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Abstract

This thesis deals with two different problems: in the first one, we study the large-time

behavior of solutions of one-dimensional fractional Fisher-KPP reaction diffusion equations,

when the initial condition is asymptotically front-like and it decays at infinity more slowly than

a power xb, where b < 2α and α ∈ (0, 1) is the order of the fractional Laplacian (Chapter 2);

in the second problem, we study the time asymptotic propagation of solutions to the fractional

reaction diffusion cooperative systems (Chapter 3).

For the first problem, we prove that the level sets of the solutions move exponentially fast as

time goes to infinity. Moreover, a quantitative estimate of motion of the level sets is obtained in

terms of the decay of the initial condition.

In the second problem, we prove that the propagation speed is exponential in time, and we

find a precise exponent depending on the smallest index of the fractional laplacians and of the

nonlinearity, also we note that it does not depend on the space direction.

Keywords: reaction-diffusion problems, KPP, cooperative systems, fast propagation.

Résumé

Cette thèse porte sur deux problèmes différents : dans le premier, nous étudions le com-

portement en temps long des solutions des équations de réaction diffusion 1d-fractionnaire de

type Fisher-KPP lorsque la condition initiale est asymptotiquement de type front et décroı̂t à

l‘infini plus lentement que xb, où b < 2α et α ∈ (0, 1) est l‘indice du laplacien fractionnaire

(Chapitre 2). Dans le second problème, nous étudions la propagation asymptotique en temps

des solutions de systèmes coopératifs de réaction-diffusion (Chapitre 3).

Dans le premier problème, nous démontrons que les ensembles de niveau des solutions se

déplacent exponentiellement vite en temps quand t tend vers l‘infini. De plus, une estimation
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quantitative du mouvement de ces ensembles est obtenue en fonction de la décroissance à l‘infini

de la condition initiale.

Dans le second problème, nous montrons que la vitesse de propagation est exponentielle

en temps et nous trouvons un exposant précis qui dépend du plus petit ordre des laplaciens

fractionnaires considérés et de la non-linéarité. Nous notons aussi que cet indice ne dépend pas

de la direction spatiale de propagation.

Mots-clés: problèmes de réaction-diffusion, KPP, systèmes coopératifs, propagation rapide.

Resumen

Esta tesis trata sobre dos problemas diferentes: en el primero, se estudia el comportamiento

en tiempos grandes de las soluciones de la ecuación de reacción diffusión 1d-fraccionaria del

tipo Fisher-KPP cuando la condición inicial es asintóticamente como un frente y decae al infinito

más lento que xb, donde b < 2α y α ∈ (0, 1) es el ı́ndice del laplaciano fraccionario (Capı́tulo

2). En el segundo problema, se estudia la propagación asintótica en tiempo de las soluciones de

sistemas cooperativos de reacción difusión (Capı́tulo 3).

En el primer problema, se demuestra que los conjuntos de nivel de las soluciones se des-

plazan exponencialmente rápido cuando el tiempo t tiende a infinito. Más aún, una estimación

cuantitativa sobre el movimiento es obtenida en función del decrecimiento al infinito de la condi-

ción inicial.

En el segundo problema, se demuestra que la velocidad de propagación es exponencial

en tiempo y se encuentra un exponente preciso que depende del orden más pequeño de los

laplacianos fraccionarios considerados y de la nolinearidad. Se hace notar que este ı́ndice no

depende de la dirección espacial de la propagación.

Palabras Clave: Problemas de reacción-difusión, KPP, sistemas cooperativos, propagación

rápida.
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Introduction

Reaction-diffusion models have found widespread applicability in a surprising number of

real-world models, including areas as, chemistry, biology, physics and engineering. But not

only physical phenomena can be the result of a diffusive models. Stochastic processes in ma-

thematical finance are often modeled by a Wiener process or Brownian motion, which lead to

diffusive models. The simplest reaction-diffusion models are of the form

ut − ∆u = f(u) (1)

where f is a nonlinear function representing the reaction kinetics. One of the most important

examples of particular interest for us include the Fisher-KPP equation for which f(u) = u(1 −
u). The nontrivial dynamics of these systems arises from the competition between the reaction

kinetics and diffusion.

At a microscopic level, diffusion is the result of the random motion of individual particles,

and the use of Laplacian operators in the model rests on the key assumption that this random

motion is an stochastic Gaussian process. However, a growing number of works have shown

the presence of anomalous diffusion processes, as for example Lévy processes, thus, reaction-

diffusion equations with fractional Laplacian instead of standard Laplacian appear in physical

models when the diffusive phenomena are better described by Lévy processes allowing long

jumps, than by Brownian processes, see for example [39] for a description of some of these

models. The Lévy processes occur widely in physics, chemistry and biology and recently these

models that give rise to equations with the fractional Laplacians have attracted much interest.

Our particular aim on this type of anomalous diffusion problems is focussed to the study

of large-time behavior of the solution of the Cauchy problem for fractional reaction-diffusion

equations

ut + (−∆)αu = f(u) (2)

u(0, x) = u0(x) (3)

with α ∈ (0, 1) in one spatial dimension, where (−∆)α denote the fractional Laplacian. The

nonlinearity f is assumed to be in the Fisher-KPP class. More precisely, the nonlinearity is

assumed to have two zeros, an unstable one at u = 0 and a stable one at u = 1.

The reaction diffusion equation (1) with Fisher-KPP nonlinearity has been the subject of

intense research since the seminal work by Kolmogorov, Petrovskii, and Piskunov [33]. Of

particular interest are the results of Aronson and Weinberger [2] which describe the evolution of

the compactly supported data. They showed that for a compactly supported initial value u0, the

movement of the fronts are linear in time. In addition, there exists a critical speed c∗ = 2
√

f ′(0)
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for which the problem (2)-(3) admits planar traveling wave solutions connecting 0 and 1, that

is, solutions of the form u(t, x) = φ(x − ct), which move with speeds c ≥ c∗.

Many papers have been concerned with the large-time behavior of solutions of equation

(1) or more general reaction diffusion equations with exponentially decaying initial conditions,

leading to finite propagation speeds, see for example [11], [32], [35], [41] and references in

[29].

In contrast with the results just mentioned, where finite speed of propagation is obtained

whenever the initial value decays faster that an exponential, it is shown by Hamel and Roques

[29] that when the initial condition is globally front-like, and it decays slower than any exponen-

tial then the asymptotic behavior of the front exhibits infinite speed and a very precise estimate

can be obtained for the propagation of the level sets of the front in terms of the initial value,

giving a precise superlinear behavior.

Moreover, Berestycki, Hamel and Roques [7] prove existence and uniqueness results for the

stationary solution associated to (2) and they then analyze the behavior of the solutions of the

evolution equation for large times. These results are expressed by a condition on the sign of the

first eigenvalue of the associated linearized problem with periodicity condition.

Regarding (2)-(3) with α ∈ (0, 1) and Fisher-KPP nonlinearity, in connection with the dis-

cussion given above for the case α = 1, in the recent papers [14] and [15], Cabré and Ro-

quejoffre show that for compactly supported initial value, or more generally for initial values

decaying like |x|−d−2α, where d is the dimension of the spatial variable, the speed of propa-

gation becomes exponential in time with a critical exponent c∗ = f ′(0)(d + 2α)−1, they also

show that no traveling waves exists for this equation, all results in great contrast with the case

α = 1. Moreover, if the initial data u0 ∈ [0, 1] is nonincreasing and for x > 0 decay faster than

x−2α, then the mass at +∞ makes the front travel faster to the left, in this case with a speed

c∗∗ = f ′(0)/2α. All these results will be formally established in Chapter 1. Additionally we

recall the earlier work in the case α ∈ (0, 1) by Berestycki, Roquejoffre and Rossi [10], where

it is proved that there is invasion of the unstable state by the stable one, also in [10], the authors

derive a class of integro-differential reaction-diffusion equations from simple principles. They

then prove an approximation result for the first eigenvalue of linear integro-differential opera-

tors of the fractional diffusion type, they also prove the convergence of solutions of fractional

evolution problem to the steady state solution when the time tends to infinity. For a large class of

nonlinearities, Engler [25] has proved that the invasion has unbounded speed. For another type

of integro-differential equations Garnier [27] also establishes that the position of the level sets

moves exponentially in time for algebraically decaying dispersal kernels. And in a recent paper

Stan and Vázquez [42] study the propagation properties of nonnegative and bounded solutions

of the class of reaction-diffusion equations with nonlinear fractional diffusion.

Chapter 2 is concerned with the study of the phenomena described by Hamel and Roques in

[29] in the case of nonlocal diffusion, that is, when α ∈ (0, 1) in equation (2)-(3). In particular,
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we study the asymptotic behavior of solutions with slowly decaying, globally front-like initial

value. We state that, for b < 2α, the central part of the solution moves to the right at exponential

speed f ′(0)/b, which is faster than c∗∗, the exponential speed for solutions with initial values

decaying faster than x−2α. Thus we show that the exponent 2α is critical regarding the speed of

propagation of the solution. Furthermore, we prove that the initial condition u0 can be chosen

so that the location of the solution u be asymptotically larger than any prescribed real-valued

function.

The study of propagation fronts was also done in reaction diffusion systems, in this line,

Lewis, Li and Weinberger in [37], studied spreading speeds and planar traveling waves for a

particular class of cooperative reaction diffusion systems with standard diffusion by analyzing

traveling waves and the convergence of initial data to wave solutions. It is shown that, for a

large class of such cooperative systems, the spreading speed of the system is characterized as

the slowest speed for which the system admits traveling wave solutions. Moreover, the same

authors in [44] establish the existence of a explicit spreading speed σ∗ for which the solution of

the cooperative system spread linearly in time, when the time tends to +∞.

Follow the line, it is our aim to study the spread speeds of solutions of reaction diffusion

cooperative system when the standard Laplacians are replaced for instance by the fractional

Laplacian with different indexes. Chapter 3 is devoted to study the time asymptotic propagation

of solutions to the fractional reaction diffusion cooperative systems. We prove that the propa-

gation speed is exponential in time, and we find a precise exponent depending on the smallest

index of the fractional Laplacians and of the principal eigenvalue of the matrix DF (0) where

F is the nonlinearity associated to the fractional system. Also we establish the existence of

a constant steady state solution for the system and we prove the convergence of the solution

towards the steady solution for large times.
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Chapter 1

Preliminaries and background

In this chapter, we provide some elementary properties of fractional Laplacian operators, also

we introduce the main results concerning to the large time behavior of solutions of reaction-

diffusion problems with Fisher-KPP nonlinearities. Our principal goal in this chapter is to

note the differences between the speed propagation obtained when the problem has standard

diffusion or fractional diffusion. Moreover, we present some results related with the behavior

of solutions of weakly coupled reaction-diffusion equation systems.

1.1. Fractional Laplacian

Let consider the Schwartz space S of rapidly decaying C1 functions in Rn, hence, for any u ∈ S
and α ∈ (0, 1), the fractional Laplacian denoted by (−△)α is defined as

(−∆)αu(x) = C(d, α)P.V.

∫

Rd

u(x) − u(y)

| x − y |d+2α
dy

where the principal value is taken as the limit of the integral over R
d \ Bε(x) as ε → 0 and

C(d, α) is a constant that depends on α, given by

C(d, α) = π−(2α+ d
2
) Γ(d

2
+ α)

Γ(−α)

Let note that the principal value is not necessary in the definition if α ∈ (0, 1/2). Indeed,

for any u ∈ S, we have

∫

Rd

u(x) − u(y)

| x − y |d+2α
dy ≤ C

∫

BR(x)

|x − y|

|x − y|d+2α
dy + ‖u‖L∞(Rd)

∫

BR(x)c

1

|x − y|d+2α
dy

7



Chapter 1. Preliminaries and background

= C

(∫

BR(x)

1

|x − y|d+2α−1
dy +

∫

BR(x)c

1

|x − y|d+2α
dy

)

= C

(∫ R

0

1

r2α
dr +

∫ +∞

R

1

r2α+1
dr

)
< +∞

where C is a positive constant.

Now, by two changes of variables, z = y − x and z′ = x − y, we can rewrite (−△)αu as:

(−△)αu =
1

2
C

(
P.V.

∫

Rd

u(x) − u(x + z)

|z|d+2α
dz + P.V.

∫

Rd

u(x) − u(x − z′)

|z′|d+2α
dz′
)

= −
1

2
C · P.V.

∫

Rd

u(x + y) + u(x − y) − 2u(x)

|y|d+2α
dy

Using a second order Taylor expansion, we have

u(x + y) + u(x − y) − 2u(x)

|y|d+2α
≤

‖D2u‖L∞

|y|d+2α−2

which is integrable near 0, thus we can write the singular integral in (1.1) as a weighted second

order differential quotient

(−△)αu = −
1

2
C

∫

Rd

u(x + y) + u(x − y) − 2u(x)

|y|d+2α
dy

To end this part, we state a result which show that the fractional Laplacian (−△)α can be

viewed as a pseudo-differential operator of symbol |ξ|2α.

Theorem 1.1 Let α ∈ (0, 1) and let (−△)α : S → L2(Rd) be the fractional Laplacian operator

defined by (1.1). Then, for any u ∈ S,

(−∆)αu = CF−1(|ξ|2α(Fu)), ∀ξ ∈ R
d

for a suitable positive constant C depending only on s and n.

1.2. Background on reaction-diffusion front propagation

Let f be a function satisfying

f ∈ C1([0, 1]), f(0) = f(1) = 0 and 0 < f(s) ≤ f ′(0)s (1.1)

8



Chapter 1. Preliminaries and background

We are interested in the large time behavior of solutions u = u(t, x) to the Cauchy problem

∂tu −△u = f(u), t > 0, x ∈ R
d (1.2)

u(0, x) = u0(x) x ∈ R (1.3)

the following result of Aronson and Weinberger [2] implies that there is a critical speed c∗ such

that for fairly general initial data u0 that are non-negative and compactly supported, the invasion

rate in which the stable state 1 invades the unstable state 0 is linear in time.

Theorem 1.2 Let c∗ = 2
√

f ′(0) and let u the solution of (1.2)-(1.3) with u0 6≡ 0 compactly

supported in R
d and satisfying 0 ≤ u0(x) ≤ 1. Then:

- if c < c∗, then limt→+∞ inf |x|≤ct u(t, x) = 1,

- if c > c∗, then limt→+∞ sup|x|≥ct u(t, x) = 0.

Freidlin and Gärtner [28] extended the spreading properties to space periodic media and to

some classes of random media using probabilistic tools, proofs using dynamical systems or

PDE arguments are given in [6], [24], [46]. Hence, starting from a positive compactly supported

initial data, in [28] is stated that there exists an asymptotic directional spreading speed w∗(e) >
0 in each direction e, in the sense that

- if 0 ≤ c < w∗(e), then lim inft→+∞ u(t, x + cte) > 0

- if c > w∗(e), then limt→+∞ u(t, x + cte) = 0

locally uniformly in x ∈ R
d, where w∗(e) is characterized by:

w∗(e) = min
e′∈Sd−1,e′·e>0

c∗(e′)

e′ · e

where c∗(e′) is the minimal speed of pulsating traveling fronts in the direction e′.

Moreover, if we consider the case d = 1, it is indeed well-known that the equation ut =
uxx + f(u) admits a family of planar traveling waves u(t, x) = ϕc(x − ct) for all speeds

c ≥ c∗ := 2
√

f ′(0), where, for each speed c ∈ [c∗, +∞), the function φc : R → (0, 1) satisfies

−φ′′
c + cφ′

c = f(φc) in R, φc(−∞) = 1, φc(+∞) = 0,

Furthermore, the function φc is decreasing in R and unique up to shifts. Now, suppose that

u0 : R → [0, 1] is uniformly continuous and satisfy

u0 > 0 in R, lim
x→−∞

u0(x) > 0 and lim
x→∞

u0(x) = 0 (1.4)

9



Chapter 1. Preliminaries and background

If u0(x) is equivalent as x → +∞ to a multiple of e−µx with 0 < µ < µ∗ =
√

f ′(0), then

u(t, x) converges to a finite shift of the front ϕc(x− ct) as t → +∞, where c = µ + f ′(0)
µ

> c∗.

On the other hand, if u0(x) = O(e−µ∗x) as x → +∞, then u(t, x) behaves as t → +∞ like

ϕc∗(x + m(t) − c∗t), where the shift m satisfies m(t) = O(ln(t)) as t → +∞ (the limit case

when u0 = 0 on [0, +∞) was first treated in the seminal paper of Kolmogorov, Petrovski and

Piskunov [17]). In these two situations, the location of the solution u at large time moves at

a finite speed, in the sense that, for any λ ∈ (0, 1) and any family of real numbers xλ(t) such

that u(t, xλ(t)) = λ, then xλ(t)/t converges as t → +∞ to a positive constant. This constant

asymptotic speed is equal to c = µ + f ′(0)
µ

in the first case, it is equal to c∗ in the second case.

Furthermore if we suppose that there exist δ > 0, s0 ∈ (0, 1) and M ≥ 0 such that

f(s) ≥ f ′(0)s − Ms1+δ for all s ∈ [0, s0] (1.5)

and the function u0 is assumed to decay more slowly than any exponentially decaying function

as x → +∞, in the sense that

∀ε > 0, ∃xε ∈ R, u0(x) ≥ e−εx for x ∈ [xε,∞) (1.6)

Hamel and Roques [29] prove that all level sets of the solutions move infinitely fast as time goes

to infinity and the locations of the level sets are expressed in terms of the decay of the initial

condition. Hence, [29] contains the first systematic study of the large-time behavior of solutions

of KPP equations with slowly decaying initial conditions. These results are in sharp contrast

with the well-studied case of exponentially bounded initial conditions, where the solution u
converge in some sense to some traveling fronts with finite speed as t → +∞.

Before to state the results, we need to introduce a few notations. For any λ ∈ (0, 1) and

t ≥ 0, denote by

Eλ(t) = {x ∈ R : u(t, x) = λ}

the level set of u of value λ at time t. For any subset A ⊂ (0, 1], we set

u−1
0 (A) = {x ∈ R : u0(x) ⊂ A},

the inverse image of A by u0.

Theorem 1.3 Let u be the solution of (1.2)-(1.3), where f satisfies (1.1) and the initial condition

u0 : R → [0, 1] satisfies (1.4) and (1.6).

a) Then

lim
x→+∞

u(t, x) = 0 ∀t ≥ 0 and lim inf
x→−∞

u(t, x) = 1 as t → ∞

10



Chapter 1. Preliminaries and background

b) For any given λ ∈ (0, 1), there is a real number tλ > 0 such that Eλ(t) is compact and

non-empty for all t ≥ tλ, and

lim
t→+∞

min Eλ(t)

t
= +∞ (1.7)

Part b) of Theorem 1.3 simply says that the level sets Eλ(t) of all level values λ ∈ (0, 1)
move infinitely fast as t → +∞, in the average sense (1.7). As already announced above, this

property is in big contrast with the finiteness of the propagation speeds of solutions which are

exponentially bounded as x → +∞ at initial time.

Now, we state the main result which show a relation between the initial condition and the

large-time behavior of the level sets of the solution u.

Theorem 1.4 Let u be the solution of (1.2)-(1.3), where f satisfies (1.1), (1.5) and the initial

condition u0 : R → [0, 1] satisfies (1.4) and (1.6). Assume that there exists ξ0 ∈ R such that u0

is of class C2 and nonincreasing on [ξ0,∞), and u′′
0(x) = o(u0(x)) as x → ∞.

Then, for any λ ∈ (0, 1), δ ∈ (0, f ′(0)), γ > 0 and Γ > 0, there exists τ = τλ,δ,γ,Γ ≥ tλ such

that

∀t ≥ τ, Eλ(t) ⊂ u−1
0 {[γe−(f ′(0)+δ)t, Γe−(f ′(0)−δ)t]} (1.8)

Observe first that the real numbers γe−(f ′(0)+δ)t and Γe−(f ′(0)−δ)t belong to (0, supR u0) for

large t. Now, if there is a a ∈ R such that u0 is strictly decreasing on [a, +∞), then the inclusion

of Theorem 1.4 means that

u−1
0

(
Γe−(f ′(0)−δ)t

)
≤ min Eλ(t) ≤ max Eλ(t) ≤ u−1

0

(
γe−(f ′(0)+δ)t

)
(1.9)

for large t, where, u−1
0 : (0, u0(a)] → [a, +∞) denotes the reciprocal of the restriction of the

function u0 on the interval [a, +∞). Furthermore, if u0 is nonincreasing over the whole real line

R, then the derivative ux(t, x) is negative for all t > 0 and x ∈ R, from the parabolic maximum

principle. Therefore, Eλ(t) is either empty or a singleton as soon as t > 0. In particular,

Eλ(t) = {xλ(t)} for all t > tλ, where xλ(t) satisfies u(t, xλ(t)) = λ. The inequalities (1.9)

then provide lower and upper bounds of xλ(t) for large t. However, it is worth pointing out that

Theorem 1.4 is valid for general initial conditions which decay slowly to 0 at +∞ but which

may not be globally nonincreasing.

Furthermore, for any λ ∈ (0, 1), formula (1.8) with γ = Γ = λ can be rewritten as

u0(xλ(t))e
(f ′(0)−δ)t ≤ λ ≤ u0(xλ(t))e

(f ′(0)+δ)t

11
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for t large enough. Roughly speaking, this means that the real numbers xλ(t) are then asympto-

tically given, in the above approximate sense, by the solution of the family of decoupled ODE’s

∂tU(t, x) = f ′(0)U(t, x)

U(0, x) = U0(x)

parameterized by x ∈ R, and then, say, by solving U(t, xλ(t)) = λ. In other words, the behavior

of u(t, x) at large time is dominated by the reaction term, that is to say that the diffusion term

plays in some sense a negligible role as compared to the growth by reaction.

Moreover, Theorem 1.4 actually yields the following corollary, which states that the level

sets Eλ(t) can be located as far to the right as wanted, provided that the initial condition is well

chosen.

Corolary 1.5 Under the assumptions and notations of Theorem 1.4, the following holds: given

any function χ : [0,∞) → R which is locally bounded, there are initial conditions u0 such that,

for any given λ ∈ (0, 1)
min Eλ(t) ≥ χ(t)

for all t large enough.

To end this section, we present the principal results stated by Berestycki, Hamel and Roques

in [7]. The authors prove existence and uniqueness results for the stationary equation and also

they analyze the behavior of the solutions of the evolution equation for large times. These results

are expressed by a condition on the sign of the first eigenvalue of the associated linearized

problem with periodicity condition.

Thus, we are concerned with the equation

∂tu −∇ · (A(x)∇u) = f(x, u), t > 0, x ∈ R
d (1.10)

and its stationary solutions given by

−∇ · (A(x)∇u) = f(x, u), x ∈ R
d (1.11)

Let L1, ..., Ld > 0 be d given real numbers. In the following, saying that a function g : R
d → R

is periodic means that g(x1, ..., xk + Lk, ..., xd) = g(x1, ..., xd) for all k = 1, ..., d. Let us

now describe the precise assumptions. Throughout the paper, the diffusion matrix field A(x) =
(aij(x))1≤i,j≤d is assumed to be periodic, of class C1,α (with α > 0), and uniformly elliptic, in

the sense that

∃α0 > 0, ∀x ∈ R
d, ∀ξ ∈ R

d,
∑

1≤i,j≤d

aij(x)ξiξj ≥ α0|ξ|
2

The function f : R
d × R → R is of class C0,α in x locally in u, locally Lipschitz continuous

with respect to u, periodic with respect to x. Moreover, assume that f(x, 0) = 0 for all x ∈ R
d,

that f is of class C1 in R
d × [0, β] (with β > 0), and set fu(x, 0) := lims→0+ f(x, s)/s.

12
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In several results below, the function f is furthermore assumed to satisfy

∀x ∈ R
d, s 7→ f(x, s)/s is decreasing in s > 0 (1.12)

and

∃M ≥ 0, s ≥ M, ∀x ∈ R
d, f(x, s) ≤ 0 (1.13)

Examples of functions f satisfying (1.12 and (1.13) are functions of the type f(x, u) = u(µ(x)−
ν(x)u) or simply f(x, u) = u(µ(x) − u), where µ and ν are periodic.

Namely, we define λ1 as the unique real number such that there exists a function φ > 0
which satisfies

−∇ · (A(x)∇φ) − fu(x, 0)φ = λ1φ in R
d

φ > 0 is periodic, φ > 0, ‖φR0‖ = 1

We are now ready to state the existence and uniqueness result on problem (1.11). Let us start

with the criterion for existence.

Theorem 1.6 1) Assume that f satisfies (1.13) and λ1 < 0. Then, there exists a positive and

periodic solution p of (1.11).

2) Assume that f satisfies (1.12) and that λ1 ≥ 0. Then there is no positive bounded solution

of (1.11) (i.e. 0 is the only nonnegative and bounded solution of (1.11)).

Next we state our uniqueness result.

Theorem 1.7 Assume that f satisfies (1.12) and λ1 < 0. Then, there exists at most one positive

and bounded solution of (1.11). Furthermore, such a solution, if any, is periodic with respect

to x. If λ1 ≥ 0 and f satisfies (1.12), then there is no nonnegative bounded solution of (1.11)

other than 0.

The core part in the proof of the above theorem consists in proving that any positive solution

of (1.11) is actually bounded from below by a positive constant, which does not seem to be a

straightforward property.

Let us now consider the parabolic equation (1.10), and let u(t, x) be a solution of (1.10),

with initial condition u(0, x) = u0(x) in R
d. The asymptotic behavior of u(t, x) as t → +∞ is

described in the following theorem:

Theorem 1.8 Assume that f satisfies (1.11) and (1.12). Let u0 be an arbitrary bounded and

continuous function in R
d such that u0 ≥ 0, u0 6≡ 0. Let u(t, x) be the solution of (1.10) with

initial datum u(0, x) = u0(x).

13
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1) If λ1 < 0, then u(t, x) → p(x) in C2
loc(R

d) as t → +∞, where p is the unique positive

solution of (1.11).

2) If λ1 ≥ 0, then u(t, x) → 0 uniformly in R
d as t → +∞.

1.3. Background on fractional reaction-diffusion front pro-

pagation

We are interested in the time asymptotic location of the level sets of solutions to the equation

∂tu + (−∆)αu = f(u), t > 0, x ∈ R
d (1.14)

u(0, x) = u0(x) x ∈ R
d (1.15)

with 0 < α < 1 and f a concave function satisfying (1.1). Given λ ∈ (0, 1), we want to describe

how the level sets {x ∈ R
d : u(t, x) = λ} spread as time goes to +∞.

The results established by Cabré and Roquejoffre in [15] and announced in [14], show that

there exist drastic changes in the behavior of solutions as soon as the Laplacian is replaced for

instance by the fractional Laplacian (−△)α with α ∈ (0, 1). They prove that the front position

will be exponential in time, in contrast with the classical case where it is linear in time by

Theorem 1.2.

For α ∈ (0, 1), the fractional Laplacian is the generator for a stable Lévy process. It is rea-

sonable to expect that the existence of jumps (or flights) in the diffusion process will accelerate

the invasion of the unstable state u = 0 by the stable one, u = 1.

The first result concerns a class of initial data in R
d, possibly discontinuous, which includes

compactly supported functions. The following theorem shows that the position of all level sets

moves exponentially fast in time.

Theorem 1.9 Let d ≥ 1, α ∈ (0, 1) and f satisfy (1.1). Let define c∗ = f ′(0)
d+2α

. Let u be a

solution of (1.14)-(1.15), where u0 6≡ 0, 0 ≤ u0 ≤ 1 is measurable, and

u0(x) ≤ C|x|−d−2α ∀x ∈ R
d

for some constant C. Then:

-if c < c∗, then limt→∞ inf |x|≤ect u(t, x) = 1,

-if c > c∗, then limt→∞ sup|x|≥ect u(t, x) = 0.

A delicate step to prove the previous theorem is the following lemma.

14
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Lemma 1.10 Under the assumptions of Theorem 1.9, for every c < c∗ there exists ε ∈ (0, 1)
and t > 0 such that

u(t, x) ≥ ε for all t ≥ t and |x| ≤ ect

Even if this lemma concerns initial data decaying at infinity, from it we can deduce the non-

existence of planar traveling waves, under no assumption of their behavior at infinity, as in the

following statement.

Proposition 1.11 Let d ≥ 1, α ∈ (0, 1), f satisfy (1.1). Then, there exists no nonconstant

planar traveling wave solution of (1.14)-(1.15). That is, all solutions of (1.14)-(1.15) taking

values in [0, 1] and of the form u(t, x) = φ(x + te), for some vector e ∈ R
d, are identically 0 or

1. Equivalently, the only solutions φ : R
d → [0, 1] of

(−△)αφ + e · ∇φ = f(φ) in R
d (1.16)

are φ = 0 and φ = 1.

The last statement on the elliptic equation (1.16) has an analogue for the Laplacian. As shown

in [2], if |e| < 2
√

f ′(0) then equation (1.16) with α = 1 admits the constants 0 and 1 as only

solutions taking values in [0, 1].

In one space dimension, it is of interest to understand the dynamics of nonincreasing initial

data. As mentioned before, for the standard Laplacian the level sets of u travel with the speed

c∗, provided that u0 decays sufficiently fast at +∞. In the fractional case, the mass at +∞
has an effect and what happens is not a mere copy of the result of Theorem 1.9 for compactly

supported data. The mass at +∞ makes the front travel faster to the left, indeed with a larger

exponent than c∗.

Theorem 1.12 Let d = 1, α ∈ (0, 1) and f satisfy (1.1). Let define the quantity c∗∗ = f ′(0)
2α

. Let

u be a solution of (1.14)-(1.15) and suppose that 0 ≤ u0 ≤ 1 is measurable and nonincreasing,

u0 6≡ 0 and

u0(x) ≤ Cx−2α ∀x > 0

for some constant C. Then:

-if c < c∗∗, then limt→∞ infx≤ect u(t, x) = 1,

-if c > c∗∗, then limt→∞ supx≥ect u(t, x) = 0.

Remark 1.13 Note that

c∗∗ =
f ′(0)

2α
>

f ′(0)

1 + 2α
= c∗

where c∗ is the exponent in Theorem 1.9 for d = 1 and compactly supported data.

15
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Notice also the slower power decay assumed in the initial condition with respect to Theorem 1.9.

One could wonder whether a model with such features is physically, or biologically relevant. In

fact, this behavior is consubstantial to fast diffusion, and the model may be relevant to explain

fast recolonization events in ecology.

To end this subsection, we consider the function f periodic in each xi-variable and satisfies

f(x, 0) = 0 for all x ∈ R
d, moreover

∀x ∈ R
d, s 7→ f(x, s)/s is decreasing in s > 0 (1.17)

and

∃M ≥ 0, s ≥ M, ∀x ∈ R
d, f(x, s) ≤ 0 (1.18)

Examples of functions f satisfying (1.17 and (1.18) are functions of the type f(x, u) = u(µ(x)−
u), where µ is periodic, note that if µ = 1 (homogeneous media) the function f satisfies (1.1).

The nonlinearity µ(x)u − u2 is often referred to as a Fisher-KPP type nonlinearity.

Let λ1 be the principal periodic eigenvalue of the operator (−△)α − fu(x, 0). From [10]

we know that if λ1 > 0, every solution to (1.14)-(1.15) starting with a bounded nonnegative

initial condition tends to 0 as t → +∞. Thus we assume λ1 < 0. Then, by [10], the solution to

(1.14)-(1.15) tends, as t → +∞, to the unique bounded positive steady solution to (1.14)-(1.15),

denoted by u+. By uniqueness, u+ is periodic and the convergence holds on every compact set.

Moreover, if we consider the problem (1.14)-(1.15) with the nonlinearity f(u) = µ(x)u−u2

with µ periodic. Cabré, Coulon and Roquejoffre proved in [16] that the speed of propagation is

exponential in time, with a precise exponent depending on a periodic principal eigenvalue, and

that it does not depend on the space direction. This result is in contrast with the Freidlin-Gärtner

formula for the standard Laplacian.

Theorem 1.14 Assume that λ1 < 0. Let u be the solution to (1.14)-(1.15) with u0 piecewise

continuous, nonnegative, u0 6≡ 0, and u0(x) = O(|x|d+2α) as |x| → +∞. Then, for every

λ ∈ (0, min µ), there exist cλ > 0 and a time tλ > 0 (all depending on λ and u0) such that, for

all t > tλ,

{x ∈ R
d| u(t, x) = λ} ⊂ {x ∈ R

d| cλe
|λ1|

d+2α ≤ |x| ≤ c−1
λ e

|λ1|
d+2α}

Note that if µ = 1 then λ = −1 and f ′(0) = 1, therefore, the estimate obtained is much sharper

than that in Theorem 1.9.
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1.4. Background on reaction-diffusion systems. Spreading

speeds

In the first part of this subsection, we are interested in the large time behavior of the solution

u = (ui)
m
i=1 with m ∈ N

∗, to the one-dimensional weakly coupled reaction-diffusion system of

the form:

∂tui(t, x) − di△ui(t, x) = fi(u(t, x)), ∀(t, x) ∈ R
∗
+ × R (1.19)

ui(0, x) = u0i(x), ∀x ∈ R (1.20)

for all i ∈ {1, ...,m}, where each di is a nonnegative constant and f = (fi)
m
i=1 is independent

of x and t. If a = (ai)
m
i=1 is a constant positive vector, we define the set of functions

Ca = {u(x) : u(x) continuous and 0 ≤ u(x) ≤ a}

As general assumptions, we suppose that f ∈ C([0, a]) and the only zeros of f in Ca are 0 and a,

also, the system (1.19)-(1.20) is cooperative; i.e., each fi(u) is nondecreasing in all components

of u with the possible exception of the ith one.

In what follow, we present the results of Lewis, Li and Weinberger [37]. They showed the

existence of a single spreading speed σ∗ for which the system (1.19)-(1.20) admit a traveling

wave solution W (x − σt) for all speeds σ ≥ σ∗.

Before to state this result, we need some additional hypothesis.

H1. f has uniformly bounded piecewise continuous first partial derivatives for 0 ≤ u ≤ a,

and it is differentiable at 0.

H2. The Jacobian matrix f ′(0), whose off-diagonal entries are nonnegative, has a positive

eigenvalue whose eigenvector has positive components.

Theorem 1.15 Suppose that the function f in the system (1.19)-(1.20) satisfies the additional

hypothesis (H1), (H2) and the initial condition u0 = (u0i)
m
i=1 is 0 for all sufficiently large x, and

that there are positive constants 0 < ρ ≤ σ < 1 such that 0 ≤ u0 ≤ σa for all x and u0 ≥ ρa
for all sufficiently negative x.

Then there exist σ∗, such that for every σ ≥ σ∗ the system (1.19)-(1.20) has a nonincreasing

traveling wave solution W (x − σt) of speed σ with W (−∞) = a and W (+∞) = 0.

Moreover, if there is a traveling wave W (x − σt) with W (−∞) = a such that for at least

one component i
lim inf
x→+∞

Wi(x) = 0

then σ ≥ σ∗.

17
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Note that the last statement has an analogue when we consider a single equation with standard

Laplacian, in that case the limit speed is given by 2
√

f ′(0).

The next result is stated by Lewis, Li and Weinberger in [44]. They establish the existence of

a explicit spreading speed σ∗ for which the solution of the system (1.19)-(1.20) spread linearly

in time, when the time tends to +∞.

As in the previous result, we need some additional hypothesis.

H3. f(u) is piecewise continuously differentiable in u for 0 ≤ u ≤ a and differentiable at 0.

H4. The Jacobian matrix f ′(0) is in Frobenius form. The principal eigenvalue γ1(0) of its

upper left diagonal block is positive and strictly larger than the principal eigenvalues

γk(0) of its other diagonal blocks, and there is at least one nonzero entry to the left of

each diagonal block other than the first one.

Before to continue, we introduce some notations. We define the matrix

Cµ = diag(diµ
2) + f ′(0)

where µ is a positive number and f ′(0) is the Jacobian matrix with entries fi,uj
(0). The off-

diagonal entries of Cµ are nonnegative because the system is cooperative. We also define, the

matrix Bµ given by the formula

Bµ = exp(Cµ)

hence, we have that the eigenvalues λk of Bµ are given by λk = eγk(µ) where γk is the principal

eigenvalue of the kth diagonal block of the matrix Cµ. Moreover, we define

σ∗ := inf
µ>0

[γ1(µ)/µ] (1.21)

Let µ ∈ (0, +∞] the value of µ at which this infimum in (1.21) is attained, and let ζ(µ) be the

eigenvector of Bµ which corresponds to the eigenvalue λ1(µ).

Theorem 1.16 Suppose that the function f in the system (1.19)-(1.20) satisfies the additional

hypothesis (H3), (H4). Assume that µ is finite,

γ1(µ) > γσ(µ) for all σ > 1

and

f(ρζ(µ)) ≤ ρf ′(0)ζ(µ) for all ρ > 0

Then there exist σ∗ defined by (1.21) such that for any initial condition u0(x) in Ca which

vanishes outside a bounded set, the solution of (1.19)-(1.20) has the properties that for each

positive ǫ

lim
t→+∞

[
max

|x|≥t(σ∗+ǫ)
|u(x)|

]
= 0

18
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and for any strictly positive constant vector ω there is a positive Rω with the property that if

u0 ≥ ω on an interval of length 2Rω, then

lim
t→+∞

[
max

|x|≤t(σ∗−ǫ)
|a − u(x)|

]
= 0

It is easy to see that if a function f satisfies (H1),(H3) and (H4) then σ∗ in Theorem 1.14 is

equal to σ∗ defined by (1.21).

Following the line, Barles, Evans and Sougandis [4] present another approach to the study

of the limiting behavior of the solution of certain scaled reaction-diffusion systems. Hence, they

considered the system

∂tu
ε
i = εdi△uε

i +
1
ε
fi(u

ε), in R
∗
+ × R

d (1.22)

uε
i (0, x) = gi(x), on x ∈ R

d (1.23)

for all i ∈ {1, ...,m}. Here the constants dk (1 ≤ k ≤ m), and the functions

g : R
d → R

m and f : R
m → R

m

are given, where we write g = (gi)
m
i=1, f = (fi)

m
i=1. The unknown is uε = (uε

i )
m
i=1. We will

assume that

di > 0 ∀ i ∈ {1, ...,m}

and that the functions g, f are smooth, bounded and Lipschitz. In addition we suppose

gi > 0 ∀ i ∈ {1, ...,m}

and

G0 = {x : gi(x) > 0} ∀ i ∈ {1, ...,m}

is a bounded, smooth subset of R
d. Our essential assumptions all concern the reaction term f .

First of all we suppose

(H1) f(0) = 0

and also

(H2) fi(u1, ..., ui−1, 0, ui+1, ..., um) > 0 if u1, ..., ui−1, ui+1, ..., um ≥ 0 and ul > 0 for some

index l 6= i
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Consequently, the vector field f points strictly inward along the boundary of the positivity set

Π = {u ∈ R
m : u1 > 0, ..., um > 0}

except at the point 0, which is an equilibrium point for the system (1.22)-(1.23). To ensure that

our solutions uε do not become unbounded as ε → 0, we further hypothesize

(H3) there exists a constant Λ such that fi(u) ≤ 0 for all i ∈ {1, ...,m}, if u ∈ Π and ui ≥ Λ.

Next we set forth additional hypotheses which imply that the rest point 0 is unstable. Let us

define the m × m matrix

C := Df(0)

Df denoting the gradient of f . Thus

cik = fi,uk
(0), ∀1 ≤ i, k ≤ m

We assume

(H4)

cik > 0, ∀1 ≤ i, k ≤ m

and also

(H4)

fi(u) ≤ cikuk, u ∈ Π, ∀ 1 ≤ i, k ≤ m

where we employ the standard summation convention.

The main result stated in Theorem 1 [4], asserts that under hypotheses (F1)-(F5), uε(x, t)
converges as ε → 0 to zero or not depending on whether J(t, x) > 0 or J(t, x) < O, the

function J satisfying a Hamilton-Jacobi problem, whose structure we now describe. Given

p ∈ R
d, define the m × m matrix

B(p) = diag(..., di|p|
2, ...)

and then set

A(p) = B(p) + C

Now the matrix A(p) has positive entries, and so Perron-Frobenius theory asserts that A(p)
possesses a simple, real eigenvalue λ1 = λ1(A)(p) satisfying

Re(λ) < λ1
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for all other eigenvalues λ of A(p). Let us define then the Hamiltonian

H(p) = λ1(A(p))

We additionally set

L(q) = sup
p∈Rd

(p · q − H(p))

L is the Lagrangian associated with H . Finally we define for each point (t, x) ∈ R+ × R
d the

action function

J(t, x) = inf

{∫ t

0

L(ż(s))ds | z(0) ∈ G0, z(t) = x

}

the infimum taken over all absolutely continuous functions z : [0, t] → R
d, satisfying the stated

initial and terminal conditions. As we will see, J turns out to be the unique solution of the

Hamilton-Jacobi equation

Jt + H(DJ) = 0, in R
∗
+ × R

d

J = 0, on G0 × {0}

J = +∞ on int(Rd − G0) × {0}

in the viscosity sense.

Theorem 1.17 Under hypotheses (F1)-(F5) we have

- limε→0 uε = 0 uniformly on compact subset of {J > 0}

- lim infε→0 uε
i > 0 uniformly on compact subset of {J < 0}, ∀ i ∈ {1, ...,m}

We interpret this theorem as describing how the Hamiltonian H , which depends upon both

C = Df(0) and the diffusion constants dl, ..., dm, controls the instability of the equilibrium

point 0.

1.5. Presentation of main results

This section is devoted to present the principal results that we will present is the following

chapters. Hence, in Chapter 2, we consider the problem

ut + (−∆)αu = f(u) (1.24)

u(0, x) = u0(x) (1.25)

with α ∈ (0, 1) in one spatial dimension. We assume that the nonlinearity in (1.24) is of Fisher-

KPP type, that is, f : [0, 1] → R is of class C1, concave and it satisfies

f(0) = f(1) = 0, f ′(1) < 0 < f ′(0). (1.26)
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Also, we assume that the initial condition u0 : R → [0, 1] is continuous and it satisfies

u0 > 0 in R, lim
x→−∞

u0(x) > 0 and lim
x→∞

u0(x) = 0, (1.27)

furthermore

There exists ξ0 ∈ R, such that u0 is non-increasing in [ξ0,∞). (1.28)

In view of the result stated in the Subsection 1.2 obtained by Hamel and Roques for slowly

decaying front-like initial values in the case α = 1, a natural question is what kind of asymptotic

behavior does a solution of (1.24)-(1.25) with initial value decaying slower than a power |x|−b

have?. The purpose of Chapter 2 is to answer this question for the case of fractional laplacian,

with α ∈ (0, 1) in the one dimensional case. The main result states that, for b < 2α, the

central part of the solution moves to the right at exponential speed f ′(0)/b, which is faster than

c∗∗ (Theorem 1.12), the exponential speed for solutions with initial values decaying faster than

x−2α. Furthermore, it is proved that the initial condition u0 can be chosen so that the location

of the solution u be asymptotically larger than any prescribed real-valued function.

The first result provides basic properties of the solutions of (1.24)-(1.25) and says that the

level sets Eλ(t) move at least exponentially fast as t → ∞.

Theorem 1.18 Let α ∈ (0, 1) and c∗ = f ′(0)
2α

and let u be the solution of (1.24)-(1.25), where

f satisfies (1.26) and the initial condition u0 : R → [0, 1] satisfies (1.27) and (1.28). Then u
satisfies:

a) 0 ≤ u(t, x) ≤ 1 for all (t, x) ∈ (0,∞) × R. and

lim
x→+∞

u(t, x) = 0 ∀ t ≥ 0 and lim
t→+∞

inf
x≤ect

u(t, x) = 1 ∀c < c∗

b) For any given λ ∈ (0, 1), there is a real number tλ > 1 such that Eλ(t) is compact and

non-empty for all t ≥ tλ.

As in Subsection 1.2, we denote by Eλ(t) the level sets of u of value λ ∈ (0, 1) at time t ≥ 0.

Hence, the following result is the main theorem which states a more accurate understanding of

the behavior of Eλ(t), actually we express the motion of Eλ(t) in terms of the behavior of the

initial value u0. For doing this we need some additional hypothesis that expresses the slow

decay of the initial values:

(H1) There exists b < 2α, such that u0(x) ≥ x−b for all x ≥ ξ0.
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(H2) There exist ρ > 1 and k > 0 such that

u0(ρx)

u0(x)
≥ k, for x ≥ ξ0.

Now we are in a position to state our main theorem.

Theorem 1.19 Let α ∈ (0, 1), λ ∈ (0, 1) and let u be the solution of (1.24)-(1.25), where f
satisfies (1.26) and the initial condition u0 : R → [0, 1] satisfies (1.27), (1.28) and hypothesis

(H1) and (H2).

Then, for any Γ > 0, γ > 0 and δ ∈ (0, f ′(0)), there exist τ = τ(λ, Γ, γ, δ, b) ≥ tλ such that

Eλ(t) ⊂ u−1
0 {[γe−(f ′(0)+δ)t, Γe−(f ′(0)−δ)t]}, ∀t ≥ τ,

where tλ was given in Theorem 1.1.

As a corollary of this theorem, we see that by choosing the initial condition appropriately, we

are able to obtain any fast fast behavior of the set Eλ(t). In precise terms we have,

Corolary 1.20 Under the assumptions of Theorem 1.19, given any function χ : [0,∞) → R

which is locally bounded, there are initial conditions u0 such that, for any given λ ∈ (0, 1)

min Eλ(t) ≥ χ(t)

for all t large enough.

The proof of Theorem 1.19 is inspired in the work by Hamel and Roques [29]. But in this

case, the non-local character of the differential operator introduces a series of difficulties that

were not present in the local case, also, the non-existence of traveling waves for the fractional

problem, as proved in [15], implies to change various other arguments given in [29]. Theorem

1.19 and Corollary 1.20 complement the results by Cabré and Roquejoffre, where they estimate

the asymptotic behavior of solutions with front-like initial values which decays faster than x−2α

as x → ∞. In our case we assume the initial value decays slower than a power x−b, with

b < 2α, the complementary exponents. In a sense we generalize to the case α ∈ (0, 1) results

proved by Hamel and Roques in [29], replacing the Laplacian by the fractional Laplacian.

In Chapter 3, we study the large time behavior of solution to the fractional cooperative

system:

∂tui + (−△)αiui = fi(u), in R
∗
+ × R

d (1.29)

ui(0, x) = u0i(x), on R
d (1.30)
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where αi ∈ (0, 1] for all i ∈ {1, ...,m} with at least one αi 6= 1 and u = (ui)
m
i=1 with m ∈

N
∗. For what follows and without loss of generality, we suppose that αi+1 ≤ αi for all i ∈

{1, ...,m − 1} and we set α := αm < 1.

As general assumptions, we impose the initial conditions u0i 6≡ 0 to be nonnegative, conti-

nuous and bounded by constants ai > 0 and satisfy

u0i(x) = O(|x|−(d+2αi)) as |x| → ∞,∀i ∈ {1, ...,m} (1.31)

The functions fi satisfy

fi ∈ C1(Rm) and
∂fi(u)

∂uj

> 0 ∀i 6= j (1.32)

i.e., the system (1.29)-(1.30) is cooperative. Moreover, we assume fi(0) = 0 and some addi-

tional hypothesis, which are compatible with strongly coupled systems.

(H1) The principal eigenvalue λ1 of the matrix DF (0) is strictly positive, where F = (fi)
m
i=1.

There exist positive constants δ1 and δ2 such that

(H2) Dfi(0)u − fi(u) ≥ cu1+δ1
i .

(H3) Dfi(0)u − fi(u) ≤ c‖u‖1+δ2 .

(H4) F is concave, DF (0) is a symmetric matrix and
∂fi(0)
∂ui

> 0 for all i ∈ {1, ...,m}.

where δ1, δ2 ≥
2

d+2α
and ‖ · ‖ in (H3) is any norm on R

m.

The purpose of this work is to understand the time asymptotic behavior of solutions to (1.29)-

(1.30). We show that the speed of propagation is exponential in time, with a precise exponent

depending on the smallest index α and of the principal eigenvalue λ1 of the matrix DF (0). Also

we note that it does not depend on the space direction. Moreover, we prove that the solution of

the system (1.29)-(1.30), tends to unique positive steady state solution as t → +∞.

Moreover, we consider the Banach space

C0(R
d) := {w is continuous in R

d and w(x) → 0 as |x| → ∞}

with the L∞(Rd) norm and we set D0(Ai) the domain of the operator Ai = (−△)αi in C0(R
d).

In what follows we assume that u0i ∈ D0(Ai) for all i ∈ {1, ...,m}.

Now we are in a position to state our main theorems, which show that the functions move

exponentially fast for large times.
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Theorem 1.21 Let d ≥ 1 and assume that F satisfies (1.32), (H1), (H2) and (H3). Let u be the

solution to (1.29)-(1.30) with u0 satisfying (1.31). Then:

a) for every µi > 0, there exists a constant c > 0 such that,

ui(t, x) < µi, for all t ≥ τ and |x| > ce
λ1

d+2α
t

b) there exist constants εi > 0 and C > 0 such that,

ui(t, x) > εi, for all t ≥ τ and |x| < Ce
λ1

d+2α
t

for all i ∈ {1, ...,m} and τ > 0 large enough.

To state the following result, we consider φ the positive constant eigenvector of DF (0)
associated to the first eigenvalue λ1, where F = (fi)

m
i=1. Thus λ1 > 0 and φ > 0 satisfy

(L − DF (0))φ = −λ1φ

φ > 0, ‖φ‖ = 1

where L = diag((−△)α1 , ..., (−△)αm). Now, let consider the problem

χ̇ε(t) = F (χε(t))

χε(0) = εφ

thus, there exists ε′ > 0 such that, for each ε ∈ (0, ε′) we can find a constant u+
ε > 0 satisfying

χε(t) ր u+
ε as t → +∞, also F (u+

ε ) = 0. We define

u+ = inf
ε∈(0,ε′)

u+
ε

since F is continuous, we deduce that F (u+) = 0. Also, since the function F is positive in a

small ball near to zero, we have that u+ > 0.

Moreover we assume that the initial condition u0 satisfies

u0 ≤ u+ in R
d (1.33)

Theorem 1.22 Let d ≥ 1 and assume that F satisfies (1.32), (H1), (H2), (H3) and (H4). Let u
be the solution to (1.29)-(1.30) with u0 satisfying (1.31) and (1.33). Then:

a) If c < λ1

d+2α
, then

lim
t→+∞

inf
|x|≤ect

|ui(t, x) − u+
i | = 0

b) If c > λ1

d+2α
, then

lim
t→+∞

sup
|x|≥ect

ui(t, x) = 0

for all i ∈ 1, ...,m.
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Chapter 2

Fast propagation for fractional KPP

equations with slowly decaying initial

conditions.

Work in colaboration with Patricio Felmer.

2.1. Introduction

In this chapter we study the large-time behavior of the solution of the Cauchy problem for

fractional reaction-diffusion equations

ut + (−∆)αu = f(u) (2.1)

u(0, x) = u0(x) (2.2)

with α ∈ (0, 1) in one spatial dimension. Let us now provide a precise description of our

assumptions and results. We assume that the nonlinearity in (2.1) is of Fisher-KPP type, that is,

f : [0, 1] → R is of class C1, concave and it satisfies

f(0) = f(1) = 0, f ′(1) < 0 < f ′(0). (2.3)

This properties mean that the growth rate
f(s)

s
is maximal at s = 0.

We assume that the initial condition u0 : R → [0, 1] is continuous and it satisfies

u0 > 0 in R, lim
x→−∞

u0(x) > 0 and lim
x→∞

u0(x) = 0, (2.4)
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furthermore we assume that:

There exists ξ0 ∈ R, such that u0 is non-increasing in [ξ0,∞). (2.5)

When u0 satisfies the earlier conditions we say that u0 is asymptotically front-like.

In what follows, we prove that when the initial condition is globally front-like and it decays

slowly, then the asymptotic behavior of the front exhibits an exponentially fast propagation and

a very precise estimate can be obtained for the propagation of the level sets of the front in terms

of the initial value, giving a precise superlinear behavior.

2.2. Basic properties

We first recall the notion of mild solution that suited to our problem and we state the Comparison

Principle that will be a crucial tool in our analysis. Then we present the Theorem 2.2 that follows

the line of the corresponding result in [14] and [15].

In studying the existence of solution of equation (2.1)-(2.2) we first consider the linear heat

equation for the fractional Laplacian

ut + (−∆)αu = f(t, x) (2.6)

u(0, x) = u0(x), (2.7)

whose solution may be obtained by the formula of variation of parameters or Duhamel formula

u(t, x) = p(t, x) ∗ u0(x) +

∫ t

0

p(t − s, x) ∗ f(s, x)ds, (2.8)

where the convolution is taken in the variable x. Here the kernel p is given by p(t, x) =

t−
1
2α pα(t−

1
2α x), where

pα(x) =
1

2π

∫

R

eixξ−|ξ|2α

dξ

and it satisfies the following properties:

a) p ∈ C((0, +∞), R).

b) p(t, x) ≥ 0 and
∫

R
p(t, x)dx = 1 for all t > 0.

c) p(t, ·) ∗ p(s, ·) = p(t + s, ·) for all t, s ∈ R+

d) There exists B > 1 such that, for (t, x) ∈ R+ × R:

B−1

t
1
2α (1+ | xt−

1
2α |1+2α)

≤ p(t, x) ≤
B

t
1
2α (1+ | xt−

1
2α |1+2α)

. (2.9)
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Now we consider the Banach space

Clim = {w ∈ C(R) | lim
x→−∞

w(x) and lim
x→+∞

w(x) exist},

equipped with the supremum norm. Given u0 ∈ Clim, equation (2.1)-(2.2), with Fisher-KPP

nonlinearities f and initial condition u0, has a unique solution u that exists for all x ∈ R and

t ≥ 0, moreover, u(t, ·) ∈ C([0,∞), Clim). This solution u can be obtained as the limit of the

iteration scheme

un+1(t, x) = p(t, x) ∗ u0(x) +

∫ t

0

p(t − s, x) ∗ f(s, un(s, x))ds, (2.10)

with u0(t, x) = p(t, x) ∗ u0(x). The limit is uniform in x and locally in time, see [2] and [15]

for details. The solution obtained in this way is called mild solution and in this chapter this will

be the notion of solution we consider in all our statements.

To continue we recall the Comparison Principle, which will be frequently used in the follo-

wing computations.

Theorem 2.1 (Comparison Principle) Let u, v ∈ C([0, T ], Clim) be mild solutions of the equa-

tions

ut + (−△)αu = g(u), vt + (−△)αv = h(v),

where g, h : R → R are locally Lipschitz continuous. If

g(ζ) ≤ h(ζ), ∀ζ ∈ R

and

u(0, x) ≤ v(0, x), ∀x ∈ R,

then

u(t, x) ≤ v(t, x) ∀(t, x) ∈ [0, T ] × R.

For the proof of this result we refer the reader to [15] or [23].

Before to stating our results, we introduce some notation. For any λ ∈ (0, 1) and t ≥ 0, we

denote by

Eλ(t) = {x ∈ R : u(t, x) = λ},

the level set of u of value λ at time t. For any subset A ⊂ (0, 1], we set

u−1
0 (A) = {x ∈ R : u0(x) ⊂ A},

the inverse image of A by u0. Our first result provides basic properties of the solutions of

(2.1)-(2.2) and says that the level sets Eλ(t) move at least exponentially fast as t → ∞.
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Theorem 2.2 Let α ∈ (0, 1) and c∗ = f ′(0)
2α

and let u be the solution of (2.1)-(2.2), where f
satisfies (2.3) and the initial condition u0 : R → [0, 1] satisfies (2.4) and (2.5). Then u satisfies:

a) 0 ≤ u(t, x) ≤ 1 for all (t, x) ∈ (0,∞) × R and

lim
x→+∞

u(t, x) = 0 ∀ t ≥ 0 and lim
t→+∞

inf
x≤ect

u(t, x) = 1 ∀c < c∗

b) For any given λ ∈ (0, 1), there is a real number tλ > 1 such that Eλ(t) is compact and

non-empty for all t ≥ tλ.

Proof: Part a) We start by using the Comparison Principle, recalling that 0 ≤ u0(x) ≤ 1, to

obtain that the solution u of (2.1)-(2.2) satisfies

0 < u(t, x) ≤ 1 ∀(t, x) ∈ [0,∞) × R.

Next we analyze the limit of u(t, x) as x → +∞. To do this, let us first notice that the function

u(t, x) = ef ′(0)t

∫

R

p(t, x − y)u0(y)dy

is the solution of the equation

ut + (−∆)αu = f ′(0)u

u(0, x) = u0(x).

But, since f satisfies (2.3), it is concave and of class C1, we have that 0 < f(s) ≤ f ′(0)s for all

s ≥ 0, therefore, we conclude that u is a supersolution of the equation (2.1)-(2.2), and then, the

Comparison Principle implies that u(t, x) ≤ u(t, x) for all t ≥ 0 and x ∈ R. To continue, let us

define

Cα :=

∫ ∞

−∞

1

1+ | s |1+2α
ds, (2.11)

and notice that Cα > 1 for all α ∈ (0, 1). We may assume without loss of generality that

Cα ≤ B, where B is given in (2.9).

We observe that the property is true for t = 0 by hypothesis on u0. For t > 0, we consider

ε > 0 and we find Mt > 0 such that, for each x ≥ Mt we have u(t̄, x) < ε. Let us start

considering σ > 0 small enough such that CαBef ′(0)tσ < ε
2

and let ξ1 ∈ [ξ0,∞) and ξ > 0 be

such that

u0(z) ≤ σ, ∀z ≥ ξ1 and

∫ ∞

ξ

1

1 + s1+2α
ds < σ. (2.12)
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Then let us take

Mt := ξ1 + ξt
1
2α

and consider x ≥ Mt. Then we use the definition of ū and (2.9) to find that

u(t, x) ≤ B
ef ′(0)t

t
1
2α

∫ ∞

−∞

u0(y)

1+ | (x − y)t−
1
2α |1+2α

dy = B
ef ′(0)t

t
1
2α

∫ ∞

−∞

u0(x − r)

1+ | rt−
1
2α |1+2α

dr

= Bef ′(0)t

∫ ∞

−∞

u0(x − st
1
2α )

1+ | s |1+2α
ds

= Bef ′(0)t

(∫ ξ

−∞

u0(x − st
1
2α )

1+ | s |1+2α
ds +

∫ ∞

ξ

u0(x − st
1
2α )

1+ | s |1+2α
ds

)
.

If s ≤ ξ we have x − st
1
2α ≥ x − ξt

1
2α ≥ ξ1. Then, using (2.12) we find

ū(t, x) ≤ Bef ′(0)t

(∫ ξ

−∞

σ

1+ | s |1+2α
ds +

∫ ∞

ξ

1

1+ | s |1+2α
ds

)

≤ Bef ′(0)t (σCα + σ) <
ε

2
+

ε

2
= ε.

Hence 0 ≤ u(t, x) < ε. Thus we have proved that limx→∞ u(t, x) = 0.

Now we study u(t, x) when t → ∞. From (2.4), we may find a continuous non-increasing

function v0 : R → [0, 1] in Clim, such that R+∩supp(v0) is compact and it satisfies 0 ≤ v0(x) ≤
u0(x). Denote by v the solution of the Cauchy problem (2.1)-(2.2) with initial condition v0, then

by the Comparison Principle we find v(t, x) ≤ u(t, x) ≤ 1 for all t ≥ 0 and x ∈ R. Then we

can use Theorem 1.5 of [15] to conclude that

lim
t→∞

inf
x≤ect

v(t, x) = 1

for all c < c∗ and then our result follows.

Part b) From Part a) it follows that, given d ∈ (0, c∗) and any λ ∈ (0, 1) there exists tλ ≥ 1
such that

inf
x≤edt

u(t, x) > λ > 0 = u(t, +∞),

for all t ≥ tλ. By continuity of x 7→ u(t, x) we conclude that Eλ(t) is a non-empty compact set

for all t ≥ tλ. ⊓⊔

Remark 2.3 As a direct consequence of Theorem 2.2, we see that

lim
t→∞

Eλ(t)

ect
= ∞, for all c < c∗. (2.13)
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2.3. Main result: Theorem 2.4

It is the purpose of our main theorem to obtain a more accurate understanding of the behavior

of Eλ(t), actually we express the motion of Eλ(t) in terms of the behavior of the initial value u0

and we improve the estimate for c in (2.13). For doing this we need some additional hypothesis

that expresses the slow decay of the initial values:

(H1) There exists b < 2α, such that u0(x) ≥ x−b for all x ≥ ξ0.

(H2) There exist ρ > 1 and k > 0 such that

u0(ρx)

u0(x)
≥ k, for x ≥ ξ0.

Now we are in a position to state our main theorem.

Theorem 2.4 Let α ∈ (0, 1), λ ∈ (0, 1) and let u be the solution of (2.1)-(2.2), where f satisfies

(2.3) and the initial condition u0 : R → [0, 1] satisfies (2.4), (2.5) and hypothesis (H1) and (H2).

Then, for any Γ > 0, γ > 0 and δ ∈ (0, f ′(0)), there exist τ = τ(λ, Γ, γ, δ, b) ≥ tλ such that

Eλ(t) ⊂ u−1
0 {[γe−(f ′(0)+δ)t, Γe−(f ′(0)−δ)t]}, ∀t ≥ τ,

where tλ was given in Theorem 2.2.

As a corollary of this theorem, we see that by choosing the initial condition appropriately, we

are able to obtain any fast fast behavior of the set Eλ(t). In precise terms we have,

Corolary 2.5 Under the assumptions of Theorem 2.2, given any function χ : [0,∞) → R which

is locally bounded, there are initial conditions u0 such that, for any given λ ∈ (0, 1)

min Eλ(t) ≥ χ(t)

for all t large enough.

The proof of Theorem 2.4 is inspired in the work by Hamel and Roques [29], by basically

making two estimates to capture the set u0(Eλ(t)), with appropriate super and sub-solutions.

However, the non-local character of the differential operator introduces a series of difficulties

that were not present in the local case. This is especially so in the proof of Proposition 3.1,

where we have to introduce a staggered sub-solution to gain a global control in time. Moreover,

the choice of ω in (2.21) is not obvious and the estimates are quite more involved. It is important

to mention that the lower estimate is obtained only assuming that the initial condition u0 satisfies
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only (2.4) and (2.5), see Propositions 2.6 and 2.9. Finally, we observe that the non-existence of

traveling waves for the fractional problem, as proved in [15], implies to change various other

arguments given in [29].

Now we would like to make some comments on hypothesis (H2). This condition comple-

ments hypotheses (H1) and it also expresses the slow decay of u0. Actually, we observe that

any power u0(x) = x−b satisfies also (H2). More generally, any function u0 ∈ C1([ξ0,∞)),
decreasing and convex in [ξ0,∞), such that

|
u′

0(x)

u0(x)
|= O

(
1

x

)
as x → ∞,

satisfies the hypothesis (H2).

Theorem 2.4 and Corollary 2.5 complement the results by Cabré and Roquejoffre, where

they estimate the asymptotic behavior of solutions with front-like initial values which decays

faster than x−2α as x → ∞. In our case we assume the initial value decays slower than a

power x−b, with b < 2α, the complementary exponents. In a sense we generalize to the case

α ∈ (0, 1) results proved by Hamel and Roques in [29], replacing the Laplacian by the fractional

Laplacian.

Let us assume that the initial value is a pure power, that is, u0(x) = x−b, with b < 2α, for x
large. In this case we see that Theorem 2.4 implies that for all c1 and c2 such that

c∗ =
f ′(0)

2α
< c1 <

f ′(0)

b
< c2,

there is τ such that for all xλ(t) ∈ Eλ(t) we have

ec1t ≤ xλ(t) ≤ ec2t, for all t ≥ τ.

These observations are in contrast with the results of Cabré and Roquejofre [15], where they

showed that all solutions with front-like initial conditions decaying slower that x−2α, spread at

an exponential speed c∗ independent of further properties of u0. In our case, using comparison

principle and the discussion given above, we see that solutions with front-like initial conditions

decaying slower than x−b, with b < 2α, spread at an exponential speed f ′(0)/b, which is larger

than c∗ and depends explicitly on the exponent b.

In this sense, our results show that the exponent 2α is a critical exponent. If the initial value

decays faster than x−2α then the exponential speed is c∗ and if the initial value decays slower

than x−b, with b < 2α, then the exponential speed is f ′(0)/b or larger. Above the exponent 2α,

the solution’s speed of propagation starts getting influenced by the initial value, propagating

faster the slower the decay is.
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2.4. The lower estimate

In order to prove Theorem 2.4 we need to obtain an upper and a lower estimate for the set Eλ(t)
for t large. In this section we obtain the lower estimate. It is important to notice that in getting

the lower estimate we do not require the initial condition satisfies hypothesis (H1) and (H2), but

only (2.4) and (2.5).

Proposition 2.6 Let α ∈ (0, 1) and let u be the solution of (2.1)-(2.2), where f satisfies (2.3)

and the initial condition u0 satisfies (2.4) and (2.5).

Then, for any Γ > 0, λ ∈ (0, 1) and δ ∈ (0, f ′(0)), there exists a time τu = τu(λ, Γ, δ) ≥ tλ,

such that

Eλ(t) ⊂ u−1
0 {(0, Γe−(f ′(0)−δ)t]}, ∀t ≥ τu. (2.14)

For proving this proposition, we first prove a lemma where we construct an appropriate sub-

solution of (2.1)-(2.2) which will enable us to prove the lower bound for small values of λ. Then

we will show that such an estimate can also be done for the remaining values of λ ∈ (0, 1).

Let us start setting up some notation. Given δ ∈ (0, f ′(0)) we let d and δ′ be such that

d ∈ (1,
f ′(0)

f ′(0) − δ
) and δ′ = f ′(0) − d(f ′(0) − δ).

We notice that δ′ ∈ (0, f ′(0)), so we may choose ρ such that

f ′(0) − δ′ < ρ < f ′(0).

Next we let s0 ∈ (0, 1) be such that f(s0) = ρs0 and we choose τ > 0 such that ξ∗ ∈ R and

u0(ξ∗) = e−ρτs0 implies ξ∗ ≥ ξ0 and ξ∗ ≥ 0 and

e(1− 1
d
)ρτCα > 2B. (2.15)

Now we state a lemma on the existence of a small sub-solution.

Lemma 2.7 There is T > τ + 1 and a sequence of continuous functions un : [(n− 1)T, nT ] →
[0, s0], for n ≥ 1, such that

u1(0, x) ≤ u0(x) for all x ∈ R, (2.16)

(un)t + (−∆)αun = ρun in ((n − 1)T, nT ) × R, (2.17)

un+1(nT, x) ≤ un(nT, x) for all x ∈ R, (2.18)

lim
x→−∞

un(nT, x) = s0 (2.19)

and un(t, x) is non-increasing in x ∈ R for all t ∈ [(n − 1)T, nT ].
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Proof: Let ε > 0 be such that ε < inf(−∞,ξ0) u0 and let ξ ∈ R be so that u0(ξ) = ε and

u0(x) < ε for all x > ξ. By making ε smaller if necessary, we may assume that ξ > 0 and we

can choose T > τ + 1, such that ε = e−ρT s0 and let us define u0(x) = inf(u0(x), ε). We let u1

be the solution of the equation

(u1)t + (−∆)αu1 = ρu1

u1(0, x) = u0(x).

This solution is given by

u1(t, x) = eρt

∫

R

p(t, x − y)u0(y)dy,

so that, by the election of ε and T , we have that u1(t, x) ≤ s0 for all (t, x) ∈ [0, T ] × R.

Moreover, we have

lim
x→−∞

u1(T, x) = lim
x→−∞

eρT

∫

R

p(t, z)u0(x − z)dz = eρT ε = s0.

Furthermore, since u0 is non-increasing, we see that for x1 ≤ x2, we have

u1(t, x1) = eρt

∫

R

p(t, z)u0(x1 − z)dz

≥ eρt

∫

R

p(t, z)u0(x2 − z)dz = u1(t, x2),

for all t ∈ [0, T ]. Thus u1(t, x) is non-increasing in x for all t ∈ [0, T ]. Now we perform a

recursive process to define un given un−1, for all n ≥ 2. We let

u0,n−1(x) = inf(un−1((n − 1)T, x), ε),

where un−1((n − 1)T, ·) is non-increasing and un−1((n − 1)T,−∞) = s0. Then we define un

as the solution of

(un)t + (−∆)αun = ρun

un((n − 1)T, x) = u0,n−1(x),

for (t, x) ∈ [(n − 1)T, nT ] × R. This solution may be written as

un(t, x) = eρ(t−(n−1)T )

∫

R

p(t − (n − 1)T, x − y)u0,n−1(y)dy,

so that, by the election of ε and T , we have that un(t, x) ≤ s0, for all (t, x) ∈ [(n−1)T, nT ]×R.

Moreover, by definition

un((n − 1)T, x) = u0,n−1(x) ≤ un−1((n − 1)T, x), for all x ∈ R.
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We also have

lim
x→−∞

u0,n−1(nT, x) = lim
x→−∞

eρT

∫

R

p(t, z)u0,n−1(x − z)dz = eρT ε = s0

and, since un−1((n − 1)T, ·) is non-increasing, for x1 ≤ x2 we obtain

un(t, x1) = eρ(t−(n−1)T )

∫

R

p(t − (n − 1)T, z)u0,n−1(x1 − z)dz

≥ eρ(t−(n−1)T )

∫

R

p(t − (n − 1)T, z)u0,n−1(x2 − z)dz = un(t, x2).

Thus, un is non-increasing in x ∈ R for all t ∈ [(n − 1)T, nT ]. �

Remark 2.8 We may define the function u : [0, +∞) × R → [0, s0] in such a way that, for all

integer n ≥ 1,

u(t, x) = un(t, x) for (t, x) ∈ [(n − 1)T, nT ) × R.

Since for all integer n ≥ 1 the function un satisfies

(un)t + (−∆)αun ≤ f(un) in ((n − 1)T, nT ) × R.

we may use the Comparison Principle to find that

u(t, x) ≤ u(t, x) for all (t, x) ∈ [0,∞) × R. (2.20)

We finally observe that, from the monotonicity property of the functions un, the function u is

non-increasing in x ∈ R for all t ≥ 0.

We are now in a position to prove Proposition 2.6.

Proof of Proposition 2.6: Using the notation as in the last proof, we let ω be defined as

ω =
e

ρ
d
τ

B

∫ ∞

0

u0(ξ − sτ
1
2α )

1+ | s |1+2α
ds. (2.21)

We observe that ω does not depend on λ nor Γ and that 0 < ω < s0. In order to see this last fact

we recall that τ < T , d > 1 and Cα < 2B, where Cα was defined in (2.11) and B is given in

(2.9). Then

ω =
e

ρ
d
τ

B

∫ ∞

0

u0(ξ − sτ
1
2α )

1+ | s |1+2α
ds ≤

e
ρ
d
τCα

2B
ε <

Cα

2B
s0 < s0. (2.22)
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Next, for each t ∈ [τ,∞), we consider the equation for y ∈ [ξ,∞)

e
ρ
d
t

B

∫ ∞

0

u0(y − sτ
1
2α )

1+ | s |1+2α
ds = ω. (2.23)

The function G : [ξ,∞) → R given by

G(y) =

∫ ∞

0

u0(y − sτ
1
2α )

1+ | s |1+2α
ds ∀y ∈ [ξ,∞)

is clearly continuous and non-increasing, since u0 is continuous and non-increasing. Moreover,

by definition of ξ we see that G is decreasing in [ξ,∞). Consequently, for every t ∈ [τ,∞),
equation (2.23) has a unique solution that we call yω(t), defining a continuous function yω :
[τ,∞) → [ξ,∞). We see that yω satisfies yω(τ) = ξ and it is increasing.

Now we consider the open set Ω defined by

Ω = {(t, x) ∈ (τ,∞) × R |x < yω(t)}

and we claim that infΩ u > 0. To prove the claim, we first look at ∂Ω that consists of two parts:

the set of all points (t, x) for which t ∈ (τ,∞) and x = yω(t) and the set {τ} × (−∞, yω(τ)].

i) In the first case, when t ∈ (τ,∞) and x = yω(t), there exists n ∈ N such that t ∈
[(n − 1)T, nT ). Since u0,n−1(x) in Lemma 2.7 is non-increasing we have that

u(t, x) = un(t, x) = eρ(t−(n−1)T )

∫

R

p(t − (n − 1)T, x − y)u0,n−1(y)dy

≥ eρ(t−(n−1)T )

∫ ∞

0

p(t − (n − 1)T, z)u0,n−1(x − z)dz

≥
Cαeρ(t−(n−1)T )

2B
u0,n−1(x).

In case that u0,n−1(x) = ε, we conclude that

u(t, x) ≥
Cαeρ(t−(n−1)T )

2B
ε ≥

Cαε

2B
.

Otherwise, we have that u0,n−1(x) = un−1((n − 1)T, x) and then, as before we obtain that

u(t, x) ≥
Cαeρ(t−(n−1)T )

2B
un−1((n − 1)T, x)

≥
Cαeρ(t−(n−2)T )

2B

∫ ∞

0

p(T, z)u0,n−2(x − z)dz

≥

(
Cα

2B

)2

eρ(t−(n−2)T )u0,n−2(x).
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Again, we have two cases. If u0,n−2(x) = ε, then we conclude that

u(t, x) ≥

(
Cα

2B

)2

eρ(t−(n−2)T )ε ≥

(
Cα

2B

)2

eρT ε

≥

(
Cαe(1− 1

d
)ρτ

2B

)(
Cαε

2B

)
≥

Cαε

2B
, (2.24)

where we have used (2.15). Otherwise, we have that u0,n−2(x) = un−2((n − 2)T, x) and then

as before we have

u(t, x) ≥

(
Cα

2B

)2

eρ(t−(n−2)T )un−2((n − 2)T, x).

Repeating this procedure, we will either reach

u(t, x) ≥
Cαε

2B

as in (2.24), or we would have that x satisfies u0,m(x) 6= ε for all m ∈ {1, 2, 3, ..., n − 1}. In

the later case we have that u0,1(x) = u1(T, x) and then

u(t, x) ≥

(
Cα

2B

)n−1

eρ(t−T )u1(T, x)

≥

(
Cα

2B

)n−1
eρt

B

∫ ∞

0

u0(x − sT
1
2α )

1+ | s |1+2α
ds

≥

(
Cα

2B

)n−1

e(1− 1
d
)ρ(n−1)τ e

ρ
d
t

B

∫ ∞

0

u0(yω(t) − sτ
1
2α )

1+ | s |1+2α
ds

=

(
Cαe(1− 1

d
)ρτ )

2B

)n−1

ω > ω.

Summarizing, we have obtained that

u(t, yω(t)) ≥ min(
Cαε

2B
, ω) for all t ≥ τ.

ii) In the second case, that is when t = τ and x ∈ (−∞, yω(τ)], we have that x − sτ
1
2α ≤

yω(τ) − sτ
1
2α = ξ − sτ

1
2α , hence

u(τ, x) = u1(τ, x) ≥
eρτ

B

∫ ∞

−∞

u0(x − sτ
1
2α )

1+ | s |1+2α
ds

≥
e

ρ
d
τ

B

∫ ∞

0

u0(ξ − sτ
1
2α )

1+ | s |1+2α
ds = ω > 0.
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This completes the analysis on the boundary of Ω. To complete the proof we consider (t, x) ∈ Ω,

that is, t > τ and x < yω(t). Since u(t, ·) is non-increasing for each t ≥ τ , from i) we deduce

that

u(t, x) ≥ u(t, yω(t)) ≥ min(
Cαε

2B
, ω).

Thus, we have found θ > 0 such that

u(t, x) ≥ u(t, x) ≥ θ, ∀(t, x) ∈ Ω (2.25)

Now we can get the upper estimate for λ ∈ (0, θ). Let x ∈ Eλ(t) for t ≥ max(τ, tλ), then we

have

x > yω(t) ≥ ξ. (2.26)

In fact, let us assume that x ≤ yω(t) then (t, x) ∈ Ω̄ and, by our estimate above, we have that

u(t, x) ≥ θ. On the other hand, by definition of Eλ(t) we have u(t, x) = λ. Since λ < θ, we

obtain a contradiction.

Thus, from (2.26) we have that, for all t ≥ max(τ, tλ) and x ∈ Eλ(t)

Bωe−
ρ
d
t =

∫ ∞

0

u0(yω(t) − sτ
1
2α )

1+ | s |1+2α
ds ≥

∫ ∞

0

u0(x − sτ
1
2α )

1+ | s |1+2α
ds

≥

∫ ∞

0

u0(x)

1+ | s |1+2α
ds =

Cα

2
u0(x) =

Cα

2
u0(x), (2.27)

where the last equality holds since x > ξ. From (2.27) and since Γ > 0 and ρ > f ′(0) − δ′,
there exists τ1(λ, Γ, δ) ≥ max(τ, tλ) such that for all t ≥ τ1(λ, Γ, δ) and x ∈ Eλ(t),

u0(x) ≤
2B

Cα

ωe−
ρ
d
t ≤ s0e

− ρ
d
t ≤ Γe−

f ′(0)−δ′

d
t.

Here we used (2.22). But, by definition of δ′ we have
f ′(0)−δ′

d
= f ′(0) − δ, then we conclude

that for all t ≥ τ1(λ, Γ, δ) and x ∈ Eλ(t)

u0(x) ≤ Γe−(f ′(0)−δ)t.

In order to complete the proof of the proposition, let us now consider λ ∈ [θ, 1). Let uθ,0 be the

function defined by

uθ,0(z) =





θ if z ≤ 0
θ(1 − z) if 0 < z < 1
0 if z ≥ 1
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and denote by uθ the solution of the Cauchy problem (2.1)-(2.2) with initial condition uθ,0. It

follows from (2.25) that

u(s, x) ≥ uθ,0(x − yω(s) + 1) for all (s, x) ∈ [τ,∞) × R,

and then, using the Comparison Principle, we obtain

u(s + t, x) ≥ uθ(t, x − yω(s) + 1), for all (s, x) ∈ [τ,∞) × R and t ≥ 0.

Now we consider 0 < c < c∗ = f ′(0)
2α

and we use Theorem 1.5 of [15] to find Tλ > 0 such that

uθ(Tλ, z) > λ for all z ≤ ecTλ .

We observe that Tλ may depend on θ, and thus on ε, but does not depend on s. Directly from

the last two inequalities we get

u(s + Tλ, x) > λ, for all s ∈ [τ,∞) and x ≤ ecTλ + yω(s) − 1

As a consequence we have that for all t ≥ max(τ +Tλ, tλ) and x ∈ Eλ(t) we obtain x− yω(t−
Tλ) + 1 > ecTλ . In fact, if x − yω(t − Tλ) + 1 ≤ ecTλ , using that τ ≤ t − Tλ, we see that

λ = u(t, x) = u((t − Tλ) + Tλ, x) > λ, which is a contradiction. Thus, for such t and x, we

have x − yω(t − Tλ) > ecTλ − 1 > 0 and hence x > yω(t − Tλ). As a consequence,

Bωe−
ρ
d
(t−Tλ) =

∫ ∞

0

u0(yω(t − Tλ) − sτ
1
2α )

1+ | s |1+2α
ds ≥

∫ ∞

0

u0(x − sτ
1
2α )

1+ | s |1+2α
ds

≥

∫ ∞

0

u0(x)

1+ | s |1+2α
ds =

Cα

2
u0(x) =

Cα

2
u0(x).

Here, the last equality is satisfied because x > ξ. Now we conclude as in the other case,

since Γ > 0 and ρ > f ′(0) − δ′, there exist τ2(λ, Γ, δ) ≥ max(τ + Tλ, tλ), such that for all

t ≥ τ2(λ, Γ, δ) and x ∈ Eλ(t)

u0(x) ≤
2B

Cα

ωe−
ρ
d
(t−Tλ) < Γe−

f ′(0)−δ′

d
t = Γe−(f ′(0)−δ)t.

We complete the proof of the proposition, choosing

τu(λ, Γ, δ) = max(τ1(λ, Γ, δ), τ2(λ, Γ, δ)). ⊓⊔

The proof of Corollary 2.5 follows from Proposition 2.6, finding a suitable initial condition

that satisfies (2.4) and (2.5). This proof follow closely the ideas by Hamel and Roques in [29].

Proof of Corollary 2.5: Let χ : [0,∞) → R be any locally bounded function, then there exists

a continuous, increasing function g : [0,∞) → R such that

g(z) ≥ χ(2z), ∀z ≥ 0.
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Denoting by g−1 : [g(0),∞) → [0,∞) the inverse of g, we define u0 : R → (0, 1] as

u0(x) = e−f ′(0)g−1(x) ∀x ≥ g(0)

and extended by one, to the left of g(0). We easily see that u0 ∈ Clim is decreasing and that it

satisfies (2.4) and (2.5).

Let u be the solution of Cauchy problem (2.1)-(2.2) with initial condition u0 and let λ ∈
(0, 1) and δ ∈ (0, f ′(0)

2
). Moreover, let us consider τ1 > 0 large so that

e−(f ′(0)−δ)τ1 ≤ u0(g(0)). (2.28)

It follows from Proposition 2.6 with Γ = 1, that there exists τ2 ≥ max(τ1, tλ) such that

y ≥ u−1
0 (e−(f ′(0)−δ)t), ∀t ≥ τ2,∀y ∈ Eλ(t)

Therefore, from (2.28) we conclude that, for each t ≥ τ2

min Eλ(t) ≥ g

(
f ′(0) − δ

f ′(0)
t

)
≥ g(

t

2
) ≥ χ(t). ⊓⊔

2.5. The upper estimate and proof of Theorem 2.4

In this section we prove the upper bound for the set Eλ(t) and we complete the proof of Theorem

1.2. The proof of the upper bound is obtained by constructing an appropriate super-solution of

(2.1)-(2.2). The construction of such super-solution strongly relies on the hypotheses (H1) and

(H2). Precisely we prove

Proposition 2.9 Let α ∈ (0, 1) and let u be the solution of (2.1)-(2.2), where f satisfies (2.3)

and the initial condition u0 satisfies (2.4), (2.5), (H1) and (H2).

Then, for any γ > 0, λ ∈ (0, 1) and δ ∈ (0, f ′(0)), there exists a time τℓ = τℓ(λ, γ, δ, b) ≥ tλ
such that

Eλ(t) ⊂ u−1
0 {[γe−(f ′(0)+δ)t, 1]}, ∀t ≥ τℓ.

Proof. Let u be the solution of the problem

ut + (−∆)αu = f ′(0)u

u(0, x) = u0(x),

that can be expressed as

u(t, x) = ef ′(0)t

∫

R

p(t, x − y)u0(y)dy. (2.29)
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By the assumptions on f we see that u is a super-solution for (2.1)-(2.2) and then, the Compa-

rison Principle implies that

0 < u(t, x) ≤ u(t, x), ∀(t, x) ∈ [0,∞) × R.

Since b < 2α, there exists a > 0 small enough, such that a + b ≤ 2α. Let λ ∈ (0, 1) and

δ ∈ (0, f ′(0)), then there exists τ1 = τ1(λ, δ, b) ≥ tλ > 1, such that for all t ≥ τ1 we have

λ

8B2
e−f ′(0)t < inf

x∈(−∞,ξ0)
{u0(x), ξ−b

0 },
8B2

λ
< e

δ
2
t (2.30)

and (
8B2

λ

) a
2αb

e
af ′(0)
2αb

t >
1

ρ − 1

(
t

αB

) 1
2α

. (2.31)

Here B is the constant appearing in (2.9) and ρ is given in (H2). Let t ≥ τ1 and let us denote by

ε > 0 the number such that

4B2ef ′(0)tε =
λ

2
. (2.32)

By (2.30) it is possible to find ξ1 ∈ [ξ0,∞), such that u0(ξ1) = ε, we assume that ξ1 is the

largest number with that property. Then, let us choose ξ > 0 big enough, such that

∫ ∞

ξ

1

s1+2α
ds =

Bε

2

and we define ξt := ξ1 + ξt
1
2α . For x ≥ ξt we estimate the values of u(t, x). From (2.29) we

have that

u(t, x) ≤ B
ef ′(0)t

t
1
2α

∫ ∞

−∞

u0(y)

1+ | (x − y)t−
1
2α |1+2α

dy ≤ Bef ′(0)t(I1 + I2)

where

I1 =
1

t
1
2α

∫ ∞

−∞

u0(x)

1+ | (x − y)t−
1
2α |1+2α

dy

and

I2 =
1

t
1
2α

∫ ∞

−∞

| u0(y) − u0(x) |

1+ | (x − y)t−
1
2α |1+2α

dy.

Calculating the integrals separately, we have

I1 = u0(x)

∫ ∞

−∞

1

1+ | r |1+2α
dr = Cαu0(x) ≤ Bu0(x).
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For I2 we recall the definition of ξ1, ξ, ε and we notice that x − st
1
2α ≥ ξt − ξt

1
2α = ξ1 for all

s ∈ (−∞, ξ]. With a change of variables we have then

I2 =

∫ ξ

−∞

| u0(x − st
1
2α ) − u0(x) |

1+ | s |1+2α
ds +

∫ ∞

ξ

| u0(x − st
1
2α ) − u0(x) |

1+ | s |1+2α
ds

≤ 2ε

∫ ξ

−∞

1

1+ | s |1+2α
ds + 2

∫ ∞

ξ

1

1+ | s |1+2α
ds

< 2εB + εB = 3εB.

Therefore,

u(t, x) < B2ef ′(0)t(u0(x) + 3ε) ∀x ≥ ξt.

From here we obtain that y < ξt for all y ∈ Eλ(t). In fact, if y ≥ ξt and y ∈ Eλ(t), then

y ≥ ξt > ξ1 and

λ = u(t, y) < B2ef ′(0)t(u0(y) + 3ε) ≤ B2ef ′(0)t(u0(ξ1) + 3ε) = B2ef ′(0)t4ε =
λ

2
,

which is a contradiction. Since u0(ξ1) = ε, from (H1), (2.31) and (2.32) we see that

ξ
a
2α
1 ≥ ε−

a
2αb =

(
8B2

λ

) a
2αb

e
af ′(0)
2αb

t ≥
1

(ρ − 1)

(
t

αB

) 1
2α

.

From here, since ξ−b
1 ≤ u0(ξ1) = ε and by the choice of τ1 and ξ, we conclude that

ξt = ξ1 + ξt
1
2α = ξ1 +

(
t

αB

) 1
2α

(u0(ξ1))
− 1

2α

≤ ξ1 +

(
1

αB

) 1
2α

t
1
2α ξ

b
2α
1 ≤ ξ1 + (ρ − 1)ξ

a
2α
1 ξ

b
2α
1 ≤ ρξ1.

Now, if ξ2 is such that u0(ξ2) = e−(f ′(0)+ δ
2
)t, then since e−(f ′(0)+ δ

2
)t < ε by (2.30) and (2.32),

we have that ξ1 < ξ2. Therefore, for each y ∈ Eλ(t)

u0(y) ≥ u0(ξt) ≥ u0 (ρξ2) ≥ ku0 (ξ2) = ke−(f ′(0)+ δ
2
)t.

Finally, making τℓ = τℓ(λ, γ, δ, b) ≥ τ1(λ, δ, b) larger if necessary, we may assume that if t ≥ τℓ

then e
δ
2
t ≥ γ

k
and we find that

u0(y) ∈ {[γe−(f ′(0)+δ)t, 1]}, ∀t ≥ τℓ. ⊓⊔

Thanks to Proposition 2.6 and 2.9, we can prove Theorem 2.4 on the behavior of level sets

for large times, expressed in terms of the decay of the initial condition.

Proof of Theorem 2.4: It follows directly from Proposition 2.6 and 2.9, taking

τ = τ(λ, Γ, γ, δ, b) = max(τu, τℓ). ⊓⊔
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Chapter 3

Exponential propagation for fractional

reaction-diffusion cooperative systems

Work in colaboration with Anne-Charline Coulon.

3.1. Introduction

In this chapter, we are interested in the large time behavior of solution u = (ui)
m
i=1 with m ∈ N

∗,
to the fractional reaction diffusion system:

∂tui(t, x) + (−△)αiui(t, x) = fi(u(t, x)), ∀(t, x) ∈ R
∗
+ × R

d (3.1)

ui(0, x) = u0i(x), ∀x ∈ R
d (3.2)

where αi ∈ (0, 1] for all i ∈ {1, ...,m} with at least one αi 6= 1. As general assumptions, we

impose the initial conditions u0i 6≡ 0 to be nonnegative, continuous and bounded by constants

ai > 0 and satisfy

u0i(x) = O(|x|−(d+2αi)) as |x| → ∞,∀i ∈ {1, ...,m} (3.3)

The functions fi satisfy

fi ∈ C1(Rm) and
∂fi(u)

∂uj

> 0 ∀i 6= j (3.4)

i.e., the system (3.1)-(3.2) is cooperative. Moreover, we assume fi(0) = 0.
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The aim of this chapter is to understand the time asymptotic location of the level sets of

solutions to (3.1)-(3.2). We show that the speed of propagation is exponential in time, with a

precise exponent depending on the smallest index α := mini(αi) and of the principal eigen-

value of the matrix DF (0) where F = (fi)
m
i=1. Also we note that it does not depend on the

space direction. Moreover, we prove that the solution u(t, x) of (3.1)-(3.2) tends to the smallest

positive constant steady state solution, as t → +∞.

For what follows and without loss of generality, we suppose that αi+1 ≤ αi for all i ∈
{1, ...,m − 1} and we set α := αm < 1. Before to state the main results, we need some

additional hypothesis on the nonlinearities fi, which allow us to identify precisely the propa-

gation speed of solutions, also note that this hypothesis are compatible with strongly coupled

systems.

(H1) The principal eigenvalue λ1 of the matrix DF (0) is strictly positive.

There exist positive constants δ1 and δ2 such that

(H2) Dfi(0)u − fi(u) ≥ cu1+δ1
i .

(H3) Dfi(0)u − fi(u) ≤ c‖u‖1+δ2 .

(H4) F is concave, DF (0) is a symmetric matrix and
∂fi(0)
∂ui

> 0 for all i ∈ {1, ...,m}.

where δ1, δ2 ≥
2

d+2α
and ‖ · ‖ in (H3) is any norm on R

m.

Before going further on, let us state at least one example of nonlinearity F satisfying (3.4),

(H1), (H2), (H3) and (H4). Let consider

F (u) =

(
1 − uδ

1 2
2 1 − uδ

2

)(
u1

u2

)
with u =

(
u1

u2

)

Indeed, F satisfies (3.4), F (0) = 0, the principal eigenvalue of DF (0) is λ1 = 3 and satisfies

(H2) and (H3) with δ1 = δ2 = δ, also F is concave and DF (0) is symmetric.

Moreover, we consider the Banach space

C0(R
d) := {w is continuous in R

d and w(x) → 0 as |x| → ∞}

with the L∞(Rd) norm and we set D0(Ai) the domain of the operator Ai = (−△)αi in C0(R
d).

In what follows we assume that u0i ∈ D0(Ai) for all i ∈ {1, ...,m}.
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Now we are in a position to state our main theorems, which show that the functions move

exponentially fast for large times.

Theorem 3.1 Let d ≥ 1 and assume that F satisfies (3.4), (H1), (H2) and (H3). Let u be the

solution to (3.1)-(3.2) with u0 satisfying (3.3). Then:

a) for every µi > 0, there exists a constant c > 0 such that,

ui(t, x) < µi, for all t ≥ τ and |x| > ce
λ1

d+2α
t

b) there exist constants εi > 0 and C > 0 such that,

ui(t, x) > εi, for all t ≥ τ and |x| < Ce
λ1

d+2α
t

for all i ∈ {1, ...,m} and τ > 0 large enough.

To state the following result, we consider φ the positive constant eigenvector of DF (0)
associated to the first eigenvalue λ1, where F = (fi)

m
i=1. Thus λ1 > 0 and φ > 0 satisfy

(L − DF (0))φ = −λ1φ

φ > 0, ‖φ‖ = 1

where L = diag((−△)α1 , ..., (−△)αm). Now, let consider the problem

χ̇ε(t) = F (χε(t))

χε(0) = εφ

thus, there exists ε′ > 0 such that, for each ε ∈ (0, ε′) we can find a constant u+
ε > 0 satisfying

χε(t) ր u+
ε as t → +∞, also F (u+

ε ) = 0. We define

u+ = inf
ε∈(0,ε′)

u+
ε

since F is continuous, we deduce that F (u+) = 0. Also, since the function F is positive in a

small ball near to zero, we have that u+ > 0.

Moreover we assume that the initial condition u0 satisfies

u0 ≤ u+ in R
d (3.5)

Theorem 3.2 Let d ≥ 1 and assume that F satisfies (3.4), (H1), (H2), (H3) and (H4). Let u be

the solution to (3.1)-(3.2) with u0 satisfying (3.3) and (3.5). Then:
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a) If c < λ1

d+2α
, then

lim
t→+∞

inf
|x|≤ect

|ui(t, x) − u+
i | = 0

b) If c > λ1

d+2α
, then

lim
t→+∞

sup
|x|≥ect

ui(t, x) = 0

for all i ∈ 1, ...,m.

The plan to set the Theorems 3.1 and 1.22 is organized as follows. First, we present some

preliminaries in which we prove the existence and uniqueness of mild solutions for cooperative

systems and also we state a comparison principle for this type of solutions, these results are

based in the proofs established by Cabré and Roquejoffre in [15]. Moreover, we set algebraically

upper and lower bounds for the solutions of (3.1)-(3.2), the computations are based on the results

stated by Cabré, Coulon and Roquejoffre in [16]. The proofs of Theorems 3.1 and 3.2 rely on

the construction of explicit classical subsolutions and supersolutions.

3.2. Mild solutions and comparison principle

In this section, we prove the existence of unique solution of the system (3.1)-(3.2). In order to

prove this, we recall the notion of mild solution for the nonhomogeneous linear problem

∂tui + (−△)αiui = hi(t), in (0, T ) (3.6)

ui(0) = u0i

where T > 0, u0i ∈ X , and hi ∈ C([0, T ], X) are given, where X is a Banach space. The mild

solution of (3.6) is given explicitly by Duhamel principle:

ui(t) = Tt,iu0i +

∫ t

0

Tt−s,ihi(s)ds (3.7)

for all t ∈ [0, T ], where

Tt,iw(x) =

∫

Rn

pi(t, x)w(x − y)dy =

∫

Rn

pi(t, x − y)w(y)dy

and pi is the fundamental solution of (3.6) which satisfies

a) pi ∈ C((0, +∞), R).

b) pi(t, x) ≥ 0 and
∫

R
pi(t, x)dx = 1 for all t > 0.
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c) pi(t, ·) ∗ pi(s, ·) = pi(t + s, ·) for all t, s ∈ R+

d) If αi < 1, then there exists B > 1 such that, for (t, x) ∈ R+ × R:

B−1

t
1

2αi (1+ | xt
− 1

2αi |1+2αi)
≤ pi(t, x) ≤

B

t
1

2αi (1+ | xt
− 1

2αi |1+2αi)
(3.8)

For more information about operators Tt,i see section 2 of [15]. So, from the equation (3.7), one

easily checks that ui ∈ C([0, T ]; X).

Now, we consider G : [0,∞) × Xm → Xm, G = (Gi(t, u))m
i=1 be a function that satisfies

for all i ∈ {1, ...,m}

Gi ∈ C1([0,∞) × Xm; X) (3.9)

Gi(t, ·) is globally Lipschitz in Xm uniformly in t ≥ 0. (3.10)

we note that Xm =
∏m

i=1 X with the product norm ‖u‖Xm =
∑m

i=1 ‖ui‖X is a Banach space.

Given any T > 0, we are interested in the nonlinear problem

∂tu + Lu = G(t, u), in (0, T ) (3.11)

u(0) = u0

where L = diag((−△)α1 , ..., (−△)αm) and u = (ui)
m
i=1. It follows from (3.7) that

u(t) = Ttu0 +

∫ t

0

Tt−sG(s, u(s))ds (3.12)

where Tt = diag(Tt,1, ..., Tt,m). Now, we will use a fixed point principle to prove that (3.12)

has an unique solution. Define the map

Nu0(u)(t) := Ttu0 +

∫ t

0

Tt−sG(s, u(s))ds (3.13)

It is easy to check that

Nu0 : C([0, T ]; X)m → C([0, T ]; X)m

where C([0, T ]; X)m =
∏m

i=1 C([0, T ]; X) is the product space. We claim that Nu0 is Lipschitz

in C([0, T ]; X)m. Indeed, let u, v ∈ C([0, T ]; X)m, so

‖Nu0,i(u)(t) − Nu0,i(v)(t)‖X ≤

∫ t

0

‖Tt−s,i(Gi(u(s)) − Gi(v(s)))‖Xds

≤

∫ t

0

‖Tt−s,i‖‖Gi(u(s)) − Gi(v(s))‖Xds
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≤ MLipu(Gi)

∫ t

0

‖u(s) − v(s)‖Xmds

= MLipu(Gi)

∫ t

0

m∑

j=1

‖uj(s) − vj(s)‖Xds

≤ tMLipu(Gi)‖u − v‖C([0,T ];X)m

where M = supt∈[0,T ] maxi∈{1,...,m} ‖Tt,i‖. So, from the above computations, taking the supre-

mum in [0, T ] and adding in i ∈ {1, ...,m}, we have that

‖Nu0(u) − Nu0(v)‖C([0,T ];X)m ≤ TM

[
m∑

i=1

Lipu(Gi)

]
‖u − v‖C([0,T ];X)m

thus Nu0 is Lipschitz with constant MT [
∑m

i=1 Lipu(Gi)]. Recall that for any strongly conti-

nuous semigroup, we have that ‖Tt,i‖ ≤ Cie
ωit for some constants Ci and ωi. Now, it follows

by induction that (Nu0)
k is Lipschitz in C([0, T ]; X)m with Lipschitz constant

(MT )k

k!

[
m∑

i=1

Lipu(Gi)

]k

where k is any positive integer. This constant is less than 1 if we take k large enough. Then, we

conclude that Nu0 has a unique fixed point.

Moreover, if we consider the sequence of functions (Nu0)
i(u0) ∈ C([0, T ]; X)m, it is easy to

see that there exist u ∈ C([0, T ]; X)m such that

u = lim
i→+∞

(Nu0)
i(u0) (3.14)

where u0(t) = Ttu0, also, the limit u is the unique fixed point of Nu0 , and so, the unique mild

solution of (3.12) for all T > 0.

Given 0 < T < T ′, the mild solution in (0, T ′) must coincide in (0, T ) with the mild solution

in this interval, by uniqueness. Thus, under assumption (3.9)-(3.10), the mild solution of (3.11)

extends uniquely to all t ∈ [0,∞), i.e., it is global in time.

Moreover, let u = (ui)
m
i=1 the unique solution of (3.12), if we define

Hi(t, w) = Gi(t, u1, ..., ui−1, w, ui+1, ..., um)

we have that

Hi ∈ C1([0,∞) × X; X) (3.15)

Hi(t, ·) is globally Lipschitz in X uniformly in t ≥ 0. (3.16)
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Consider now the problem

∂tw + (−△)αiw = Hi(t, w), in (0, T ) (3.17)

w(0) = u0i

Following the computations in section 2.3 of [15], we conclude that this problem has a unique

mild solution in C([0, T ]; X) given by w = ui. Thus, if the initial datum belongs to the domain

of Ai = (−△)αi denoted by D(Ai), we have further regularity in t of the mild solution ui =
ui(t). Under hypothesis (3.15)-(3.16) (here the continuous differentiability of Hi with values in

X is important), the mild solution ui of (3.17) satisfies

ui ∈ C1([0, T ); X) and ui([0, T )) ⊂ D(Ai) if u0i ∈ D(Ai) (3.18)

and it is a classical solution, i.e., a solution satisfying (3.17) pointwise for all t ∈ (0, T ). Doing

the same procedure for all i ∈ {1, ...,m} and for all T > 0, we conclude that u = (ui)
m
i=1 is a

classical solution of (3.11) global in time.

Now, we set a useful fact that we need in the followings computations. If u is the solution

of the system (3.11) with u0 ∈ X and G satisfying (3.9) and (3.10), then ũ(t) = eatu(t) is the

mild solution of the system

∂tũ + Lũ = G̃(t, ũ) (3.19)

ũ(0) = u0

with G̃i(t, ũ) = aũi+eatG̃i(t, e
−atũ) and a ∈ R. This fact is proved in the same way as in [15].

We now apply all these facts to problem (3.1)-(3.2). Recall our standing assumptions for

the nonlinearities (fi)
m
i=1, from hypothesis (H2), we deduce the existence of a positive vector

M = np with n > 0 large enough and pi = 1 for all i ∈ {1, ...,m} such that F (M) ≤ 0 and

u0 ≤ a ≤ M . Now, we extend fi outside of a compact set of R
m that contains [0, M ] to ensure

that:

fi ∈ C1(Rm) is globally Lipschitz, fi(u) is nondecreasing in all components of u with the

possible exception of the ith one and Dfi is uniformly continuous in R
m.

We consider the Banach space X = C0(R
d) and taking Gi(t, u)(x) := fi(u(x)) we can ve-

rify (3.9)-(3.10). We use that Dfi is uniformly continuous and fi(0) = 0 to check that the

map u ∈ C0(R
d)m 7→ fi(u) ∈ C0(R

d) is continuously differentiable. Thus, by the previous

considerations, there is a unique mild solution u of

∂tu + Lu = F (u), in (0,∞) × R
d (3.20)

u(0, ·) = u0
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for data u0 ∈ X . Moreover, if the initial datum u0 in (3.20) belongs to the domain
∏m

i=1 D0(Ai),
where D0(Ai) is the domain of Ai in C0(R

d). Then the mild solution u of (3.20) satisfies (3.18)

for all i ∈ {1, ...,m} and for all T > 0, with D(Ai) = D0(Ai) and it is a classical solution

global in time.

Before to state the upper bound for the solutions, we need to establish a comparison principle

for mild solutions.

Theorem 3.3 Let F 1,2 = (f 1,2
i )m

i=1 with f 1,2
i ∈ C1(Rm) functions that satisfy (3.4), globally

Lipschitz. Let u1,2 = (u1,2
i )m

i=1 mild solutions of

∂tu
1 + Lu1 = F 1(u1), ∂tu

2 + Lu2 = F 2(u2)

If, for all i ∈ {1, ...,m}, f 1
i ≤ f 2

i in R
m and

u1
i (0, ·) ≤ u2

i (0, ·), belong to X

then

u1
i (t, x) ≤ u2

i (t, x) ∀(t, x) ∈ [0,∞) × R
d.

Proof. Taking a = max{maxi{Lip(f1
i )}, maxi{Lip(f 2

i )}}, we define

f̃ j
i (t, v) = avi + eatf j

i (e−atv), ∀i ∈ {1, ..,m}, j = {1, 2}

The function f̃ j
i is nondecreasing in its second argument, indeed

∂f̃ j
i

∂vk

(t, v) = a
∂vi

∂vk

+
∂f j

i

∂wk

(w), with w = e−atv and j = {1, 2}

thus,

- if k = i, then
∂f̃j

i

∂vi
(t, v) = a +

∂fj
i

∂wi
(w) ≥ 0, by the choice of a.

- if k 6= i, then
∂f̃j

i

∂vk
(t, v) =

∂fj
i

∂wk
(w) ≥ 0, since f̃ j

i satisfy (3.4) for all i ∈ {1, ..,m} and

j = {1, 2}.

Moreover, since f 1
i (·) ≤ f 2

i (·), we have f̃ 1
i (t, ·) ≤ f̃ 2

i (t, ·).

Now, let consider the system

∂tũ
j + Lũj = F̃ j(ũj) (3.21)

ũj(0, ·) = uj
0
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by the previous section, we know that ũj(t, x) = eatuj(t, x) is the solution of the system (3.21)

for each j = 1, 2, where uj is the solution of the system (3.21) with F̃ j replaced by F j . There-

fore, it is enough to prove that ũ1 ≤ ũ2.

Consider the mapping N j for j = {1, 2}, defined by

N j(w)(t, ·) := Ttu
j
0(·) +

∫ t

0

Tt−sF̃
j(s, w(s, ·))ds (3.22)

Taking u0,j(t, ·) = Ttu
j
0(·), we know that ũj = limn→+∞(N j)n(u0,j), thus, using a standard

induction argument, we only need to show that (N1)n(u0,1) ≤ (N2)n(u0,2) on [0,∞) × R
d for

all n.

Since u1
0 ≤ u2

0, then u0,1 ≤ u0,2 on [0,∞) × R
d. Now, suppose that (N1)n(u0,1) ≤

(N2)n(u0,2); and by previous considerations, we have

f̃ 1
i (s, (N1)n(u0,1)) ≤ f̃ 2

i (s, (N1)n(u0,1))

and

f̃ 2
i (s, (N1)n(u0,1)) ≤ f̃ 2

i (s, (N2)n(u0,2)).

Thus, for all i ∈ {1, ...,m}

(N1)n+1
i (u0,1) = N1

i [(N1)n(u0,1)] = Tt,iu
1
0i(·) +

∫ t

0

Tt−s,if̃
1
i (s, (N1)n(u0,1))ds

≤ Tt,iu
2
0i(·) +

∫ t

0

Tt−s,if̃
2
i (s, (N1)n(u0,1))ds

≤ Tt,iu
2
0i(·) +

∫ t

0

Tt−s,if̃
2
i (s, (N2)n(u0,2))ds

= N2
i [(N1)n(u0,2)] = (N2)n+1

i (u0,2)

Hence,

(N1)n+1(u0,1) ≤ (N2)n+1(u0,2), ∀(t, x) ∈ [0,∞) × R
d

�

Remark 3.4 If we suppose f 1
i ≤ f 2

i in R
m
+ and 0 ≤ u1

i (0, ·) ≤ u2
i (0, ·) for all i ∈ {1, ...,m},

we obtain the same result as in Theorem 3.3.

Since F (0) = 0 by the previous theorem, we conclude that the solution of the system (3.1)-(3.2),

satisfies ui(t, x) ≥ 0 for all (t, x) ∈ [0,∞) × R
d.
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3.3. Finite time estimates

3.3.1. Upper bound

Now, we are in position to establish an algebraic upper bound for the solutions of (3.1)-(3.2).

Since u = (ui)
m
i=1 is the mild solution of system (3.1)-(3.2) with the extended function fi ∈

C1(Rm) which is globally Lipschitz for all i ∈ {1, ...,m}, we have that

∣∣∣∣
∂fi

∂uj

(ξ)

∣∣∣∣ ≤ Lip(fi), ∀ξ ∈ R
m and i, j ∈ {1, ...,m}

Taking L = maxi∈{1,...,m}{Lip(fi)}, we have

fi(w) =

∫ 1

0

Dfi(σw)dσ · w ≤

∣∣∣∣∣

m∑

j=1

wj

∫ 1

0

∂fi

∂wj

(σw)dσ

∣∣∣∣∣ ≤ L
m∑

j=1

wj (3.23)

for all w ≥ 0. Let us consider v = (vi)
m
i=1 the mild solution of the following system

∂tv + Lv = Bv (3.24)

v(0, ·) = u0

where B = (bij)
m
i,j=1 is a matrix with bij = L for all i, j. By (3.23) and Remark 3.4, we conclude

that u ≤ v. Moreover, since u0 belongs to the domain
∏m

i=1 D0(Ai), we have that u and v are

classical solutions.

Taking Fourier transforms in each term of system (3.24), we have

∂tF(v) = (A(|ξ|) + B)F(v)

F(v)(0, ·) = F(u0)

where A(|ξ|) = diag(−|ξ|2α1 , ...,−|ξ|2αm). Thus, we have that

F(v)(t, ξ) = e(A(|ξ|)+B)t.F(u0)(ξ)

and then

u(t, x) ≤ v(t, x) = F−1(e(A(|ξ|)+B)t) ∗ u0(x) (3.25)

In what follows, we prove that for each time t > 0, the solution of the system (3.1)-(3.2)

decay as |x|−d−2α when |x| is large enough, due to the inequality and convolution in (3.25) and

since u0 satisfies (3.3), we only need to prove that each term of the matrix F−1(e(A(|ξ|)+B)t) has

the desired decay. To do this, we use the technique of rotating the interval of integration by a
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small angle, in order to simplify the calculus at the moment to bound the integral that appear

in the previous Fourier transform. Hence, before to establish the upper bound, we state the

following lemma, which will help us to prove that the integral over R
d is equal to the integral

over eiε
R

d for some ε small enough, i.e., the bounds for the entries hi,j of e(A(r)+B)t which

appear in Lemma 3.5, decay fast enough, hence we can prove that the integral over the arc

obtained when we rotate the integration line, converges to zero.

Lemma 3.5 Let ε < π
4α1

, then, there exist a constant c > 0 such that

|hi,j(t, e
iεr)| ≤ e(c−r2α1 cos(2α1ε))t, if r < 1 (3.26)

and

|hi,j(t, e
iεr)| ≤ e(c−r2α cos(2α1ε))t, if r ≥ 1 (3.27)

for all t > 0, where e(A(r)+B)t = (hij(t, r))
m
i,j=1.

Proof. Let consider the system

∂tw = (A(eiεr) + B)w (3.28)

w(0, r) = ej

where ej is the jth vector of the canonical basis of R
m, thus, we have that

w(t, r) = e(A(eiεr)+B)t.ej =
(
hkj(t, e

iεr)
)m

k=1

Multiplying (3.28) by the conjugate transpose w, we have that

∂tw.w = −
m∑

k=1

ei2αkεr2αk |wk|
2 + Bw.w

thus
1

2
∂t|w|2 +

m∑

k=1

cos(2αkε)r
2αk |wk|

2 = Re(Bw.w) ≤ c|w|2

for some c > 0. By the choice of ε and using Gronwall Lemma, we get that for all j, k ∈
{1, ...,m}

|hk,j(t, e
iεr)| ≤ |w(t, r)| ≤ e(c−r2α1 cos(2α1ε))t, if r < 1

and

|hk,j(t, e
iεr)| ≤ |w(t, r)| ≤ e(c−r2α cos(2α1ε))t, if r ≥ 1

�

Now, we divide the proof of the upper bound in two cases. First, for the sake of simplicity,

we consider the one space dimension case to underline the idea of the proof. The higher space

dimension case is treated after and requires the use of Bessel functions of first and third kind.
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Lemma 3.6 Let d = 1 and let u = (ui)
m
i=1 the mild solution of system (3.1)-(3.2), with initial

condition u0 satisfying (3.3). Then, there exist locally bounded functions Ci : (0,∞) → R+

such that

ui(t, x) ≤
Ci(t)

|x|d+2α
, ∀ t > 0, |x| >> 1

for all i ∈ {1, ...,m}.

Proof. By the convolution (3.25) and since u0i(x) = O(|x|−(d+2αi)) as |x| → ∞, we only need

to prove that

|ηij(t, x)| ≤
Cij(t)

|x|d+2α
, ∀ t > 0, |x| >> 1

for all i, j ∈ {1, ...m}, where F−1(e(A(|ξ|)+B)t) = (ηij)
m
i,j=1 and Cij a locally bounded function.

Now, we state several facts. If we consider w(t) = etBetA(r), then w satisfies the problem

w′(t) = (A(r) + B)w(t) + [etB, A(r)]etA(r)

w(0) = Id

where [etB, A(r)] = etBA(r) − A(r)etB, thus, by Duhamel formula we get

et(A(r)+B) = etBetA(r) −

∫ t

0

e(t−s)(A(r)+B)[esB, A(r)]esA(r)ds (3.29)

= Ct − Dt

Also, we remember the Wilcox Formula [48] which states

∂e(A(r)+B)t

∂r
=

∫ t

0

e(t−s)(A(r)+B)A′(r)es(A(r)+B)ds (3.30)

Let t > 0, by the above formulas and integrating by parts, we have

F−1(e(A(|ξ|)+B)t) =

∫

R

eixξe(A(|ξ|)+B)tdξ = 2

∫ ∞

0

cos(|x|r)e(A(r)+B)tdr

= −2

∫ ∞

0

sin(|x|r)

|x|

∂e(A(r)+B)t

∂r
dr = I1 + I2 + I3

where

I1 = −2

∫ ∞

0

sin(|x|r)

|x|

∫ t

0

Ct−sA
′Cs(r)dsdr

I2 = −2

∫ |x|−δ

0

sin(|x|r)

|x|

∫ t

0

(−Ct−sA
′Ds(r) − Dt−sA

′Cs(r) + Dt−sA
′Ds(r)) dsdr

I3 = −2

∫ ∞

|x|−δ

sin(|x|r)

|x|

∫ t

0

(−Ct−sA
′Ds(r) − Dt−sA

′Cs(r) + Dt−sA
′Ds(r)) dsdr
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with δ ∈ (1/2, 1).

Let us begin with the computations of I1. By definition, we have that

Ct−sA
′Cs(r) = e(t−s)Be(t−s)A(r)A′(r)esBesA(r)

and its entries have the form:

m∑

k=1

(ck
ij(t, s)r

2αk−1e−(t−s)r2αk )e−sr2αj
∀i, j ∈ {1, ...,m}

where ck
ij(t, s) is some integrable function on s ∈ [0, t] arising from products of the entries of

e(t−s)B and esB , which have the form (m−1+emLt) and (−1+emLt). Thus, set I1 = ((I1)ij)
m
i,j=1

and take the change of variables u = r2αk |x|2αk , we obtain

|(I1)ij| =

∣∣∣∣∣

m∑

k=1

∫ ∞

0

sin(|x|r)

|x|

∫ t

0

ck
ij(t, s)r

2αk−1e−(t−s)r2αk e−sr2αj
dsdr

∣∣∣∣∣

≤
m∑

k=1

∣∣∣∣Im
(∫ ∞

0

ei|x|r

|x|

∫ t

0

ck
ij(t, s)r

2αk−1e−(t−s)r2αk e−sr2αj
dsdr

)∣∣∣∣

=
m∑

k=1

(2αk)
−1

|x|1+2αk

∣∣∣∣Im
(∫ t

0

ck
ij(t, s)

∫ ∞

0

eiu1/2αk e−(t−s)u|x|−2αk e−suαj/αk |x|−2αj
duds

)∣∣∣∣

denoting

σk =

∫ ∞

0

eiu1/2αk e−(t−s)u|x|−2αk e−suαj/αk |x|−2αj
du

we have

|(I1)ij| =
m∑

k=1

(2αk)
−1

|x|1+2αk

∣∣∣∣Im
(∫ t

0

ck
ij(t, s)σkds

)∣∣∣∣

≤
m∑

k=1

(2αk)
−1

|x|1+2αk

∫ t

0

ck
ij(t, s)|σk|ds

The integral σk can be simplified by rotating the interval of integration by ε < min
(

π
2
, 2απ,

παj

2α1

)
,

thus, we get

σk =

∫ ∞

0

eir1/2αkeiε/2αk e−(t−s)r|x|−2αkeiε

e−srαj/αk |x|−2αj eiεαj/αk
eiεdr
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hence

|σk| ≤

∫ ∞

0

e−r1/2αk sin(ε/2αk)e−(t−s)r|x|−2αk cos(ε)e−srαj/αk |x|−2αj cos(εαj/αk)dr

≤

∫ ∞

0

e−r1/2αk sin(ε/2αk)dr = C(αk)

Now, since |x| > 1

|(I1)ij| =
m∑

k=1

(2αk)
−1C(αk)

|x|1+2αk

∫ t

0

ck
ij(t, s)ds ≤

C(t)

|x|1+2α

where C(t) is a locally bounded function on t > 0.

Let continue with the computations of I2 = ((I2)ij)
m
i,j=1, in what follows we consider the matrix

norm

‖A‖ = max‖y‖=1‖Ay‖ with ‖y‖ =

[
m∑

i=1

|yi|
2

] 1
2

thus, for all i, j ∈ {1, ...,m}

|(I2)ij| ≤ ‖I2‖ (3.31)

≤
2

|x|

∫ |x|−δ

0

∫ t

0

‖Ct−sA
′Ds‖ + ‖Dt−sA

′Cs‖ + ‖Dt−sA
′Ds‖dsdr

computing each norm and since r ∈ [0, |x|−δ], we have that ‖A(r)‖ ≤ r2α and ‖A′(r)‖ ≤
Cr2α−1, thus

‖Ct−sA
′Ds‖ = ‖e(t−s)Be(t−s)A(r)A′(r)

∫ s

0

e(s−w)(A(r)+B)[ewB, A(r)]ewA(r)dw‖

≤ 2s‖A′(r)‖‖A(r)‖e(‖A(r)‖+‖B‖)t

≤ 2Cse(1+‖B‖)tr4α−1

in the same way we prove that ‖Dt−sA
′Cs‖ ≤ 2C(t − s)e(1+‖B‖)tr4α−1 and ‖Dt−sA

′Ds‖ ≤
4C(t − s)se(1+‖B‖)tr6α−1.

By (3.31) and since δ ∈ (1/2, 1), we conclude

|(I2)ij| ≤
2C

|x|1+4δα
(t2 +

t3

3
)e(1+‖B‖)t ≤

C(t)

|x|1+2α
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Now, we compute the bound for the first term of I3. Rotating the interval of integration by

ε < min(π, π
4α1

), we get

I1
3 = 2

∫ ∞

|x|−δ

sin(|x|r)

|x|

∫ t

0

Ct−sA
′Dsdsdr = 2Im

(∫ ∞

|x|−δ

ei|x|r

|x|

∫ t

0

Ct−sA
′Dsdsdr

)

= 2Im

(∫ ε

0

ei|x|1−δeiθ

|x|

∫ t

0

Ct−sA
′Ds(|x|

−δeiθ)|x|−δieiθdsdθ

)

+2Im

(∫ ∞

|x|−δ

ei|x|reiε

|x|

∫ t

0

Ct−sA
′Ds(re

iε)eiεdsdr

)

:= 2Im(σ1) + 2Im(σ2)

Hence, to get a bound for σ1 = ((σ1)ij)
m
i,j=1, we need to state a bound for each term that appear

in (σ1)ij . By abuse of notation, we call σ to each one of these terms. Hence, the general form

for σ is

σ =

∫ ε

0

∫ t

0

∫ s

0

ei|x|1−δeiθ

|x|
C(t − s)C(w)e−(t−s)|x|−2δαj ei2αjθ

|x|−δ(2αj−1)ei(2αj−1)θ

hp,q(s − w, |x|−δeiε)|x|−2δαlei2αlθe−w|x|−2δαkei2αkθ

|x|−δieiθdwdsdθ

where C(t − s) and C(w) are positive and integrable functions. Now, since |x| > 1 and by

(3.26) of Lemma 3.5

|Im(σ)| ≤

∫ ε

0

∫ t

0

∫ s

0

e−|x|1−δ sin(θ)

|x|
C(t − s)C(w)e−(t−s)|x|−2δαj cos(2αjθ)|x|−δ(2αj−1)

e(c−r2α1 cos(2α1ε))(s−w)|x|−2δαle−w|x|−2δαk cos(2αkθ)|x|−δdwdsdθ

≤
1

|x|1+2δ(αj+αl)

∫ ε

0

∫ t

0

∫ s

0

C(t − s)C(w)ec(s−w)dwdsdθ

≤
εC(t)

|x|1+2α

then, we conclude

|Im((σ1)ij)| ≤
C(t)

|x|1+2α

As in the proof of σ1, we continue calling by σ each term that appears in (σ2)ij , thus, the general

form for σ is

σ =

∫ ∞

|x|−δ

∫ t

0

∫ s

0

ei|x|reiε

|x|
C(t − s)C(w)e−(t−s)r2αj ei2αjε

r2αj−1ei(2αj−1)ε

hp,q(s − w, reiε)r2αlei2αlεe−wr2αkei2αkε

eiεdwdsdr
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then

|Im(σ)| ≤
e−|x|1−δ sin(ε)

|x|

∫ ∞

0

∫ t

0

∫ s

0

C(t − s)C(w)e−(t−s)r2αj cos(2αjε)r2αj−1

|hp,q(s − w, reiε)|r2αle−wr2αk cos(2αkε)dwdsdr

now, breaking the first integral in two terms and bounding, we have by (3.26) in Lemma 3.5 that

∫ 1

0

∫ t

0

∫ s

0

C(t − s)C(w)e−(t−s)r2αj cos(2αjε)r2αj−1

|hp,q(s − w, reiε)|r2αle−wr2αk cos(2αkε)dwdsdr

≤

∫ 1

0

∫ t

0

∫ s

0

C(t − s)C(w)r2(αj+αl)−1e−(t−s)r2αj cos(2αjε)

e(c−r2α1 cos(2α1ε))(s−w)e−wr2αk cos(2αkε)dwdsdr

≤

∫ t

0

∫ s

0

C(t − s)C(w)ec(s−w)dwds

∫ 1

0

r2(αj+αl)−1dr

= C(t)

and applying (3.27) of Lemma 3.5, we have

∫ ∞

1

∫ t

0

∫ s

0

C(t − s)C(w)e−(t−s)r2αj cos(2αjε)r2αj−1

|hp,q(s − w, reiε)|r2αle−wr2αk cos(2αkε)dwdsdr

≤

∫ ∞

1

∫ t

0

∫ s

0

C(t − s)C(w)r2(αj+αl)−1e−(t−s)r2αj cos(2αjε)

e(c−r2α cos(2α1ε))(s−w)e−wr2αk cos(2αkε)dwdsdr

≤

∫ t

0

∫ s

0

C(t − s)C(w)ec(s−w)dwds

∫ ∞

1

r2(αj+αl)−1e−tr2α cos(2α1ε)dr

≤ C(t)

Hence,

|Im(σ)| ≤
C(t)e−|x|1−δ sin(ε)

|x|

then, since δ ∈ (1/2, 1) and |x| >> 1, we get that

|Im((σ2)ij)| ≤
C(t)

|x|1+2α
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To conclude, we can do a similar proof for the others two terms of I3. �

Now, we state the proof of Lemma 3.6 in the higher space dimension case, i.e. when d > 1
and α := αm ≤ ... ≤ α1 ≤ 1. Let note that this case requires the use of Bessel functions of first

and third kind.

Proof. As in the previous proof, we only need to prove that

|x|d+2α|ηij(t, x)| ≤ Cij(t), ∀t > 0, |x| > 1

for all i, j ∈ {1, ...m}, where F−1(e(A(|ξ|)+B)t) = (ηij)
m
i,j=1 and Cij a locally bounded function.

Let t > 0 and |x| > 1, using the spherical coordinates system in dimension d > 1 and the

definition of Bessel Function of first kind [1], we have

F−1(e(A(|ξ|)+B)t) =

∫

Rd

eixξe(A(|ξ|)+B)tdξ

= Cd

∫ ∞

0

∫ 1

−1

e(A(r)+B)t cos(|x|rs)rd−1(1 − s2)
d−3
2 dsdr

=
Cd

|x|
d
2
−1

∫ ∞

0

e(A(r)+B)tJ d
2
−1(|x|r)r

d
2 dr

setting ρ = |x|, doing a change of variables and integrating by parts

|x|d+2αF−1(e(A(|ξ|)+B)t) = Cdρ
d
2
+2α+1

∫ ∞

0

e(A(r)+B)tJ d
2
−1(ρr)r

d
2 dr

= Cdρ
d
2

∫ ∞

0

e(A( r
ρ
)+B)tJ d

2
−1(r)r

d
2 dr

= −Cdρ
d
2
−1

∫ ∞

0

r
d
2 J d

2
(r)

∂e(A(s)+B)t

∂s

∣∣∣∣∣
s= r

ρ

dr

= Re


−Cdρ

d
2
−1

∫ ∞

0

r
d
2 H

(1)
d
2

(r)
∂e(A(s)+B)t

∂s

∣∣∣∣∣
s= r

ρ

dr




where H
(1)
ν = Jν + iYν is the Bessel Function of third kind [1]. Now, using (3.29) and the

notation given in (3.30), we have

|x|d+2α|ηij(t, x)| ≤ Cd [|(I1)ij| + |(I2)ij| + |(I3)ij| + |(I4)ij|]
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for all i, j ∈ {1, ...,m}, where

In = ((In)ij)
m
i,j=1 = ρ

d
2
−1

∫ ∞

0

r
d
2 H

(1)
d
2

(r)

∫ t

0

Jn(rρ−1)dsdr

for all n ∈ {1, 2, 3, 4}, with J1 = −Ct−sA
′Cs, J2 = Ct−sA

′Ds, J3 = Dt−sA
′Cs and J4 =

−Dt−sA
′Ds.

Let us begin with the computations of I1. The general term has the form

(I1)ij =
m∑

k=1

∫ ∞

0

ρ2α−1r
d
2 H

(1)
d
2

(r)

∫ t

0

ck
ij(t, s)(r/ρ)2αk−1e−(t−s)(r/ρ)2αk e−s(r/ρ)2αj

dsdr

:=
m∑

k=1

∫ t

0

ck
ij(t, s)σkds

where ck
ij(t, s) is some integrable function on s ∈ [0, t] formed by the product of the terms of

e(t−s)B and esB . The integral term σk can be estimated by rotating the interval of integration by

ε < min(π
2
, π

2α1
), thus, we get

σk = ρ2(α−αk)

∫ ∞

0

(reiε)
d
2
+2αk−1H

(1)
d
2

(reiε)e−(t−s)(r/ρ)2αkei2αkε

e−s(r/ρ)2αj ei2αjε

eiεdr

since ρ = |x| > 1 and α ≤ αk

|σk| ≤

∫ ∞

0

r
d
2
+2αk−1

∣∣∣H(1)
d
2

(reiε)
∣∣∣ e−(t−s)(r/ρ)2αk cos(2αkε)e−s(r/ρ)2αj cos(2αjε)dr

≤

∫ ∞

0

r
d
2
+2αk−1

∣∣∣H(1)
d
2

(reiε)
∣∣∣ dr = C(αk)

the last integral is finite since H
(1)
d
2

(z) ∼ − i
π
Γ(d/2)(z/2)−d/2 on the interval [0, R] and also

|H
(1)
d
2

(reiε)| ≤ c√
r
e−r sin(ε) in (R, +∞) for some R > 0 large enough [30]. Then,

|(I1)ij| ≤
m∑

k=1

C(αk)

∫ t

0

ck
ij(t, s)ds = Cij(t)

where Cij(t) is a positive positive locally bounded function on t > 0.
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Now, let continue with the bound for I2. Hence, by rotating the interval of integration by

ε < min(π
2
, π

4α1
), we get

I2 = ρ2α−1

∫ ∞

0

(reiε)
d
2 H

(1)
d
2

(reiε)

∫ t

0

Ct−sA
′Ds(rρ

−1eiε)eiεdsdr

Hence, to get a bound for I2 = ((I2)ij)
m
i,j=1, we need to state a bound for each term that appear

in (I2)ij , by abuse of notation, we call σ to each one of these terms. Hence, the general form of

σ is

σ = ρ2α−1

∫ ∞

0

∫ t

0

∫ s

0

(reiε)
d
2 H

(1)
d
2

(reiε)C(t − s)C(w)e−(t−s)(r/ρ)2αj ei2αjε

(r/ρ)2αj−1

ei(2αj−1)εhp,q(s − w, rρ−1eiε)(r/ρ)2αlei2αlεe−w(r/ρ)2αkei2αkε

eiεdwdsdr

then

|σ| ≤ ρ2(α−αj−αl)

∫ ∞

0

∫ t

0

∫ s

0

r
d
2

∣∣∣H(1)
d
2

(reiε)
∣∣∣C(t − s)C(w)e−(t−s)(r/ρ)2αj cos(2αjε)

r2αj−1|hp,q(s − w, rρ−1eiε)|r2αle−w(r/ρ)2αk cos(2αkε)dwdsdr

now, doing a similar procedure as in the last part of the previous proof, by (3.26), (3.27) of

Lemma 3.5 and since ρ = |x| > 1, we have

|σ| ≤ 2

∫ t

0

∫ s

0

C(t − s)C(w)ec(s−w)dwds

∫ ∞

0

r
d
2
+2(αj+αl)−1

∣∣∣H(1)
d
2

(reiε)
∣∣∣ dr

= C̃ij(t)

Hence, we get

|(I2)ij| ≤ Cij(t)

To conclude, we can do a similar proof for I3 and I4. �

Now, we present an alternative simple proof of Lemma 3.6, for the particular case in which

α := αi < 1 for all i ∈ {1, ...,m}, this proof is done for d ≥ 1. In this case, since we are

working with a unique index α, we can bound directly in the iteration process (3.32), to prove

that the solution of the system (3.1)-(3.2) decay as |x|−d−2α when |x| is large enough for all

t > 0.

Proof. As in the previous cases, we have that

|fi(u)| =

∣∣∣∣
∫ 1

0

Dfi(σu)dσ · u

∣∣∣∣ ≤
∣∣∣∣∣

m∑

j=1

uj

∫ 1

0

∂fi

∂uj

(σu)dσ

∣∣∣∣∣ ≤ L
m∑

j=1

|uj|
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where L = maxi∈{1,...,m}{Lip(fi)}. Following (3.14), we have that u = limi→+∞ ui where

ui = N i
u0

(u0) = Nu0(u
i−1), with u0(t) = (Ttu0i)

m
i=1 (3.32)

Using the iterative process (3.32) and the semigroup properties of the operator Tt, we have that

for all i ∈ {1, ...,m} and n ∈ N

|un
i (t, x)| ≤

(
1 + (mLt) +

(mLt)2

2!
+ ... +

(mLt)n

n!

) m∑

j=1

Ttu0j(x) (3.33)

where un = (un
i )m

i=1. Also, we know that

‖un − u‖C([0,∞),X)m → 0, when n → +∞

where X = C0(R
d). Then, we deduce that

|un
i (t, x)| → |ui(t, x)| = ui(t, x) when n → +∞

for all (t, x) ∈ [0,∞) × R
d and i ∈ {1, ...,m}. Taking the limit when n → +∞ in (3.33), we

conclude that

ui(t, x) ≤ emLt

m∑

j=1

Ttu0j(x), (t, x) ∈ [0,∞) × R
d (3.34)

Now, by hypothesis (3.3), we have that there exists ri > 0 large enough, such that

u0i(x) ≤ Ci|x|
−d−2α, if |x| > ri

also we know that 0 ≤ u0i ≤ ai. Thus, if |x| > 2ri and t > 0

Ttu0i(x) ≤

∫

Rd

t−
d
2α Bu0i(y)

1 + (t−
1
2α |x − y|)d+2α

dy

≤

∫

{|y|≤|x|/2}

t−
d
2α Bu0i(y)

1 + (t−
1
2α |x − y|)d+2α

dy

+

∫

{|y|>|x|/2}

t−
d
2α Bu0i(y)

1 + (t−
1
2α |x − y|)d+2α

dy

:= I1 + I2

If |y| ≤ |x|/2, we have |x − y| ≥ |x| − |y| ≥ |x|
2

, then

I1 ≤

∫

{|y|≤|x|/2}

t−
d
2α Bu0i(y)

1 + (t−
1
2α

|x|
2

)d+2α
dy ≤

2d+2αtB

|x|d+2α

∫

{|y|≤|x|/2}
u0i(y)dy
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moreover,
∫
{|y|<ri} u0i(y)dy ≤ aiω(0, ri) and

∫

{ri≤|y|≤|x|/2}
u0i(y)dy ≤

∫

{ri≤|y|≤|x|/2}

Ci

|y|d+2α
dy ≤

Ci

2αr2α
i

then,

I1 ≤
2d+2αtB

|x|d+2α

(
aiω(0, ri) +

Ci

2αr2α
i

)

Now, if |y| > |x|/2, we have that u0i(y) ≤ Ci

|y|d+2α ≤ 2d+2αCi

|x|d+2α , hence

I2 ≤
2d+2αCiB

|x|d+2α

∫

Rd

ds

1 + |s|d+2α
:=

2d+2αCiB

|x|d+2α
Cα

Therefore, we conclude that, if |x| ≥ 2ri

Ttu0i ≤
2d+2αtB

|x|d+2α

(
aiω(0, ri) +

Ci

2αr2α
i

)
+

2d+2αCiB

|x|d+2α
Cα

Otherwise if |x| < 2ri

Ttu0i(x) ≤

∫

Rd

t−
d
2α Bu0i(y)

1 + (t−
1
2α |x − y|)d+2α

dy

≤ aiCαB

≤
aiCαB(2ri)

d+2α

|x|d+2α

Thus, we conclude that there exist a constant Ci such that

Ttu0i(x) ≤ Ci(1 + t)|x|−d−2α

Using (3.34), we have that

ui(t, x) ≤
C(t)

|x|d+2α
, ∀(t, x) ∈ (0,∞) × R

d

where C(t) = (1+ t)emLt
∑m

i=1 Ci. �

3.3.2. Comparison principle for classical solutions

Now, we state the following comparison principle for classical solutions. This result will be

useful to deal with sub and super solutions. Indeed, we have not devised a mild representation

for them, so we can not apply Theorem 3.3 directly.
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Theorem 3.7 Let u = (ui)
m
i=1 and v = (vi)

m
i=1 functions in C1([0, T ]; C0(R

d))m, fi satisfies

(3.4) and

∂tui + (−△)αiui ≤ fi(u), ∂tvi + (−△)αivi ≥ fi(v)

If, for all i ∈ {1, ...,m}
ui(0, x) ≤ vi(0, x), ∀x ∈ R

d

also

ui(t, x) = O(|x|−(d+2α)) and vi(t, x) = O(|x|−(d+2α)) as |x| → ∞

for all t ∈ [0, T ]. Then

u(t, x) ≤ v(t, x) ∀(t, x) ∈ [0, T ] × R
d.

Proof. Let us take wi = ui − vi, then wi satisfy wi(0, x) ≤ 0 and

∂twi + (−△)αiwi ≤ fi(u) − fi(v)

=

∫ 1

0

∇fi(σu + (1 − σ)v)dσ.(u − v) (3.35)

=

∫ 1

0

∇fi(ζσ)dσ.w

where ζσ = σu + (1 − σ)v. By hypothesis, we have that

wi ∈ C1([0, T ]; C0(R
d)) (3.36)

then there exist positive constants C1(T ) and C2(T ) such that

|wi(t, x)| ≤ C1(T ) and |∂twi(t, x)| ≤ C2(T ) (3.37)

for all (t, x) ∈ [0, T ] × R
d. Moreover, by the decay assumptions on the functions u and v, we

have that

wi(t, x) = O(|x|−(d+2α)) ∀ t ∈ [0, T ] as |x| → ∞ (3.38)

Thus, it is easy to see that

∫

Rd

|wi(t, x)||wj(t, x)|dx ≤ Cij(T ) ∀ t ∈ [0, T ] (3.39)

where Cij(T ) are constants that depend of T . Now, let w+
i be the positive part of wi, we want

to prove that

∂t

[∫

Rd

(w+
i )2dx

]
=

∫

Rd

∂t

[
(w+

i )2
]
dx (3.40)
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which is quite simple, because, from (3.36), we deduce that (w+
i )2 and ∂t

[
(w+

i )2
]

are conti-

nuous in (0, T ) × R
d and
∣∣∂t

[
(w+

i )2
]∣∣ = 2

∣∣w+
i ∂twi

∣∣ ≤ 2C2(T ) |wi| ≤ Cg(x) (3.41)

the last inequality and the existence of the integrable function g follows from (3.37) and (3.38),

thus we conclude (3.40). Now, multiplying each term of the equation (3.35) by the positive part

of wi and integrating over R
d, we have that

0 ≤

∫

Rd

w+
i (−△)αiwidx ≤

∫

Rd

w+
i

∫ 1

0

∇fi(ζσ)dσ.wdx −

∫

Rd

w+
i ∂twidx (3.42)

by (3.39) and (3.41), we get ∫

Rd

w+
i (−△)αiwidx < ∞

Now, since all the above integral exist and having in mind that fi ∈ C1(Rm) for all i ∈
{1, ...,m}, from (3.42), we deduce

∫

Rd

w+
i ∂twidx +

∫

Rd

w+
i (−△)αiwidx

≤

∫

Rd

w+
i

∫ 1

0

∇fi(ζσ)dσ.wdx

=

∫

Rd

w+
i

∫ 1

0

∂ifi(ζσ)dσwidx +
m∑

j=1,i6=j

∫

Rd

w+
i

∫ 1

0

∂jfi(ζσ)dσwjdx

=

∫

Rd

∫ 1

0

∂ifi(ζσ)dσ(w+
i )2dx +

m∑

j=1,i6=j

∫

Rd

∫ 1

0

∂jfi(ζσ)dσw+
i w+

j dx

−
m∑

j=1,i6=j

∫

Rd

∫ 1

0

∂jfi(ζσ)dσw+
i w−

j dx

Since w+
i ∂twi = 1

2
∂t(w

+
i )2 and ∂jfi(ζσ) > 0, by (3.40) and (3.42), we get

1

2
∂t

[∫

Rd

(w+
i )2dx

]
≤

∫

Rd

∫ 1

0

∂ifi(ζσ)dσ(w+
i )2dx +

m∑

j=1,i6=j

∫

Rd

∫ 1

0

∂jfi(ζσ)dσw+
i w+

j dx

≤

∫

Rd

∫ 1

0

∂ifi(ζσ)dσ(w+
i )2dx +

1

2

m∑

j=1,i6=j

∫

Rd

∫ 1

0

∂jfi(ζσ)dσ(w+
i )2dx

+
1

2

m∑

j=1,i6=j

∫

Rd

∫ 1

0

∂jfi(ζσ)dσ(w+
j )2dx

≤ C

m∑

j=1

∫

Rd

(w+
j )2dx
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Doing this procedure for each i ∈ {1, ...,m} and adding

∂t

[
m∑

j=1

∫

Rd

(w+
j )2dx

]
≤ C

m∑

j=1

∫

Rd

(w+
j )2dx

By the Gronwall inequality

m∑

j=1

∫

Rd

(w+
j )2dx ≤ e

∫ t
0 Cds

m∑

j=1

∫

Rd

(w+
j (0, x))2dx = 0

so, ∫

Rd

(w+
j )2dx = 0, ∀j ∈ {1, ...,m}

then, we conclude

wj(t, x) ≤ 0, ∀(t, x) ∈ [0, T ] × R
d,∀j

�

Remark 3.8 Note that as a consequence of Lemma 3.6 (in the case d = 1 and d > 1), we have

the enough regularity to apply Theorem 3.7 to the solution of the problem (3.1)-(3.2).

3.3.3. Lower bound

The following is an important result needed to prove the Theorem 3.1, which sets an algebrai-

cally lower bound for the solutions of the cooperative system (3.1)-(3.2). This result is valid for

any dimension d and for any index αi.

Lemma 3.9 Let u = (ui)
m
i=1 the solution of the system (3.1)-(3.2), with initial condition u0

satisfying (3.3) and fi satisfying (3.4). Then, there exist constants σi > 0 and τ1 > 0 such that

ui(t + t0, x) ≥
Cite

−σit

t
d
2α

+1 + |x|d+2α
, ∀i ∈ {1, ...,m}

for all t0 > 0, x ∈ R
d and t ≥ τ1, with Ci positive constants that depend of t0.

Proof. Step 1. From hypothesis (H2), we deduce the existence of a positive vector M = mp
with m > 0 large enough and pi = 1 for all i ∈ {1, ...,m} such that F (M) ≤ 0, thus taking m
large if necessary we have u0 ≤ a ≤ M , furthermore, M is a supersolution of (3.1)-(3.2), then

by Theorem 3.7, we conclude that 0 ≤ u(t, x) ≤ M .
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Now, since fi(0) = 0, we have that

fi(u) =

∫ 1

0

Dfi(σu)dσ · u =
m∑

j=1

uj

∫ 1

0

∂fi

∂uj

(ζσ)dσ

where ζσ = σu ∈ [0, u(t, x)] ⊂ [0, M ] and ∂fi

∂uj
: [0, M ] → R is continuous for all i, j ∈

{1, ...,m}, using the fact that the system is cooperative, there exist constants γij > 0 such that
∣∣∣∣
∂fi

∂ui

(ζσ)

∣∣∣∣ ≤ γii and γij ≤
∂fi

∂uj

(ζσ) for all i 6= j

So, taking t0 > 0 fixed, we have that

∂tum + (−△)αmum = fm(u) ≥

∫ 1

0

∂fm

∂um

(ζσ)dσum ≥ −γmmum

for all x ∈ R
d and t ≥ t0, by the maximum principle of reaction diffusion equations, we have

that

um(t + t0, x) ≥ e−γmmt(pm(t, ·) ∗ um(t0, ·))(x), for all t ≥ 0

Since um(t0, ·) 6≡ 0 is continuous and nonnegative, we can find ξ ∈ R
d fixed such that

um(t0, y) ≥ C for all y ∈ BR(ξ) for some R > 0 and C > 0.

Taking |x| > R, t ≥ 1 and using that α := αm < 1

(pm(t, ·) ∗ um(t0, ·))(x) =

∫

Rd

pm(t, x − y)um(t0, y)dy

≥

∫

|y−ξ|≤R

Cpm(t, x − y)dy

≥ C

∫

|y−ξ|≤R

B−1t

t
d
2α

+1 + |x − y|d+2α
dy

= C

∫

|z|≤R

B−1t

t
d
2α

+1 + |x − ξ − z|d+2α
dz

also, |x− ξ − z| ≤ |x|+ |ξ|+ |z| ≤ |x|+ cR + R ≤ (2 + c)|x|, with the constant c = |ξ|/R, so

t
d
2α

+1 + |x − ξ − z|d+2α ≤ (2 + c)d+2αt
d
2α

+1 + (2 + c)d+2α|x|d+2α

then

(pm(t, ·) ∗ um(t0, ·))(x) ≥
CB−1

(2 + c)d+2α

∫

|z|≤R

t

t
d
2α

+1 + |x|d+2α
dz

=
C̃t

t
d
2α

+1 + |x|d+2α
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Now, if |x| ≤ R and t ≥ 1, taking ρ > 0 such that supp(um(t0, ·)) ∩ Bρ(0) 6= ∅

(pm(t, ·) ∗ um(t0, ·))(x) ≥

∫

Bρ(0)

B−1tum(t0, y)

t
d
2α

+1 + |x − y|d+2α
dy

≥
B−1

t
d
2α

+1 + (R + ρ)d+2α

∫

Bρ(0)

um(t0, y)dy

≥ Ce−t

for some small constant C > 0. Moreover, since t ≥ 1

(pm(t, ·) ∗ um(t0, ·))(x) ≥ Ce−t ≥
Cte−t

t
d
2α

+1 + |x|d+2α

Then, there exist Cm = Cm(t0) > 0 such that

um(t + t0, x) ≥
Cmte−σmt

t
d
2α

+1 + |x|d+2α
, ∀x ∈ R

d, t ≥ 1

with σm = γmm + 1.

Step 2. To finish the proof is necessary to find a lower bound of the convolution between

pi(1, ·) and t

t
d
2α +1+|x−y|d+2α

for all t ≥ 1, Thus, by the same computations as above, it is possible

to find a constant C > 0 such that

∫

Rd

te−
|y|2

4

t
d
2α

+1 + |x − y|d+2α
dy ≥

Cte−t

t
d
2α

+1 + |x|d+2α
, ∀x ∈ R

d, t ≥ 1

and

∫

Rd

1

1 + |y|d+2αi

[
t

t
d
2α

+1 + |x − y|d+2α

]
dy ≥

Cte−t

t
d
2α

+1 + |x|d+2α
, ∀x ∈ R

d, t ≥ 1

Step 3. Now, we set i ∈ {1, ...,m − 1}, we have that

∂tui + (−△)αiui = fi(u) ≥

∫ 1

0

∂fi

∂um

(ζσ)dσum +

∫ 1

0

∂fi

∂ui

(ζσ)dσui

≥ γimum − δiui
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for all x ∈ R
d and t ≥ t0, where δi ≥ max(γii, σm + 2). Then, by the maximum principle of

reaction diffusion equation and Duhamel formula, we have that

ui(t + t0, x) ≥ e−δit(Hi(t, ·) ∗ ui(t0, ·))(x)

+γime−δit

∫ t

0

∫

Rd

Hi(t − s, y)um(s + t0, x − y)eδisdyds

for all (t, x) ∈ R+ × R
d, where

Hi(t, x) =

{
1

(4πt)
d
2
e−

|x|2

4t if αi = 1

pi(t, x) if αi ∈ (0, 1).

So, taking t ≥ τ1 for any τ1 ≥ 3

ui(t + t0, x) ≥ γime−δit

∫ t

0

∫

Rd

Hi(t − s, y)um(s + t0, x − y)eδisdyds

≥ Cmγime−δit

∫ t−1

1

∫

Rd

Hi(t − s, y)
se(δi−σm)s

s
d
2α

+1 + |x − y|d+2α
dyds

Now, we have two cases. The first one, if αi = 1, then

ui(t + t0, x) ≥
Cmγim

(4π)
d
2

e−δit

t
d
2

∫ t−1

1

e(δi−σm)s

∫

Rd

se−
|y|2

4

s
d
2α

+1 + |x − y|d+2α
dyds

and if αi ∈ (0, 1), then

ui(t + t0, x) ≥
Cmγim

B

e−δit

t
d

2αi

∫ t−1

1

e(δi−σm)s

∫

Rd

1

1 + |y|d+2αi

[
s

s
d
2α

+1 + |x − y|d+2α

]
dyds

in any cases, thanks to the Step 2, we can bound as follows

ui(t + t0, x) ≥ Ci
e−δit

t
d
2α

∫ t−1

1

se(δi−σm − 1)s

s
d
2α

+1 + |x|d+2α
ds

≥ Ci
e−δit(et−1 − e)

t
d
2α (t

d
2α

+1 + |x|d+2α)

≥
Cite

−σit

t
d
2α

+1 + |x|d+2α
∀x ∈ R

d, t ≥ τ1

with τ1 larger if necessary and taking σi := δi.

Then, we proved that there exist constants Ci > 0 and σi > 0 such that

ui(t + t0, x) ≥
Cite

−σit

t
d
2α

+1 + |x|d+2α
, ∀i ∈ {1, ...,m}

for all x ∈ R
d and t ≥ τ1. �
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3.4. Proof of Theorem 3.1

In order to prove Theorem 3.1, we need to construct explicit sub and super solution, which will

have the form of the following vector field

v(t, x) = a
(
1 + b(t)|x|δ(d+2α)

)− 1
δ φ (3.43)

where b(t) is a time continuous function and φ ∈ R
m is the normalized principal eigenvector of

DF (0) associated to the principal eigenvalue λ1 and δ ∈ R+ is taken as in the hypothesis (H2)

and (H3). Note that, since the system is cooperative,
∂fj

∂ui
(0) > 0 for all i 6= j ∈ {1, ...,m}, by

Perron-Frobenius Theorem, we can take φ > 0.

The following result allow us to understand the behavior of the fractional laplacian (−△)αi

on the function v defined by (3.43). The proof of this result is based in a result proved by

Bonforte and vázquez in [13], also a similar result was announced in [16].

Lemma 3.10 Let v be defined as in (3.43). Then, there exist a constant D > 0 such that

| (−△)αivi |≤ Db(t)
2αi

δ(d+2α) vi, in R
d

with αi ∈ (0, 1], for all i ∈ {1, ...,m}.

Proof. In the case αi ∈ (0, 1) with δ ≥ 2
d+2α

, we only need to prove

| (−△)αiw(x) |≤ Dw(x) (3.44)

where w(x) = (1+ | x |δ(d+2α))−
1
δ . Indeed, note that v(t, x) = aw(b(t)

1
δ(d+2α) x)φ, also, since

w ∈ C2(Rd) ∩ L∞(Rd) we have that (−△)αiw ∈ L∞(Rd) and it is 2αi-homogeneous, thus

(−△)αivi(t, x) = aφi(−△)αiw(b(t)
1

δ(d+2α) x) = aφib(t)
2αi

δ(d+2α) (−△)αiw(y)

where y = b(t)
1

δ(d+2α) x. Moreover w(x) ≤ |x|−(d+2α) and |D2w(x)| ≤ c|x|−(d+2α+2) for |x|
large enough.

Since (−△)αiw ∈ L∞(Rd), taking D large enough, it is sufficient to prove the result for

large values of |x|. We have to estimate

| (−△)αiw(x) |= C(d, αi)

∣∣∣∣P.V.

∫

Rd

w(x) − w(y)

|x − y|d+2αi
dy

∣∣∣∣

hence∫

Rd

w(x) − w(y)

|x − y|d+2αi
dy =

∫

|y|>3|x|/2

w(x) − w(y)

|x − y|d+2αi
dy +

∫

{|x|≤2|y|≤3|x|}\B|x|/2(x)

w(x) − w(y)

|x − y|d+2αi
dy

+

∫

B|x|/2(x)

w(x) − w(y)

|x − y|d+2αi
dy +

∫

|y|≤|x|/2

w(x) − w(y)

|x − y|d+2αi
dy

:= I1 + I2 + I3 + I4
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In the first integral, since |y| > 3|x|/2 we have w(y) ≤ w(x) and then |w(x) − w(y)| ≤ w(x),
hence

|I1| =

∣∣∣∣
∫

|y|>3|x|/2

w(x) − w(y)

|x − y|d+2αi
dy

∣∣∣∣ ≤ Cw(x)

∫ ∞

3|x|/2

1

r1+2αi
dr ≤

C1

|x|d+2α+2αi

since w(x) ≤ |x|−(d+2α) for |x| large enough.

Following a similar idea as in the above computation, since |y| > 3|x|/2 we have w(y) ≤
w(x/2) and then |w(x) − w(y)| ≤ w(x/2), also note that w(x/2) ≤ |x/2|−(d+2α) for |x| large

enough, hence

|I2| =

∣∣∣∣∣

∫

{|x|≤2|y|≤3|x|}\B|x|/2(x)

w(x) − w(y)

|x − y|d+2αi
dy

∣∣∣∣∣ ≤
Cw(x/2)

(|x|/2)d+2αi

∫ 3|x|/2

|x|/2

rd−1dr ≤
C2

|x|d+2α+2αi

since |x − y| ≥ |x|/2.

Before to continue, note that

P.V.

∫

B|x|/2(x)

∇w(x) · (x − y)

|x − y|d+2α
dy = 0

moreover, if |x − y| < |x|/2 then |x|/2 < |y| < 3|x|/2, therefore

|∂2
ijw(y)| ≤

c

|y|d+2α+2
≤

c2d+2α+2

|x|d+2α+2

for all y ∈ B|x|/2(x). Now we can estimate I3 as follows:

|I3| =

∣∣∣∣∣

∫

B|x|/2(x)

w(x) − w(y)

|x − y|d+2αi
dy

∣∣∣∣∣

=

∣∣∣∣∣

∫

B|x|/2(x)

∇w(x) · (x − y)

|x − y|d+2αi
dy +

∫

B|x|/2(x)

(x − y)tD2w(x)(x − y)

|x − y|d+2αi
dy

∣∣∣∣∣

≤ sup
1≤i,j≤d

‖∂ijw‖L∞(B|x|/2(x))

∣∣∣∣∣

∫

B|x|/2(x)

1

|x − y|d+2αi−2
dy

∣∣∣∣∣

≤
C

|x|d+2α+2

∫ |x|/2

0

1

r2αi−1
dr

≤
C

|x|d+2α+2

(
|x|

2

)2−2αi

=
C3

|x|d+2αi+2α
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It only remains to estimate the fourth integral. Note that |y| ≤ |x|/2 implies w(x) ≤ w(y)
which gives |w(x) − w(y)| ≤ w(y), thus

|I4| ≤

∫

|y|≤|x|/2

|w(x) − w(y)|

|x − y|d+2αi
dy ≤

2d+2αi

|x|d+2αi

∫

Rd

w(y)dy ≤
C4

|x|d+2αi

since |x − y| ≥ |x|/2 and |x| is large enough. Therefore, we conclude that

| (−△)αiw(x) |≤
C5

|x|d+2α
≤ Dw(x)

since |x| is large enough and for some constant D.

Now, for the case in which αi = 1 for some i and δ ≥ 2
d+2α

, by a similar analysis as in the

previous case, we only need to prove

| −△w(x) |≤ Dw(x) (3.45)

where w(x) = (1+ | x |δ(d+2α))−
1
δ . In what follows, we prove (3.45)

| − △v| ≤
1

(1 + |x|δ(d+2α))
1
δ

[
C1|x|

2(δ(d+2α)−1)

(1 + |x|δ(d+2α))2
+

C2|x|
δ(d+2α)−2

1 + |x|δ(d+2α)

]

≤
1

(1 + |x|δ(d+2α))
1
δ

[
C1|x|

−2 + C2|x|
−2
]

≤ Dv(x)

since |x| is large and for some constant D. �

In what follows, we will use the results of previous sections to obtain appropriate classical

sub and super solutions of the system (3.1)-(3.2) with the form of the vector field (3.43), then

we use the comparison principle to obtain the desired results.

We divide the proof of Theorem 3.1 in two lemmas.

Lemma 3.11 Let d ≥ 1 and assume that F satisfies (3.4), (H1) and (H2). Let u be the solution

to (3.1)-(3.2) with u0 satisfying (3.3). Then, for every µ = (µi)
m
i=1 > 0, there exist c > 0 such

that, for all t > τ

{
x ∈ R

d | |x| > ce
λ1

d+2α
t
}
⊂
{
x ∈ R

d | u(t, x) < µ
}

with τ > 0 large enough.
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Proof: We consider the function

u(t, x) = a
(
1 + b(t) | x |δ1(d+2α)

)− 1
δ1 φ

where φ ∈ R
m is the normalized principal eigenvector of DF (0) associated to the principal

eigenvalue λ1. The idea is adjust a > 0 and b(t) asymptotically proportional to e−δ1λ1t so that

the function u serves as supersolution of the problem (3.1)-(3.2).

Before to continue, we choose a constant B < (1 + Dλ−1
1 )−

δ1(d+2α)
2α where D > 0 is given in

Lemma 3.10. Now, we consider the problem

−b
′
(t) − δ1Db(t)

2α
δ1(d+2α)

+1
− δ1λ1b(t) = 0, b(0) = (−Dλ−1

1 + B
− 2α

δ1(d+2α) )−
δ1(d+2α)

2α

which has a solution given by b(t) = (−Dλ−1
1 + B

− 2α
δ1(d+2α) e

2αλ1
d+2α

t)−
δ1(d+2α)

2α , note that, 0 ≤
b(t) ≤ b(0) ≤ 1.

Using Lemma 3.10, note that for all i ∈ {1, ...,m}

∂tui + (−△)αiui − fi(u) = ∂tui + (−△)αiui − Dfi(0)u + [Dfi(0)u − fi(u)]

≥ −
aφib

′
(t)|x|δ1(d+2α)

δ1(1 + b(t)|x|δ1(d+2α))
1
δ1

+1
− Db(t)

2αi
δ1(d+2α) ui − λ1ui +

cφ1+δ1
i a1+δ1

(1 + b(t)|x|δ1(d+2α))
1
δ1

+1

≥
aφi

δ1(1 + b(t)|x|δ1(d+2α))
1
δ1

+1

{
−b

′
(t) − δ1Db(t)

2α
δ1(d+2α)

+1
− δ1λ1b(t)

}
|x|δ1(d+2α)

+
aφi

(1 + b(t)|x|δ1(d+2α))
1
δ1

+1

{
−Db(t)

2α
δ1(d+2α) − λ1 + cφδ1

i aδ
}

(3.46)

in the last inequality we use that α ≤ αi and b(t) ≤ 1. Thus, taking

a ≥
(D + λ1)

1
δ1

c
1
δ1 mini(φi)

the right hand side of inequality (3.46) is bigger than or equal to 0 for all t > 0.

To end the proof, for any t0 > 0 fixed, we can take a satisfying the above condition and t1 > t0
such that

ui(t1, x) ≥ ui(t0, x), ∀x ∈ R
d,∀i ∈ {1, ...,m}

note that, this is possible due to Lemma 3.6 (in the case d = 1 and d > 1). Therefore, we

conclude that u is a supersolution to (3.1)-(3.2) for all t ≥ t1. Thus, using Theorem 3.7, we get

for all t ≥ t0
ui(t + t1 − t0, x) ≥ ui(t, x), ∀x ∈ R

d,∀i ∈ {1, ...,m} (3.47)
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Now, given any (µi)
m
i=1 > 0, we define

cd+2α
i :=

aφie
λ1(t1−t0)

µiB
1
δ1

and since Be−δ1λ1(t+t1−t0) ≤ b(t + t1 − t0), we have that, if

|x| > cie
λ1

d+2α
t for all i ∈ {1, ..,m}

then

|x|δ1(d+2α) >
aδ1φδ1

i

µδ1
i B

eδ1λ1(t+t1−t0)

Therefore

aδ1φδ1
i

µδ1
i

< Be−δ1λ1(t+t1−t0)|x|δ1(d+2α)

≤ b(t + t1 − t0)|x|
δ1(d+2α)

≤ 1 + b(t + t1 − t0)|x|
δ1(d+2α)

Thus, using (3.47)

ui(t, x) ≤ ui(t + t1 − t0, x) =
aφi

(1 + b(t + t1 − t0)|x|δ1(d+2α))
1
δ1

< µi

By the above computations, and taking c = maxi{ci}, we conclude that

{
x ∈ R

d | |x| > ce
λ1

d+2α
t
}
⊂
{
x ∈ R

d | ui(t, x) < µi

}

for all t > τ , with τ := t0.

�

Lemma 3.12 Let d ≥ 1 and assume that F satisfies 3.4, (H1) and (H3). Let u be the solution

to (3.1)-(3.2) with u0 satisfying (3.3). Then, for all i ∈ {1, ...,m}, there exist constants εi > 0
and C > 0 such that,

ui(t, x) > εi, for all t ≥ τ and |x| < Ce
λ1

d+2α
t

with τ > 0 large enough.
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Proof: As in the previous proof, we consider the function

u(t, x) = a
(
1 + b(t)|x|δ2(d+2α)

)− 1
δ2 φ

where φ ∈ R
m is the normalized principal eigenvector of DF (0) associated to the principal

eigenvalue λ1, a > 0 and b(t) asymptotically proportional to e−δ2λ1t. In the following we

choose a and b such that the function u serves as subsolution of the problem (3.1)-(3.2).

Taking for the moment B ≤ (Lλ−1
1 )−

δ2(d+2α)
2α with any constant L ≥ max{D, λ1}. We consider

the function b(t) = (Lλ−1
1 + B

− 2α
δ2(d+2α) e

2αλ1
d+2α

t)−
δ2(d+2α)

2α which a solution of the problem

−b′(t) + δ2Lb(t)
2α

δ2(d+2α)
+1

− δ2λ1b(t) = 0, b(0) = (Lλ−1
1 + B

− 2α
δ2(d+2α) )−

δ2(d+2α)
2α

also, note that b(t) ≤ b(0) ≤ 1, since L > λ1.

Using Lemma 3.10, we have that for all i ∈ {1, ...,m}

∂tui + (−△)αiui − fi(u) ≤ ∂tui + (−△)αiui − Dfi(0)u+ | Dfi(0)u − fi(u) |

≤ −
aφib

′(t)|x|δ2(d+2α)

δ2(1 + b(t)|x|δ2(d+2α))
1
δ2

+1
+ Db(t)

2αi
δ2(d+2α) ui − λ1ui +

ca1+δ2

(1 + b(t)|x|δ2(d+2α))
1
δ2

+1

≤
aφi

δ2(1 + b(t)|x|δ2(d+2α))
1
δ2

+1

{
−b′(t) + δ2Lb(t)

2α
δ2(d+2α)

+1
− δ2λ1b(t)

}
|x|δ2(d+2α)

+
aφi

(1 + b(t)|x|δ2(d+2α))
1
δ2

+1

{
Lb(t)

2α
δ2(d+2α) − λ1 +

caδ2

φi

}
(3.48)

in the last inequality we use that α ≤ αi and b(t) ≤ 1. Thus, taking

a ≤

(
mini{φi}λ1

2c

) 1
δ2

the right hand side of inequality (3.48) is less than or equal to 0 for all t > 0.

Since, ui(0, ·) ≤ u0i may not hold for all i ∈ {1, ...,m}, we look for a time t1 ≥ max{τ1, 2Lλ−1
1 },

where τ1 was defined in Lemma 3.9. Moreover, for any t0 > 0 fixed, we know that

ui(t1 + t0, x) ≥
cit1e

−σit1

t
d
2α

+1

1 + |x|d+2α
, ∀i ∈ {1, ...,m}, ∀x ∈ R

d
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Consequently, we choose

a =
mini{ci}e

−maxi{σi}t1

2maxi{φi}t
d
2α
1

, B =

(
2

t1

) δ2(d+2α)
2α

taking t1 large if necessary, such that, the requirements

a ≤

(
mini{φi}λ1

2c

) 1
δ2

and B ≤ (Lλ−1
1 )−

δ2(d+2α)
2α

are satisfied.

By the election of a and B, we deduce that

since

a ≤
cie

−σit1

2φit
d
2α
1

, then aφit
d
2α

+1

1 ≤
ci

2
t1e

−σit1

By the election of t1, we deduce that t1 ≥ 2Lλ−1
1 , thus

B
2α

δ2(d+2α) =
2

t1
≥

1

t1 − Lλ−1
1

therefore,

b(0)
− 1

δ2 =

[(
Lλ−1

1 + B
− 2α

δ2(d+2α)

) δ2(d+2α)
2α

] 1
δ2

≤ t
d+2α
2α

1

and
2aφi

cie−σit1t1
≤

1

t
d+2α
2α

1

≤ b(0)
1
δ2

Then, we deduce

ci

2
t1e

−σit1 − aφit
d
2α

+1

1 ≥ 0 ≥
[
aφi −

ci

2
b(0)

1
δ2 e−σit1t1

]
|x|d+2α

so,
ci

2
t1e

−σit1(1 + b(0)
1
δ2 |x|d+2α) ≥ aφi(t

d
2α

+1

1 + |x|d+2α)

but

(1 + b(0)|x|δ2(d+2α))
1
δ2 ≥

1 + b(0)
1
δ2 |x|d+2α

2
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Therefore,
cit1e

−σit1

t
d
2α

+1

1 + |x|d+2α
≥

aφi

(1 + b(0)|x|δ2(d+2α))
1
δ2

and then we get

ui(t1 + t0, x) ≥ ui(0, x), ∀x ∈ R
d, i ∈ {1, ...,m}

By Theorem 3.7, we have for all i ∈ {1, ...,m}

ui(t, x) ≥ ui(t − t1 − t0, x), ∀x ∈ R
d, t ≥ t1 + t0 (3.49)

Let us define

εi =
aφi

2
1
δ2

and Cd+2α = e−λ1(t1+t0)B
− 1

δ2

Then, if t ≥ t1 + t0 and |x| ≤ Ce
λ1

d+2α
t, we get that ui(t, x) ≥ εi for all i ∈ {1, ...,m}.

Indeed, taking t ≥ t1 + t0 and |x| ≤ Ce
λ1

d+2α
t, we have that

|x|δ2(d+2α) ≤ Cδ2(d+2α)eδ2λ1t = B−1eδ2λ1(t−t1−t0)

Since b(t) ≤ Be−δ2λ1t, then

b(t − t1 − t0)|x|
δ2(d+2α) ≤ 1

Using (3.49), we conclude

ui(t, x) ≥ ui(t − t1 − t0, x) =
aφi

(1 + b(t − t1 − t0)|x|δ2(d+2α))
1
δ2

≥
aφi

2
1
δ2

= εi

for all t > τ , with τ := t1 + t0. �

To conclude this section, the proof of Theorem 3.1 follows directly from Lemmas 3.11 and 3.12.

3.5. Proof of Theorem 3.2

In this subsection, we prove that under some appropriate assumptions on the nonlinearity and

the initial datum, it is possible to state that the solution u(t, x) to (3.1)-(3.2) tends, as t → +∞,

to the smallest constant positive steady solution of (3.1)-(3.2). In order to prove this result, let
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define by φ the positive constant eigenvector of DF (0) associated to the first eigenvalue λ1,

where F = (fi)
m
i=1. Thus λ1 and φ > 0 satisfy

(L − DF (0))φ = −λ1φ

φ > 0, ‖φ‖ = 1

where L = diag((−△)α1 , ..., (−△)αm). Now, let consider the problem

χ̇ε(t) = F (χε(t)) (3.50)

χε(0) = εφ

thus, there exists ε′ > 0 such that, for each ε ∈ (0, ε′) we can find a constant u+
ε > 0 satisfying

χε(t) ր u+
ε as t → +∞, also F (u+

ε ) = 0. We define

u+ = inf
ε∈(0,ε′)

u+
ε

since F is continuous, we deduce that F (u+) = 0. Also, since the function F is positive in a

small ball near to zero, we deduce that u+ > 0.

Moreover we assume that the initial condition u0 satisfies

u0 ≤ u+ in R
d

We prove Theorem 3.2 through a succession of lemmas. Let BR(0) be the open ball of R
d,

with center 0 and radius R. Let us call uR the unique solution of the elliptic system

(−△)αiuR
i = fi(u

R), ∀x ∈ BR(0) (3.51)

uR = 0 on R
d \ BR(0)

uR > 0 on BR(0)

Lemma 3.13 Let d ≥ 1, ε > 0 and assume that F satisfies (3.4), (H1), (H2), (H3) and (H4).

There exists R > 0 such that the solution vR of the system

∂tv
R
i + (−△)αivR

i = fi(v
R), ∀t > 0, x ∈ BR(0) (3.52)

vR(t, x) = 0 on t ≥ 0, x ∈ R
d \ BR(0)

0 < vR(0, x) ≤ min(ε, uR), on x ∈ BR(0)

satisfies

lim
t→+∞

vR(t, x) = uR(x) ∀ x ∈ B1(0)
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Proof: Let φR be the positive eigenvalue associated to λR in the ball BR(0), thus φR and λR

satisfy

(L − DF (0))φR = λRφR in BR(0)

φR > 0 in BR(0), φR = 0 in R
d \ BR(0), ‖φR‖ = 1

Now, following the same computations as in [10], we can deduce that λR given by the minimum

of

1
2

∑m
i=1

∫
Rd

(∫
Rd

(φi(x)−φi(y))2

|x−y|d+2α dy
)

dx −
∫

BR(0)
[DF (0)φ(x)] · φ(x) dx

∑m
i=1

∫
BR(0)

φi(x)2 dx

taken over all functions φ ∈ C1(BR(0))∩C(BR(0)), φ 6≡ 0, vanishing on ∂BR(0) and extended

by 0 outside BR(0), converges to −λ1 when R goes to infinite, moreover, by hypothesis (H1)

we have that λ1 > 0. Thus, we can find R > 0 large enough such that λR < 0.

Since uR and vR satisfy (3.51) and (3.52) in the ball BR(0), and uR = vR = 0 in R
d \

BR(0), then both functions satisfy the system (3.1)-(3.2) with initial conditions vR(0, ·) and

uR(·) respectively, moreover vR(0, ·) ≤ uR(·) in R
d. Thus, by Theorem 3.7 we have that

vR(t, x) ≤ uR(x) for all R > 0, t > 0 and x ∈ R
d.

Let wR be the solution of

∂tw
R
i + (−△)αiwR

i = fi(w
R), ∀t > 0, x ∈ BR(0) (3.53)

wR(t, x) = 0 on t ≥ 0, x ∈ R
d \ BR(0)

wR(0, x) = kφR(x) on x ∈ BR(0)

Taking k > 0, we deduce

fi(kφR) ≥ kDfi(0)φR − ck1+δ2‖φR‖1+δ2

= kDfi(0)φR − ck1+δ2

Therefore, it follows from the above inequality and by the definition of φR that

k(−△)αiφR
i − f

i
(kφR) = k

(
λRφR

i + ckδ2
)
≤ 0, in BR(0)

for all i ∈ {1, ...,m}, taking k small enough and since λR < 0. Then kφR is a subsolution of

(3.51) in the ball BR(0). Thus wR is nondecreasing in time t. Moreover, taking k > 0 small if

necessary, wR(0, x) ≤ vR(0, x) in R
d, thus by Theorem 3.7

wR(t, x) ≤ vR(t, x), ∀ t > 0, x ∈ BR(0)
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Finally, one has

wR(t, x) ≤ vR(t, x) ≤ uR(x), ∀ t > 0, x ∈ BR(0)

Since wR is nondecreasing in time t, standard elliptic estimates imply that wR converges locally

to a stationary solution w∞(≤ uR) of (3.53). But since uR is the unique solution of (3.51), we

conclude that w∞ = uR in B1(0). �

Remark 3.14 Let note that for each y ∈ R
d, if x ∈ B1(y) then x − y ∈ B1(0). Thus taking

σ = (σ)m
i=1 > 0, as a consequence of Lemma 3.13, there exist R > 0 and Tσ > 0 that not

depend of y, such that, for all t ≥ Tσ

|vR
i (t, x − y) − uR

i (x − y)| ≤ σi ∀ x ∈ B1(y)

for each i ∈ {1, ...,m}.

The proof of Theorem 3.2 essentially relies on the following property in which we prove

that any steady state solution of (3.1)-(3.2) is bounded from below away from zero.

Lemma 3.15 Let d ≥ 1 and assume that F satisfies (3.4), (H1), (H2), (H3) and (H4). Let v be

a positive bounded solution of

(−△)αivi = fi(v), ∀ i ∈ {1, ...,m} (3.54)

Then, there exists ε > 0 small enough such that v ≥ εφ in R
d.

Proof: In what follows we prove that there exists a constant vector k > 0 such that v ≥ k in

R
d. Let y ∈ R

d be any arbitrary fixed vector, we note that v(· + y) continue satisfying (3.54),

moreover, for each R > 0, there exists a constant ky,R > 0 such that v(x + y) ≥ ky,R for all

x ∈ BR(0).

Now, let consider the system

∂tw
R
i + (−△)αiwR

i = fi(w
R), ∀t > 0, x ∈ BR(0) (3.55)

wR(t, x) = 0 on t ≥ 0, x ∈ R
d \ BR(0)

0 < wR(0, x) ≤ min(ky,R, uR), on x ∈ BR(0)

Since v(· + y) ≥ wR(0, x) in R
d, by Theorem 3.7, we have that

v(x + y) ≥ wR(t, x) ∀(t, x) ∈ [0,∞) × R
d (3.56)

Now, by Lemma 3.13, there exists R > 0 large enough such that wR(t, x) converges to uR(x),
as t → +∞ for all x ∈ B1(0). Hence, taking the limit when t tends to +∞ in (3.56), we have

that

v(x + y) ≥ uR(x) ∀ x ∈ B1(0)
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Furthermore, taking x = 0 and since y ∈ R
d is arbitrary, we conclude

v(y) ≥ uR(0) := k ∀ y ∈ R
d

Finally, we take ε > 0 small enough such that k ≥ εφ. �

Now, we establish the following result in which we state that u+ is the smaller stationary

solution of (3.1)-(3.2).

Lemma 3.16 Let d ≥ 1 and assume that F satisfies (3.4), (H1), (H2), (H3) and (H4). If v is a

positive continuous solution of (3.54) such that v ≤ u+ in R
d, then v ≡ u+.

Proof: First, since F (u+) = 0, then u+ satisfies the system (3.54). Now, by Lemma 3.15, there

exists ε > 0 such that v ≥ εφ in R
d. By Theorem 3.3, we deduce that

v(x) ≥ χε(t) ∀ t ≥ 0, x ∈ R
d (3.57)

where the function χε satisfies

χ̇ε(t) = F (χε(t))

χε(0) = εφ

Thus, taking t → +∞, from (3.57) and the definition of u+, we deduce that

v(x) ≥ u+
ε ≥ u+

Since v ≤ u+, we conclude that v ≡ u+. �

In the following result we state a relation between the stationary solution in the ball BR(0)
and the stationary solution in the whole space.

Lemma 3.17 Let d ≥ 1 and assume that F satisfies (3.4), (H1), (H2), (H3) and (H4). Let uR

be the unique solution of the system

(−△)αiuR
i = fi(u

R), ∀x ∈ BR(0) (3.58)

uR = 0 on R
d \ BR(0)

uR > 0 on BR(0)

then, uR converges to u+ as R → +∞, locally on compact sets.

Proof: Let R < R′ and x ∈ BR′ \ BR, thus uR(x) = 0, fi(u
R) = 0 and (−△)αiuR

i (x) ≤
0, then we have that uR is a subsolution of (3.58) on BR′ , hence, we conclude uR ≤ uR′

and therefore the sequence {uR} is nondecreasing in R. Moreover, since u+ is a superso-

lution of (3.58) for all R > 0, we have that uR ≤ u+ for all radius R. Hence, the se-

quence {uR} is nondecreasing, bounded and by elliptic estimates converges in compact sets

to a positive solution ṽ ≤ u+ of (3.54). Thus, by Lemma 3.16 we conclude that ṽ = u+.

�

83



Chapter 3. Exponential propagation for fractional reaction-diffusion cooperative systems

Remark 3.18 As a consequence of Lemma 3.17, for each σ = (σ)m
i=1 > 0 and y ∈ R

d, there

exists Rσ > 0 that not depend of y, such that, for all R ≥ Rσ

|uR
i (x − y) − u+

i | ≤ σi ∀ x ∈ B1(y)

for each i ∈ {1, ...,m}.

Now, we can prove our main result.

Theorem 3.19 Let d ≥ 1 and assume that F satisfies (3.4), (H1), (H2), (H3) and (H4). Let u
be the solution to (3.1)-(3.2) with u0 satisfying (3.3) and (3.5). Then:

a) If c < λ1

d+2α
, then

lim
t→+∞

inf
|x|≤ect

|ui(t, x) − u+
i | = 0

b) If c > λ1

d+2α
, then

lim
t→+∞

sup
|x|≥ect

ui(t, x) = 0

for all i ∈ 1, ...,m.

Proof: First, since u0(x) ≤ u+ and u+ satisfies the equation (3.1), by Theorem 3.3, we deduce

that u(t, x) ≤ u+. Now, let c < λ1

d+2α
, we take c < c1 < c2 < λ1

d+2α
fixed, thus by Theorem 3.1,

there exists τ > 0 and ε = (εi)
m
i=1, such that

ui(s, x) > εi, for all s ≥ τ and |x| ≤ ec2s (3.59)

where u = (ui)
m
i=1 is the solution of (3.1)-(3.2).

Let σ > 0, by the Remarks 3.14 and 3.18, we can find Rσ > 0 and Tσ > 0 large enough

such that for R ≥ Rσ and s ≥ Tσ, we have

|uR
i (x − y) − u+

i | ≤
σi

2
and |vR

i (s, x − y) − uR
i (x − y)| ≤

σi

2
(3.60)

for all y ∈ R
d, x ∈ B1(y) and i ∈ {1, ...,m}.

In what follows, taking R ≥ Rσ and τ large if necessary such that

R < ec2τ − ec1τ , ec1Tσ < e(c1−c)τ

we consider y ∈ {z : |z|+R ≤ ec2s} with s ≥ τ . Then by (3.59), vR(0, ·−y) defined on BR(y)
as in the Lemma 3.13 is a subsolution of the system (3.1)-(3.2) for times larger than s and for

all x ∈ R
d. Thus, by Theorem 3.7 and (3.60), we have that

ui(ω + s, x) ≥ uR
i (x − y) −

σi

2
, for all ω ≥ Tσ and x ∈ B1(y)
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Moreover, since R ≥ Rσ and taking ω = Tσ

ui(s + Tσ, x) ≥ u+
i − σi, for all x ∈ B1(y) (3.61)

Furthermore, since {z : |z| ≤ ec1s} is a compact set, we can find a finite number of vectors

y1, ..., yk, such that
⋃k

i=1 B1(yi) cover {z : |z| ≤ ec1s}. Thus, we have

ui(s + Tσ, x) ≥ u+
i − σi for all |x| ≤ ec1s

Then, taking t = s + Tσ ≥ τ + Tσ

ui(t, x) ≥ u+
i − σi for all |x| ≤ e−c1Tσec1t

thus, we conclude the proof of part a), taking τσ := τ + Tσ and by election of τ , we have that

ui(t, x) ≥ u+
i − σi for all |x| ≤ ect

To prove part b), we use directly Lemma 3.11. �
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TITRE ET RESUMÉ DE LA THÈSE EN FRANÇAIS :  
 

Problèmes de réaction-diffusion fractionnaires 
 
Cette thèse  porte sur deux problèmes différents : dans le premier, nous étudions le 
comportement en temps long des solutions des équations de réaction diffusion 1d-
fractionnaire de type Fisher-KPP lorsque la condition initiale est asymptotiquement de 
type front et décroît à l'infini plus lentement que , où bx α2<b et )1,0(∈α  est l‘indice du 
laplacien fractionnaire (Chapitre 2). Dans le second problème, nous étudions la 
propagation asymptotique en temps des solutions de systèmes coopératifs de réaction-
diffusion (Chapitre 3). 
 
Dans le premier problème, nous démontrons que les ensembles de niveau des solutions 
se déplacent exponentiellement vite en temps quand t tend vers l‘infini. De plus, une 
estimation quantitative du mouvement de ces ensembles est obtenue en fonction de la 
décroissance à l‘infini de la condition initiale. 
 
Dans le second problème, nous montrons que la vitesse de propagation est exponentielle 
en temps et nous trouvons un exposant précis qui dépend du plus petit ordre des 
laplaciens fractionnaires considérés et de la non-linéarité. Nous notons aussi que cet 
indice ne dépend pas de la direction spatiale de propagation. 
 
Mots-clés: problèmes de réaction-diffusion, KPP, systèmes coopératifs, propagation 
rapide. 
 
 
 
TITRE ET RESUMÉ DE LA THÈSE EN ANGLAIS :  
 

Fractional Reaction-Diffusion Problems 
 
This thesis deals with two different problems: in the first one, we study the large-time 
behavior of solutions of one-dimensional fractional Fisher-KPP reaction diffusion 
equations, when the initial condition is asymptotically front-like and it decays at infinity 
more slowly than a power , where bx α2<b and )1,0(∈α  is the order of the fractional 
Laplacian (Chapter 2); in the second problem, we study the time asymptotic propagation 
of solutions to the fractional reaction diffusion cooperative systems (Chapter 3). 
 
For the first problem, we prove that the level sets of the solutions move exponentially 
fast as time goes to infinity. Moreover, a quantitative estimate of motion of the level 
sets is obtained in terms of the decay of the initial condition.  
 
In the second problem, we prove that the propagation speed is exponential in time, and 
we find a precise exponent depending on the smallest index of the fractional laplacians 
and of the nonlinearity, also we note that it does not depend on the space direction. 
 
Keywords: reaction-diffusion problems, KPP, cooperative systems, fast propagation. 
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