible with a point outside of Av1 , then d is also compatible with
the same point. We can then replace b by a and f by d in S while maintaining the correctness of
the solution, since all the points in the instance outside ofAv1 which are compatible with b are also
compatible with a and all the points in the instance outside of Av0 which are compatible with f

are also compatible with d. So if a solution contains b, then there is another solution containing a.
Thus we can remove b while preserving solvability.

So each time the gadget N is present in an instance I ∈ CSP(T3), we can remove one of
its points and hence eliminate N . Absence of the gadget N in I is equivalent to saying that all
constraints are either trivial or bijections and hence (a subclass of) zero-one-all constraints (Cohen
et al., 1994). Since all gadgets N can be removed in polynomial time and CSP instances with zero-
one-all constraints can be solved in polynomial time, it follows that the pattern T3 is tractable.

Proof of tractability of T4 : Consider an instance from CSP(T4).
Let W be the gadget shown in Figure 31: two variables v0 and v1 such that we have a in Av0 ,

b, c, g in Av1 , with b 6= c, a compatible with both b and c, and a incompatible with g. Suppose we
have W in the instance.

Let f be a point in Av2 , with v2 6= v0, v1. If f is compatible with b but not with c, then we
have the forbidden pattern T4. Likewise, if f is compatible with c but not with b, then we have the
forbidden pattern T4. So all the points of the instance not inAv0 orAv1 have the same compatibility
towards b and c.

If all points in Av0 compatible with b are also compatible with c, then all the points in the
instance compatible with b are also compatible with c and by neighborhood substitution we can
remove b. Thus we can assume there is d in Av0 such that d is compatible with b but not with c.

Let S be a solution containing c. Let e be the point of S in Av0 . If e is compatible with b, then
we can replace c by b in S while maintaining the correctness of the solution, since b and c have
the same compatibility towards all the points in the instance outside of Av0 and Av1 . If e is not
compatible with b, then edges {b, e}, {b, a} and {b, d} form the gadget W . So, by our argument

56

above, a and d have the same compatibility towards all the points in the instance outside of Av0

and Av1 . Similarly, edges {c, d}, {c, a} and {c, e} form the gadget W . So a and e have the same
compatibility towards all the points in the instance outside of Av0 and Av1 . So d and e have the
same compatibility towards all the points in the instance outside of Av0 and Av1 . Thus we can
replace c by b and e by d in S while maintaining the correctness of the solution, since b and c have
the same compatibility towards all the points in the instance outside of Av0 and Av1 and e and d

have the same compatibility towards all the points in the instance outside of Av0 and Av1 . So if a
solution contains c, then there is another solution containing b. Thus we can remove c.

Therefore, each time the gadget W is present, we can remove one of its points. The gadget
W is a known tractable pattern since forbidding W is equivalent to saying that all constraints are
zero-one-all (Cohen et al., 1994). So if it is not present, the instance is tractable. Hence pattern T4
is tractable.

Proof of tractability of T5 : The pattern T5 is a sub-pattern of the broken-triangle pattern BTP ,
a known tractable pattern (Cooper et al., 2010) on three constraints. So the pattern T5 is tractable
by Corollary 1.

Proof of tractability of 2I : Since 2I is the disjoint union of two copies of the trivially tractable
pattern 1I , the tractability of 2I follows directly from Lemma 10.

Let V3 = {v0, v1, v2}, A3 = {a0, a1, a2}, var3(ai) = vi for i ∈ {0, 1, 2}, E3 = {{a0, a1}, {a0, a2}}
and cpt3(a0, a1) = cpt3(a0, a2) = F . Let V−Middle=〈V3, A3, var3, E3, cpt3, {a0}〉 be the existential
pattern shown on the left of Figure 32 and V−Side=〈V3, A3, var3, E3, cpt3, {a1}〉 be the existential
pattern shown on the right of Figure 32.

4.1.4 Some NP-Complete Existential Patterns on Two Constraints

In order to identify all tractable existential patterns, we begin by showing that many simple exis-
tential patterns are NP-complete.

Definition 33 (copy of a variable). Let I be a CSP instance. We say that v′ ∈ V is a copy in I of v ∈ V
on (A0, A1) with A0 ⊂ Av and A1 ⊂ Av′ if:

• |A0|=|A1|.

• ∀a ∈ A0, ∃b ∈ A1 such that cpt(a, b) = T and ∀c 6= b in A1 we have cpt(a, c) = F .

• ∀b ∈ A1, ∃a ∈ A1 such that cpt(a, b) = T and ∀c 6= a in A0 we have cpt(c, b) = F .

• ∀a ∈ A0, ∀b ∈ A1 such that cpt(a, b) = T , ∀c ∈ A\{Av, Av′}, we have cpt(b, c) = cpt(a, c).

For notational simplicity, we say that v′ is a copy of v in I if A0 = Av and A1 = Av′ .

Let V3 = {v0, v1, v2}, A3 = {a0, a1, a2}, var3(ai) = vi for i ∈ {0, 1, 2}, E3 = {{a0, a1}, {a0, a2}}
and cpt3(a0, a1) = cpt3(a0, a2) = F . Let V−Middle=〈V3, A3, var3, E3, cpt3, {a0}〉 be the existential

57

V−Middle

a0

V−Side

a1

Figure 32: Two intractable existential patterns on three variables.

pattern shown on the left of Figure 32 and V−Side=〈V3, A3, var3, E3, cpt3, {a1}〉 be the existential
pattern shown on the right of Figure 32.

Lemma 29. V−Middle and V−Side are NP-Complete.

Proof. Let I = 〈V,A, var,E, cpt〉 be an arc-consistent CSP instance. Let v1, . . . , vk be the variables
of I . Let I ′ = 〈V ′, A′, var′, E′, cpt′〉 be the CSP instance on variables v′1, . . . , v

′
2k such that:

• Av′i
= Avi ∪ {ai} for all 1 ≤ i ≤ k and Av′i

= Bvi−k
∪ {ai} for all k + 1 ≤ i ≤ 2k, where

|Bi| = |Ai| (1 ≤ i ≤ k). We can think of variables v′i and v′i+k as having the same domain
except for the special value corresponding to ai.

• For all 1 ≤ i ≤ k, ai is incompatible with ai+k and compatible with all other points of I ′. For
all k+1 ≤ i ≤ 2k, ai is incompatible with ai−k and compatible with all other points of I ′. For
all 1 ≤ i ≤ k, this prevents both ai and ai+k to be part of the same solution. The idea here is
that for any solution S′ to I ′, for all 1 ≤ i ≤ k, either the point of S′ in v′i or the point of S′ in
v′i+k will be an original point from I , or a copy of an original point from I .

• For all 1 ≤ i < j ≤ k, for all a ∈ Ai, for all b ∈ Aj , cpt′(a, b) = cpt(a, b). For all 1 ≤ i ≤ k, v′i+k

is a copy of v′i in I ′ on (Avi , Av′
i+k
\ {ai+k}).

By construction, I ′ has a solution if and only if I has a solution, since (1) a solution to I can be
duplicated to produce a solution to I ′, and (2) a solution to I ′ without the assignments ai and after
elimination of duplicates is a solution to I .

Furthermore, for all 1 ≤ i ≤ k, ai is incompatible with only one other point in I ′. So for all
1 ≤ i ≤ k, neither V−Middle nor V−Side occurs on ai. So neither V−Middle nor V−side appears
in I ′. Thus we can reduce any CSP instance I to an arc-consistent CSP instance I ′ in which neither
V−middle nor V−side appears. It follows that V−Middle and V−Side are NP-Complete.

Let V2 = {v0, v1},A2 = {a0, a1, a2}, var2(a0) = v0, var2(a1) = var2(a2) = v1,E2 = {{a0, a1}, {a0, a2}}
and cpt2(a0, a1) = cpt2(a0, a2) = T . Let V+Middle be the existential pattern 〈V2, A2, var2, E2, cpt2, {a0}〉
shown on the left of Figure 33 and V+Side the existential pattern 〈V2, A2, var2, E2, cpt2, {a1}〉
shown on the right of Figure 33.

Let ExpandedV+ = 〈V,A, var,E, cpt, {a0}〉 be the existential pattern shown in Figure 34 and
given by: V = {v0, v1, v2}, A = {a0, a1, a2, a3}, var(a0) = v0, var(a1) = var(a2) = v1, var(a3) =
v2, E = {{a0, a1}, {a0, a2}, {a3, a1}, {a3, a2}}, cpt(a0, a2) = cpt(a3, a1) = cpt(a3, a2) = T and
cpt(a0, a1) = F .

58

V+Middle

a0

V+Side

a1

Figure 33: Two intractable existential patterns on two variables.

a0

Figure 34: The existential pattern ExpandedV+.

Lemma 30. V+Middle, V+Side and ExpandedV+ are NP-Complete.

Proof. Let I = 〈V,A, var,E, cpt〉 be an arc-consistent CSP instance on variables v1, . . . , vk. Let
I ′ = 〈V ′, A′, var′, E′, cpt′〉 be the CSP instance on variables v′1, . . . , v

′
3k such that:

• Av′i
= Avi ∪ {ai, bi} for all 1 ≤ i ≤ k, Av′i

= Bvi−k
∪ {ai, bi} for all k + 1 ≤ i ≤ 2k, and

Av′i
= Cvi−2k

∪ {ai, bi} for 2k + 1 ≤ i ≤ 3k, where |Ci| = |Bi| = |Ai| (1 ≤ i ≤ k). We can
think of variables v′i, v

′
i+k and v′i+2k as having the same domain except for the special values

corresponding to ai, bi.

• For all 1 ≤ i ≤ 3k, for all 1 ≤ j ≤ 3k such that i 6= j, ai is compatible with bj and incompatible
with all other points of Av′j

. For all 1 ≤ i ≤ 3k, for all 1 ≤ j ≤ 3k such that i 6= j, bi is
compatible with aj and incompatible with all other points of Av′j

. For all 1 ≤ i ≤ k, this
prevents any three points from {ai, bi, ai+k, bi+k, ai+2k, bi+2k to be part of the same solution.
The idea here is that for any solution S′ to I ′, for all 1 ≤ i ≤ k, at least one of the points of S′

in v′i, v
′
i+k and v′i+2k will be an original point from I , or a copy of an original point from I .

• For all 1 ≤ i < j ≤ k, for all a ∈ Avi , for all b ∈ Aj , cpt′(a, b) = cpt(a, b). For all 1 ≤
i ≤ k, vi+k is a copy of vk in I ′ on (Avi , Av′

i+k
\ {ai+k, bi+k}) and vi+2k is a copy of vk on

(Avi , Av′
i+2k
\ {ai+2k, bi+2k}).

By construction, I has a solution if and only I ′ has a solution. Furthermore, for all 1 ≤ i 6=
j ≤ k, ai is only compatible with bj in Avj and bj is itself only compatible with ai in Avi . So for all
1 ≤ i ≤ k, neither V+Middle nor V+Side occurs on ai. Moreover, for all 1 ≤ i, j, h ≤ k, ai is only
compatible with bj in Avj , bj is only compatible with ah in Avh

and ah is only compatible with bj

in Avj . So for all 1 ≤ i ≤ k, ExpandedV+ does not occur on ai. So none of V+Middle, V+side or
ExpandedV+ appear in I ′. Hence V+Middle and V+Side are NP-Complete.

Let V+− = 〈V,A, var,E, cpt, {a1}〉 be the existential pattern shown in Figure 35 and given by
V = {v0, v1}, A = {a0, a1, a2}, var(a0) = v0, var(a1) = var(a2) = v1, E = {{a0, a1}, {a0, a2}},
cpt(a0, a1) = T and cpt(a0, a2) = F .

Lemma 31. V+− is NP-Complete.

59

a1

Figure 35: The existential pattern V+−.

•

•

•

�
�
�
��

•
Q
Q
Q
QQ

∃subT1

�
�

�
�

�
�

�
��

�
�
�

a0

•

•

•

�
�
�
�
�
•PPPPP

•

∃T3

�
�

�
�

�
�

�
�

�
�

�
�

a0

•

•

•

�
�
�
��

•
Q
Q
Q
QQ

•
�
�
�
�
�

∃T4

�
�

�
�

�
�

�
��

�

�

�a0

Figure 36: Three intractable existential patterns.

Proof. Let I be an arc-consistent CSP instance on variables v1, . . . , vk with at most one incompati-
bility edge in each constraint. Let I ′ be the CSP instance on variables v′1, . . . , v

′
k such that:

• Av′i
= Avi ∪ {ai} for all 1 ≤ i ≤ k.

• For all 1 ≤ i < j ≤ k, ai is incompatible with aj . For all 1 ≤ i < j ≤ k, for all b ∈ Av′j
, ai

is incompatible with b if b is incompatible with a point c ∈ Av′i
and ai is compatible with b

otherwise.

• For all 1 ≤ i < j ≤ k, for all a ∈ Avi , for all b ∈ Avj , cpt′(a, b) = cpt(a, b).

For all 1 ≤ i 6= j ≤ k, we know that ai is compatible with a point a′ ∈ Avj if and only if a′

is compatible with all points in Avi . Since at most one point in Avj is incompatible with a point
in Avi , and since |Avj | ≥ 2, there always exists such a point a′ ∈ Avj . So I ′ is arc consistent.
Furthermore, for all 1 ≤ i 6= j ≤ k we know that if ai is compatible with a point a′ ∈ Avj , then a′

is compatible with all points in Avi . So for all 1 ≤ i ≤ k, V+− does not occur on ai and we can
remove ai by neighborhood substitution. So V+− does not appear in I ′ and the solvability of I ′ is
the same as that of I . So we can reduce any CSP instance with at most one incompatibility edge
in each constraint I to a CSP instance I ′ in which V+− does not appear. From Lemma 6, the set
of CSP instances with at most one incompatibility edge in each constraint is NP-Complete. Thus
V+− is NP-Complete.

Let ∃T3 = 〈V,A, var,E, cpt, {a0}〉 be the existential pattern shown in the middle of Figure 36 and
defined by V = {v0, v1, v2}, A = {a0, a1, a2, a3, a4}, var(a0) = var(a1) = v0, var(a2) = var(a3) =
v1, var(a4) = v2, E = {{a0, a2}, {a1, a2}, {a1, a3}, {a2, a4}, {a3, a4)}}, cpt(a1, a2) = cpt(a1, a3) =
cpt(a2, a4) = T and cpt(a0, a2) = cpt(a3, a4) = F .

Lemma 32. ∃T3 is NP-Complete.

60

Proof. Let I be an arc-consistent CSP instance on variables v1, . . . , vk. Let I ′ be the CSP instance on
variables v′1, . . . , v

′
2k, u′1, . . . , u

′
k with compatibility function cpt′ such that:

• Av′i
= Avi ∪ {ai, bi} for all 1 ≤ i ≤ k, Av′i

= Bvi−k
∪ {ai, bi} for all k + 1 ≤ i ≤ 2k, where

|Bi| = |Ai| (1 ≤ i ≤ k), and Au′i
= {ci, di, ei} for 1 ≤ i ≤ k. We can think of variables v′i and

v′i+k as having the same domain except for the special values corresponding to ai, bi. The
role of the variables u′i is to ensure that ai, bi cannot be part of any solution to I ′.

• For all 1 ≤ i ≤ 2k, for all 1 ≤ j ≤ 2k such that i and j are not equal modulo k, ai and
bi are compatible with all points of Av′j

. For all 1 ≤ i ≤ k: ai is compatible with ai+k and
incompatible with all other points ofAv′

i+k
; ai+k is incompatible with all points inAv′i

\{ai}; bi

is compatible with bi+k and incompatible with all other points of Av′
i+k

; bi+k is incompatible
with all points in Av′i

\ {bi}.

• For all 1 ≤ i ≤ k: ci is incompatible with ai, bi, ai+k, bi+k and compatible with all other points
of A′; di is incompatible with all points in (Av′i

\ {bi})∪ (Av′
i+k
\ {ai+k}) and compatible with

all other points in A′; ei is incompatible with all points in (Av′i
\ {ai}) ∪ (Av′

i+k
\ {bi+k}) and

compatible with all other points in A′.

• For all 1 ≤ i < j ≤ k, for all a ∈ Avi , for all b ∈ Aj , cpt′(a, b) = cpt(a, b). For all 1 ≤ i ≤ k,
vi+k is a copy of vk in I ′ on (Avi , Av′

i+k
\ {ai+k, bi+k}).

The points ai, bi, di, ei do not belong to any solution to the sub-instance of I ′ on variables v′i, v
′
i+k, u

′
i,

whereas ci is compatible with all points in the original instance I . Furthermore, apart from these
special points, variables v′i, v

′
i+k are just copies of variable vi. Thus, by construction, I has a solu-

tion if and only I ′ has a solution.
We will now show that the existential pattern ∃T3 cannot occur on any ai, with 1 ≤ i ≤ 2k.

Suppose that there is some i, with 1≤ i ≤ 2k, such that the existential pattern ∃T3 occurs on ai.
Let v be the variable of ai. Since ∃T3 occurs on ai, there is a variable v′ and a point a′ ∈ Av′ such
that ai and a′ are incompatible. By construction, v′ can only be one of the following variables: v′i+k

(or v′i−k if i > k) and u′i (or u′i−k if i > k). Since ∃T3 occurs on ai, there is a point in Av which is
compatible with two different points in Av′ . However, from the second and fourth bullet points
we know that there is no point in Av compatible with two different points in Av′i

(Av′
i−k

if i > k),
and from the third bullet point we also know that there is no point in Av compatible with two
different points in Au′i

(Au′
i−k

if i > k). So ∃T3 cannot occur on ai. So the existential pattern ∃T3
cannot occur on any ai, with 1 ≤ i ≤ 2k.

Similarly, it is easy to verify that the existential pattern ∃T3 does not occur on ci (for all 1 ≤ i ≤
k). Hence ∃T3 does not appear in I ′. It follows that ∃T3 is NP-complete.

Let ∃subT1 = 〈V,A, var,E, cpt, {a0}〉 be the existential pattern shown on the left of Figure 36
and defined by V = {v0, v1, v2}, A = {a0, a1, a2, a3}, var(a0) = v0, var(a1) = var(a2) = v1,
var(a3) = v2, E = {{a0, a1}, {a1, a3}, {a2, a3}}, cpt(a0, a1) = cpt(a1, a3) = T and cpt(a2, a3) = F .

Lemma 33. ∃subT1 is NP-Complete.

61

Proof. Let I be an arc-consistent binary CSP instance on variables v1, . . . , vn, where n > 3. Let I ′

be the CSP instance on variables v′1, . . . , v
′
n with compatibility function cpt′ such that:

• Av′i
= Avi ∪ {ai} ∪ {bij | j = 1, . . . , i− 1, i+ 1, . . . , n} for all 1 ≤ i ≤ n.

• For all 1 ≤ i, j ≤ k with i 6= j, for all p ∈ Av′i
and for all q ∈ Av′j

\ Avj , cpt′(p, q) = T if and
only if p = bij or q = bji.

• For all 1 ≤ i < j ≤ n, for all a ∈ Avi , for all b ∈ Avj , cpt′(a, b) = cpt(a, b).

It is easy to verify that none of the points ai or bij belong to a solution to any 4-variable sub-
instance of I ′. This implies that the solutions to I ′ are exactly the solutions I .

To complete the proof, it remains to show that for each i = 1, . . . , n, ∃subT1 does not occur on
ai in I ′. Let v′i, v

′
j , v′k be any three distinct variables in I ′. The point ai is only compatible with bji

in Av′j
which is only compatible with bkj in Av′

k
. Since bkj is compatible with all points in Av′j

, the
existential pattern ∃subT1 does not occur on ai in I ′.

Let ∃T4 = 〈V,A, var,E, cpt, {a0}〉 be the existential pattern shown on the right of Figure 36 and
defined by V = {v0, v1, v2}, A = {a0, a1, a2, a3, a4}, var(a0) = var(a1) = var(a2) = v0, var(a3) =
v1, var(a4) = v2, E = {{a0, a4}, {a1, a3}, {a1, a4}, {a2, a3}, {a2, a4}}, cpt(a1, a3) = cpt(a1, a4) =
cpt(a2, a4) = T and cpt(a0, a4) = cpt(a2, a3) = F .

Lemma 34. ∃T4 is NP-Complete.

Proof. Let I = 〈V,A, var,E, cpt〉 be an arc-consistent binary CSP instance on variables v1, . . . , vn.
We will construct an equivalent instance I ′ in which we add an assignment ai for each variable
so that ∃T4 does not occur on ai. For each such point ai, we will also add a 3-variable gadget to
prevent ai from being part of a solution. Let I ′ = 〈V ′, A′, var′, E′, cpt′〉 be the CSP instance on
variables v′1, . . . , v

′
n, w′1, . . . , w

′
n, x′1, . . . , x

′
n, y′1, . . . , y

′
n such that:

• Av′i
= Avi ∪ {ai} for all 1 ≤ i ≤ n.

• For all 1 ≤ i ≤ n, |Aw′i
| = |Av′i

| and the constraint between v′i and w′i is a permutation
constraint, i.e. there is a bijection π : Av′i

→ Aw′i
such that ∀p ∈ Av′i

, ∀q ∈ Aw′i
, cpt′(p, q) = T

if and only if q = π(p). For all 1 ≤ i ≤ n, we denote π(ai) by bi.

• For all 1 ≤ i, j ≤ k with i 6= j: Ax′i
= {ci, di} and Ay′i

= {ei, fi}; the point ci is compatible
with all points in A′ except ei; the point ei is compatible with all points in A′ except ci; the
point di is compatible with all points inA′ except bi and fi; the point fi is compatible with all
points in A′ except bi and di. This implies that bi, and hence ai cannot be part of any solution
on the variables v′i, w

′
i, x
′
i, y
′
i.

• For all 1 ≤ i 6= j ≤ n: for all p ∈ Avi , for all q ∈ Avj , cpt′(p, q) = cpt(p, q); for all q ∈ Av′j
,

cpt(ai, q) = T .

• For all 1 ≤ i < j ≤ n, for all p ∈ Awi , for all q ∈ Awj , cpt(p, q) = T .

62

X1

a

X2

a

X3

a

Figure 37: Three tractable existential patterns.

For all 1 ≤ i ≤ n, let gi be any point in Aw′i
\ {bi}. By construction, the existential pattern ∃T4 does

not occur on any of the points ai, gi, ci or ei in I ′. Hence ∃T4 does not appear in the instance I ′.
For all 1 ≤ i ≤ n, the point ai cannot be extended to a solution to the sub-instance on variables

v′i, w
′
i, x
′
i, y
′
i, whereas all other points in Av′i

can. It follows that the solutions to I ′ are exactly the
solutions to I . Hence ∃T4 is NP-complete.

4.1.5 Existential Patterns on Two Constraints

Definition 34 (irreducible existential pattern). We say that an existential pattern P is irreducible if
we cannot apply merging or dp-elimination to P .

Lemma 35. Let P =〈V,A, var,E, cpt〉 be a pattern and P ′ =〈V,A, var,E, cpt, {a}〉 be an existential
version of P . Then P ′ is tractable only if P is tractable.

Proof. The result follows directly from Definition 16 of extension and Corollary 2.

Let X1 = 〈V,A, var,E, cpt, {a}〉 be the following existential pattern (shown on the left of Fig-
ure 37): V = {v0, v1, v2}, A = {a, b, c, d}, var(a) = var(b) = v0, var(c) = v1, var(d) = v2,
E = {{a, c}, {b, c}, {b, d}}, cpt(a, c) = cpt(b, d) = F and cpt(b, c) = T .

Let X2 = 〈V,A, var,E, cpt, {a}〉 be the following existential pattern (shown in the middle of
Figure 37): V = {v0, v1, v2}, A = {a, b, c, d}, var(a) = v0, var(b) = var(c) = v1, var(d) = v2,
E = {{a, b}, {a, c}, {b, d}, {c, d}}, cpt(a, b) = cpt(c, d) = F and cpt(a, c) = cpt(b, d) = T .

Let X3 = 〈V,A, var,E, cpt, {a}〉 be the following existential pattern (shown on the right of Fig-
ure 37): V = {v0, v1, v2, v3}, A = {a, b, c, d}, var(a) = v0, var(b) = v1, var(c) = v2, var(d) = v3,
E = {{a, b}, {c, d}}, cpt(a, b) = cpt(c, d) = F .

We say that an existential pattern is a singleton existential pattern if its set of existential points
is a singleton. We first characterize the tractability of irreducible singleton 2-constraint existential
patterns. This will then directly lead to a dichotomy for general existential patterns.

Theorem 2. Let P=〈V,A, var,E, cpt, {aP }〉 be an irreducible singleton existential pattern on two con-
straints. Then P is tractable if and only if P is a sub-pattern of one of the existential patterns X1, X2,
X3.

Proof. ⇒: Let P =〈V,A, var,E, cpt, {aP }〉 be a tractable irreducible existential pattern on two
constraints. A two-constraint existential pattern involves either three or four variables. From
Lemma 35 and Theorem 1, all potentially-tractable irreducible singleton existential patterns on

63

four variables are sub-patterns of X3. Therefore we only need to consider two-constraint existen-
tial patterns on three variables.

By Lemma 35 and Theorem 1, we only need to consider patterns P such that the corresponding
non-existential pattern P ′ = 〈V,A, var,E, cpt〉 is a sub-pattern of one of T1, T2, T3, T4, T5.

If P ′ is a sub-pattern of T1, then the irreducible singleton 3-variable existential pattern P must
contain one of V−Side, V−Middle, V+− or ∃subT1, and hence by Lemma 29, Lemma 31 and
Lemma 33 P is intractable.

If P ′ is a sub-pattern of T2, then the irreducible singleton 3-variable existential pattern P must
contain one of V−Side, V−Middle, V+−, V+Side, V+Middle, ExpandedV+ or ∃subT1. Hence, by
Lemma 29, Lemma 30, Lemma 31 and Lemma 33, P is intractable.

If P ′ is a sub-pattern of T3, then the irreducible singleton 3-variable existential pattern P either
contains one of V+Side, V+Middle, ExpandedV+, V+−, or ∃T3 or is a subpattern of X1 or X2.
Hence, by Lemma 30, Lemma 31 and Lemma 32, P is either intractable or is a subpattern of X1 or
X2.

If P ′ is a sub-pattern of T4, then the irreducible singleton 3-variable existential pattern P either
contains one of V+Side, V+Middle, ExpandedV+, V+−, ∃subT1 or ∃T4 or is a subpattern of X1
or X2. Hence, by Lemma 30, Lemma 31, Lemma 33 and Lemma 34, P is either intractable or is a
subpattern of X1 or X2.

If P ′ is a sub-pattern of T5, then the irreducible singleton 3-variable existential pattern P either
contains V+− or is a subpattern of X1 or X2. Hence, by Lemma 31, P is either intractable or is a
subpattern of X1 or X2.

⇐: We now give the tractability proofs for the patterns X1, X2, X3.

Proof of tractability of X1 : Let I =〈V,A, var,E, cpt〉 be an arc-consistent CSP instance such that
X1 does not appear in I . So ∀vi ∈ V , ∃ai ∈ Avi such that X1 does not occur on ai. Suppose that we
have a partial solution Sk = {s1 ∈ Av1 , . . . , sk ∈ Avk

}, with 0 ≤ k < |V |. If ak+1 is compatible with
all si for 1 ≤ i ≤ k, then Sk ∪ak+1 is a partial solution for variables (v1, . . . , vk+1). Suppose that for
some 1 ≤ i ≤ k, we have that si and ak+1 are incompatible. By arc-consistency, we know there is
b ∈ Avk+1 such that si and b are compatible. Since X1 does not occur on ak+1, b is compatible with
all points in A\(Avi ∪ Avk+1), in particular all sj for j 6= i. So b is compatible with all points in Sk.
So Sk ∪ b is a partial solution for variables (v1, . . . , vk+1). So if we have a partial solution for I on
k variables, then we also have a partial solution for I on k + 1 variables. Hence, assuming A 6= ∅,
there is always a solution for I . So X1 is tractable.

Proof of tractability of X2 : Let I =〈V,A, var,E, cpt〉 be an arc-consistent CSP instance such that
X2 does not appear in I . So ∀vi ∈ V , ∃ai ∈ Avi such that X2 does not occur on ai. Suppose
that we have a partial solution Sk = {s1 ∈ Av1 , . . . , sk ∈ Avk

}, with 0 ≤ k < |V |. Let Y be the
set i ≤ k such that si and ak+1 are compatible and let Y be the set of i ≤ k such that si and
ak+1 are compatible. By arc consistency, ∀i ∈ Y , ∃ti such that ti and ak+1 are compatible. Let

64

S′ = {s′1 ∈ Av1 , . . . , s
′
k+1 ∈ Avk+1}with

s′i =

ai if i = k + 1
si if i ∈ Y
ti if i ∈ Y

Let i ∈ Y and j ∈ Y . Since S is a partial solution, si and sj are compatible. We know that ak+1
is compatible with tj and incompatible with sj . Since X2 does not occur on ak1, si and tj are
compatible.
Let i, j ∈ Y . From the argument in the previous paragraph, we know that si and tj are compatible.
We also know that ak+1 is compatible with ti and incompatible with sj . Since X2 does not occur
on ak+1, ti and tj are compatible.
So all the points in S′ are compatible with each other. So S′ is a partial solution for variables
(v1, . . . , vk+1). So if we have a partial solution for I on k variables, then we also have a partial
solution for I on k+ 1 variables. Hence, assuming A 6= ∅, there is always a solution for I . So X2 is
tractable.

Proof of tractability of X3 : Let I =〈V,A, var,E, cpt〉 be an arc-consistent CSP instance such that
X3 does not appear in I . So ∀vi ∈ V , ∃ai ∈ Avi such that X3 does not occur on ai. If all ai are
compatible with all points in I , then the set of all ai is a solution for I . Otherwise, let i and j be
such that ∃b ∈ Avj such that ai and b are incompatible. Since X3 does not occur on ai, there is no
incompatibility edge between two points of A \ (Avi ∪Avj). Thus we can perform the fusion of vi

and vj into a new variable vij such that points in Avij correspond to compatibility edges between
vi and vj . Since there is no incompatibility edge between two points outside of Avij , applying arc
consistency on vij will determine whether there is a solution for I .

4.1.6 The Dichotomy

We can now combine Theorems 1 and 2 to obtain a complete dichotomy for irreducible 2-constraint
flat and existential patterns.

Theorem 3. Let P=〈V,A, var,E, cpt, e〉 be an irreducible flat or existential pattern on two constraints.
Then CSPAC(P) is solvable in polynomial-time if P is a sub-pattern of one of the patterns T1, T2, T3, T4,
X1, X2, X3; if not CSPAC(P) is NP-complete.

Proof. We first make the observation that for flat patterns, CSPAC(P) is solvable in polynomial
time if and only if CSP(P) is solvable in polynomial time, since flat patterns cannot be introduced
by establishing arc consistency. Thus the flat case corresponds exactly to the dichotomy for flat
patterns given in Theorem 1. Note that the patterns T5 and 2I are reducible to sub-patterns, re-
spectively, of X2 and X3 which is why we do not explicitly mention them in the statement of the
theorem.

The case |e| = 1 corresponds exactly to Theorem 2. For the case |e| > 1, by Lemma 35, we only
need to consider existential versions of sub-patterns of T1, T2, T3, T4, T5, 2I . But all existential

65

patterns P with |e| > 1 which are sub-patterns of one of T1, T2, T3, T4, T5, 2I must contain either
V+− or V−Side and hence are NP-complete by Lemma 29 and Lemma 31.

We have investigated the computational complexity of classes of binary CSP instances defined
by forbidding 2-constraint patterns. We have given a dichotomy for irreducible 2-constraint pat-
terns which has brought to light several novel tractable classes.

4.2 Forbidding Max-CSPs Subproblems

In this section we study Max-CSP patterns.

4.2.1 Definitions and Basic Properties

Definition 35 (max-CSP pattern). A Max-CSP pattern is a pattern P = 〈V,A, var,E, cost〉 where
cost is a cost function from E to {0, 1}, and such that ∀v ∈ V , ∀a, b ∈ Av, a and b are considered distinct.

Binary Max-CSP instances are defined similarly.

Definition 36 (max-CSP instance). A Max-CSP instance is a Max-CSP pattern I = 〈V,A, var,E, cost〉
where E = {{a, b} | a ∈ A, b ∈ A, var(a) 6= var(b)} and cost is a cost function from E to {0, 1}.

A solution S for a Max-CSP instance I is a set of k assignments, where k is the number of
variables in V , such that no two assignments from S belong to the same variable. The cost C(S)
of a solution S is the sum of all cost(a, b) for all a, b ∈ S. An optimal solution S0 for a Max-
CSP instance I is a solution of minimal cost. Solving a Max-CSP instance I is finding an optimal
solution for I .

In this section, we only consider complete patterns, or subproblems. A subproblem P is simply
a binary Max-CSP instance.

Definition 37 (occurence in a Max-CSP subproblem). We say that a Max-CSP subproblem P occurs
in a Max-CSP subproblem P ′ (or that P ′ contains P) if P ′ is isomorphic to a pattern Q, such that Q is the
extension of P , with extension being the following operation:

extension A subproblem P is a sub-instance of a subproblem Q (and Q an extension of P): if P =
〈VP , AP , varP , EP , costP 〉 and Q = 〈VQ, AQ, varQ, EQ, costQ〉, then VP ⊆ VQ, AP ⊆ AQ,
varP = varQ|AP

, EP ⊆ EQ, costP = costQ|EP
.

To illustrate this notion, consider the instance I and the three subproblems P, P ′, P ′′ shown in
Fig. 38. In this example, subproblem P occurs in I with the corresponding isomorphism p 7→ a,
q 7→ b, r 7→ c. Similarly, P ′ occurs in I with the corresponding isomorphism t 7→ c, u 7→ d, v 7→ a.
On the other hand, P ′′ does not occur in I .

Since we are only considering subproblems, the definition of occurence in a Max-CSP sub-
problem does not include merging. Also, since the notion of arc consistency is not applicable to
Max-CSP problems, the operation of dp-elimination will not be used in this section.

In this section we denote by F(P) the set of Max-CSP instances in which the subproblem P

is forbidden, i.e. does not occur. Thus if I , P ′ and P ′′ are as shown in Fig. 38, I ∈ F(P ′′) but

66

•
•

•

S
S
S
S
S
S

•

@
@
@
@@

•

@
@
@
@@�

�
�
�
�
�

I

�
�

�
��

�
�
�

�
�

�
�b

c

a

d

•

•

•

P

�
�

�
��
�

�
�

�
�

�
�p q

r

•
•���

���

•

P ′

�
�

�
�

�
�

�
�t

u

v

•

•

•

%
%
%
%%

P ′′

�
�

�
��
�

�
�

�
�

�
�

Figure 38: The instance I contains P and P ′ as subproblems but not P ′′.

•• P0
������ •• P1

������
�
�	

PPPPPPq

������)
@
@R

•
•��
�

• Q0

�
�

�

�
�

�
 •

•��
�

• Q1

�
�

�

�
�

�
 •

•• Q2

�
�

�

�
�

�

�
���

��� ?

XXXXXXXXXXXXz

�
�
�	

@
@
@R

���������)

PPPPPPPPPq

�
���

��� ?

H
HHH

HHj

• •
•��
�

•
PPP

V

�
�

�

�
�

�
 • •

•��
�

•
PPP

R

�
�

�

�
�

�
 • •

•��
�

•
PPP

U

�
�

�

�
�

�
 • •

•��
�

•
T

�
�

�

�
�

�
 • •

•��
�

•
S

�
�

�

�
�

�
 • •

••
W

�
�

�

�
�

�

Figure 39: Subproblems on two variables (showing inclusions between subproblems).

I /∈ F(P ′). If Σ = {P1, . . . , Ps} is a set of subproblems, then we use F(Σ) or F(P1, . . . , Ps) to
denote the set of Max-CSP instances in which no subproblem Pi ∈ Σ occurs. The following lemma
follows from the above definitions, by transitivity of the occurrence relation.

Lemma 36. If ∀P ∈ Σ1, ∃Q ∈ Σ2 such that Q occurs in P , then F(Σ2) ⊆ F(Σ1).

We say that F(Σ) is tractable if there is a polynomial-time algorithm to solve it. We say that
F(Σ) is intractable if it is NP-hard. Suppose that F(Σ1) ⊆ F(Σ2). Clearly, F(Σ1) is tractable if
F(Σ2) is tractable and F(Σ2) is intractable if F(Σ1) is intractable.

4.2.2 Dichotomy for Forbidding a Single Subproblem

We assume that P 6= NP . Our aim is to characterize the tractability of F(P) for all subproblems
P . We first show that we only need to consider subproblems with domains of size at most 2.

Lemma 37. Let P be a subproblem with three or more values in the domain of some variable and let F(P)
be the set of Max-CSP instances in which the subproblem P is forbidden. Then F(P) is intractable.

Proof. Max-Cut is intractable and can be reduced to Max-CSP on Boolean domains (Creignou et al.,
2001). ThusF(P) is intractable since it includes all instances of Max-CSP on Boolean domains.

We now consider the subproblems on just two variables shown in Figure 39. Modulo indepen-
dent permutations of the variables and of the two domains, these are the only possible subprob-
lems with domains of size at most 2.

67

Lemma 38. If Q1 is the subproblem shown in Fig. 39, then F(Q1) is tractable.

Proof. Let I be an instance in F(Q1). It is easy to see that all binary cost functions between any
pair of variables in I must be constant. Hence I is equivalent to a trivial Max-CSP instance with
no binary cost functions.

Lemma 39. If Q0 and U are as shown in Fig. 39, then F({Q0, U}) is intractable.

Proof. Max-Cut can be coded as Max-CSP over Boolean domains in which all constraints are of the
form Xi 6= Xj . We can replace each constraint Xi 6= Xj by an equivalent gadget G with two extra
variables Yij , Zij , whereG is given by ¬Xi∧Yij , ¬Yij ∧¬Xj , Xi∧¬Zij , Zij ∧Xj . It is easily verified
that placing the gadget G on variables Xi, Xj is equivalent to imposing the constraint Xi 6= Xj ;
when Xi = Xj at most one of these constraints can be satisfied and when Xi 6= Xj at most two
constraints can be satisfied.

For each pair of variables X , X ′ in the resulting instance of Max-CSP such that there is no
constraint between X and X ′, we place a binary constraint on X,X ′ of constant cost 1. In the
resulting Max-CSP instance, there are no two zero costs in the same binary cost function. Thus,
this polynomial reduction from Max-Cut produces an instance in F({Q0, U}). Intractability of
F({Q0, U}) then follows from the NP-hardness of Max-Cut.

Lemma 40. If Q2 and U are as shown in Fig. 39, then F({Q2, U}) is intractable.

Proof. As in the proof of Lemma 39, the proof is again by a polynomial reduction from Max-Cut.
This time each constraint Xi 6= Xj is replaced by the gadget G′ where G′ is ¬Xi ∨ Yij , ¬Yij ∨ ¬Xj ,
Xi ∨ ¬Zij , Zij ∨ Xj . When Xi = Xj at most three of these constraints can be satisfied and when
Xi 6= Xj all four constraints can be satisfied.

For each pair of variables X,X ′ in the resulting instance of Max-CSP such that there is no con-
straint between X and X ′, we place a binary constraint on X,X ′ of constant cost 0. The resulting
instance is in F({Q2, U}).

This provides us with a dichotomy for subproblems on just two variables.

Theorem 4. If P is a 2-variable binary Max-CSP subproblem, then F(P) is tractable if and only if P
occurs in Q1 (shown in Fig. 39).

Proof. By Lemma 37, we only need to consider subproblems in which each domain is of size at
most two.

Since each of P0 and P1 occur in Q1, it follows from Lemma 38 and Lemma 36 that F(P0)
and F(P1) are also tractable. Since Q0 occurs in R, T , V and Q2 occurs in S, W , it follows from
Lemmas 39, 40 and Lemma 36 that F(Q0), F(Q2), F(R), F(S), F(T), F(U), F(V), F(W) are all
intractable. This covers all the possible subproblems with domains of size at most 2 as shown in
Fig. 39.

We recall the following result which follows directly from Theorem 5 of (Cooper & Živný,
2011c).

68

•

Q
QQ

•

�
��
•

A

���

������
•

•

�
��
•

B

���

������
•

•
•

C

���

������
•

•
•

D

���

������
•

•
•

�
�
�
•Q

QQ

E

���

����
�

�
 • •

• •

F

������
������

Figure 40: Subproblems on three or four variables.

Lemma 41. A class of binary Max-CSP instances defined by forbidding a single subproblem comprised of
a triangle of three assignments to three distinct variables is tractable if and only if the three binary costs are
0,1,1.

Binary Max-CSP instances in which the triple of binary costs 0,1,1 does not occur in any triangle
satisfy the so-called joint-winner property (Cooper & Živný, 2011b). This class has been general-
ized to the hierarchically-nested convex class which is a tractable class of Valued CSP instances
involving cost functions of arbitrary arity (Cooper & Živný, 2011a). The following corollary is just
a translation of Lemma 41 into the notation of forbidden subproblems.

Corollary 5. Let A,B,C,D be the subproblems shown in Fig. 40. Then F(C) is tractable, but F(A),
F(B), and F(D) are intractable.

Lemma 42. Given the subproblem E shown in Fig. 40 and the set F(E) of Max-CSP instances in which
the subproblem E is forbidden, then F(E) is intractable.

Proof. The constraint graph of a Max-CSP instance is the graph 〈V,E〉 where V is the set of vari-
ables and {Xi, Xj} ∈ E if there is a pair of assignments p, q with var(p) = Xi, var(q) = Xj and
such that cost(p, q) = 1. Clearly the constraint graph of any instance in which E occurs contains a
triangle. Max-Cut is NP-hard even on triangle-free graphs (Lewis & Yannakakis, 1980). Any such
instance of Max-Cut coded as an instance I of binary Max-CSP does not containE as a subproblem
since the constraint graph of I is triangle-free. Hence F(E) is intractable.

Lemma 43. The only 3-variable subproblem P for which the set F(P) is tractable is the subproblem C

shown in Fig. 40.

Proof. Let P be a 3-variable subproblem. For F(P) to be tractable, P must not have as a sub-
problem any of Q0, Q2, A, B, D, E which have all been shown to define intractable classes (Lem-
mas 39, 40, 42 and Corollary 5). The only 3-variable subproblem which does not contain any of
Q0, Q2, A, B, D, E is C. The result then follows from Lemma 36.

It turns out that the tractable classes we have already identified, defined by forbidden sub-
problems on two or three variables, are the only possible tractable classes defined by forbidding a
single subproblem. To complete our dichotomy, we require one final lemma.

Lemma 44. If F is the subproblem shown in Fig. 40, then F(F) is intractable.

Proof. It is known that Max-Cut on C4-free graphs is NP-hard (Kamiński, 2010). To see this, let
G be a graph and G′ a version of G in which each edge is replaced by a path composed of three

69

edges. Clearly, G′ is C4-free and the maximum cut of G′ is of the same size as the maximum cut of
G.

When a Max-Cut instance on aC4-free graph is coded as a Max-CSP instance I , the subproblem
F cannot occur since there can be no length-4 cycles of non-trivial constraints in I . Hence F(F) is
intractable.

By looking at all possible combinations of edges in a subproblem, it is possible to show that F
is the only subproblem on four variables in which neither A, B, D nor E shown in Fig. 40 occur.
Since F(A), F(B), F(D) and F(E) are intractable, then from Lemma 44 the classes of Binary
Max-CSP instances defined by forbidding a single subproblem on four or more variables are all
intractable and we can now state our dichotomy.

Theorem 5. If P is a binary Max-CSP subproblem, then F(P) is tractable if and only if P occurs either
in Q1 (shown in Fig. 39) or in C (shown in Fig. 40).

It follows that F(P) is tractable only for P = P0, P1, Q1 (shown in Fig. 39) or C (shown in
Fig. 40). It follows that the only non-trivial tractable class defined by a forbidden subproblem
corresponds to the set of instances satisfying the so-called joint-winner property. The joint-winner
property encompasses, among other things, codings of non-intersecting graph-based or variable-
based SoftAllDiff constraints together with arbitrary unary constraints (Cooper & Živný, 2011b).
It is worth pointing out that Theorem 5 is independent of the presence of unary cost functions,
in the sense that tractable classes remain tractable when arbitrary unary costs are allowed and
NP-hardness results are valid even if no unary costs are allowed.

4.2.3 Requirements for the Tractability of a Set of Subproblems

In this section we give a necessary condition for a forbidden set of subproblems to define a
tractable class of binary Max-CSP instances.

Definition 38 (Boolean problem). A subproblem (or an instance) P is Boolean if the size of the domain
of each variable in P is at most two.

Definition 39 (negative edge pair). A negative edge pair is a set of variable-value assignments p, q, r, s
such that var(p) = var(r) 6= var(q) = var(s), cost(p, q) = cost(r, s) = 1 and p 6= r. A positive
edge pair is a set of variable-value assignments p, q, r, s such that var(p) = var(r) 6= var(q) = var(s),
cost(p, q) = cost(r, s) = 0 and p 6= r.

Definition 40 (negative cycle). A negative cycle is a set of variable-value assignments p1, p
′
1, . . . , pm, p

′
m,

with m > 2, such that the variables var(pi) (i = 1, . . . ,m) are all distinct and var(pi) = var(p′i)
(i = 1, . . . ,m), cost(pi, p

′
i+1) = 1 (i = 1, . . . ,m − 1) and cost(pm, p

′
1) = 1. A positive cycle is a set of

assignments p1, p
′
1, . . . , pm, p

′
m, with m > 2, such that the variables var(pi) (i = 1, . . . ,m) are all distinct

and var(pi) = var(p′i) (i = 1, . . . ,m), cost(pi, p
′
i+1) = 0 (i = 1, . . . ,m− 1) and cost(pm, p

′
1) = 0.

Definition 41 (negative pivot point). A negative pivot point is a variable-value assignment p such
that there are two assignments q, r with var(p), var(q), var(r) all distinct and cost(p, q) = cost(p, r) = 1.

70

A positive pivot point is an assignment p such that there are two assignments q, r with var(p), var(q),
var(r) all distinct and cost(p, q) = cost(p, r) = 0.

Proposition 1. If Σ is a finite set of subproblems, then F(Σ) is tractable only if

1. There is a Boolean subproblem P ∈ Σ such that P contains no negative edge pair, no negative cycle
and at most one negative pivot point, and

2. There is a Boolean subproblem Q ∈ Σ such that Q contains no positive edge pair, no positive cycle
and at most one positive pivot point, and

3. There is a Boolean subproblem B ∈ Σ such that B contains neither Q0 nor Q2 (as shown in Fig. 39).

Proof. Suppose that condition (1) is not satisfied. We will show that F(Σ) is NP-hard. Let t be an
odd integer strictly greater than the number of variables in any subproblem in Σ. As in Lemma 40
the proof is by a polynomial reduction from Max-Cut. This time each constraint Xi 6= Xj is
replaced by the gadget Gt where Gt is ¬Xi ∨ Y1, ¬Yk ∨ Yk+1 (k = 1, . . . , t − 1), ¬Yt ∨ ¬Xj , and
Xi ∨ ¬Z1, Zk ∨ ¬Zk+1 (k = 1, . . . , t − 1), Zt ∨ Xj . The gadget Gt is equivalent to Xi 6= Xj since
when Xi = Xj one of its constraints must be violated, but when Xi 6= Xj all of its constraints can
be satisfied. For each pair of variables X,X ′ in the resulting instance of Max-CSP such that there
is no constraint between X and X ′, we place a binary constraint on X,X ′ of constant cost 0.

The resulting instance I has no domain of size greater than two, and contains no negative edge
pair, no negative cycle of length at most t and no two negative pivot points at a distance at most t.
Let P ∈ Σ. Since (1) is not satisfied, and by definition of t, either P has a domain of size more than
two, or contains a negative edge pair, a negative cycle of length at most t or two negative pivot
points at a distance at most t. It follows that P cannot occur in I . Thus, we have demonstrated a
polynomial reduction from Max-Cut to F(Σ).

The proof for condition (2) is similar. This time each constraint Xi 6= Xj is replaced by the
gadget G′t given by ¬Xi ∧ Y1, ¬Yk ∧ Yk+1 (k = 1, . . . , t− 1), ¬Yt ∧ ¬Xj , and Xi ∧ ¬Z1, Zk ∧ ¬Zk+1
(k = 1, . . . , t), Zt ∧ Xj . The gadget G′t is equivalent to the constraint Xi 6= Xj ; when Xi = Xj at
most t of its constraints can be satisfied and when Xi 6= Xj at most t + 1 of its constraints can be
satisfied. For each pair of variables X , X ′ in the resulting instance of Max-CSP such that there is
no constraint between X and X ′, we place a binary constraint on X,X ′ of constant cost 1.

The resulting instance I has no domain of size greater than two, and contains no positive edge
pair, no positive cycle of length at most t and no two positive pivot points at a distance at most
t. Let P ∈ Σ. If condition (2) is not satisfied, no P ∈ Σ can occur in I . Thus, this polynomial
reduction is from Max-Cut to F(Σ).

If condition (3) is not satisfied, then, by Lemma 36, F(Σ) contains all Boolean instances in
F(Q0, Q2). But F(Q0, Q2) is equivalent to the set of Boolean instances of Max-CSP in which for
each pair of variables Xi, Xj there is a constraint between Xi and Xj with this constraint being
either Xi = Xj or Xi 6= Xj . This set of Max-CSP instances is equivalent to the 2-Cluster Edit-
ing problem whose decision version is known to be NP-complete (Shamir, Sharan, & Tsur, 2004).
Hence F(Σ) is NP-hard if condition (3) is not satisfied.

71

We have given a dichotomy concerning the tractability of classes of binary Max-CSP instances
defined by forbidding a single subproblem. We have also given a necessary condition for the
tractability of classes defined by forbidding sets of subproblems.

Classes defined by forbidding (sets of) subproblems are closed under permutations of the set
of variables and independent permutations of each variable domain.

4.3 Forbidden Patterns on Three Variables

This section leaves behind Max-CSP patterns to give miscellaneous complexity results for flat CSP
patterns on three variables.

4.3.1 Necessary Conditions for Tractability

We first give a lemma which will be used in the proof of the main result in this section.

Lemma 45. Let P be a pattern on three variables with at least one incompatibility edge in each constraint.
Then P is NP-Complete.

Proof. Let P be a pattern on three variables, such that there is at least one incompatibility edge in
each constraint of P . We are going to give a polynomial reduction from the general binary CSP to
CSP(P). Let I =〈VI , AI , varI , EI , cptI〉 be a binary CSP instance. Let v and w two variables in VI

such that there is a non-trivial constraint between v and w. We then add two additional variables
v′ and w′ to VI such that:

• Av′ is a copy of Av and Aw′ is a copy of Aw.

• The constraint between v′ and w′ is a copy of the constraint between v and w.

• The constraint between v and v′ and the constraint betweenw andw′ are equality constraints.

• The constraint between v and w is replaced by a trivial constraint.

• All other constraints between v′ or w′ on one hand and any variable of VI on the other hand
are trivial constraints.

Let I ′ be the resulting instance. Suppose that there is a solution S for I . Let a be the point of S in
Av and let b be the point of S in Aw. Let a′ be the copy of a in Av′ , and let b′ be the copy of b in
Aw′ . Let S′ = S ∪{a′, b′}. a and a′ satisfy the equality constraint between v and v′. Similarly, b and
b′ satisfy the equality constraint between w and w′. Since a and b satisfy the constraint between v
and w in I , a′ and b′ satisfy by construction the constraint between v′ and w′ in I ′. Therefore, S′ is
a solution for I ′. So if there is a solution S for I , then there is a solution S′ for I ′.

Suppose now that there is a solution S′ for I ′. Let a, a′, b′ and b be the points of S′ in Av, Av′ ,
Aw′ and Aw respectively. Let S = S′\{a′, b′}. Since S′ is a solution for I ′, and since the constraints
between v and v′ and between w and w′ are equality constraints, a′ is the copy of a in Av′ and b′ is
the copy of b in Aw′ . So, since a′ and b′ satisfy the constraint between v′ and w′ in I ′, a and b satisfy

72

U1 U2

U3 U4 U5

Figure 41: The Set U .

the constraint between v and w in I . So S is a solution for I . So if there is a solution S′ for I ′, then
there is a solution S for I .

So I ′ has the same satisfiability as I . Let J =〈VJ , AJ , varJ , EJ , cptJ〉 be the instance obtained
from I after replacing non recursively all non-trivial constraints in I in the way we just described.
We know that J has the same satisfiability as I . It remains yet to show that J belongs to CSP(P).
Let V ′ = VJ\VI . Suppose that the pattern P occurs in J . So there are three variables v1, v2 and
v3 in VJ such that there is an incompability in the constraint between v1 and v2, in the constraint
between v2 and v3, and in the constraint between v3 and v1.

Suppose that one of these three variables, say for instance v1, is in V ′. By construction, ∀v′ ∈ V ′,
there is exactly one variable v in VI such that there is a non-trivial in J constraint between v′ and
v, there is exactly one variable w′ in V ′ such that there is a non-trivial constraint in J between v′

and w′, and there is a no non-trivial constraint between v and w′. So none of three variables v1,
v2 and v3 can be in V ′. So all three variables v1, v2 and v3 are in VI . But by construction, there
are no non-trivial constraint in J between any two variables of VI . So P cannot occurs in J . So
J ∈ CSP(P).

We have reduced the general binary CSP, which is NP-Complete, to CSP(P). Therefore, P is
NP-Complete.

Let U = {U1, U2, U3, U4, U5}, with U1, U2, U3, U4 and U5 as pictured in Figure 41.

73

a

b

c

d

e

Figure 42: Incompatibility skeleton of type 1.

Proposition 2. Let P be a non-mergeable tractable pattern on three variables. Then P can be reduced to a
sub-pattern of a pattern belonging to U .

Proof. From Lemma 45, we know that a pattern on three variables with at least one incompatibility
edge in each constraint is NP-Complete. From Lemma 6, we know that a pattern with two or more
distinct incompatibility edges between the same couple of domains is also NP-Complete. There-
fore, if a pattern P on three variables is tractable, then the subpattern formed by its incompatibility
edges can take four possible forms:

1. No incompatibility edge at all.

2. One incompatibility edge.

3. Two incompatibility edges sharing a point.

4. Two incompatibility edges not sharing a point.

So for each of the four cases, the only unknown part in a tractable pattern P are the compati-
bility edges.
In the first case, from Lemma 7, we know that the pattern P is a sub-pattern of the pattern con-
sisting of three compatibility edges forming a triangle. This pattern is itself a sub-pattern of any
of the patterns in U .

So there only remains three possible incompatibility skeletons to study, each one implying
from Lemma 7 a maximum number of points appearing in the pattern P . We know from Lemmas 8
and 11 that the patterns Z (from Figure 12) and 2V (from Figure 22) are both intractable, so by
Corollary 1 we must look for patterns in which neither one occurs.

We now consider the incompatibility skeleton of type 1, shown in Figure 42.
Suppose that there is no compatibility edge between b and c. Then we can merge c and d. If

there is no compatibility edge between a and d, then we can merge a and b, and whatever we
decide for the compatibility of the two remaining edges, the resulting pattern will be a subpattern
of any of the patterns in U . If there is a compatibility edge between a and d, then there also must
be a compatibility edge between a and e, otherwise we could remove a by dp-elimination, and
whatever we decide for the compatibility of the two remaining edges, the resulting pattern will be
a subpattern of U1.

74

a

b c
d

e
g

Figure 43: Incompatibility skeleton of type 2.

Similarly, suppose that there is no compatibility edge between a and d. Then we can merge a
and b. If there is no compatibility edge between b and c, then we can merge c and d, and whatever
we decide for the compatibility of the two remaining edges, the resulting pattern will be a subpat-
tern of any of the patterns in U . If there is a compatibility edge between b and c, then there also
must be a compatibility edge between c and e, otherwise we could remove c by dp-elimination,
and whatever we decide for the compatibility of the two remaining edges, the resulting pattern
will be a subpattern of U1.

Suppose now that there are both a compatibility edge between b and c and a compatibility
edge between a and d. There cannot be a compatibility edge between a and c, because otherwise Z
would occur. So there must be a compatibility edge between a and e, otherwise we could remove
by dp-elimination. Similarly, there must be a compatibility edge between c and e, oterwise we
could remove c by elimination. Whatever we decide for the compatibility of the two remaining
edges, the resulting pattern will be a subpattern of U1.

We now consider the incompatibility skeleton of type 2, shown in Figure 43.
Suppose that there is a compatibility edge between a and g. Then there must be a compatibility

edge between a and e, otherwise we could merge a and b. There cannot be a compatibility edge
between b and g, otherwise the pattern Z would occur. So there must be a compatibility edge
between g and c, otherwise we could merge g and e. Then there cannot be a compatibility edge
between d and g, because otherwise 2V would occur. Whatever we decide for the compatibility of
the remaining edges, the resulting pattern will be a subpattern of U1.

Symmetrically, suppose that there is a compatibility edge between d and g. Then there must
be a compatibility edge between d and e, otherwise we could merge d and c. There cannot be
a compatibility edge between c and g, otherwise the pattern Z would occur. So there must be a
compatibility edge between g and b, otherwise we could merge g and e. Then there cannot be a
compatibility edge between a and g, because otherwise 2V would occur. Whatever we decide for
the compatibility of the remaining edges, the resulting pattern will be a subpattern of U1.

Suppose there is no compatibility edge between a and g, nor between d and g. Then whatever
we decide for the compatibility of the remaining edges, the resulting pattern will be a subpattern
of U2.

We finally consider the incompatibility skeleton of type 3, shown in Figure 44.
Suppose that g is a point in the pattern. Then there must be a compatibility edge between g

and b, otherwise we could merge g and e. There must also be a compatibility edge between g and

75

a

b c
d

e f

g

Figure 44: Incompatibility skeleton of type 3.

c, otherwise we could merge g and f . There must be a compatibility edge either between e and c

or between b and f , otherwise we could merge e and f . Without loss of generality, we assume that
there is a compatibility edge between e and c.

Suppose that a is not in the pattern but d is. Then there must be a compatibility edge between
d and f , otherwise we could merge d and c. Then there cannot be a compatibility edge between d
and e, nor between d and g, because either way the pattern Z would occur. Whatever we decide
for the compatibility of the remaining edges, the resulting pattern will be a subpattern of U3.

Suppose that a is in the pattern but not d. Then there must be a compatibility edge between a
and e, otherwise we could merge a and b. Then there cannot be a compatibility edge between a

and g, nor between a and f , because either way the pattern 2V would occur. Whatever we decide
for the compatibility of the remaining edges, the resulting pattern will be a subpattern of U3.

Suppose that both a and d are in the pattern. There must be a compatibility edge between d

and f , otherwise we could merge d and c. There also must be a compatibility edge between a and
e, otherwise we could merge a and b. Then there cannot be a compatibility edge between a and
g, a and f , d and e nor d and g, because otherwise either the pattern Z or the pattern 2V would
occur. Whatever we decide for the compatibility of the remaining edges, the resulting pattern will
be a subpattern of U3.

Suppose that neither a nor d is in the pattern. Then whatever we decide for the compatibility
of the remaining edges, the resulting pattern will be a subpattern of U3.

Suppose now that g is not in the pattern. There must be a compatibility edge either between
e and c or between b and f , otherwise we could merge e and f . Without loss of generality, we
assume that there is a compatibility edge between e and c.

Suppose that neither a nor d is in the pattern. Then whatever we decide for the compatibility
of the remaining edges, the resulting pattern will be a subpattern of U4.

Suppose that a is not in the pattern but d is. Then there must be a compatibility edge between
d and f , otherwise we coul merge d and c. Then there cannot be a compatibility edge between
d and e, otherwise the pattern Z would occur. Whatever we decide for the compatibility of the
remaining edges, the resulting pattern will be a subpattern of U5.

Suppose that a is in the pattern but not d. Then there must be a compatibility edge between
a and e, otherwise we could merge a and b. Suppose then that there is a compatibility edge
between a and f . Then there cannot be a compatibility edge between b and f , otherwise the
pattern Z would occur. Whatever we decide for the compatibility of the remaining edges, the

76

resulting pattern will be a subpattern of U4. If there is no compatibility edge between a and f ,
then whatever we decide for the compatibility of the remaining edges, the resulting pattern will
be a subpattern of U5.

Suppose that both a and d are in the pattern. There must be a compatibility edge between d and
f , otherwise we could merge d and c. Then there cannot be a compatibility edge between d and
e, otherwise the pattern Z would occur. There also must be a compatibility edge between a and
e, otherwise we could merge a and b. Suppose then that there is a compatibility edge between a
and f . Then there cannot be a compatibility edge between b and f , otherwise the pattern Z would
occur. Whatever we decide for the compatibility of the remaining edges, the resulting pattern will
be a subpattern of U4. If there is no compatibility edge between a and f , then whatever we decide
for the compatibility of the remaining edges, the resulting pattern will be a subpattern of U5, and
we have the Lemma.

This result shows that the only tractable non-mergeable patterns are the ones which are re-
ducible to a subpattern of a pattern in U . By Lemma 2, we only need to study the subpatterns of
the patterns in U . There are 5 patterns in U , four of which having 10 edges, the other one having
11 edges. So the number of patterns to study is bounded by 4× 210 + 211 = 6144. However, most
of the possible cases can be discarded by reduction or symmetry arguments. The total number of
distinct open patterns on three variables is actually about 100. We give an exhaustive list in the
next subsection.

4.3.2 List of All Possible Tractable Patterns on Three Variables

All cases where one of the three constraints does not contain any edge are covered by Theorem 1.
We now give the exhaustive list of all 100 non-mergeable patterns on three variables, and with
at least one edge in each of the three constraints, which are tractable or whose complexity is still
open.

U1 U2 U3

77

U4 U5 U6

U7 U8 U9

U10 U11 U12

U13 U14 U15

U16 U17 U18

78

U19 U20 U21

U22 U23 U24

U25 U26 U27

U28 U29 U30

U31 U32 U33

79

U34 U35 U36

U37 U38 U39

U40 U41 U42

U43 U44 U45

U46 U47 U48

80

U49 U50 U51

U52 U53 U54

U55 U56 U57

U58 U59 U60

U61 U62 U63

81

U64 U65 U66

U67 U68 U69

U70 U71 U72

U73 U74 U75

U76 U77 U78

82

U79 U80 U81

U82 U83 U84

U85 U86 U87

U88 U89 U90

U91 U92 U93

83

U94 U95 U96

U97 U98 U99

U100

4.3.3 Tractability Proofs

In this section, we are going to prove the tractability of several patterns on three variables, and
with at least one edge in each of the three constraints. Some of these patterns are non-mergeable,
and thus are listed in Section 4.3.2. We will also show the tractability of two mergeable patterns,
U ′30 and U ′25. These two patterns can be reduced by merging to U30 and U25 respectively. They
cannot be reduced to any known tractable pattern, nor can their complexity be inferred from
sources other than the proofs that we are about to give. Therefore their tractability is a new and
relatively interesting result, even though we have not been able yet to place it within some greater
characterization. We first define some basic concepts which are needed for the following proofs.

Definition 42 (weakly incompatible). Let I =〈VI , AI , varI , EI , cptI〉 be a CSP instance, let v and v′

be two variables in VI , and let a be a point in Av. We say that a and v are weakly incompatible with v′ if
v = v′ or if there exists a point b ∈ Av′ such that a and b are incompatible.

Definition 43 (point connexity set). Let I =〈VI , AI , varI , EI , cptI〉 be a CSP instance, and let a be a
point in AI . We call point connexity set of a the set of points b ∈ AI such that there exists a path of

84

Figure 45: The Pattern U ′30

incompability edges between a and b.

Definition 44 (variable connexity set). Let I =〈VI , AI , varI , EI , cptI〉 be a CSP instance, and let a
be a point in AI . We call variable connexity set of a the set of variables v ∈ VI , such that there exists
b ∈ Av, with b belonging to the point connexity set of a.

Let CompatibleWithAll be the following preprocessing operation: if I =〈VI , AI , varI , EI , cptI〉 is
a CSP instance and there is a point a ∈ Av, with v ∈ VI , such that a is compatible with all points
of AI\Av, then we remove the variable v from VI and only consider the remaining variables of the
instance while looking for a solution. It is easy to see that CompatibleWithAll is polynomial and
does not change the solvability of an instance.

We now give several tractability proofs. The first two patterns studied are mergeable patterns,
while the later ones are non-mergeable.

Lemma 46. The pattern U ′30, pictured in Figure 45, is tractable.

Proof. We suppose that we have a CSP instance I =〈VI , AI , varI , EI , cptI〉 in which the pattern U30
does not appear. We apply CompatibleWithAll on I . The resulting instance is I ′. Suppose that we
have a solution S for I ′ =〈VI′ , AI′ , varI′ , EI′ , cptI′〉. Suppose that there are two points a 6= b in S
both weakly incompatible with a same variable v. Then by considering the point c ∈ Av belonging
to S we have the forbidden pattern. So ∀v ∈ VI′ , at most one point of S is weakly incompatible
with v. But since we applied CompatibleWithAll on I , then all points of I ′, in particular all points
of S, are weakly incompatible with at least one variable. Since there are exactly as many variables
in VI′ as points in S, each point of S is weakly incompatible with exactly one variable. So we can
remove from AI′ all points which are weakly incompatible with at least two distinct variables. So
we have reduced I to a CSP instance not containing the pattern V− consisting of two constraints,
one incompability edge in each constraint, and the two incompability edges intersecting on a point
in the central variable. The pattern V− is tractable from Theorem 1. So we have reduced U ′30 to a
tractable pattern. Therefore U ′30 is tractable.

Lemma 47. The pattern U ′25, pictured in Figure 46, is tractable.

Proof. Let I =〈VI , AI , varI , EI , cptI〉 be a CSP instance such that the pattern U ′25 does not occur
in I . We apply CompatibleWithAll on I . Let v0 and v1 be two variables in VI such that there exist
a ∈ Av0 and b ∈ Av1 , with a being incompatible with b. Let v2 ∈ VI be such that a is weakly

85

Figure 46: The pattern U ′25.

incompatible with v2. Let d ∈ Av2 be a point such that a is incompatible with d. By arc consistency,
we have c ∈ Av2 such that a and c are compatible. If b is compatible with both c and d, then
we have the forbidden pattern. So b is incompatible with either c or d, and therefore b is weakly
incompatible with v2. So if two points are incompatible, then they are weakly incompatible with
the same set of variables.

Let a ∈ AI and v ∈ VI be such that v is in the variable connexity set of a. Then there is
a path of incompatibility edges of length k passing through the points (a0 = a, a1, . . . , ak) with
ak ∈ Av. So for all 0 ≤ i ≤ k−1 we have ai and ai+1 which are weakly incompatible with the same
set of variables. So by the transitive property, all ai are weakly incompatible with the same set of
variables. So a is weakly incompatible with v. So each point of the instance is weakly incompatible
with all variables in its variable connexity set.

Let v0 ∈ VI and let a and b be two points in Av0 . Since CompatibleWithAll has been applied
to I , there is a variable v1 6= v0 in Va, the variable connexity set of a. Since v1 ∈ Va, there is
a point c ∈ v1 such that a and c are incompatible. Similarly, since CompatibleWithAll has been
applied on I , there is a variable v2 6= v0 in Vb, the variable connexity set of b. Let d ∈ v2 be a
point such that d is incompatible with b. Let Vd be the variable connexity set of d. If v2 = v1, then
v1 ∈ Vd = Vb. Otherwise, by arc consistency we have e ∈ Av1 such that a and e are compatible. The
current situation is represented in Figure 47. If d is compatible with both c and e, then we have the
forbidden pattern. So d is incompatible with either c or d. So v1 ∈ Vd = Vb. So if a and b are two
points belonging to the same variable, then ∀v, v ∈ Va ⇒ v ∈ Vb. So if two points a and b are in the
same variable, then Va = Vb. So variable connexity sets are not connected to any other variable in
the constraint graph. So we can solve variable connexity sets independently.

Suppose that we have a solution S for a given variable connexity set. Let a ∈ Av1 , with v1 ∈ VI ,
be a point of this set such that a is compatible with a point b ∈ v2 in S, with v2 ∈ V . If a ∈ S,
then a is compatible with all points of S. Otherwise, let a′ be the point of S in Av1 . Let c ∈ Av3 ,
with v3 ∈ VI , be a point of S such that v3 is distinct from v1 and v2. Since c ∈ S, c is compatible
with a′. Moreover, since we are in a variable connexity set, then b is weakly incompatible with
v3. The current situation is represented in Figure 48. If a is incompatible with c, then we have the
forbidden pattern. So a is compatible with c. So a is compatible with all points of S. So a is in a
solution S′ obtained from S after replacing a′ by a. So if a point a is compatible with a point of S,
then it is compatible with all points of S, and is itself in a solution S′.

86

Av0

Av1
Av2

a b

c d
e

Figure 47: A situation.

c

a
Av2

Av3

Av1

a′ b

Figure 48: Another situation.

87

Figure 49: The pattern U95.

b c

aAv0

Av1

Figure 50: The gadget G.

Let v0 be a variable in the variable connexity set currently being considered. Suppose that we
have a point a in Av0 such that a is in a solution. Let b and c be two points compatible with a such
that b and c are assignments to two different variables. So b is in a solution S1 containing a and
c is in a solution S2 also containing a. Since b is compatible with a point of S2 (namely a), then b
is compatible with all points of S2. In particular, b is compatible with c. So all points compatible
with a are compatible with each other.

So in order to solve the variable connexity set, we take a variable v0 and a point a ∈ Av0 . By
arc consistency, we can take a point compatible with a in each variable of the variable connexity
set. If the resulting set is not a solution, then we remove a and we try again with another point in
Av0 . If no point of Av0 leads to a solution, then there is no solution for this variable connexity set.

So we have shown that U ′25 is polynomial.

Lemma 48. The pattern U95, pictured in Figure 49, is tractable.

Proof. Consider an instance I =〈VI , AI , varI , EI , cptI〉 from CSP(U95). Let G be the gadget shown
in Figure 50: two variables v0 and v1 such that we have a ∈ Av0 , b, c ∈ Av1 , a incompatible with b
and a compatible with c. Suppose that we have G in the instance.

Suppose that b is in a solution S. Let d be the the point of S in Av0 . Let v2 ∈ VI be a variable
such that v2 6= v0 and v2 6= v1, and let e be the point of S in Av2 . The current situation is pictured

88

b c

a e

d
Av0

Av1

Av2

Figure 51: A situation.

Figure 52: The pattern U22.

in Figure 51. If c and e are incompatible, then we have the forbidden pattern. So c and e are
compatible. So c is compatible with all points of S which are neither in Av0 nor in Av1 .

If c and d are compatible, then c is compatible with all points of S which are not in its variable.
So c belongs to a solution S′ obtained from S after replacing b by c. If c and d are incompatible,
then the edges (c, a) and (c, d) form the gadget G. Since d ∈ S, then a is compatible with all points
of S which are neither in v0 nor in v1. Since a and c are compatible, then a and c belong to a
solution S′ obtained from S after replacing b by c and d by a.

So if b is in a solution S, then c is also in a solution. So we can remove b. So each time we have
the gadget G, we can remove a point. From Theorem 1, we know that the gadget G is a tractable
pattern. Therefore, U95 is tractable.

Lemma 49. The pattern U22, pictured in Figure 52, is tractable.

Proof. Consider an instance I =〈VI , AI , varI , EI , cptI〉 from CSP(U22). Let v0 and v1 be two vari-
ables in VI such that there exist a ∈ Av0 and b ∈ Av1 , with a being incompatible with b. Let v2 ∈ VI

such that a is weakly incompatible with v2. If there are no two points c ∈ Av1 and d ∈ Av2 such that
a, c and d are compatible with each other, then a cannot belong to a solution and we can remove a.
So we can assume that we have two points c ∈ Av1 and d ∈ Av2 such that a, c and d are compatible

89

c

d
Av0

Av1

Av2

e

b a

Figure 53: A situation.

with each other. If b is compatible with d, then we have the forbidden pattern. So b is incompatible
with d and weakly incompatible with v2. So if two points are incompatible with each other, then
they are weakly incompatible with the same set of variables.

Let a ∈ AI and v ∈ VI be such that v is in the variable connexity set of a. Then there is
a path of incompatibility edges of length k passing through the points (a0 = a, a1, . . . , ak) with
ak ∈ Av. So for all 0 ≤ i ≤ k−1 we have ai and ai+1 which are weakly incompatible with the same
set of variables. So by the transitive property, all ai are weakly incompatible with the same set of
variables. So a is weakly incompatible with v. So each point of the instance is weakly incompatible
with all variables in its variable connexity set.

We are now going to show that if a variable v ∈ VI belongs to two variable connexity sets of
size at least 3, then these two variable connexity sets are actually the same variable connexity set
(0). Suppose that we have a and b in Av0 , with v0 ∈ VI . Let Va be the variable connexity set of a
and let Vb be the variable connexity set of b. We have to show that if Va and Vb are of size at least
3, then Va = Vb. Suppose that Va and Vb are of size at least 3.

We are first going to show that there is at most one variable v1 such that v1 ∈ Va and v1 /∈ Vb.
Suppose that we have two different variables v1 and v2 in Va. Since v1 ∈ Va, there is a point c ∈ Av1

such that a and c are incompatible. Let Vc be the variable connexity set of c. Since c is incompatible
with a, Vc = Va. Since v2 ∈ Va = Vc, there is a point d ∈ Av2 such that a and d are incompatible.
By arc consistency, we also have a point e ∈ Av2 such that c and e are compatible. The current
situation is represented in Figure 53. If b is compatible with c, d and e then we have the forbidden
pattern. So b is compatible with c, d or e. So either v1 or v2 is in Vb. So there is at most one variable
v1 such that v1 ∈ Va and v1 /∈ Vb (1). By a symmetry argument, there is also at most one variable
v2 such that v2 ∈ Vb and v2 /∈ Va (2).

From (1) and (2), and since Va and Vb are both of size at least 3, we know that there is another
variable v′0 ∈ Va ∩ Vb such that v′0 6= v0. Let v2 ∈ Vb such that v2 /∈ Va. Since v′0 ∈ Va ∩ Vb, there are
two points c and d in Av′0

such that a is incompatible with c and b is incompatible with d. If b is
incompatible with c, then a and b are in the same point connexity set and therefore we have (0). So
we assume that b is compatible with c. Let Vc be the variable connexity set of c. We have Vc = Va.
Since v2 ∈ Vb, there is a point e ∈ Av2 such that b and e are incompatible. By arc consistency, we

90

cd

Av0

Av′0

Av2
e

f b

a

Figure 54: Another situation.

also have a point f ∈ Av2 such that b and f are compatible. The current situation is represented
in Figure 54. If c is compatible with both e and f , then we have the forbidden pattern. So c is
incompatible with either e or f . So c is weakly incompatible with v2. So v2 ∈ Vc = Va. So there
is no variable v2 ∈ VI such that v2 ∈ Vb and v2 /∈ Va (3). By a symmetry argument, there is no
variable v1 ∈ VI such that v1 ∈ Va and v1 /∈ Vb (4).

From (3) and (4) we have Va = Vb. So if a variable v ∈ VI belongs to two variable connexity sets
of size at least 3, then these two variable connexity sets are actually the same variable connexity
set. So variable connexity sets of size at least 3 are not connected to any other variable in the
constraint graph. So we can solve variable connexity sets independently.

Suppose we have a solution S for a variable connexity set V of size at least 3. Let a ∈ Av0

and b ∈ Av1 be two points of S, with v0 and v1 in VI . Let v2 be a variable such that v2 6= v0
and v2 6= v1. Let c be the point of S in v2. Since V is a variable connexity set, all points of v0
are weakly incompatible with all variables of V \v0. In particular, a is weakly incompatible with
both v1 and v2. Let d ∈ Av1 and e ∈ Av2 be two points such that a is incompatible with both d

and e. The current situation is pictured in Figure 55. If b is compatible with e then we have the
forbidden pattern. So b is incompatible with e. So a and b are in the same point connexity set. So
all points of the solution S are in the same point connexity set. So we can solve point connexity
sets independently.

Let S be a solution for a given point connexity set, and let a ∈ Av1 , with v1 ∈ VI , be a point
such that a is compatible with a point of S. If a is in S, then a is compatible with all points of S.
Otherwise, let b ∈ Av2 , with v2 ∈ VI , be the point of S compatible with a and let a′ be the point
of S in Av1 . Let c ∈ Av3 , with v3 ∈ VI , be a point of S such that v3 6= v1 and v3 6= v2. Since
c ∈ S, c is compatible with a′. Moreover, since we are within a variable connexity set, c is weakly
incompatible with v2. The current situation is pictured in Figure 56. If a is incompatible with c,
then we have the forbidden pattern. So a is compatible with c. So a is compatible with all points
of S. So a is in a solution S′ obtained from S after replacing a′ by a. So if a point is compatible
with a point in S, then it is compatible with all points in S, and is itself in a solution S′.

Let v0 be a variable in the variable connexity set currently being considered. Suppose that we
have a point a in Av0 such that a is in a solution. Let b and c be two points compatible with a such

91

a

e Av1

Av0

Av2

c
b

d

Figure 55: Yet another situation.

Av3

Av1 Av2

c

a
a′ b

Figure 56: Yet again another situation.

92

Figure 57: The pattern U68.

a

b

c

d

Av0 Av1

Figure 58: The gadget G.

that b and c belong to two different variables. So b is in a solution S1 containing a and c is in a
solution S2 also containing a. Since b is compatible with a point of S2 (namely a), b is compatible
with all points of S2. In particular, b is compatible with c. So all points compatible with a are
compatible with each other.

So in order to solve the variable connexity set, we take a variable v0 and a point a ∈ Av0 . By
arc consistency, we can take a point compatible with a in each variable of the variable connexity
set. If the resulting set is not a solution, then we remove a and we try again with another point in
Av0 . If no point of Av0 leads to a solution, then there is no solution for this variable connexity set.

Once we have a solution for all variable connexity sets of size at least 3, we know that the rest
of the instance does not contain any point weakly incompatible with two different variables. So
we have reduced I to a CSP instance not containing the pattern V− consisting of two constraints,
one incompability edge in each constraint, and the two incompability edges intersecting on a point
in the central variable. The pattern V− is tractable from Theorem 1. So we have reduced U22 to a
tractable pattern. Therefore U22 is tractable.

Lemma 50. The pattern U68, pictured in Figure 57, is polynomial.

Proof. Consider an instance I =〈VI , AI , varI , EI , cptI〉 from CSP(U68). Let v be a variable in VI .
Let d be the number of points in Av = {a1, . . . , ad}. ∀1 ≤ j ≤ d, let Ij be the instance obtained
from I after removing v and all points b ∈ AI such that cptI(aj , b) = F . Let G be the gadget shown
in Figure 58: two variables v0 and v1 such that we have a, b ∈ Av0 , c, d ∈ Av1 , c incompatible with
d, a compatible with d and b compatible with c.

Suppose that for some 1 ≤ j ≤ d we have G occuring in Ij . Since aj is compatible in I with all
points of Ij , including a, b, c and d, the pattern U68 occurs in I . So ∀j ∈ [1, d], the gadgetG does not

93

Figure 59: The pattern U18.

b c

a

Av0

Av1 Av2

Figure 60: The gadget G.

occur in Ij . So we have reduced I to d instances from CSP(G). The gadget G is reducible by dp-
elimination to a pattern composed of a single incompatibility edge. This latter pattern is tractable
from Theorem 1. So we have reduced U68 to a tractable pattern. Therefore U68 is tractable.

Lemma 51. The pattern U18, pictured in Figure 59, is polynomial.

Proof. Consider an instance I =〈VI , AI , varI , EI , cptI〉 from CSP(U18). Let G be the gadget shown
in Figure 60: three variables v0, v1 and v2 such that we have a ∈ Av0 , b ∈ Av1 , c ∈ Av2 , a incompat-
ible with both b and c and b compatible with c. Suppose that we have G in the instance.

Suppose that a is in a solution S. Let d be the point of S inAv1 and let e be the point of S inAv2 .
Since S is a solution for I , a, d and e are compatible with each other. So we have the forbidden
pattern. So if a is in a solution, then we have the forbidden pattern. So a is not in any solution.
So we can remove a. So each time we have the gadget G, we can remove a point. The gadget G is
actually the pattern NEGTRANS, which is tractable (Cooper & Živný, 2012). So the gadget G is a
tractable pattern. Therefore, U18 is tractable.

Lemma 52. The pattern U36, pictured in Figure 61, is polynomial.

Proof. Consider an instance I =〈VI , AI , varI , EI , cptI〉 from CSP(U36). Let G be the gadget shown
in Figure 62: three variables v0, v1 and v2 such that we have a, b ∈ Av0 , c ∈ Av1 , d ∈ Av2 , a
incompatible with both c and d and b compatible with both c and d. Suppose that we have G in
the instance.

94

Figure 61: The pattern U36.

c d

a

b
Av0

Av1 Av2

Figure 62: The gadget G.

Suppose that a is in a solution S. Let e be the point of S inAv1 and let f be the point of S inAv2 .
Since S is a solution for I , a, e and f are compatible with each other. So we have the forbidden
pattern. So if a is in a solution, then we have the forbidden pattern. So a is not in any solution.
So we can remove a. So each time we have the gadget G, we can remove a point. The gadget G is
actually the pattern T1, which is tractable from Theorem 1. So the gadget G is a tractable pattern.
Therefore, U36 is tractable.

Remarks: Since U42 and U47 are subpatterns of U95, Lemma 48 implies that U42 and U47 are
tractable. Since U23 and U26 are subpatterns of U22, Lemma 49 implies that U23 and U26 are
tractable. Since U66, U81, U84 and U87 are subpatterns of U68, Lemma 50 implies that U66, U81,
U84 and U87 are tractable.

95

4.3.4 Summary of the Section

We now summarize the complexity results from Section 4.3.

Pattern Tractable?

What was already known: Proof

U27 Yes NEGTRANS (Cooper & Živný, 2012)
U94 Yes BTP (Cooper et al., 2010)
U43 Yes Subpattern of BTP.
U92 Yes (Cooper & Živný, 2012)
U97 Yes (Cooper & Živný, 2012)

New results in the thesis: Method

U22 Yes Variable Connexity Sets.
U23 Yes Subpattern of U22.
U26 Yes Subpattern of U22.
U95 Yes Gadget + Removal of a point.1

U42 Yes Subpattern of U95.
U47 Yes Subpattern of U95.
U18 Yes Gadget + Removal of a point.
U36 Yes Gadget + Removal of a point.
U68 Yes Reduction to only weakly

incompatibility variables.2

U66 Yes Subpattern of U68.
U81 Yes Subpattern of U68.
U84 Yes Subpattern of U68.
U87 Yes Subpattern of U68.

Non-mergeable patterns on three variables No Number maximum of points
not subpatterns of one of the patterns in U . + exhaustive search.

U ′30 Yes Property shared by points in a solution.
U ′25 Yes Variable Connexity Sets.

Open cases: Method3

All 82 other patterns from Section 4.3.2. ? Exhaustive search.

1 ”Gadget + Removal of a point” refers to the type of proof consisting of removing a point
from an instance I if a given tractable gadget appears in I . We previously used this method in

96

Tier 2

Tier 3

Tier 4

Tier 5

Tier 6U68

U87

U81 U84

U66 U97

U92

Figure 63: Graph of patterns including one or none incompatibility edges.

the tractability proofs for patterns T3 and T4 in Theorem 1. It was also used in the first part of the
tractability proof for T2, from the same Theorem.
2”Reduction to only weakly incompatibility variables” refers to the removal of a variable v from
a pattern P when there is no incompatibility edge between v and any other variable from P .
3”Method” does not refer here to the proof of why the cases are open, but to the proof of why they
are the only open cases remaining.

We give in Figures 63, 64 and 65 three graphs presenting the extension relations between all
patterns from Section 4.3.2. In each graph, patterns are sorted by tiers, with each tier correspond-
ing to the number of compatibility edges in the patterns. A line between two patterns in the graph
represents a relation of extension, that is the pattern with the less compatibility edges is a sub-
pattern of the pattern it is linked to. A rectangle around the label of a pattern denotes tractability.

97

Tier 1

Tier 2

Tier 3

Tier 4

Tier 5

Tier 6

Tier 7

Tier 8U1 U2

U9 U12 U15 U16 U31 U32 U37

U6 U10 U11 U13 U14 U17 U33 U34 U35

U7 U8 U19 U20 U98 U21 U28 U36

U18 U22 U24 U99 U29 U100

U23 U25 U30

U26

U27

Figure 64: Graph of patterns including two intersecting incompatibility edges.

98

Tier 2

Tier 3

Tier 4

Tier 5

Tier 6

Tier 7

Tier 8

Tier 9U3

U4 U5U48 U49 U60 U64

U51 U56 U58 U62 U67 U75 U78 U82 U83 U85 U88 U89

U38 U44 U50 U54 U59 U63 U65 U72 U76 U77 U79 U80 U86 U90 U93

U96 U74 U69 U41 U52 U46 U55 U57 U61 U73 U91

U39 U71 U40 U95 U45 U70 U53

U94 U42 U47

U43

Figure 65: Graph of patterns including two non-intersecting incompatibility edges.

99

100

5 Simplification Operations

This chapter offers the rest of the results we found. It is divided in two parts. The first one uses
one of the versions of forbidden patterns we defined, leading to the characterization of when they
allow the elimination of a specific variable. The other one deals with other forms of instance sim-
plification, like value elimination or subdomains fusion. It is not centered on forbidden patterns,
but on other types of local conditions.

5.1 Variable Elimination

In this subsection we are concerned with variable elimination characterized by forbidden patterns.
We now define what this means.

Definition 45 (variable eligible for elimination). If I = 〈V,A, var,E, cpt〉 is a CSP instance, we say
that a variable x ∈ V can be eliminated in I if, whenever there is a partial solution on V \ {x} there is a
solution.

In practice when solving CSP instances we prune the domains of variables in such a way as to
maintain all solutions.
The following Definition expands on Definition 21.

Definition 46 (arc consistent). Let I = 〈V,A, var,E, cpt〉 be a CSP instance. A point a ∈ Av, with
v ∈ V , is called arc consistent if, for all variables w 6= v there is some point b compatible with a.

The CSP instance I = 〈V,A, var,E, cpt〉 is called arc consistent if every assignment in A is arc
consistent.

Assignments that are not arc-consistent cannot be part of a solution so can safely be removed.
There are many quadratic time algorithms for establishing arc consistency which repeatedly re-
move such values (Bessière et al., 2005). Hence, for the remainder of this section we will assume
that all CSP instances are arc-consistent.

In order to use patterns for variable elimination we need to define what we mean when we say
that a flat pattern or an existential pattern occurs at variable x of a CSP instance.

Definition 47 (occurs at a variable, for an existential pattern). Let I = 〈V,A, var,E, cpt〉 be a CSP
instance. Let v be a variable in V . Let P = 〈VP , AP , varP , EP , cptP , eP 〉 be an existential pattern. If
∀S ⊆ Av such that |S| = |eP |, P occurs on S, then we say that P occurs at v.

The concept of an existential pattern occuring on a set of points was previously defined in
Definition 17.

Definition 48 (occurs at a variable, for a flat pattern). Let I = 〈V,A, var,E, cpt〉 be a CSP instance.
Let v be a variable in V . Let s ∈ Av. Let P = 〈VP , AP , varP , EP , cptP 〉 be a flat pattern. Let a ∈ AP . If
the existential pattern P ′ = 〈VP , AP , varP , EP , cptP , a〉 occurs on s, then we say that P occurs at v.

101

P1 P2

∃v

v

I

v0

v1 v2

Figure 66: Example of a Quantified Pattern.

Definition 49 (occurs at a variable, for a quantified pattern). Let I = 〈V,A, var,E, cpt〉 be a CSP
instance. Let v be a variable in V . Let s ∈ Av. Let P = 〈VP , AP , varP , EP , cptP , vP 〉 be a quantified
pattern. Let a ∈ AvP . If the existential pattern P ′ = 〈VP , AP , varP , EP , cptP , a〉 occurs on s, then we say
that P occurs at v.

For example, in Figure 66, the flat pattern P1 occurs at all three variables of the instance I . The
quantified pattern P2 occurs at variables v0 and v1, but does not occur at variable v2.

The definition of a variable elimination pattern is defined in terms of occurrence.

Definition 50 (VE pattern). A flat pattern is a VE pattern if, whenever the pattern does not occur at a
variable x in an arc-consistent CSP instance, then x can be eliminated.

Likewise, a quantified pattern is a VE pattern if, whenever the pattern does not occur at a variable x in
an arc-consistent CSP instance, then x can be eliminated.

An existential pattern is a VE pattern if, whenever the pattern does not occur at a variable x, for at
least one value mapping, then x can be eliminated.

Clearly existential patterns will allow more variables to be eliminated than quantified patterns.
It follows from Definitions 17, 47, 48 and 49 that we only need to identify reduced VE patterns.
We now give the characterization of all reduced VE patterns. There are precisely six, shown in
Figure 67.

We begin by showing that each of these patterns allows variable elimination. We need a tech-
nical lemma which shortens several proofs.

Lemma 53. If P is an existential VE pattern then its quantified simplified pattern is also a VE pattern. If
P ′ is a quantified VE pattern then its flat simplified pattern is also a VE pattern.

Proof. This is clear since every variable that can be eliminated by the quantified pattern could also
be eliminated by the existential pattern. The same argument can be used for the second part of the
Lemma.

Proposition 3. The patterns ∃subBTP, ∃invsubBTP, ∃snake(2), BTP, invsubBTP and snake(2) are VE
patterns.

102

∃xk

Axk

BTP

∃xk

Axk

invsubBTP

∃xk

Axk

snake(2)

∃xk∃a

Axk

∃subBTP

a

∃xk∃a

Axk

∃invsubBTP

a

∃xk∃a

Axk

∃snake(2)

a

Figure 67: Variable elimination patterns.

Proof. Since it is known that BTP is a VE pattern (Cooper et al., 2010), by Lemma 53 we only need
to prove the result for the three existential patterns: ∃subBTP, ∃invsubBTP and ∃snake(2).

Every two variable arc-consistent CSP instance allows either variable to be eliminated. So we
only have to prove that the existential patterns allow variable elimination in CSP instances with
at least three variables.

We first set up some general machinery which will be used in each of the three cases. Consider
an arc-consistent CSP instance I = 〈X,A, var,E, cpt〉 and let s be a partial solution on X \{x}. For
any v ∈ X , let s(v) be the point of Av in s.

Fix some assignment d ∈ Av, and let:

Y = {y ∈ X \ {x} | cpt(s(y), d) = T} ,
Y = {z ∈ X \ {x} | cpt(s(z), d) = F} .

If y, z ∈ Y , since s is a partial solution, we know cpt(s(y), s(z)) = T .
What is more, by arc consistency, for all z ∈ Y , there is some t(z) ∈ Az such that cpt(t(z), d) =

T .
We now prove the result for each pattern in turn.
Suppose that ∃subBTP does not occur at x with mapping a 7→ d in I .
If X = Y ∪ {x} then we can extend s to a solution to I by choosing value d for variable x. So,

in this case x could be eliminated.

103

On the other hand, suppose that there is some y ∈ Y . By arc consistency, ∃b ∈ Ax such that
cpt(s(y), b) = T . Since the pattern ∃subBTP does not occur, we can deduce that, for every variable
z ∈ X different from both x and y, cpt(s(z), b) = T . Hence, we can extend s to a solution to I by
choosing s(x) = b. So, in any case x can be eliminated and ∃subBTP is indeed an existential VE
pattern.

Now instead, suppose ∃invsubBTP does not occur at x with mapping a 7→ d in I .
Since the pattern ∃invsubBTP does not occur, if both y and z belongs to Y then cpt(t(y), t(z)) =

T .
Also, if y ∈ Y , z ∈ Y , then cpt(s(y), t(z)) = T .
So, in this case we have a solution s′ to I , where

s′(v) =

d if v = x,

s(v) if v ∈ Y ,

t(z) otherwise.

So ∃invsubBTP is indeed an existential VE pattern.
For the third pattern, suppose that ∃snake(2) does not occur at x with mapping a 7→ d in I .
If z ∈ Y , y ∈ Y , since the pattern ∃snake(2) does not occur, we can deduce that cpt(t(z), s(y)) =

T .
If both y and z belong to Y , then we can deduce that cpt(t(y), t(z)) = T .
So, again in this case we have a solution s′ to I , where

s′(v) =

d if v = x,

s(v) if v ∈ Y ,

t(z) otherwise.

So ∃snake(2) is also an existential VE pattern.

As a side note, ∃snake(2) is the same pattern as X2 from Figure 37.
Our aim is to precisely characterize all reduced patterns which allow variable elimination in an

arc-consistent binary CSP instance. We begin by identifying many patterns, shown in Figure 68,
which are not variable elimination patterns.

Lemma 54. None of the following patterns allow variable elimination in arc-consistent binary CSP in-
stances: any pattern on four variables, any pattern with three distinct values for the same variable, Triangle,
V, XL, Kite(sym), Kite(asym), rotsubBTP, Pivot(asym), Pivot(sym), Cycle(3).

Proof. For each pattern we exhibit a binary arc-consistent CSP instance that:

• does not contain the given (existential) pattern P at a variable x (for some mapping);

• has a partial solution on all the variables except x;

• has no solution.

104

Triangle V XL

Kite(sym)

∃xk

Axk

Kite(asym)

∃xk

Axk

rotsubBTP

∃xk

Axk

Pivot(sym)

∃xk

Axk

Pivot(asym)

∃xk

Axk

Cycle(3)

Figure 68: Patterns which do not allow variable elimination.

105

x
T T

T

F F

F

Figure 69: The instance I2COL
3 .

x

x1

x2

x3
T T

T

TF

F F

F

Figure 70: The instance ISAT
4 .

By definition, any such instance is enough to prove that a pattern is not a VE pattern.

• For any pattern P which is either V, XL or Triangle or has at least four variables, or has three
values for the same variable.

Let I2COL
3 be the CSP instance (corresponding to 2-coloring on 3 variables) with three Boolean

variables (domain is {T, F}with meaning True and False), where the constraint between any
two variables forces them to take different values. This instance has partial solutions on any
two variables, but has no solution, and does not contain P . I2COL

3 is represented in Figure 69.
Only compatibility edges are drawn in the figure.

• For the pattern Pivot(sym).

Let ISAT
4 be the 2SAT instance on four Boolean variables x1, x2, x3, x with the following con-

straints: x1 ≡ x2, x1 ≡ x3, x2 ∨ x3, x2 ∨ x, x3 ∨ x.ISAT
4 is represented in Figure 70. Only

compatibility edges are drawn in the figure.

• For Cycle(3), or Pivot(asym).

106

x

x1

x2

x3
T T

TF

F F

1 2 3

Figure 71: The instance I4.

Let ISAT
6 be the 2SAT instance on six Boolean variables x1, x2, x3, x4, x5, x with the following

constraints: x1 ∨ x2, x1 ∨ x4, x1 ∨ x3, x1 ∨ x5, x2 ∨ x, x4 ∨ x, x3 ∨ x, x5 ∨ x.

• For Kite(sym).

Let I4 be the CSP instance on four variables x1, x2, x3, x where x1, x2 and x3 are Boolean
and the domain of x is {1, 2, 3}, with the following constraints: x1 ∨ x2, x1 ∨ x3, x2 ∨ x3,
xi ⇔ (x 6= i) (i = 1, 2, 3). I4 is represented in Figure 71. Only compatibility edges are drawn
in the figure.

• For Kite(asym).

Let IZOA
4 be the CSP instance on the four variables x1, x2, x3, x where x1, x2, x3 and x take

their values in {1, 2, 3}, with the following constraints: x1 = x2, x1 = x3, x2 = x3, (x1 =
1) ∨ (x = 1), (x2 = 2) ∨ (x = 2), (x3 = 3) ∨ (x = 3). IZOA

4 is represented in Figure 72. Only
compatibility edges are drawn in the figure.

• For rotsubBTP.

Define the three binary relations:

R = {〈0, 0〉 , 〈1, 2〉 , 〈2, 1〉},
R0 = {〈0, 0〉 , 〈1, 1〉 , 〈2, 1〉},
R1 = {〈0, 1〉 , 〈1, 0〉 , 〈2, 0〉}.

Let I7 be the CSP instance on the seven variables x1, . . . , x6, x where the domain of xi is
{0, 1, 2}, i = 1, . . . , 6 and the domain of x is {0, 1}, with the following constraints:

For (1 ≤ i < j ≤ 3 and 4 ≤ i < j ≤ 6), 〈xi, xj〉must take values in R.

107

x

x1

x2

x3

1 2 3

1

2

3

1

2

3

1 2 3

Figure 72: The instance IZOA
4 .

For (1 ≤ i ≤ 3), 〈xi, x〉must take values in R0.

For (4 ≤ i ≤ 6), 〈xi, x〉must take values in R1 .

The following lemma is then key to proving that we have identified all possible flat or existen-
tial VE patterns.

Lemma 55. The only flat or quantified reduced patterns with at least three variables that do not contain
any of the patterns listed in Lemma 54 are contained in BTP, invsubBTP or snake(2).

Proof. Consider a quantified reduced VE pattern P = 〈X,A, var,E, cpt〉 that does not contain any
of the patterns listed in Lemma 54.

By Lemma 54 we know that P has at most three variables each with domain size strictly less
than three.

Now consider the negative sub-pattern P− = 〈X,A, var,E,neg〉where the compatibility func-
tion neg is cpt with its domain reduced to the incompatible pairs of assignments of P .

Any reduced pattern that does not contain an incompatible pair of assignments must contain
Triangle. What is more if any assignment is incompatible with two other assignments then it must
contain either Pivot(sym) or Pivot(asym). Now, since P does not contain Cycle(3) It follows that
P− is I1 or I2, as shown in Figure 73.

We first consider the latter case. Without loss of generality we assume that b is compatible with
c, to avoid a and b being mergeable.

108

a a′Av Av′

I1

a

b
c

e

Av0 Av1

Av2
I2

Figure 73: The possible negative skeletons of VE patterns.

Since the domains have at most two elements we begin by assuming that the domain of v1 is
{c, d} and the domain of v2 is {e, f}. In this case a and d must be compatible to avoid d and c

being mergeable. Also b and f must be compatible to stop e and f being mergeable. Moreover,
d and e cannot be compatible since otherwise we can embed XL in P . Furthermore, d and f

cannot be compatible since, whichever variable is chosen for e(P) we can embed either Kite(sym)
or Kyte(asym). It follows that d can be removed as it is a dangling assignment.

Now we begin again. As before to avoid merging a and b or embedding V we have that f is
compatible with b and not compatible with a. So, f must be compatible with c to avoid a dangling
point. In this case P contains Triangle.

Finally, we have the domain of v1 equal to {c} and the domain of v1 equal to {e}. Suppose that
there is a compatibility edge between c and e. If we put an existential quantifier on the variable v0
then, whether or not there is a compatibility edge between a and e, the pattern is contained in BTP.
If we put an existential quantifier on the variable v1 and there is no compatibility edge between a
and e, then the pattern is contained in invsubBTP. If we put an existential quantifier on the variable
v1 and there is a compatibility edge between a and e, then the pattern contains rotsubBTP. If we
put an existential quantifier on the variable v2, then the pattern contains rotsubBTP. So we have
covered all cases in which there is a compatibility edge between c and e.

Whether or not the last edge between a and e is an incompatibility one, the pattern is contained
in BTP if we put an existential quantifier on the variable v0, and the pattern is contained in snake(2)
if we put an existential quantifier on either v1 or v2.

The last case to consider is when P is a 3-variable pattern with P− = I1. Any two assignments
for the third variable could be merged so we can assume it has domain size one.

Since P does not contain V, Triangle, Kite(sym) or Kite(asym), we can deduce that the only
compatible pairs of assignments include a′′. In fact, both {a, a′′} and {a′, a′′} must be compatible
since P is irreducible. But then P is contained in BTP if we put an existential quantifier on either
v or v′, and contained in invsubBTP if we put an existential quantifier on v′′.

The following proposition is a direct consequence of Proposition 3 together with Lemma 54
and Lemma 55.

Proposition 4. The irreducible flat or quantified patterns allowing variable elimination in arc-consistent
binary CSP instances are BTP, invsubBTP or snake(2) (and their irreducible subpatterns).

109

x

x1

x2

x3

0 1 2

0

1

2

0

1

2

1 2a 3

Figure 74: The instance I ′4.

We are now able to complete the characterisation with little extra work. We first demonstrate
which existential patterns are not VE patterns.

Proposition 5. The only irreducible existential patterns which allow variable elimination in arc-consistent
binary CSP instances are ∃subBTP, ∃invsubBTP, ∃snake(2) (and their subpatterns).

Proof. Consider the instance I ′4, pictured in Figure 74 with four variables x1, x2, x3 and x where
the domain of x1, x2 and x3 are all {0, 1, 2} and the domain of x is {a, 1, 2, 3}. Only compatibility
edges are drawn in the figure.

Each pair of variables in {x1, x2, x3} must take values in {〈0, 0〉 , 〈1, 2〉 , 〈2, 1〉}. There are three
further constraints. For i = 1, 2, 3, we must have that (xi > 0) ∨ (x = i).

The instance I ′4 is arc-consistent, has a partial solution on variables {x1, x2, x3} but has no
solution.

Let P be an existential pattern where |e(P)| > 1. Either P is not contained in I2COL
3 or does

not occur at x in I ′4, and hence is not a VE pattern.
So all existential VE patterns have precisely one existential value.
We know from Proposition 3 that ∃subBTP, ∃invsubBTP, ∃snake(2) are existential VE patterns.
Proposition 3 and Lemma 53 show that when we flatten an existential VE pattern then the

resulting flat pattern is contained in BTP, invsubBTP or snake(2).
In the case of snake(2) and invsubBTP the maximal existential patterns contained in these

patterns are VE patterns and so there is nothing left to prove.
We still have to consider subpatterns of the existential version of BTP shown in Figure 75. First

observe that if we have only one pair of assignments in the domain of the compatibility function
then it is a subpattern of ∃snake(2) and is a VE pattern.

110

a
b

c

d

∃xk∃a

Axk

Figure 75: The final case: are any subpatterns of this pattern VE patterns?

The CSP I ′4 has the property that, for each variable xi, where i = 1, 2, 3, all values for x are
compatible with the assignment xi = 1. Hence, if we remove the assignment c from the pattern in
Figure 75, the resulting existential pattern would allow the elimination of x from I ′4 so is not VE.

It remains to consider subpatterns which do not include the incompatibility between d and b

and hence have three domains of size one. This whole subpattern would allow variable elimina-
tion in I2COL

3 so is not VE.
All the non-trivial subpatterns now consist of two compatibility edges. Two have dangling

reductions to trivial patterns. Hence, after reduction, all three are contained in ∃snake(2), and so
are VE.

Theorem 6. The only irreducible patterns which allow variable elimination in arc-consistent binary CSP
instances are BTP , snake(2), invsubBTP, ∃subBTP, ∃invsubBTP, ∃snake(2) (and their subpatterns).

We have answered the question of which local obstructions allow variable elimination in bi-
nary CSPs.

5.2 Fusion of Subdomains

The aim of this section is to demonstrate that other techniques exist for reducing search-space size
via the reduction of the total number of points. We give examples of such techniques based on the
(partial) fusion of variable domains. We concentrate our attention on reduction operations whose
complexity is comparable with known techniques, such as arc consistency and neighborhood sub-
stitution. In other words, we require that the complexity for detecting such reduction operations
should be linear in the number of non-trivial constraints in the instance.

In a CSP instance, it is always possible to combine two variables v1, v2 so that the resulting
variable v has a domain which is the cartesian product of the domains of v1 and v2. We are inter-
ested in special cases of this fusion operation in which the total number of points decreases. We
first define a very general fusion operation for two variables. We then describe weaker versions
which can be detected in complexity which is linear in the number of constraints.

Definition 51 (fusible points). Consider a CSP instance I = 〈V,A, var,E, cpt〉 with v1, v2 ∈ V and
two points a ∈ Av1 and b ∈ Av2 . Suppose that ∀d ∈ Av1∀e ∈ Av2 such that d and e are compatible, either

111

(1) ∀u ∈ A \ (Av1 ∪ Av2) such that u is compatible with both d and e, we have a compatible with both u
and e, or (2) ∀u ∈ A \ (Av1 ∪Av2) such that u is compatible with both d and e, we have b compatible with
both u and d. We say that the points a, b are fusible.

Definition 52 (two-point fusion). Consider a CSP instance I = 〈V,A, var,E, cpt〉 with v1, v2 ∈ V

and two points a ∈ Av1 and b ∈ Av2 such that a and b are fusible. Then we can perform the two-point
fusion of v1 and v2 to create a new fused variable v. The resulting instance is I ′ = 〈V ′, A′, var′, E′, cpt′〉
defined by:

• V ′ = (V \ {v1, v2}) ∪ {v}.

• A′ = (A \ (Av1 ∪Av2))∪ {p ∈ Av1 | p is compatible with b} ∪ {q ∈ Av2 \ {b} | q is compatible with
a}.

• var′(u) = var(u) for all u ∈ A′ \ (Av1 ∪Av2) and var′(u) = v for all u ∈ A′ ∩ (Av1 ∪Av2).

• E′ = {{u, u′} | (u, u′) ⊆ A′ ×A′, var(u) 6= var(u′)}.

• – cpt′(p, q) = cpt(p, q) if p, q ∈ A′ \A′v.

– cpt′(p, u) = T if p ∈ Av1 ∧ u ∈ A \ (Av1 ∪Av2) ∧ cpt(p, b) = cpt(p, u) = cpt(b, u) = T .

– cpt′(q, u) = T if q ∈ Av2 ∧ u ∈ A \ (Av1 ∪Av2) ∧ cpt(a, q) = cpt(q, u) = cpt(u, a) = T .

– cpt′(p, q) = F otherwise.

Proposition 6. If I = 〈V,A, var,E, cpt〉 is a binary CSP instance and I ′ the result of applying a two-point
fusion operation to I , then I ′ has a solution if and only if I has a solution.

Proof. The two-point fusion operation effectively has the same effect as only allowing pairs of
assignments of the form (a, ·) or (·, b) to the variables (v1, v2) of I . It therefore suffices to show
that any solution S to I can be transformed into another solution S′ with either a ∈ S′ or b ∈ S′.
Suppose that in S, variables (v1, v2) are assigned values (d, e). Then de ∈ E and by Definition 51,
either (1) ∀u ∈ A \ (Av1 ∪ Av2) such that u is compatible with both d and e, we have a compatible
with both u and e, or (2) ∀u ∈ A \ (Av1 ∪Av2) such that u is compatible with both d and e, we have
b compatible with both u and d. In case (1), we can replace d by a in S to produce another solution
S′ containing the assignment a. In Case (2) we can replace e by b in S to produce another solution
S′ containing the assignment b.

Remark 1. If D1 = |Av1 |, D2 = |Av2 | and D = |Av|, we have D ≤ D1 + D2 − 1. So after a two-point
fusion, the total number of variables decreases by 1 and the total number of points decreases by at least 1.

The complexity of applying a two-point fusion operation to particular points a, b which are
already known to be fusible is easily seen to be O(nd2), where n is the number of variables and d

the maximum domain size of the CSP instance. The detection of pairs of fusible points for all pairs
of assignments a, b ∈ A requires exhausting over five assignments to three variables. Therefore,
it is interesting to identify weaker versions that can be tested faster. We omit the proofs of the
following two propositions since they follow directly from Definition 51.

112

Proposition 7. If a ∈ A is incompatible with only one other point b ∈ A, then a, b are fusible.

Proposition 8. Suppose that a ∈ Av1 is compatible with all points in Av2 \ {b}, where var(b) = v2, and
∀d ∈ Av1 \ {a}, ∀e ∈ Av2 \ {b} such that d and e are compatible, we have ∀u ∈ A \ (Av1 ∪ Av2) if d is
compatible with u then a is compatible with u. Then a, b are fusible.

The premises of Propositions 7, 8 can be checked for all pairs a, b ∈ A in time O(cd2)and
O(cd4) respectively, where c is the number of non-trivial binary constraints in the CSP instance,
using suitable data structures. For example, it is clearly O(cd2) in time and space to construct the
data structure inc, where ∀a ∈ A, inc(a) is the set of variables v 6= var(a) with a point p ∈ Av

which is incompatible with a. It also requires only O(cd3) time and O(cd2) space to construct
the data structure notSub, where ∀a, d ∈ A with var(a) = var(d), not − sub(a, d) is the set of
variables v such that ∃p ∈ Av with du ∈ E and au /∈ E. Using these data structures, testing the
premises of Propositions 8 can be achieved by O(1) operations for each quadruple (a, b, d, e) such
that a, d ∈ Av1 , b, e ∈ Av2 and there is a non-trivial constraint between variables v1,v2.

When we perform a two-point fusion operation, the number of variables and the number of
assignments both decrease. In this section, we consider a different form of fusion, which we call
subdomain fusion, in which the number of variables remains constant but the number of assign-
ments decreases. Whereas two-point fusion can be applied to points with few incompatibilities,
subdomain fusion can be applied to points with few compatibilities. As in the two-point fusion
operation, two assignments to a pair of variables can be fused to form a single assignment. How-
ever, this can now happen on subdomains of two variables instead of the whole domains. As a
result, we need to keep both original variables. The fused assignments are effectively placed in the
domain of one of the variables, all of these new assignments are compatible with a new dummy
assignment to the other variable.

Definition 53 (fusible subdomains). Consider a CSP instance I = 〈V,A, var,E, cpt〉with v1, v2 ∈ V .
For B1 ⊂ Av1 , B2 ⊂ Av2 let C(B1, B2) denote {(p, q) | (p ∈ B1) ∧ (q ∈ B2) ∧ p and q are compatible}.
If ∀p ∈ B1,∀q ∈ Av2 \ B2 we have p is incompatible with q and if ∀p ∈ Av1 \ B1,∀q ∈ B2 we have p is
incompatible with q and if |E(B1, B2)|+1 < |B1|+|B2|, then we say thatB1, B2 are fusible subdomains.

Definition 54 (subdomain fusion). Consider a CSP instance I = 〈V,A, var,E, cpt〉 with v1, v2 ∈ V .
Let B1 ⊂ Av1 and let B2 ⊂ Av2 . We can perform the subdomain fusion of B1 and B2 by transforming
I into the instance I ′ = 〈V ′, A′, var′, E′, cpt′〉 defined as follows. All elements of C(B1, B2) (pairs of
compatible assignments to variables v1, v2 in B1 × B2) are now considered as points (assignments to the
single variable v1) and a new dummy assignment d is created for variable v2. Thus:

• V ′ = V .

• A′ = (A \ (B1 ∪B2)) ∪ C(B1, B2) ∪ {d}.

• var′(u) = var(u) for all u ∈ A′ \ (C(B1, B2) ∪ {d}), var′(u) = v1 for all u ∈ C(B1, B2) and
var(d) = v2.

• E′ = {{u, u′} | (u, u′) ⊆ A′ ×A′, var(u) 6= var(u′)}.

113

• – cpt′(p, q) = cpt(p, q) if p, q ∈ A′ \ (C(B1, B2) ∪ {d}).

– cpt′((p, q), u) = T if (p, q) ∈ C(B1, B2) ∧ u ∈ A \ (Av1 ∪Av2) ∧ cpt(p, u) = cpt(q, u) = T .

– cpt′(u, d) = T if u ∈ C(B1, B2) ∪ (A′ \ (Av1 ∪Av2)).

– cpt′(p, q) = F otherwise.

Remark 2. A subdomain fusion operation reduces the total number of points (variable-value assignments)
since |A′| = |A| − (|B1|+ |B2|) + |C(B1, B2)|+ 1 < |A|) by definition of fusible subdomains.

Proposition 9. If I = 〈V,A, var,E, cpt〉 is a binary CSP instance and I ′ = 〈V ′, A′, var′, E′, cpt′〉 the
result of applying a subdomain fusion operation to I , then I ′ has a solution if and only if I has a solution.

Proof. Suppose first that the operations has been applied to two variables v1 and v2, with v1, v2 ∈
V . Suppose that the fused subdomains are B1 ⊂ Av1 and B2 ⊂ Av2 . Suppose also that d is the new
dummy assignment for variable v2.
Suppose that I has a solution S. Let a1 be the point of S in Av1 and let a2 be the point of S in Av2 .
Since B1 and B2 are fusible subdomains, there is no compatibility edge between B1 and Av2 \B2,
nor between Av1 \ B1 and B2. Therefore, either a1 ∈ B1 and a2 ∈ B2, or a1 ∈ Av1 \ B1 and
a2 ∈ Av2 \ B2. In the latter case, S is also a solution for I ′. In the former case, let c = (a1, a2).
c is an edge between v1 and v2 in I , but it is also a point in Av1 in I ′. From the third case of
the construction of cpt′ in the definition of subdomain fusion, we know that c is compatible with
d in I ′. From the second case of the construction of cpt′ in the definition of subdomain fusion,
we know that c is compatible with all points of S ⊂ {a1, a2} in I ′. From the third case of the
construction of cpt′ in the definition of subdomain fusion, we know that d is compatible with all
points of S ⊂ {a1, a2} in I ′. So after replacing a1 by c and a2 by d in S, we have a solution S′ for
I ′. Therefore, if there is a solution for I , then there is also a solution for I ′.
Suppose now that there is a solution S′ for I ′. Let c1 be the point of S′ inAv1 and let c2 be the point
of S′ in Av2 . From the fourth case of the construction of cpt′ in the definition of subdomain fusion,
there is no compatibility edge between C(B1, B2) and Av2 \ d, nor between Av1 \ (C(B1, B2)) and
d. Therefore, either c1 ∈ C(B1, B2) and c2 = d, or c1 ∈ Av1 \ (C(B1, B2)) and c2 ∈ Av2 \ d. In the
latter case, S′ is also a solution for I . In the former case, we know that c1 = (a1, a2), with a1 ∈ B1
and A2 ∈ B2. Since (a1, a2) ∈ C(B1, B2), a1 and a2 are compatible in I . Since c1 is compatible with
all points of S′ \ {c1, d}, we know from the second case of the construction of cpt′ in the definition
of subdomain fusion that both a1 and a2 are compatible with all points of S′ \ {c1, d} in I . So after
replacing c1 by a1 and c2 by a2 in S′, we have a solution S for I . Therefore, if there is a solution for
I ′, then there is also a solution for I and we have the proposition.

Consider the graph G = 〈G1, G2〉, where G1 = Av1 ∪ Av2 is the set of vertices of G and G2 =
{(p, q) | p ∈ Av1 ∧ q ∈ Av2 ∧ cpt(p, q) = T} is the set of edges of G. Let C1, . . . , Cr be the connected
components of G. Subdomains B1, B2 are fusible only if B1 ∪ B2 is the set of vertices in some
connected componentsCi1 , . . . , Cit ofG sinceB1∪B2 must not be connected to the other vertices of
G. In order to find the subdomainsB1, B2 ofAv1 , Av2 which maximize (|B1|+|B2|)−(|C(B1, B2)|+
1) (the reduction in the number of points during subdomain fusion) we simply need to find the

114

union of those connected components which are trees. Indeed, if Ci with vertices B′1 ⊆ Av1 , B′2 ⊆
Av2 is a tree, then |B′1|+ |B′2| = |C(B′1, B′2)|+ 1, otherwise |B′1|+ |B′2| < |C(B′1, B′2)|+ 1. It follows
that we can perform a subdomain fusion if and only if there are at least two trees among the
connected components of G. Thus, we can detect whether it is possible to perform a subdomain
fusion somewhere in the instance in time O(cd2).

A special case of subdomain fusion occurs when the subdomains are the complete domains. In
this case, we do not need to keep the variable v2 after the fusion operation since it has a singleton
domain containing only the dummy point d. Thus, in this case, we can reduce the total number
of points in the instance (and the number of variables) if |B′1| + |B′2| = |C(B′1, B′2)| + 1. In other
words, we only require that the the graph G, representing of the binary constraint between the
two variables v1, v2, is a tree (or a forest). Common examples of binary constraints whose graph
is a forest include the disjunctive constraint (v1 = a) ∨ (v2 = b) and bijective constraints such as
v1 = v2.

Remark: Two-point fusion and subdomain fusion are not comparable with the fusion operations
from Section 3.3.2.

We have demonstrated the existence of novel low-order polynomial time simplification oper-
ations for binary CSPs which reduce the size of an instance, in terms of the number of microstruc-
ture vertices.

115

116

6 Conclusion

6.1 What we have done

We now summarize the major contributions of this thesis.
We have formally defined several versions of forbidden patterns in the context of the binary

Constraint Satisfaction Problem, each one tailored to be the most practical for the use we intended
it for. We then presented a new tool for forbidden patterns, which we called ”reduction between
patterns”, by analogy with the similarly named operation which exposes the complexity relations
between different problems. We went on to show that from a small number of complexity results,
this new operation allows us to build tractability dichotomies on a large scope of CSP problems.
We then proceeded to use all these notions to reveal several tractable classes. We finally provided
various simplification operations based on forbidden pattern or similar concepts, each operation
decreasing the size of the CSP instances it is applied to.

What this thesis is about in a nutshell:

• Formal definition of a forbidden pattern in the binary CSP context. Different versions for
different uses:

– Flat patterns.

– Quantified patterns.

– Existential patterns.

• New tool: reduction between patterns.

• Several dichotomies:

– A dichotomy for the complexity of classes of CSP instances defined by a flat pattern on
two constraints.

– A dichotomy for the complexity of classes of CSP instances defined by an existential
pattern on two constraints.

– A dichotomy for the complexity of classes of CSP instances defined by a Max-CSP sub-
problem.

– A dichotomy for the patterns allowing variable elimination.

• Several miscellaneous results:

– A set of necessary conditions for the tractability of classes of CSP instances defined by
several Max-CSP subproblems.

– A set of necessary conditions for the tractability of classes of CSP instances defined by
a flat pattern on three variables⇔ a list of all tractable and open flat patterns on three
variables.

– Some tractability proofs for flat patterns on three variables.

117

– Some simplification operations decreasing the size of CSP instances:

∗ Fusion of two domains.

∗ Fusion of two subdomains.

6.2 What we can do next

The field of forbidden patterns has only been entered quite recently, and as a result we are among
the first to try to map it. The steps we have taken represent a considerable progress; nonetheless
there is much left to do. The first avenue of research that merits further investigation is the comple-
tion of the characterization of the complexity of forbidden patterns on three variables. Although
there are still many cases left open, the reduction tool we introduced means that we might finish
the result with only a few more tractability (or NP-Completeness) proofs. The main avenues that
we’d like to explore afterwards are:

1. Generalizing our results for the CSP to Max-CSP and Valued-CSP.

2. Generalizing our results on binary patterns to patterns of any arity.

3. Generalizing our results on fobidding one pattern to forbidding several patterns at once.

4. Generalizing our results on three-variable flat patterns to existential patterns.

5. Generalizing our results on three-variable patterns to patterns with more variables.

The main issue one might encounter when trying to deal with point 1 or point 2 is the proper
convention to adopt for the definition of a generalized pattern. The generalization is very straight-
forward in the case of Max-CSP patterns, which is one of the reasons we chose to study that kind
of patterns, but for the other ones there are several distinct possibilities, all equally valid, for how
to define a forbidden pattern. However, there is no reason to restrict oneself to only one path.
Therefore what seems to be an obstacle at first, might reveal itself in the end to be just different
trails leading to a large number of distinct and diverse tractable classes.

Point 3 is not only interesting in itself, but also because it is actually an open question whether
classes which can only be defined by forbidding two or more patterns actually exist.

There are also some interesting follow-up questions to ponder:

6. What happens when we place an ordering structure on the variables of our tractable pat-
terns?

7. What can we find if we look only for value elimination instead of variable elimination?

8. How to find a solution for an instance belonging to a tractable class defined by a forbidden
pattern?

118

The inspiration for point 6 is that it has already be done for one of the patterns: BTP (Cooper
et al., 2010). Finding tractable classes defined in this way would be a very valuable enrichment
of our results. Point 7 is a work in progress which will be completed in the near future. As for
point 8, it is worth noting that most of our tractability proofs are constructive, hence it is possible
to infer a solution for such instances. Still, extracting explicit solving algorithms would be a small,
but useful, step forward.

119

List of Definitions

Definition 1 (pattern) . 25
Definition 2 (CSP instance) . 25
Definition 3 (constraint) . 25
Definition 4 (compatible points, compatibility edge) . 25
Definition 5 (trivial constraint) . 26
Definition 6 (constraint graph) . 26
Definition 7 (occurence in a pattern) . 26
Definition 8 (tractable pattern) . 27
Definition 9 (mergeable) . 27
Definition 10 (quantified pattern) . 27
Definition 11 (flat simplified pattern) . 27
Definition 12 (occurence in a quantified pattern) . 27
Definition 13 (occurence in an instance) . 28
Definition 14 (existential pattern) . 28
Definition 15 (quantified simplified pattern) . 28
Definition 16 (occurence in an existential pattern) . 29
Definition 17 (occurence on a set of points) . 30
Definition 18 (occurence in an instance) . 30
Definition 19 (tractable existential pattern) . 31
Definition 20 (elimination of a single-valued variable) . 31
Definition 21 (arc consistency) . 31
Definition 22 (neighborhood substitution) . 31
Definition 23 (simple fusion) . 32
Definition 24 (complex fusion) . 32
Definition 25 (reduction to a flat pattern) . 33
Definition 26 (reduction to a quantified pattern) . 34
Definition 27 (reduction to an existential pattern) . 35
Definition 28 (explicitely compatible) . 40
Definition 29 (irreducible pattern) . 43
Definition 30 (better than a point with respect to a variable) 47
Definition 31 (functional constraint) . 53
Definition 32 (path of functionality) . 55
Definition 33 (copy of a variable) . 57
Definition 34 (irreducible existential pattern) . 63
Definition 35 (max-CSP pattern) . 66
Definition 36 (max-CSP instance) . 66
Definition 37 (occurence in a Max-CSP subproblem) . 66
Definition 38 (Boolean problem) . 70
Definition 39 (negative edge pair) . 70

120

Definition 40 (negative cycle) . 70
Definition 41 (negative pivot point) . 70
Definition 42 (weakly incompatible) . 84
Definition 43 (point connexity set) . 84
Definition 44 (variable connexity set) . 85
Definition 45 (variable eligible for elimination) . 101
Definition 46 (arc consistent) . 101
Definition 47 (occurs at a variable, for an existential pattern) 101
Definition 48 (occurs at a variable, for a flat pattern) . 101
Definition 49 (occurs at a variable, for a quantified pattern) 102
Definition 50 (VE pattern) . 102
Definition 51 (fusible points) . 111
Definition 52 (two-point fusion) . 112
Definition 53 (fusible subdomains) . 113
Definition 54 (subdomain fusion) . 113

121

List of Figures

1 An example of a CSP instance. 10
2 Forbidden pattern in a Binary Boolean CSP instance. 11
3 Forbidden pattern in a ZOA instance. 12
4 An example of condition on the graph of incompabilities. 12
5 Forbidden pattern in a NEGTRANS instance. 13
6 An example of a forbidden pattern. 14
7 Pattern forbidden by the Broken Triangle Property. 15
8 The forbidden pattern 1C. 15
9 The forbidden pattern V +−. 15
10 Pattern forbidden by the broken-triangle property. 20
11 The subproblems A, B, C and D. 22
12 Four patterns. 26
13 Example of extension of a quantified pattern P to produce the quantified pattern Q. 28
14 Example of merging in a quantified pattern P to produce the quantified patten Q. . 28
15 A simple pattern 1I and an existential version ∃1I of the same pattern. 29
16 A pattern V− and an existential version V−Middle of the same pattern. 29
17 Example of extension of an existential pattern P to produce the existential pattern Q. 30
18 Example of merging in an existential pattern P to produce the existential patten Q. . 30
19 Example of dp-elimination. 33
20 Example of dp-elimination in a quantified pattern P 35
21 Example of dp-elimination in an existential pattern P to produce the existential

pattern Q. 35
22 The pattern 2V . 42
23 The set of tractable patterns T . 42
24 The pattern Diamond. 43
25 Incompatibility skeleton of type 1. 44
26 Incompatibility skeleton of type 2. 44
27 Introduction of the pattern T1. 46
28 Constraint between a one-winner variable v1 and a one-loser variable v2. 52
29 The gadget N. 53
30 The three variables v4, v5 and v6. 54
31 The gadget W . 56
32 Two intractable existential patterns on three variables. 58
33 Two intractable existential patterns on two variables. 59
34 The existential pattern ExpandedV+. 59
35 The existential pattern V+−. 60
36 Three intractable existential patterns. 60
37 Three tractable existential patterns. 63
38 The instance I contains P and P ′ as subproblems but not P ′′. 67

122

39 Subproblems on two variables (showing inclusions between subproblems). 67
40 Subproblems on three or four variables. 69
41 The Set U . 73
42 Incompatibility skeleton of type 1. 74
43 Incompatibility skeleton of type 2. 75
44 Incompatibility skeleton of type 3. 76
45 The Pattern U ′30 . 85
46 The pattern U ′25. 86
47 A situation. 87
48 Another situation. 87
49 The pattern U95. 88
50 The gadget G. 88
51 A situation. 89
52 The pattern U22. 89
53 A situation. 90
54 Another situation. 91
55 Yet another situation. 92
56 Yet again another situation. 92
57 The pattern U68. 93
58 The gadget G. 93
59 The pattern U18. 94
60 The gadget G. 94
61 The pattern U36. 95
62 The gadget G. 95
63 Graph of patterns including one or none incompatibility edges. 97
64 Graph of patterns including two intersecting incompatibility edges. 98
65 Graph of patterns including two non-intersecting incompatibility edges. 99
66 Example of a Quantified Pattern. 102
67 Variable elimination patterns. 103
68 Patterns which do not allow variable elimination. 105
69 The instance I2COL

3 . 106
70 The instance ISAT

4 . 106
71 The instance I4. 107
72 The instance IZOA

4 . 108
73 The possible negative skeletons of VE patterns. 109
74 The instance I ′4. 110
75 The final case: are any subpatterns of this pattern VE patterns? 111

123

References

Bertelé, U., & Brioshi, F. (1972). Nonserial dynamic programming. Academic Press.

Bessière, C., & Debruyne, R. (2001). Domain filtering consistencies. J. Artif. Intell. Res. (JAIR), 14,
205–230.

Bessière, C., Martinez, D., & Verfaillie, G. (1999). A generic customizable framework for inverse
local consistency. In AAAI, pp. 169–174.

Bessière, C., Régin, J.-C., Yap, R. H. C., & Zhang, Y. (2005). An optimal coarse-grained arc consis-
tency algorithm. Artificial Intelligence, 165(2), 165–185.

Bulatov, A., Jeavons, P., & Krokhin, A. (2005). Classifying the complexity of constraints using finite
algebras. SIAM Journal on Computing, 34(3), 720–742.

Bulatov, A. A. (2003). Tractable conservative constraint satisfaction problems. In LICS 2003: Pro-
ceedings of 18th IEEE Symposium on Logic in Computer Science, pp. 321–330.

Bulatov, A. A. (2006). A dichotomy theorem for constraint satisfaction problems on a 3-element
set. Journal of the ACM, 53(1), 66–120.

Chen, X., & Van Beek, P. (2001). Conflict-directed backjumping revisited. J. Artif. Intell. Res. (JAIR),
14, 53–81.

Cohen, D. A. (2003). A New Class of Binary CSPs for which Arc-Constistency Is a Decision Proce-
dure. In CP 2003, pp. 807–811. LNCS 2833, Springer.

Cohen, D. A., Cooper, M. C., Creed, P., Marx, D., & Salamon, A. Z. (2012). The tractability of csp
classes defined by forbidden patterns. J. Artif. Intell. Res. (JAIR), 45, 47–78.

Cohen, D. A., Cooper, M. C., Escamocher, G., & Živný, S. (2013). Variable elimination in binary
csp via forbidden patterns. In IJCAI, pp. 517–523.

Cohen, D. A., Cooper, M. C., & Jeavons, P. (1994). Characterising tractable constraints. Artificial
Intelligence, 65(2), 347–361.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Harrison, M. A., Banerji,
R. B., & Ullman, J. D. (Eds.), STOC, pp. 151–158. ACM.

Cooper, M. C., De Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., & Werner, T. (2010). Soft arc
consistency revisited. Artificial Intelligence, 174, 449–478.

Cooper, M. C. (1997). Fundamental properties of neighbourhood substitution in constraint satis-
faction problems. Artificial Intelligence, 90(1-2), 1–24.

Cooper, M. C., De Roquemaurel, M., & Régnier, P. (2001). A weighted CSP approach to cost-
optimal planning. Artificial Intelligence Communications, 24(1), 1–29.

124

Cooper, M. C., & Escamocher, G. (2012). A dichotomy for 2-constraint forbidden csp patterns. In
AAAI, pp. 464–470.

Cooper, M. C., Escamocher, G., & Živný, S. (2012). A characteristion of the complexity of forbid-
ding subproblems in binary max-csp. In CP, pp. 265–273.

Cooper, M. C., Jeavons, P. G., & Salamon, A. Z. (2010). Generalizing constraint satisfaction on
trees: Hybrid tractability and variable elimination. Artificial Intelligence, 174(9–10), 570–584.

Cooper, M. C., & Živný, S. (2011a). Hierarchically nested convex VCSP. In CP 2011, pp. 187–194.
LNCS 6876, Springer.

Cooper, M. C., & Živný, S. (2011b). Hybrid tractability of valued constraint problems. Artificial
Intelligence, 175(9-10), 1555–1569.

Cooper, M. C., & Živný, S. (2011c). Tractable triangles. In CP 2011, pp. 195–209.

Cooper, M. C., & Živný, S. (2012). Tractable triangles and cross-free convexity in discrete optimi-
sation. J. Artif. Intell. Res. (JAIR), 44, 455–490.

Creignou, N., Khanna, S., & Sudan, M. (2001). Complexity classification of boolean constraint
satisfaction problems. SIAM Monographs on Discrete Mathematics and Applications, 7.

Dalmau, V., Kolaitis, P., & Vardi, M. (2002). Constraint satisfaction, bounded treewidth, and finite-
variable logics. In CP 2002, pp. 310–326. LNCS 2470, Springer.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

Deineko, V., Jonsson, P., Klasson, M., & Krokhin, A. (2008). The approximability of Max CSP with
fixed-value constraints. Journal of the ACM, 55(4).

Elfe, C., & Freuder, E. (1996). Neighborhood inverse consistency preprocessing. In AAAI, pp.
202–208.

Freuder, E. C. (1991). Eliminating interchangeable values in constraint satisfaction problems. In
Dean, T. L., & McKeown, K. (Eds.), AAAI, pp. 227–233. AAAI Press / The MIT Press.

Gao, J., Yin, M., & Zhou, J. (2011). Hybrid tractable classes of binary quantified constraint satisfac-
tion problems. In AAAI.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, San Francisco, CA.

Gent, I., Jefferson, C., & Miguel, I. (2006). Watched literals for constraint propagation in minion.
In CP 2006, pp. 182–197. LNCS 4204, Springer.

Grohe, M. (2007). The complexity of homomorphism and constraint satisfaction problems seen
from the other side. Journal of the ACM, 54(1), 1–24.

125

Henderson, T. C., & Mohr, R. (1986). Arc and path consistency revisited. Artificial Intelligence, 28,
225–233.

Jégou, P. (1993). Decomposition of domains based on the micro-structure of finite constraint-
satisfaction problems. In AAAI ’93, pp. 731–736.

Jonsson, P., Klasson, M., & Krokhin, A. (2006). The approximability of three-valued max csp. SIAM
J. Comput., 35(6), 1329–1349.

Jonsson, P., Kuivinen, F., & Thapper, J. (2011). Min csp on four elements: Moving beyond sub-
modularity. In CP 2011, pp. 438–453. LNCS 6876, Springer.

Kamiński, M. (2010). Max-cut and containment relations in graphs. In WG 2010 - 36th International
Workshop on Graph Theoretic Concepts in Computer Science, pp. 15–26.

Kolmogorov, V. (2013). The power of linear programming for finite-valued CSPs: a constructive
characterization. In ICALP, pp. 625–636. LNCS 7965, Springer.

Larrosa, J., & Dechter, R. (2003). Boosting search with variable elimination in constraint optimiza-
tion and constraint satisfaction problems. Constraints, 8(3), 303–326.

Lecoutre, C. (2009). Constraint Networks: Techniques and Algorithms. ISTE/Wiley.

Lewis, J., & Yannakakis, M. (1980). The node-deletion problem for hereditary properties is np-
complete. Journal of Computer System Sciences, 20(2), 219–230.

Likitvivatanavong, C., & Yap, R. (2013). Eliminating Redundancy in CSPs Through Merging and
Subsumption of Domain Values. ACM SIGAPP Applied Computing Review, 13(2).

Mackworth, A. K. (1977). Consistency in network of relations. Artificial Intelligence, 8, 99–118.

Marx, D. (2010a). Can you beat treewidth?. Theory of Computing, 6(1), 85–112.

Marx, D. (2010b). Tractable hypergraph properties for constraint satisfaction and conjunctive
queries. In STOC ’10: Proceedings of the 42nd ACM symposium on Theory of computing, pp.
735–744. ACM.

Meyer, A. R., & Stockmeyer, L. (1972). The equivalence problem for regular expressions with
squaring requires exponential space. In 13th IEEE Symposium on Switching and Automata
Theory, pp. 125–129.

Motwani, R., & Raghavan, P. (1995). Randomized Algorithms. Cambridge University Press.

Orlin, J. B. (2009). A faster strongly polynomial time algorithm for submodular function mini-
mization. Mathematical Programming Ser. A, 118(2), 237–251.

Prosser, P. (1993). Hybrid algorithms for the constraint satisfaction problem. Computationnal Intel-
ligence, 9(3), 268–299.

126

Raghavendra, P. (2008). Optimal algorithms and inapproximability results for every CSP?. In
STOC 2008, pp. 245–254.

Rossi, F., Van Beek, P., & Walsh, T. (Eds.). (2006). Handbook of Constraint Programming. Foundations
of Artificial Intelligence. Elsevier.

Salamon, A. Z., & Jeavons, P. G. (2008). Perfect constraints are tractable. In CP 2008, Vol. 5202 of
Lecture Notes in Computer Science, pp. 524–528. Springer.

Shamir, R., Sharan, R., & Tsur, D. (2004). Cluster graph modification problems. Discrete Applied
Mathematics, 144, 173–182.

Thapper, J., & Živný, S. (2012). The power of linear programming for valued CSPs. In FOCS 2012,
pp. 669–678.

Thapper, J., & Živný, S. (2013). The complexity of finite-valued CSPs. In STOC 2013, pp. 695–704.

Turing, A. M. (1936). On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London Mathematical Society, 42(2), 230–265.

Waltz, D. (1975). Understanding line drawings of scenes with shadows. In The Psychology of
Computer Vision, pp. 19–91. Winston, P.H.

127

Résumé

Le problème de satisfaction de contraintes (CSP) est NP-complet, même dans le cas où
toutes les contraintes sont binaires. Cependant, certaines classes d’instances CSP sont traita-
bles. Récemment, une nouvelle méthode pour définir de telles classes a émergée. Cette ap-
proche est centrée autour des motifs interdits, ou l’absence locale de certaines conditions. Elle
est l’objet de ma thèse.

Nous définissons formellement ce que sont les motifs interdits, présentons les propriétés
qu’ils détiennent, et finalement les utilisons afin d’établir plusieurs résultats de complexité
importants. En utilisant différentes versions de motifs, toutes basées sur le même concept de
base, nous énumérons un nombre important de nouvelles classes traitables, ainsi que certaines
NP-completes. Nous combinons ces résultats pour révéler plusieurs dichotomies, chacune
englobant une large gamme de classes d’instances CSP.

Nous montrons aussi que les motifs interdits représentent un outil intéressant pour la sim-
plification d’instances CSPs. Nous donnons plusieurs nouveaux moyens de réduire la taille des
instances CSP, que ce soit en éliminant des variables ou en fusionnant les domaines, et mon-
trons comment ces méthodes sont activées par l’absence locale de certains modèles. Comme
les conditions de leur utilisation sont entièrement locales, nos opérations peuvent être utilisés
sur un large éventail de problèmes.

Mots clés:
problème de satisfaction de contraintes, motif interdit, classe traitable, élimination de variables

Abstract

The Constraint Satisfaction Problem (CSP) is NP-Complete, even in the case where all con-
straints are binary. However, some classes of CSP instances are tractable. Recently, a new
method for defining such classes has emerged. This approach is centered around forbidden
patterns, or the local absence of some conditions. It is the focus of my thesis.

We formally define what forbidden patterns are, exhibit the properties they hold, and even-
tually put them to use in order to establish several important tractability results. Using dif-
ferent versions of patterns, all based on the same core concept, we list a significant number of
new tractable classes, as well as some NP-Complete ones. We combine these results to reveal
several dichotomies, each one encompassing a large range of classes of CSP instances.

We also show how useful a tool forbidden patterns can be in the field of CSP instance
simplification. We give multiple new ways of decreasing the size of CSP instances, whether
by eliminating variables or fusioning domains, and prove how all these methods are enabled
by the local absence of some patterns. Since the conditions for their use are entirely local, our
operations can be used on a wide array of problems.

Keywords:
constraint satisfaction problem, forbidden pattern, tractable class, variable elimination

	Résumé
	1 Introduction
	1.1 From Problems to Patterns
	1.2 A New Approach
	1.3 Goals
	1.4 Outline of the Thesis

	2 State of the Art
	2.1 The Constraint Satisfaction Problem
	2.2 Tractable Classes
	2.3 Max-CSPs
	2.4 Variable Elimination
	2.5 Other Simplification Operations

	3 Patterns, Tools, Reductions
	3.1 What Is A Pattern?
	3.2 Different Kinds of Patterns
	3.2.1 About Quantified Patterns
	3.2.2 About Existential Patterns

	3.3 Operations for CSP Instances
	3.3.1 Classical Operations
	3.3.2 Our Operations

	3.4 Reduction to a Pattern
	3.4.1 Reduction in the Flat Case
	3.4.2 Reduction in the Quantified Case
	3.4.3 Reduction in the Existential Case
	3.4.4 Reduction to a Different Kind of Pattern

	4 Tractable Classes
	4.1 Dichotomy for Forbidden Patterns on Two Constraints
	4.1.1 Flat Patterns on One Constraint
	4.1.2 Flat Patterns on Two Constraints
	4.1.3 Proof of Theorem 1
	4.1.4 Some NP-Complete Existential Patterns on Two Constraints
	4.1.5 Existential Patterns on Two Constraints
	4.1.6 The Dichotomy

	4.2 Forbidding Max-CSPs Subproblems
	4.2.1 Definitions and Basic Properties
	4.2.2 Dichotomy for Forbidding a Single Subproblem
	4.2.3 Requirements for the Tractability of a Set of Subproblems

	4.3 Forbidden Patterns on Three Variables
	4.3.1 Necessary Conditions for Tractability
	4.3.2 List of All Possible Tractable Patterns on Three Variables
	4.3.3 Tractability Proofs
	4.3.4 Summary of the Section

	5 Simplification Operations
	5.1 Variable Elimination
	5.2 Fusion of Subdomains

	6 Conclusion
	6.1 What we have done
	6.2 What we can do next

	References
	Résumé

