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ABSTRACT 

 

The field of genetics is rapidly expanding and evolving. As more and more is understood on the 

genetics of complex human traits, a natural question arises as to how these findings can be translated 
to the everyday medical practice. While a little more than a decade ago sequencing the entire human 

genome was achieved by the largest international scientific collaboration ever undertaken in biology, 

today it is not farfetched to expect that in the near future obtaining the genetic profile of each patient 

may become routine medical practice. Pharmacogenomics, a blend of pharmacology and genomics, 
aims to determine the most suitable treatment for each patient as a function of his or her genetic 

makeup. Pharmacogenomic studies have increasingly provided evidence that there are gains to be 

achieved by incorporating genetic information when determining the optimal treatment choice for a 
patient. The case of warfarin, an anticoagulant, has often been considered as one of the most 

motivating success stories to pursue such type of studies. The success as well as the need of such 

studies, however, depend on a multitude of factors and vary greatly across traits. 
 

The objective of this thesis is to evaluate the current state of the art for Multiple Sclerosis (MS), a 

debilitating neurological disorder affecting primarily young adults. To date, no cure exists for MS but 

a number of disease-modifying therapies have been approved with varying degree of efficacy and 
toxicity. So far, little is known on the genetic factors that influence response to treatment in MS 

patients. Moreover, even if such factors are known apriori, evaluating and proving their utility at the 

clinical level is not as straightforward as one may be inclined to think. In this thesis, we highlight why 
the road to translate such findings to medical practice remains rough and challenging. 

 

In particular, relying on the association and prediction studies that we have conducted, we expose the 

design and limitations of each and discuss model choice in each context. Specifically, we conducted 
single-marker association analysis of response to interferon-β in MS patients. We compared single-

marker to multi-marker models in the context of association and also in that of prediction using both 

real and simulated datasets. Different approaches to multi-marker modeling exist. We focused on 
polygenic score analyses and Bayesian estimation methods and evaluated several of the properties of 

these modeling approaches. 

 
Our findings showed that, in the context of association, the use of more complex and computationally 

heavy multi-marker models that has been recently advocated may lead to little, if any, benefit over the 

classical single-marker association analysis. On the other hand, multi-marker models that take into 

account the effect of many markers simultaneously clearly appear better suited to predict genetic risk. 
Nevertheless, focusing on polygenic score analyses, we demonstrated that many factors such as the 

study sample size and the heritability of the trait influence the predictive performance of a model. 

 
Pharmacogenomic studies may revolutionize patient care. However, in all the excitement of the 

promise that they hold, in the concluding part of this thesis we also address the social, ethical and 

economic issues that they raise. 

 
 

KEYWORDS: pharmacogenomics, multiple sclerosis, interferon-β, association study, prediction 

study, genetic markers, polygenic scores, Bayesian estimation methods, ethics 
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RESUME 

L’expansion ainsi que l’évolution du domaine de la génétique au cours de ces dernières années a été 

fulgurante. Cela s’accompagne par la génération d’une masse importante d’information génétique sur 

les traits complexes chez l’homme. Une question naturelle est de savoir comment utiliser cette 
information dans la pratique médicale quotidienne. Il y a dix ans à peine le séquençage du génome 

humain nécessitait une collaboration scientifique d’envergure internationale entre les différents acteurs 

de la recherche biomédicale. Aujourd’hui, il n'est pas exclu à ce que, dans un avenir proche, on puisse 

obtenir le profil génétique de chaque patient dans la pratique médicale courante. La 
pharmacogénomique, une fusion de la pharmacologie et de la génomique, vise à déterminer le 

traitement le plus approprié à chaque patient en fonction de son patrimoine génétique. En effet, 

plusieurs études pharmacogénomiques ont pu démontrer l’intérêt d’intégrer l'information génétique du 
patient pour déterminer son traitement optimal. Le cas de la warfarine, un anticoagulant, a souvent été 

considéré comme l'un des succès les plus motivants pour poursuivre ce type d'études. Cependant, le 

succès ainsi que le besoin de ces études dépendent de multiples facteurs et varient considérablement 
selon les traits étudiés. 

 

L'objectif de ce travail est d'évaluer l'état actuel des connaissances pour la sclérose en plaques (SEP), 

une maladie neurologique invalidante touchant principalement les jeunes adultes. À ce jour, il n'existe 
aucun remède à la SEP, mais il existe des traitements modificateurs de la maladie avec des degrés 

d'efficacité et de toxicité variable. Les facteurs génétiques qui influencent la réponse au traitement 

chez les patients atteints de SEP sont à ce jour mal connus. Même si ces facteurs peuvent être mis en 
évidence dans le futur, il n’en demeure pas moins que leur utilisation en routine clinique n’est pas 

aussi simple que supposée. Dans ce travail, nous avons essayé de mettre en évidence la complexité du 

passage de l’utilisation de données génétiques à grande échelle à la pratique médicale pour les traits 

complexes. 
 

Nous avons mené des études d’association et de prédiction. Tout d’abord, nous exposons leurs 

concepts et revisitons les différences dans leurs objectifs. Plus précisément, nous avons effectué une 
analyse d’association simple-marqueur de la réponse à l'interféron-β chez les patients atteint de SEP. 

Ensuite, nous avons comparé les modèles simple-marqueur et multi-marqueur dans le contexte de la 

recherche d’association puis dans celui de la prédiction en utilisant  des données réelles et des données 
simulées. Différentes approches de modélisation multi-marqueur existent. Nous nous sommes basés 

sur l'analyse des scores polygéniques et des méthodes d'estimation bayésienne en évaluant plusieurs 

des propriétés de ces approches de modélisation. 

 
Nos résultats montrent que, dans la cadre d’une étude d’association pangénomique, les modèles multi-

marqueurs, récemment préconisés, ne sont pas forcément plus puissants que les modèles classiques 

simple-marqueur. En revanche, les modèles multi-marqueurs qui prennent en compte l'effet de 
plusieurs marqueurs simultanément apparaissent clairement mieux adaptés pour prédire le risque 

génétique. Néanmoins, en se concentrant sur l'analyse des scores polygéniques, nous montrons que de 

nombreux facteurs comme la taille de l'échantillon de l'étude et l'héritabilité du trait influencent la 

performance prédictive d'un modèle. 
 

Les études pharmacogénomiques peuvent révolutionner les soins aux patients. Cependant, en dehors 

de l'enthousiasme qu’elles peuvent susciter, nous discutons dans la dernière partie de cette thèse les 
questions sociales, éthiques et économiques qu'elles soulèvent. 

 

 
MOTS-CLÉS: pharmacogénomique, sclérose en plaques, interféron-β, étude d’association, étude de 

prédiction, marqueurs génétiques, scores polygéniques, méthodes d'estimation bayésienne, éthique 
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1 INTRODUCTION 

1.1 The Genetic Material 

“We wish to suggest a structure for the salt of deoxyribose nucleic acid (D.N.A.). This structure has 

novel features which are of considerable biological interest.” (Watson and Crick, 1953) Such is the 

opening of the 1953 monumental paper by James Watson and Francis Crick postulating on the 

structure of the molecule of life carrying our genetic information, the DNA. 

The human body is composed of trillions of cells which store our genetic information. In 

particular, the nucleus of each cell contains two copies of 23 different chromosomes with one copy 

inherited from each of our parents. Of the 23 chromosomes, one is a sex chromosome (X or Y) 

determining the gender of an individual where females carry two copies of the X chromosome (XX) 

and males carry a copy of each (XY). The chromosomes comprise long strings of double-stranded 

DNA, made up of four nucleotide bases, namely, Cytosine (C), Adenine (A), Guanine (G), and 

Thymine (T). The two strands of the DNA are connected through hydrogen bonds between 

complementary base pairs where A always pairs with T and C always pairs with G. This is illustrated 

in Figure 1.1 below. 
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Figure 1.1: How genetic information is stored in our bodies. Adapted from (Mayo Clinic staff, 2011). 

 

The human genome consists of roughly 3 billion DNA base pairs. A specific sequence 

of these bases forms genes. It was long believed that genes coded for a single protein but this 

simplified assumption has been refuted. Specifically, the same gene can code for more than 

one protein or for none at all (directly transcribe to ribonucleic acid, or RNA, a single-

stranded molecule similar to the DNA with the nucleotide base Thymine (T) replaced by 

Uracil(U)). It is complicated to come up with a precise definition of a gene and as such the 

estimated number of genes in the human genome vary based on the definition used (Pennisi, 

2003). The most recent estimate lies somewhere around 20 500 genes. (Clamp et al., 2007) 

The regions of the DNA between genes are referred to as intergenic regions. The DNA 

comprises roughly 75% of intergenic regions. Of the remaining 25% of the DNA spanned by 

genes, only 1% are exons (coding for RNA or protein) while the remaining 24% are introns 

(non-coding sequences) (Venter et al., 2001). 

Individuals share more than 99% of their DNA sequence. The remaining 1% or so of our 

genetic variation influences disease susceptibility and other complex traits and has proven important in 

the study of human health. Most of the genetic variation occurs in intergenic regions but some occur in 
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genes and may thus directly impact their function. Nevertheless, even if the variations lie in intergenic 

regions, they may still be implicated in the susceptibility to diseases and in the phenotypic variation of 

other complex traits. 

1.2 Biomarkers 

The term biomarker is short for biological marker. In 1998, the National Institutes of Health 

Biomarkers Definitions Working Group defined a biomarker as “a characteristic that is objectively 

measured and evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention”. (Biomarkers Definitions Working Group, 

2001) There are many different applications of biomarkers leading to three major categories of 

biomarkers: diagnostic, prognostic and predictive. A diagnostic biomarker is a diagnostic tool for the 

identification of a disease. A prognostic biomarker is an indicator for disease prognosis. Lastly, a 

predictive biomarker predicts response to an intervention or treatment. 

The  United States Food and Drug Administration (US FDA) industry guidelines, proposed in 

2008, narrow down the definition of a genomic biomarker as a “measurable DNA and/or RNA 

characteristic that is an indicator of normal biologic processes, pathogenic processes, and/or 

response to therapeutic or other interventions.” (FDA, 2008) DNA characteristics include but are not 

limited to variations in a single DNA base (a Single Nucleotide Polymorphism or SNP) and other 

more complex forms of genetic variations discussed by (Frazer et al., 2009). Alternatively, RNA 

characteristics can refer to RNA sequences, microRNA levels and others. Thus, a genomic biomarker 

may simply consist of a single SNP or of a more complex combination of several DNA and/or RNA 

characteristics. 

1.3 Pharmacogenetics and Pharmacogenomics 

The terms pharmacogenetics and pharmacogenomics are often used interchangeably. The US FDA 

proposed industry guidelines in 2008 define pharmacogenomics as “the study of variations of DNA 
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and RNA characteristics as related to drug response” and pharmacogenetics, as a subset of 

pharmacogenomics, and define it as “the study of variations in DNA sequence as related to drug 

response.” (FDA, 2008) Thus, pharmacogenetic studies, by definition, do not involve the study of 

variation in RNA characteristics. More recently, the terms are distinguished based on the scope of the 

study. A pharmacogenetic study focuses on variations related to drug response in a targeted gene. On 

the other hand, a pharmacogenomic study investigates the variations related to drug response across 

multiple genes or even at the genome-wide level (Ritchie, 2012). 

Such studies may be conducted at all stages of the drug development process from drug 

discovery to clinical practice. Further, drug response is a broad term encompassing drug disposition 

(that is, absorption, distribution, metabolism, and excretion, known by the acronym ADME) and drug 

effects (that is, efficacy and adverse effects). 

Presently, the US FDA website (FDA, 2013) lists roughly 120 drugs with pharmacogenomic 

information in their labels. For instance, the label of the drug carbamazepine (Tegretol®, Novartis), 

one of the most widely used and effective treatments of epilepsy, recommends against the treatment of 

patients carrying a specific variant in the human leukocyte antigen (HLA) region. This variant, found 

almost exclusively in patients of Asian ancestry, has been associated with serious side effects in these 

populations. (Novartis, 2007) Alternatively, the gene CYP2C19 is implicated in the metabolism of 

many drugs. The translation of CYP2C19 pharmacogenetics into clinical practice, however, is 

currently limited to a small number of functional variants although more than 2000 variants have 

already been discovered. (Lee, 2012) 

1.4 Study Designs 

Pharmacogenomic studies do not differ significantly from traditional epidemiological studies but 

important considerations specific to pharmacogenomic studies exist. Major epidemiological study 

designs are summarized in Figure 1.2 below. 
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Two main types exist, experimental and observational. In the former, the investigators aim to 

control for all main forms of bias. In the latter, the information is passively observed and collected by 

the investigator. The most common example of an experimental study design is a randomized 

controlled trial (RCT) where subjects are randomly assigned to one of several treatment groups. This 

type of study design most closely resembles a controlled experimental setting and typically leads to 

the most rigorous scientific results. 

 

 

Figure 1.2: Epidemiological study designs. Adapted from (London School of Hygiene and Tropical 

Medicine, 2013). 

 

However, oftentimes such studies are infeasible due to cost or ethical issues, so a large portion 

of the epidemiologic research is conducted using observational study designs the most common types 

being the case-control or cohort studies. In case-control studies, as their name suggests, subjects are 

classified into cases and controls and their risk exposure history is compared. In cohort studies, 

subjects are followed up examining multiple health effects of exposure. Other less common types of 

observational study designs include cross-sectional study designs where the relationship between 

exposure and disease is examined at a single point in time and ecological study designs where this 
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relationship is compared at group rather than individual level. Cohort studies are typically prospective 

where the information is yet to be collected to answer a specific research question in mind, while case-

control studies are typically retrospective where the information has already been collected not 

necessarily with the specific research question in mind. 

The main study designs among those described above used in pharmacogenomic studies are 

RCT and case-control studies. However, given the high-dimensional data context of genetic studies 

atypical to traditional epidemiological studies, a third important study design that has been emerging 

in the field of pharmacogenomics is a type of prospective observational study design where DNA 

biobanks are linked to electronic health records. Such a study design, for instance, has been 

successfully applied for determining the appropriate dose of warfarin (an anticoagulant) to administer 

to patients. (Ramirez et al., 2012) Pharmacogenomic studies have been carried out for a wide variety 

of diseases. The focus of this thesis is on Multiple Sclerosis. 

1.5 Multiple Sclerosis 

Multiple Sclerosis (MS) was first characterized in 1868 by a French neurologist, Jean-Martin Charcot. 

(Charcot, 1868) MS is a chronic inflammatory disease of the central nervous system (CNS). Healthy 

nerve fibers, or axons, are surrounded with a protective covering, the myelin sheath. Myelin is a 

material that is primarily comprised of protein and fat and is essential for the proper functioning of the 

nervous system. When a loss of myelin occurs, referred to as demyelination, the functions of the 

implicated nerve fiber are jeopardized. Often times, the damage to myelin is reversible. 

In MS, the body’s own immune system attacks the nervous system resulting in inflammation 

causing demyelination in many areas leaving scars (sclerosis). This may eventually result in 

deterioration to the nerves themselves which, however, is not reversible. Depending on the amount of 

damage and the nerves that are affected, the range of symptoms experienced by individuals varies 

from mild (sensory troubles) to severe (handicap). 
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MS affects two to three times more females than males and this trend is observed for other 

autoimmune diseases such as rheumatoid arthritis (RA). It is not clear what causes this gender 

difference. Most patients are diagnosed between the ages of 20 and 40 years with the peak disease 

onset occurring around the age of 30. MS is also diagnosed in children (younger than 18 years) and in 

seniors (more than 65 years). 

The diagnosis of MS is very difficult and misdiagnosis can be quite common. In 2001, an 

international panel of neurologists derived diagnostic criteria for MS (McDonald et al., 2001). These 

criteria were later revised in 2005 and again in 2010 (Polman et al., 2011; Polman et al., 2005) but, 

unfortunately, they remain imperfect. 

The criteria are primarily based, but not limited to, the clinical presentation of at least one 

attack. An, attack, also referred to as flair, relapse, or exacerbation, is defined as “patient-reported or 

objectively observed events typical of an acute inflammatory demyelinating event in the CNS, current 

or historical, with duration of at least 24 hours, in the absence of fever or infection.” (Polman et al., 

2011) Additional data needed for MS diagnosis include radiological measures such as the presence of 

magnetic resonance imaging (MRI) T2 and/or gadolinium-enhancing (GD+) lesions in MS-typical 

regions of the CNS. 

The clinical course of MS is highly heterogeneous. Many forms of the disease have been 

described but they can generally be grouped into four distinct types characterized by the disease 

progression. Figure 1.3 below illustrates these types: relapsing-remitting MS (RRMS, panel (A)), 

progressive-relapsing MS (PRMS, panel (B)), secondary-progressive MS (SPMS, panel (C)) and 

primary-progressive MS (PPMS, panel (D)). Each figure represents disability progression on the y-

axis versus time on the x-axis; each peak corresponds to an attack. 
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Figure 1.3: MS disease progression may be grouped into four major categories: relapsing-remitting 

MS (A), progressive-relapsing MS (B), secondary-progressive MS (C) and primary-progressive MS 

(D). Adapted from (MS Society of Western Australia, 2013). 

 

The most common type of MS is RRMS with roughly 85% of MS patients suffering from it. 

Patients alternate between periods of attacks (relapses) followed by periods of partial or full recovery 

(remission). As the disease progresses, the partial recovery accumulates into disability eventually 

leading to the SPMS form where the worsening of the disease course continues. About 10% of MS 

patients have the PPMS where, contrary to the SPMS form, there is a steady progression of disability 

right from disease onset without periods of full recovery. Finally, in the rare type of disease 

progression affecting roughly 5% of the patients, PRMS, patients experience recurring relapses 

(attacks) and steady worsening of symptoms. (Goldenberg, 2012) It is also possible, however, that for 

some patients the disease would not progress. 

To date, the cause of MS remains unknown but a number of environmental risk factors have 

been linked to MS. These include infectious factors such as Epstein-Barr virus infection and non-

infectious factors such as vitamin D deficiency (Ascherio and Munger, 2007a, b). None, however, 

provide a definite explanation and, in fact, the list of plausible causes continues to grow such as a 
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recent study using experimental animal models suggesting that high salt intake may, too, be linked to 

risk of MS. (Kleinewietfeld et al., 2013) 

The work by Kurtzke (2000) illustrated that there are also geographic clues to the cause of MS. 

Figure 1.4 shows the prevalence of MS around the world. The prevalence is highest in the USA, 

Canada and Northern Europe (more than 100 per 100 000), followed by Australia, New Zealand, 

Southern Europe, Russia and Latin America (between 5 and 100 per 100 000) and is rather low in Asia 

and Africa (less than 5 per 100 000). Variability within country exists as well. The prevalence in 

France ranges from 60 to 100 per 100 000 with higher prevalence in the north-eastern regions and 

lower in the Paris region and the south-western regions. (Fromont et al., 2010; Vukusic et al., 2007). 

 

 

Figure 1.4: World atlas of MS prevalence. Adapted from (World Health Organization, 2008). 

1.6 Multiple Sclerosis Genetics 

The prevalence among Native Indians in Canada as well as other ethnic communities across the world 

is lower than the corresponding national prevalence. This suggests that genetic risk factors also appear 
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to contribute to the risk of MS (Rosati, 2001). Moreover, familial studies have indicated that MS tends 

to aggregate in families and the risk tends to decrease with decreasing degree of relatedness. For 

instance, one study in a Northern European population (with MS prevalence > 0.1%, see Figure 1.4) 

estimated the age-adjusted lifetime risk at 38% for monozygotic (identical) twins and at 3-5% for 

dizygotic (fraternal) twins and first degree relatives such as a sibling or a child. Conversely, the risk 

for non-biological relatives such as adopted siblings was the same as the risk in the general population 

(that is, the prevalence) estimated at 0.2% in their study. (Sadovnick et al., 1999) 

Familial recurrence risk is often measured by the sibling recurrence-risk ratio, denoted   , 

which is the ratio of risk in siblings of affected individuals to the risk in the general population. In the 

study by Sadovnick et al. (1999) mentioned above,    (     ), that is, 3%/0.2% to 5%/0.2%. 

Overall, estimates of    in MS vary across studies and have tended to decline over time (Sawcer et al., 

2010) with some studies suggesting that       (Hemminki et al., 2009). 

Twin studies, aiming to evaluate the relative contribution of genetic and environmental risk 

factors, have also produced highly variable estimates of the genetic contribution to MS susceptibility 

ranging from 25% to 76%. (Hawkes and Macgregor, 2009) Therefore, while there is supporting 

evidence for a genetic component of the disease, the fine balance between the contributing genetic and 

environmental factors to the risk of MS is still unclear. 

Prior to the era of large scale genetic association studies (genome-wide association study, 

GWAS), the only recognized genetic association contributing to the risk of MS was mapped to the 

HLA region. The first GWAS of MS in 2007 in 931 family trios (discovery dataset) and 609 family 

trios as well as 2322 cases/789 controls (replication dataset) confirmed this association and identified 

two other genes, IL2RA and IL7RA at strict genome-wide significance criteria levels (< 10
-7

). (Hafler 

et al., 2007) In the four years that followed, six independent GWASs were conducted identifying over 

20 different loci outside the HLA region (most of them at genome-wide significance). ((Comabella et 

al., 2008); (Baranzini et al., 2009); (Australia and New Zealand Multiple Sclerosis Genetics 

Consortium (ANZgene), 2009); (Jakkula et al., 2010); (Sanna et al., 2010); (Nischwitz et al., 2010)) In 
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2011, the International Multiple Sclerosis Genetics Consortium in collaboration with the Wellcome 

Trust Case Control Consortium 2 completed the largest MS GWAS to date (roughly 9800 cases and 

17400 controls) replicating almost all of the previously identified associations and further identifying 

29 novel ones. (Sawcer et al., 2011) In 2012, another much smaller MS GWAS (296 cases and 801 

controls) was conducted replicating previously reported associations (Matesanz et al., 2012). Many of 

the genetic association findings were close to immunologically relevant genes thus providing basis to 

the belief that MS is an immunological disorder. Despite all the discovered variants, however, a large 

portion of the heritability of MS risk remains unexplained. In a dataset of roughly 2 000 MS cases and 

5 000 controls with close to 500 000 SNPs, Watson et al. (2012) found that approximately 30% of MS 

heritability was explained by the variants on current genome-wide SNP arrays, which includes the 

SNPs in the HLA region that alone account for  8%. 

1.7 Multiple Sclerosis Therapies 

There is no cure for MS but currently there are eight approved disease modifying therapies on the 

market. In France, the escalation approach to treatment of MS, illustrated in Figure 1.5, is used 

whereby therapies with increasing effectiveness but also more severe side effects are sequentially 

used. 
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Figure 1.5: Escalation approach to MS treatment. 

 

The first-line therapies include treatments based on interferon-β (Avonex®, Biogen Idec; 

Betaseron®, Bayer; Rebif®, Pfizer; Extavia®, Novartis) and glatiramer acetate (Copaxone®, Teva). 

Second-line therapies include natalizumab (Tysabri®, Biogen Idec), finglomod (Gilenya®; Novartis) 

and mitoxantrone (Novantrone®, EMD Serono). Interferon-β is the first ever therapy approved for MS 

dating back to the mid-90s. Fingolimod is the first oral treatment in MS and is the most recent drug 

approved by the European Medicines Agency. 

First line therapies cause relatively mild side effects but are also less effective. Approximately 

half of the patients fail to respond to interferon therapy. On the other hand, second-line therapies, as 

more aggressive treatments, have shown to be more effective in modifying the disease course for 

patients but can also lead to serious and sometimes fatal side effects. Natalizumab is arguably the most 

effective treatment of all but unfortunately it has been linked with potentially fatal brain infection 

known as progressive multifocal leukoencephalopathy (PML). In fact, during less than a decade of its 

existence, this treatment has undergone an exceptional course, being withdrawn months after being 

approved only to be put back on the market under unprecedented surveillance program (Steinman, 

2005). 
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The available variety of disease modifying therapies and the heterogeneous course of the 

disease progression pose challenges in determining the optimal treatment strategy for a MS patient. A 

number of treatment algorithms for MS have been proposed and have been reviewed by Rio (2011). 

The importance of treating MS as early in the disease onset as possible has long been recognized but 

the poor efficacy of the available drugs seems to be related to the fact that only the early stages of the 

disease are targeted (Lopez-Diego and Weiner, 2008). Effectively, treatments of MS may be 

considered for treating its clinical manifestations, managing its symptoms or preventing its 

progression. (Fox et al., 2006) 

There are currently at least seven medications in late phases of drug development primarily 

targeting the most common form of the disease, RRMS. (Ali et al., 2013) By 2020 the number of 

approved MS therapies is expected to rise significantly making the decision for the best course of 

treatment ever more challenging (Huynh, 2010). The increasing number of available therapies coupled 

with the potential risk of treatment failure and/or severe adverse reactions makes individualized 

therapy a necessity for MS. (Río et al., 2009) 

1.8 Response Definition to Multiple Sclerosis Therapies 

There is not a widely accepted definition of response to treatment in MS. The most common approach 

adopted in pharmacogenomic studies of MS has been to dichotomize the group of patients into 

Responders/Non-Responders by evaluating their response to treatment at a specific time point (for 

instance, one year after treatment onset) using a set of clinical and/or radiological variables. 

The criteria of grouping patients has widely differed across studies but typically a patient is 

classified as a Responder if all criteria are met and those patients not classified as Responders are 

classified as Non-Responders (at least one criterion is not met). Sometimes, however, the Non-

Responder group is as strictly defined (none of the criteria is met) as the Responder group (extreme 

phenotypes) leaving perhaps many patients classified as Intermediary (Suboptimal) Responders. 
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The number of relapses (see Section 1.5) experienced by the patient over the treatment period 

is commonly used to evaluate response. Another widely used clinical measure to evaluate treatment 

response in MS is the disability progression based on the change of the Expanded Disability Status 

Scale (EDSS) developed by Kurtzke (1983). It is a rating scale from 0.0 (normal neurological exam) to 

10.0 (death due to MS). Starting from 1.0, it goes in increments of 0.5. Despite its popularity, this 

measure is complicated to use and understand. While large discrepancies are unlikely, two physicians 

evaluating the same patient may assign different EDSS values. 

For the relapsing forms of MS, response has often been assessed over the treatment period by 

combining these two measures (relapses and EDSS) as illustrated in Figure 1.6 below. Sometimes one 

or both of these measures has been combined with radiological measures such as the presence/absence 

of MRI lesions to derive the response definition. 

 

 

Figure 1.6: Assessing treatment response in relapsing forms of MS based on EDSS progression and 

number of relapses experienced over the evaluation period. 

 

While the response classifications are usually based on the same clinical and/or radiological 

measures, response criteria across studies differ for the following reasons: (1) whether both clinical 

and radiological or only clinical measures are used to classify the patients; (2) for the same measure 

the threshold used to distinguish a Responder from a Non-Responder; (3) the duration of the period 
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over which the response is evaluated (six months, one year, two years, etc.). Moreover, even if the 

response classification is the same across studies, the evaluation of the measures on which it is based 

is physician-dependent and thus subjective. 

Alternatively, the response variable could be constructed as a composite score of the several 

variables used to classify the patients into Responders and Non-Responders. The challenges in 

deriving such definition of response are (1) how to build a composite score using variables measured 

on completely different scales (for example, EDSS versus MRI lesion load); (2) how to determine the 

weight that each of these variables carry in the score; and (3) the distribution of such a composite 

score is yet to be evaluated and its properties are yet to be established. 

For the second challenge, an added complexity to defining response of MS lies in the fact that 

the variables used to evaluate response vary by importance with the disease duration. For instance, in 

the beginning of the disease, radiological measures might be the best tool to evaluate disease activity 

as there may be no clinical manifestations of the disease. On the other hand, as time progresses, the 

role of the radiological measures reduces and the disease begins to manifest clinically. (Fox and 

Cohen, 2001) Thus, time-dependent weights may need to be assigned to reflect the increasing or 

diminishing role of each measure in determining response to treatment in MS. 

Yet another approach to defining response may rely on the principles of survival analysis. In 

this case, one can model the time to progression of the disease during treatment by defining 

progression based on one or several criteria (clinical and/or radiological). This approach is commonly 

used in randomized clinical trials, for example, modeling time to first relapse after treatment onset.  

Thus, response to MS therapies is a highly complex outcome to evaluate. As a contrasting 

example, to determine the warfarin dose, physicians use the international normalized ratio (INR), 

which is a standardized test result evaluating the clotting tendency of blood. It is an objective measure 

based on blood tests and is, therefore, directly comparable nationally and internationally. 

It is plausible that genetic factors play a role in determining response to MS therapies. 

Moreover, if such is the case, it is likely that multiple genes are involved. (Río et al., 2009) Therefore, 
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pharmacogenomic studies, investigating genes implicated in drug response, have the potential to 

identify key genetic biomarkers and facilitate the application of individualized therapy in MS. 

1.9 Pharmacogenomic Studies of Multiple Sclerosis To Date 

A handful of pharmacogenomic studies of MS have been carried out to date predominantly on 

interferon response (summarized in Table 1.1). Most of these studies have investigated the role of 

specific genes with only two studies (on interferon response) conducting genome-wide scans. Gene 

names are given in greater detail in Appendix I. 
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MS Therapy Study Scope Response Criteria/ 

Evaluation Period 

Study Sample Size 

(Responders / Non-Responders) 

Study Findings
1
 Reference 

Interferon-β 

HLA Class II Genes 
EDSS, Relapses / 2 years 134 Spanish patients No association (Villoslada et al., 2002) 

EDSS, Relapses / 1 year 96 Spanish patients No association (Fernández et al., 2005) 

IFNAR1, IFNAR2 
EDSS, Relapses / 2 years 147 Spanish patients No association (Sriram et al., 2003) 

EDSS, Relapses / 1 year 147 Spanish patients
2
 No association (Leyva et al., 2005) 

100 interferon-stimulated 

response element genes 

EDSS, Relapses / 6-9 months 162 Irish patients Associated with response: IFNAR1, CTSS, 

LMP7 and MxA 

(Cunningham et al., 2005) 

MxA EDSS, Relapses, MRI / 2 years 37 US patients No association (Weinstock-Guttman et al., 2007) 

IFNG Relapses / 2 years 110 Spanish patients Associated with response (Martínez et al., 2006) 

IL28B EDSS, Relapses / 2 years 588 patients from US, UK, France, 

Spain, Italy, Germany, Serbia) 

No association (Malhotra et al., 2011) 

TRAIL and TRAIL receptor 

genes (TRAIL, TRAILR-1, 

TRAILR-2, TRAILR-3 and 

TRAILR-4) 

EDSS, Relapses / 2 years 509 Spanish patients (discovery); 226 

Spanish patients (replication) 

Associated with response: TRAILR-1 (López-Gómez et al., 2013) 

GPC5 and HAPLN1 EDSS, Relapses / 2 years 199 Spanish patients Association with response: GPC5 (Cénit et al., 2009) 

Genome-wide scan 

(≈ 100 00 0 SNPs) 

EDSS, Relapses / 2 years 206 patients from Spain and France 

(discovery); 81new Spanish patients 

for combined analyses (validation) 

Associated with response: GPC5, COL25A1, 

HAPLN1, CAST and NPAS3 and several 

SNPs in intergenic regions 

(Byun et al., 2008) 

Genome-wide scan 

(≈ 430 000 SNPs) 

EDSS, Relapses / 2 years 106 Spanish patients (discovery); 94 

Spanish patients (validation) 

Association with response: GRIA3, CIT, 

ADAR, ZFAT, STARD13, ZFHX4, IFNAR2 

and for 11 SNPs in intergenic regions 

(Comabella et al., 2009) 

Glatiramer Acetate HLA Class II Genes EDSS, Relapses / 2 years 44 Italian patients Association with response (Fusco et al., 2001) 

27 genes EDSS, Relapses, MRI /  

9 months; 2 years 

101 patients from Europe, Canada and 

US (fractional cohorts from clinical 

trials) 

Association with response: CTSS (corrected 

for multiple testing); MBP, CD86, FAS, 

IL1R1 and IL12RB2 

(Grossman et al., 2007) 

Natalizumab N/A 

Fingolimod N/A 

Mitoxantrone ABC-transporter genes EDSS, Relapses, MRI /  

9-12 months 

309 Spanish and German patients Association with response (Cotte et al., 2009) 

1 Reported association findings at α=0.05 significance level. 2 Different from the study by (Sriram et al., 2003) 

Table 1.1: List of pharmacogenomic studies carried out to date. 
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First-Line Therapies. Given the long established link between the HLA locus and susceptibility to 

MS, studies have also investigated the role of this locus in interferon response. Villoslada et al. (2002) 

and Fernández et al.(2005) found no association with interferon response, while Cunningham et 

al.(2005) identified an association with LMP7, a gene located within the HLA region. 

Several studies investigated the role of interferon-α/β receptor genes, IFNAR1 and IFNAR2 

and found no association with response. ((Sriram et al., 2003); (Leyva et al., 2005); (Cunningham et 

al., 2005)) A role for the IFNAR1 gene was suggested by the study of Sriram et al. (2003) when 

response was evaluated based only on the number of relapses and by the study of Cunningham et al. 

(2005) studying a different polymorphism in that gene. The IFNAR genes are located in the vicinity of 

interferon-γ receptor genes (IFNGR). Martínez et al. (2006) found a polymorphism in the interferon-γ 

gene, IFNG, to be associated with interferon response. 

All in all, Cunningham et al. (2005) investigated 100 interferon-stimulated response element 

genes. Apart from the genes already mentioned, that is, LMP7 and IFNAR1, two more were found to 

be associated with response to interferon, CTSS and MxA. Weinstock-Guttman et al. (2007) evaluated 

the association of two SNPs from the MxA gene and found no relation. 

Malhotra et al. (2011) investigated the role of two polymorphisms in the IL28B gene in 

interferon response but did not find an association. One of the 100 genes included in the study by 

Cunningham et al. (2005) was the TRAIL gene (with which no association was found). A recent study 

focused on TRAIL and TRAIL receptor genes (TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-

4) was reported suggesting a role for the TRAILR-1 gene in interferon response. (López-Gómez et al., 

2013) 

In 2008, Byun et al. (2008) reported the first GWAS of response to interferon in a small cohort 

of 206 MS patients. Their study did not identify any of the previously reported associations (IFNAR1, 

LMP7, CTSS, MxA, IFNG). However, their study found significant (at nominal level) associations for 

SNPs in or close to several novel genes including GPC5, COL25A1, HAPLN1, CAST and NPAS3 and 

several SNPs in intergenic regions. A study by Cénit et al. (2009) aimed to replicate the association 
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findings for the two most strongly implicated genes, GPC5 and HAPLN1, and was able to confirm the 

association only with the GPC5 gene. A second GWAS followed in 2009 reporting significant 

associations for SNPs in or close to seven genes, GRIA3, CIT, ADAR, ZFAT, STARD13, ZFHX4, 

IFNAR2 and for 11 SNPs in intergenic regions. (Comabella et al., 2009) 

For glatiramer acetate, only two candidate gene studies have been conducted. Fusco et al. 

(2001) assessed the relationship between HLA and response to glatiramer acetate and, contrary to 

interferon therapy, results suggested that it was implicated in response to glatiramer acetate. Grossman 

et al. (2007) studied 27 candidate genes and found significant association with the CTSS gene after 

correcting for multiple testing. Nominally significant associations were reported with the following 

five other genes, MBP, CD86, FAS, IL1R1 and IL12RB2. 

Second-Line Therapies. To our knowledge, no genetic association study has been conducted to 

evaluate natalizumab or fingolimod response in MS patients. One study suggested a role for ABC-

transporter genes in mitoxantrone response. (Cotte et al., 2009) 

In summary, the study sample sizes were small and the response definitions differed across 

studies. Most of the reported association findings were weak and have not been validated in 

independent datasets. Therefore, these studies do not provide a clear indication of whether genetic 

factors influence response in MS for the investigated therapies, namely, interferon, glatiramer acetate 

and mitoxantrone, while this possibility is yet to be explored for natalizumab and fingolimod. 

1.10 Thesis Objective 

A pharmacogenomic study design needs to include two essential phases: identification and validation. 

In the first phase of identification, the association between genes and drug response is initially 

assessed. In other words, a genetic association study is conducted. If one or more genes are found to 

be associated with drug response, these findings then need to be validated in an independent dataset 

and their clinical utility in actually predicting drug response needs to be evaluated. In other words, a 

genetic prediction study is conducted. 
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In this dissertation work, we review the basic methodological aspects behind genetic 

association and genetic prediction studies. To begin, we give a brief account of the multinational effort 

that laid the foundations to (large-scale) genetic association studies. Next, we describe these studies 

and present our findings from the studies we conducted. Specifically, we investigated the role of the 

OAS1 gene in response to interferon-β in a multinational MS patient cohort and the role of the ITGA4 

gene in response to natalizumab in a subset of French MS patients from the BIONAT cohort. 

(Outteryck et al., 2013) 

We next describe genetic prediction studies and also present findings from the prediction 

studies we conducted. Here, we focused on investigating the role of non-genetic factors in predicting 

response to natalizumab in a subset of patients from the BIONAT cohort. We note that genetic data for 

these patients are being generated at the time of writing this manuscript and will soon be available for 

analysis. Further, using a simulated dataset provided by the Genetic Analysis Workshop 18 (GAW18) 

on a continuous trait (diastolic blood pressure) we compared two alternative methods for detecting 

genetic associations and evaluated the predictive performance of each. 

We conclude by contrasting genetic studies of MS susceptibility to those of response to 

therapy in MS with the aim of providing a perspective on the feasibility of pharmacogenomics of MS. 

We also briefly discuss important economic, social, legal and ethical considerations that we believe 

concern us all as long as genetic testing has been, is or will be used to guide clinical decision making. 
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2 LAYING THE FOUNDATIONS 

 

The “central dogma of molecular biology”, an (incorrect) term coined in 1956 by Francis Crick (Crick, 

1956), describes the flow of genetic information in a living organism (see Figure 2.1). 

 

 

Figure 2.1: The flow of genetic information as described by Francis Crick taken from an early draft of 

the original article published in 1958 ((Crick, 1956); (Crick, 1958)). 

 

Principally, it is a unidirectional flow of information where DNA is transcribed to RNA which 

is then translated into a protein of a specific function. In some special cases, information can flow in 

the reverse direction from RNA to DNA but never from protein to RNA or from protein to DNA. 

Crick’s representation of the flow of genetic information has been contradicted by experimental work 

over the years (Shapiro, 2009). While Crick had later acknowledged that the use of the term “dogma” 

(referring to a belief that cannot be doubted) was incorrect and he had meant it more as a “hypothesis” 

(Crick, 1990), it is without question that the concept he put forward remains of fundamental 

importance in molecular biology. 
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Adopting this simplistic flow of genetic information for illustrative purposes, in Figure 2.2 we 

present the type of analytical approaches performed depending on the unit of analysis at each level. In 

particular, genomics studies the structure and the function of the DNA. In turn, transcriptomics 

measures the expression level of RNA in a given cell population. Lastly, proteomics studies the 

functions and the structures of proteins. 

 

 

Figure 2.2: The flow of genetic information and the type of analytical approaches performed 

depending on the unit of analysis at each level. 

 

Additional “-omics” terms can be added to the list depending on the unit of analysis such as 

metabolomics, epigenomics, glycomics, lipidomics and others. In the era of this omics data revolution, 

it is an increasing challenge to adopt an integrative approach to analyzing this omics information that 

may ultimately lead us toward personalized medicine. For instance, Chen et al. (2012) conducted the 

first-ever integrative personal omics profile analysis of a healthy individual revealing the subject’s risk 

for various diseases such as Type 2 diabetes. 

Of the omics terms, our focus in this thesis is on genomics and, specifically, on the human 

genome. 

2.1 Understanding the Human Genome 

The main goals of the Human Genome Project (HGP) were to determine the sequence of the 3 billion 

DNA base pairs that make up the human genome and to identify and map all of the estimated 20 500 

genes. It was the largest international collaborative effort ever undertaken in biomedical research 
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coordinated by the US Department of Energy with participants from all over the world including 

United Kingdom, Japan, France, Germany and China. An initial draft of the genome was reported in 

2001 (Lander et al., 2001) and the final sequence completed in 2003 (International Human Genome 

Sequencing Consortium, 2004), 13 years after the project’s initiation at a cost of more than 3 billion 

US dollars. Many believe that the private quest by former National Institutes of Health (NIH) scientist 

J. Craig Venter and his company, Celera Genomics®, to sequence the human genome challenged and 

accelerated the work. In 2001, only three years after commencing on his project, Venter also reported 

an initial draft of the human genome using samples from geographically diverse individuals as well as 

his, and employing a different sequencing technique at a fraction of the cost of the publicly funded 

project (Venter et al., 2001). 

A large number of donors contributed blood and sperm samples to HGP only few of which 

were processed for DNA sequencing. Neither the researches nor the donors knew whose DNA was 

sequenced. In fact, the derived reference sequence did not represent a specific individual’s genome but 

was rather based on a composite of DNA from several donors. This “representative” sequence of the 

human genome is freely available in public databases. 

Many genetic variations were also identified during the HGP and, in October 2002, another 

international collaboration gave birth to the International HapMap Project (International HapMap 

Consortium, 2003). Its primary objective was to develop a haplotype map of the human genome 

describing the most common patterns of human DNA sequence variation with the minimum number of 

SNPs. By definition, a haplotype is a combination of alleles at nearby SNPs. 

The project has had so far three phases. In Phase I, the haplotype map of the human genome 

was derived from 270 individuals from Africa, Europe, China and Japan consisting of approximately 

1.3 million SNPs (International HapMap Consortium, 2005). In Phase II, over 3.1 million SNPs were 

genotyped in the same individuals (Frazer et al., 2007). In Phase III, the number of DNA samples was 

increased from 270 to 1301 obtained from more geographically diverse human populations (Altshuler 

et al., 2010). 

The first complete genome sequence of a single individual (J. Craig Venter’s) was published 

in 2007 (Levy et al., 2007) followed by that of James D. Watson (Wheeler et al., 2008) in 2008. That 
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year, the genome sequences of two anonymous individuals from Asian and African descent were also 

published ((Wang et al., 2008); (Bentley et al., 2008)). Early 2008, yet another large international 

effort was put forth and the 1000 Genomes Project was launched the goal of which was to sequence 

the genomes of at least 1000 individuals from genetically diverse backgrounds. The pilot phase of the 

project was completed in 2010 (Abecasis et al., 2010) and the sequence of the genomes of 1092 

anonymous individuals was published in late 2012 (Abecasis et al., 2012). Both the HapMap and the 

1000 Genomes project databases are continuously used. 

All these large-scale collaborative efforts certainly fostered biomedical research but, most 

importantly, built the foundation for investigating the role of genetic variants in human health and 

disease at the genome-wide level. 

2.2 Genetic Variations 

Types of genetic variants include SNPs and structural variants such as insertions-deletions, block 

substitutions, etc., as illustrated in Figure 2.3 below. 

 

 

Figure 2.3: Types of human genetic variations. Adapted from (Frazer et al., 2009). 

 

We focus here on the most common and simplest form of genetic variation, the SNP. The 

Single Nucleotide Polymorphism Database, dbSNP, is a central public repository for genetic variation 
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(not only of SNPs unlike its name is suggesting) in humans and other species created and maintained 

by the US National Center for Biotechnology Information (NCBI) since 1998 (Sherry et al., 2001). 

A SNP represents a difference in a single nucleotide base. SNPs occur on average every 300 

bases giving rise to roughly 10 million SNPs in the human genome. A SNP can have up to four 

possible alleles (A, C, G or T) but most SNPs are bi-allelic (only two alleles are present in the 

population). Each individual carries two SNP alleles one for each copy of the chromosome forming 

the genotype at that single position. For instance, if the two SNP alleles are A and T, then the 

genotypes would be A/A, A/T and T/T. When the alleles on both chromosome copies are identical 

(that is, genotypes A/A or T/T), the individual is said to be homozygous at that locus; otherwise the 

individual is said to be heterozygous (that is, genotype A/T). The allele with the lower frequency in the 

population is referred to as the minor allele. So far, mostly common or low-frequency SNPs have been 

catalogued, with minor allele frequency (MAF) of at least 1%. Recent advances in sequencing 

technologies enable the analysis of rare variants with MAF < 1% (Cirulli and Goldstein, 2010). 

2.3 Linkage Equilibrium/Disequilibrium 

Obtaining fine maps of the genetic variations have not only allowed the determination of the patterns 

of common variation and their frequencies but have also made possible the determination of the 

complex correlation structures that exists between SNPs. This concept, first introduced in 1960 by 

Lewontin and Kojima (Lewontin and Kojima, 1960) and unfortunately termed Linkage Disequilibrium 

(LD), simply reflects the nonrandom association of alleles at two or more loci. It is a misleading term 

because loci that are in disequilibrium may not necessarily be linked (that is, physically close) and also 

loci that are linked may not necessarily be in disequilibrium. The original definition of LD referred to 

the non-random association between two or more loci from possibly different chromosomes but lately 

the term has been used to refer to the non-random association between two or more loci on the same 

chromosome (Slatkin, 2008). 

Several metrics exist to measure LD. We briefly discuss the most commonly used ones here. 

Suppose, without loss of generality, that there are two bi-allelic SNPs with alleles A/a and B/b, 
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respectively, resulting in the following four haplotypes: AB, Ab, aB, ab. Let f(x) be the frequency of x 

where x can refer to an allele or a haplotype. This is summarized in Table 2.1 below. 

 

 

Table 2.1: Table of allele and haplotype frequencies for two bi-allelic SNPs, SNP1 and SNP2. 

 

Then, the basic measure of LD for the pair of alleles A and B,    , is given by 

       (  )    ( ) ( ) (2.1) 

where     is essentially the difference between the observed and the expected frequency (under the 

assumption of independence of alleles) of the haplotype AB. Since the allele frequencies at both loci 

have to add up to 1 and the haplotype frequencies have to add up to 1, the range of LD values is 

constrained. That is, 
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(2.2) 

 

Similar derivations can be obtained for     and    . In fact, the measures of LD for all pairs of alleles 

are related as follows  

                        . (2.3) 

If    , the loci are said to be in Linkage Equilibrium (LE). 

B b

A f(AB) f(Ab) f(A)

a f(aB) f(ab) f(a)

f(B) f(b) 1

SNP2 alleles

SNP1 alleles
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While all additional metrics that have been proposed to measure LD relate to D, they aim to 

circumvent some of its limitations. For instance, when the goal is to compare the LD between different 

pairs of SNPs, D is not a good measure since its range of possible values is constrained by the specific 

allele frequencies. Hence, Lewontin (1964) defined an alternative normalized measure,   , as 

    
 

    
  

(2.4) 

where 

       {
    ( ( ) ( )  ( ) ( ))       

    ( ( ) ( )  ( ) ( ))       
  

(2.5) 

That is,      is the maximum D which can be achieved given the specific allele frequencies. As such, 

    [    ]  When |  |   , it is indicative of the absence of at least one of the haplotypes and the 

case is known as complete LD. 

Another measure of LD is the correlation coefficient,   , between the two loci defined as 

follows 

    
  

 ( ) ( ) ( ) ( )
  

(2.6) 

When     , exactly two of the four possible haplotypes are observed. This is known as perfect LD. 

In this case, knowing the genotypes at one SNP completely determines the genotypes at the other SNP. 

A typical LD plot with    as the measure of LD is illustrated in Figure 2.4 below. SNPs 1 and 2 are in 

weak LD with         while SNPs 5 and 6 are in strong LD with        . The shading of each 

diamond is proportional to the    value ranging from white for      to black for       . (Note 

that a plot with    as the measure of LD can be obtained analogously.) 
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Figure 2.4: A typical LD plot with    as the measure of LD. SNPs 1 and 2 are in weak LD with 

        while SNPs 5 and 6 are in strong LD with        . The shading of each diamond is 

proportional to the    value ranging from white for      to black for       . Adapted from 

(Lessard et al., 2012). 

 

LD can range over as little as few kilobases (kb, 1 kb = 1000 base pairs) to as much as 100 kb 

or more. (Reich et al., 2001) Studies on the pattern of LD have shown that it varies across the genome 

and across populations of different ancestry. For example, a particularly long range LD is observed at 

the major histocompatibility complex (MHC) on chromosome 6 over several megabases (Mb, 1Mb = 

1 000 000 base pairs). Further, the LD in African populations is weaker on average than that in 

European or Asian populations as, for example, illustrated in Figure 2.5 below for a region on 

chromosome 9. 
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Figure 2.5: LD plots based on    as the measure of LD for a region on chromosome 9 and for three 

HapMap populations: CEU (European), CHB+JPT (Asian) and YRI (African). The shading of each 

diamond is proportional to the    value ranging from white for      to red for     . Adapted 

from (Frazer et al., 2009). 

 

The breakdown of LD is primarily driven by recombination but evolutionary forces such as 

mutation, genetic drift, natural selection and migration, can also influence LD. 

2.3.1 Recombination 

Recombination occurs during meiosis, a special type of cell division producing gametes (reproductive 

cells) that are genetically different from their parental types. This is illustrated in Figure 2.6 below. 
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Figure 2.6: During meiosis, homologous chromosomes undergo crossing-over producing 

chromosomes containing genetically heterogeneous regions. Adapted from (GeneticsSuite, 2013). 

 

The recombination frequency is given by the total number of recombinant gametes divided by 

the total number of all transmitted gametes. (Note that in Figure 2.6, the recombination frequency is 

0.5.) Loci that are located close to each other tend to be inherited together (that is, they are less likely 

to be separated during chromosomal crossing-over). Such loci are said to be genetically linked. The 

unit of measure of genetic linkage between any two loci is the centimorgan (cM) and represents the 

genetic distance between the two loci. The unit, named after the Nobel laureate geneticist Thomas 

Hunt Morgan, refers to the distance between the two loci determined by the frequency with which 

recombination occurs between them. By definition, 1cM is equivalent to a recombination frequency of 

1%. Note that two loci that are genetically the same distance apart may not be so physically (in terms 

of base pairs). In humans, 1cM corresponds, on average, to 1 million base pairs but this number varies 

widely across the genome. 

Recombination breaks up the genomic regions over generations. Thus, the strength of LD 

tends to decrease with distance as well as time and this relationship is represented through the 

following formula 
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     (   )    (2.7) 

where   is the recombination frequency and   is time in generations. The recombination frequency is 

      for unlinked loci and       for linked loci with     the more linked the loci. Also,   is 

not uniform across the genome with some regions having a higher recombination frequency 

(recombination hotspots) than others. Equation (2.7) generalizes to 

     (   )    (2.8) 

where    is the LD at generation 0 and      is the LD   generations after. From Equation (2.8) and as 

illustrated in Figure 2.7, it is easy to see that LD at closely linked loci decays at a slower rate than at 

loci that are far apart. 

 

Figure 2.7: LD decay as a function of generation   and recombination frequency  . 

 



LAYING THE FOUNDATIONS 

 

32 

2.3.2 Mutation, Genetic Drift, Natural Selection and Migration 

The four basic mechanisms of evolutionary change are mutation, genetic drift, natural selection and 

migration. They lead to changes in allele and haplotype frequencies in a population and as such can 

influence LD. 

Mutation is a change in the DNA sequence occurring in one generation and passed on to future 

generations. When a mutation first occurs, it creates LD with neighboring loci. Recurrent mutations, 

which are rare for SNPs, reduce LD. 

Genetic drift is a change in allele frequencies due to random sampling of gametes in a finite 

population over generations. Genetic drift may lead to an eventual loss of haplotypes especially if the 

population is small and the haplotype is rare thus leading to increased LD. 

Individuals with certain genotypes may be more likely to survive and reproduce and, thus, 

pass on their alleles to the next generation than individuals with other genotypes. Natural selection is 

the process by which allele frequencies in a population change due to these differences in survivorship 

and/or reproduction among individuals (genotypes). Natural selection can lead to increased or 

decreased LD. 

Migration (or gene flow) is the transfer of alleles from one population to another. Initially, the 

extent of LD is proportional to the allele frequencies in each population. The larger the differences of 

allele frequencies between populations, the more significant the impact of migration will be on LD. 

2.4 Tag SNPs 

In genomic regions with high LD, the variation can be described without capturing all SNPs in the 

region but instead focusing on a minimal set of most informative SNPs, so called tag SNPs. This is the 

primary objective of the International HapMap Project that we referred to earlier in this chapter. The 

principle is illustrated in Figure 2.8 below. Specifically, the panel (a) of the graph illustrates the DNA 

sequence of the same chromosomal region in four different individuals. These individuals differ in 

three nucleotide bases as shown by the colored SNPs. Panel (b) shows the haplotype for each of the 
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four individuals composed of alleles of 20 SNPs including the three SNPs from panel (a). Panel (c) in 

turn shows the three SNPs that uniquely identify each of the four haplotypes. 

 

 

Figure 2.8: Describing common patterns of human genetic variation. (a) DNA sequences of four 

individuals including three SNPs. (b) Haplotypes formed by nearby SNPs including the three SNPs 

from panel (a). (c) The three SNPs which uniquely identify the four haplotypes. Adapted from 

(International HapMap Consortium, 2003). 

2.5 SNP Genotyping 

SNP genotyping refers to the process of determining the SNP genotypes. Several genotyping platforms 

exist based on different technologies. The choice of platform depends on the number of SNPs to be 

genotyped. Microtiter (well) plates (for example, Taqman®) are typically used for small scale projects 

limited to few SNPs. The work by the International HapMap Project coupled with novel technological 

advances led to the development of microarrays or SNP chips (for example, Affimetrix® or 

Illumina®) enabling large-scale, whole-genome, genotyping. 

 



LAYING THE FOUNDATIONS 

 

34 

2.6 SNP Chips 

A common criterion to assess the quality of a SNP chip involves the evaluation of its global coverage 

of the genome. Li et al. (2008) evaluated this criterion for several commercial SNP chips available at 

the time for the CEU (European), CHB+JPT (Asian) and YRI (African) HapMap populations. The 

percentage of the genome covered by each evaluated SNP chip and for each population is given in 

Table 2.2 below. 

 

Company SNP Chip Number of SNPs CEU (%) CHB+JPT (%) YRI (%) 

Affimetrix® 
SNP Array 5.0 500 568 64 66 41 

SNP Array 6.0 934 968 83 84 62 

Illumina® 

HumanHap300 317 511 77 66 29 

HumanHap550 555 352 87 83 50 

HumanHap650Y 660 917 87 84 60 

Human1M 1 072 820 93 92 68 

Table 2.2: Global coverage of the genome for several commercial SNP chips for the CEU (European), 

CHB+JPT (Asian) and YRI (African) HapMap populations. Adapted from (Li et al., 2008). 

 

Thus, from Table 2.2 above, it can be seen that the global coverage of the genome depends on 

the number of SNPs on the chip and on the extent of LD in the population. As expected, a higher 

number of SNPs leads to higher coverage and fewer SNPs are needed to achieve the same coverage in 

populations with higher LD (for instance, CEU versus YRI, see Figure 2.5). 

2.7 Testing for Hardy-Weinberg Equilibrium 

Genotyping errors may be detected by Hardy-Weinberg Equilibrium (HWE) testing. It is an essential 

quality control step in genetic association studies. 

The HWE states that allele and genotype frequencies in a population will remain constant 

from generation to generation under the assumption of random mating and in the absence of 

evolutionary forces (mutation, genetic drift, natural selection and migration). This principle is named 
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after Godfrey Harold Hardy and Wilhelm Weinberg who developed it independently in 1908. (Hardy, 

1908;Weinberg, 1908) 

If the allele frequencies in one generation are given by  ( )    and  ( )   , then the 

expected genotype frequencies in the next generation are  (  )      for the A/A homozygote, 

 (  )      for the A/a heterozygote and  (  )     for the a/a homozygote as illustrated in Table 

2.3 below. 

 

 Paternal 

A (p) a (q) 

Maternal 
A (p) AA (  ) Aa (  ) 

a (q) Aa (  ) aa (  ) 

Table 2.3: Punnet square giving the probabilities of an offspring having a particular genotype at a bi-

allelic locus in a population in Hardy-Weinberg Equilibrium. 

 

Thus, the HWE principle relates the allelic and genotypic frequencies. The principle is 

presented here on a single bi-allelic locus but may be extended to loci with multiple alleles and also to 

multiple loci (Hastings, 2001). 

The principle provides theoretical genotype frequencies against which the observed 

frequencies in a population can be compared. Table 2.4 below summarizes the observed and the 

expected genotype counts under HWE in a population of size   for a single bi-allelic locus. 

 

Genotype AA Aa aa 

Observed Counts             

Expected Counts              

Table 2.4: Observed and expected (under HWE) genotype counts at a single bi-allelic locus in a 

population of size  . 

 

We test for deviations from HWE in a population though the    goodness-of-fit statistic,     
 , 

given by 
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   ∑

(                 ) 

        
 

  
(        ) 

   
  

(         ) 

    
  

(        ) 

   
 

(2.9) 

Under the null hypothesis of HWE,     
      

 .  

Genotyping errors may impact the genotype frequencies. Thus, in large enough, randomly 

mating populations, where HWE is assumed to hold, significant deviations from HWE may be 

indicative of genotyping errors. 

2.8 Where Are We Now? 

Genetic variants associated with or explaining complex traits may be identified using hypothesis-

driven or hypothesis-free study designs. The former incorporates prior knowledge of the potentially 

causal SNPs or genes focusing analyses on one candidate SNP or several of them typically lying 

within a specific candidate gene. 

However, the obvious disadvantage that prior information may not always be available 

coupled with the rapid advances in technology leading to sharply falling genotyping costs, have 

caused a shift in the popularity of candidate SNP or gene studies to genome-wide association studies 

(GWASs). Nowadays, GWAS is the most widely used approach to detect genetic association with 

complex human traits. In a GWAS, no prior hypothesis on the potential causal SNP or gene is made 

(hypothesis-free) and, instead, the whole genome is scanned one SNP at a time. 

The first successful GWAS was conducted in 2005 in age-related macular degeneration, a 

serious condition affecting old adults leading to loss of vision (Klein et al., 2005). Only three years 

after that, several hundred GWASs had been conducted identifying hundreds of association in over 80 

distinct traits and diseases (Hindorff et al., 2009). Figure 2.9 below illustrates identified associations 

as of December 2012 at stringent criteria levels for 17 trait categories (represented by different colors) 

locating the different findings across the genome. 
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Figure 2.9: Published genome-wide associations at stringent significance criteria as of December 

2012. Adapted from www.genomes.gov. Last accessed August 2013. 

 

Basically, these findings indicate that there is a correlation between a specific genomic region 

and a trait. However, correlation does not imply causation which is of higher importance clinically. 

Thus, while our understanding of the genetic component of complex traits has deepened significantly, 

little benefit of that has been seen at the clinical level. Not surprisingly, skepticism on the usefulness 

of these studies has been on the rise. The review by Manolio (2013) addresses precisely this issue and 

suggests at least four areas where GWAS findings can be readily translated into clinical care, namely, 

disease prediction, disease classification, drug development and drug toxicity. 

In Chapter 3, we describe the genetic association studies, while in Chapter 4, we discuss 

genetic prediction studies and highlight why the road to translate genetic association findings to 

medical practice remains rough and challenging.  
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3 GENETIC ASSOCIATION STUDIES 

 

In a GWAS, the association between the SNP and the trait of interest is tested one SNP at a time. In 

this chapter, we describe single SNP-trait association analysis and present several limitations of 

GWAS. 

3.1 Traits 

Genetic association studies aim to relate genetic information to a clinical outcome or phenotype. The 

outcome can be quantitative, binary, survival, count, etc. In this thesis, we focus on quantitative and 

binary outcomes. 

3.1.1 Quantitative Traits 

A quantitative outcome is a continuous trait such as blood pressure or height. In epidemiology, 

assuming a linear relationship between a risk factor,  , and a continuous trait,  , measuring its effect 

on the trait involves the calculation of the correlation coefficient,     , between   and   given by 

       
   (   )

    
  

 [(     )(    )]

    
  

(3.1) 

where    and    are the mean values, and    and    are the standard deviations of   and  , 

respectively. 

In the case when only a single risk factor is evaluated, the coefficient of determination,   , is 

given by the square of the correlation coefficient, that is, 



GENETIC ASSOCIATION STUDIES 

40 

         
  (3.2) 

3.1.2 Binary Traits 

A binary or dichotomous outcome can take on one of two possible values typically referring to disease 

status, (disease versus healthy) or, in the case of response to treatment, responders versus non-

responders, for example. 

In epidemiology, measuring the effect of a risk factor on a dichotomous trait involves a 

comparison of risks or odds between the exposed (cases) and the unexposed (controls) groups. The 

risk is defined simply as the probability that the disease will occur, that is 

      (       ) (3.3) 

and is constrained between 0 and 1. The odds is defined as the ratio of probabilities of the disease 

occurring versus not occurring, that is 

     
 (       )

 (          )
 

(3.4) 

and can take any value between 0 and infinity. The two measures are related as follows 

      
    

      
  

(3.5) 

For example, suppose that 1 in 1 000 individuals acquires a certain disease. Then,       
 

    ⁄

   
    ⁄

  

 
 

   
         and, using Equation (3.5),      

     

         
                . On the other hand, 

suppose for another disease, that 1 in 4 acquires it. Then,       
 

 ⁄

 
 ⁄
   

 

 
       and      

 
    

      
     . 

The above examples illustrate that, in the case of rare outcomes (diseases), the probability of 

disease is closely approximated by the odds of disease (that is,           ). Alternatively, for more 

common outcomes, important differences between the two measures arise and this approximation 

loses validity. 
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In epidemiological studies, associations between disease and risk factors are typically 

expressed in terms of relative risk (RR) which is the ratio of risks in the exposed versus the unexposed 

group, that is 

   
 (       |       )

 (       |         )
  

(3.6) 

In case-control studies, the odds ratio (OR) is often used as a surrogate for RR. Similarly to RR, the 

OR is the ratio of odds in the exposed versus the unexposed group, that is 

   

 
 (       |       )

 (          |       )⁄

 (       |         )
 (          |         )⁄

  

(3.7) 

Since the assumption that       may not always hold, however, one must be cautious when 

interpreting study findings. 

3.2 Heritability of Traits 

3.2.1 Quantitative Traits 

Variation in complex traits can be due to genetic and environmental factors and can be decomposed as 

follows 

                (   )  (3.8) 

where    is the phenotypic variance,    and    are the variance components attributable to genetic 

and environmental factors, respectively, and    (   ) is the covariance between the genetic and 

environmental factors. Most of the times,   and   are assumed to be independent simplifying 

Equation (3.8) to 

            (3.9) 

The effects of   can be further decomposed into additive,   , dominant,  , and epistatic (interaction) 

effects,  , leading Equation (3.9) to become 
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                    (3.10) 

The most widely used formulation assumes that there are no dominance and interaction effects and 

models only additive genetic effects. As such, Equation (3.10) reduces to 

            (3.11) 

The broad-sense heritability,   , is defined as the ratio of total genetic variance to total phenotypic 

variance and is given by 

    
  

  
  

(3.12) 

while the narrow-sense heritability,   , is defined as the ratio of total additive genetic variance to total 

phenotypic variance and is given by 

    
  

  
  

(3.13) 

3.2.2 Binary Traits 

For binary traits (such as disease traits) the observed scale is 0/1 (control/case). It is assumed that such 

traits can be represented by an underlying normally distributed liability trait. If an individual’s value 

exceeds a specific threshold on the liability scale, then this individual is assigned a phenotypic value 

of 1, otherwise he is assigned a phenotypic value of 0. The relationship between the heritability at the 

observed scale,     
 ,  and the narrow-sense heritability on the continuous liability scale,   , (Equation 

(3.13)) is given by 

    
  

    
 

 (   )
   

(3.14) 

where   is the prevalence of disease in the population,     (   ) and    is the standard normal 

quantile such that  (     )   . (Dempster and Lerner, 1950) The maximum value of     
  = 0.64 

when       and     . (Visscher et al., 2008) 
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As in classical epidemiology, the choice of analytical method depends on the study design 

which is further dictated by the study subjects (related or unrelated) and by the type of trait under 

investigation (dichotomous, quantitative, survival, etc.). From here onwards, we focus on the most 

widely used case-control study design for a dichotomous trait in unrelated individuals. Most of the 

discussion applies also to quantitative traits. 

3.3 Penetrance (Genetic Effect) 

Heritable traits are carried forth over generations through the transmission of DNA. Penetrance is 

defined as the probability that an individual will express the trait given the he or she carries the 

implicated gene (or genotype). 

A Mendelian or monogenic trait is controlled by a single gene. A mutation in that gene can 

cause disease. For example, Huntington’s disease and cystic fibrosis are monogenic diseases. 

Mutations in the HTT gene (Huntington’s disease) or in the CFTR gene (cystic fibrosis) cause the 

respective disease. In other words, the probability that an individual will develop the disease given that 

he or she carries the mutations in the respective gene is 1. In this particular case, the gene is said to 

have complete penetrance. 

Monogenic disorders are relatively rare. Most traits are complex, arising as a result of a 

complex interplay between genetic and environmental factors. For these traits, we study the penetrance 

or the effect of variants in genes that may be associated with the trait. 

The penetrance of a gene (or genotype) may be influenced by other genes (gene-gene 

interactions) or by environmental factors (gene-environment interactions). For the discussion that 

follows, we have adopted a simplified view and assumed that no such interactions are present. 

Further, penetrance may be age-related or gender-related. For instance, penetrance for cystic 

fibrosis is 1 at birth and for Huntington’s disease is 1 by the age of 70 years. Different penetrance 

estimates exist for mutations for breast cancer in females and males. 
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Suppose, without loss of generality, that there is a single bi-allelic SNP with alleles a and A, 

where allele A is associated with the risk of developing a disease. An individual can carry one of three 

genotypes a/a, A/a and A/A with penetrance         and    , respectively, given by 

      (        |    )  

      (        |    )  

      (        |    )  

(3.15) 

constrained as follows 

                      (3.16) 

Under the dominant genetic model, 

             . (3.17) 

Under the recessive genetic model, 

               (3.18) 

Under the additive genetic model 

      
 

 
(        )  

(3.19) 

The relative risk of genotype A/a to genotype a/a is then given by 

       
   

   
 

(3.20) 

and, similarly, the relative risk of genotype A/A to genotype a/a is given by 

       
   

   
  

(3.21) 

We mentioned in Section 3.1.2 that, in case-control studies, the    is often used as a surrogate for   . 

The corresponding ORs are then given by 

      
      

      
 

   
(      )⁄

   
(      )⁄

 

(3.22) 

and 
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(      )⁄

   
(      )⁄

  

(3.23) 

Under the dominant model,          , under the recessive model,           and under the 

additive genetic model,      (    ) . 

In the following section we describe the methods for estimating the genetic effect under the 

different genetic models, a summary of which is presented in Table 3.5. 

3.4 Methods 

In a case-control study, the allele or genotype frequencies are compared between disease individuals 

and healthy controls. Assume, for illustrative purposes, that we are analyzing the effect of the SNP in a 

case-control sample of   individuals. The arising contingency table of genotypic counts is illustrated 

in Table 3.1 below. 

 

 Genotype Counts 

Total 

a/a A/a A/A 

Cases                 

Controls                 

Total               

Table 3.1: The contingency table of disease status by genotype counts for a single bi-allelic SNP with 

alleles a and A and for   individuals. 

 

When the effect of a single SNP is being investigated, the analyses may also be conducted at 

the allelic level. The arising contingency table of allele counts is derived based on the genotypic 

counts in Table 3.1 and is given in Table 3.2 below. 
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 Allele Counts 

a A Total 

Cases             

Controls             

Total            

Table 3.2: The contingency table of disease status by allele counts for a single bi-allelic SNP with 

alleles a and A and for   individuals with the allelic counts related to the genotype counts in Table 3.1 

as follows:                  and                 for      . 

3.4.1 Allelic Tests 

Assuming, without loss of generality, that A is the risk allele, the estimated allelic     based on the 

counts in Table 3.2,    ̂, is given by 

   ̂   
      

      
  (3.24) 

The most popular method to estimate the precision of this estimate has been proposed by (Woolf, 

1955). Asymptotically, the distribution of     on the natural logarithm scale is approximately 

normally distributed. The    (   )  confidence interval can thus be derived as 

   (   (   ̂)     
 ⁄        (   ̂))  

(3.25) 

where   
 ⁄   denotes the (   

 ⁄ ) standard normal quantile and       (   ̂) is the standard error of 

   (   ̂) given by       (   ̂)   √
 

   
  

 

   
  

 

   
  

 

   
. 

If there is no association between the SNP and the disease status, the     = 1. Based on our 

definition (allele A is associated with risk of disease), an       would indicate that the allele A is a 

risk allele (     , allele A increases the risk) or a protective allele (     , allele A decreases the 

risk). Therefore, we could test the following hypothesis 
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(3.26) 

If the    (   )  confidence interval obtained by Equation (3.25) above contains the value of 1, 

then the null hypothesis cannot be rejected at the   level of significance. The hypothesis can be tested 

using the    test for independence of rows and columns. The test statistic,         
 , is given by 

        
   ∑∑

(     [   ])
 

 [   ]

 

   

 

   

   
(3.27) 

where  [   ]   
      

  
            . Under the null hypothesis of no association,         

     
 . 

In case any                  , the    approximation is not valid and the Fisher’s exact 

test is used. In this test, the exact probability of observing these cell counts is computed based on the 

hypergeometric distribution  (               ) such that 

  (   )    (               )
(
   

   
) (

   

   
)

(
  
   

)
  

(3.28) 

Next, the probability for each possible arrangement of the cell counts conditional on the marginal 

counts (that is,           ) is computed. The two-sided p-value is given by 

         ∑   ( )  such that   ( )     (   ). (3.29) 

The effect of the SNP on the disease status may be different according to gender. Therefore, 

we may want to conduct stratified association analysis where we built a series of allelic contingency 

tables, one for each stratum (for example, females and males) as illustrated in Table 3.3 below (a 

subscript   for stratum is added to the counts from Table 3.2). 

 

Stratum s 

Allele Counts 

a A Total 

Cases                

Controls                

Total               

Table 3.3: Allelic contingency table per stratum           with    individuals in each stratum. 
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The Cochran-Mantel-Haenszel (CMH) estimate of the OR adjusted for stratum is then given by the 

weighted OR across all strata  . 

     
̂   

∑
        

   

 
   

∑
        

   

 
   

   

(3.30) 

Let     denote the OR for stratum          . The hypothesis being tested is 

                    

                                    

(3.31) 

The CMH test statistic is given by 

    
[∑ (      (    ))
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∑    (    )
 
   

   
(3.32) 

where  (    )   
        

   
 and    (    )   

                

   
 (     )

. Under the null hypothesis of no 

association,        
 . 

The CMH test assumes homogeneous association across strata (Agresti, 2007). That is, it 

assumes that 

                   (3.33) 

A    test, named the Breslow-Day (BD) test, can be used to test the homogeneity of odds ratios. The 

test statistic,    
 , is given by 

   
   ∑∑∑

(       (    ))
 

 (    )
   

   
(3.34) 

where  (    ) is the expected cell count for cell    in stratum  , respectively. Under the null 

hypothesis of homogeneous odds ratios,    
       

 . 

It is straightforward to carry out stratified analyses controlling for one categorical variable. 

However, controlling for several covariates simultaneously (for example, gender, smoking status and 

geographic origin) leads to numerous contingency tables reducing the sample size per table (and per 

cell) as more covariates are added. Moreover, the covariates need to be categorical or forcibly 
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categorized. Therefore, to adjust for several risk factors and/or for continuous factors, regression 

methods are used.  

Lastly, the allelic test (Equation (3.27)) is valid when the true model of association is 

multiplicative (additive on the logarithmic scale) (Sasieni, 1997). The Cochran-Armitage trend test 

(see Equation (3.38)) is a genotype-based test that is asymptotically equivalent to the allelic test and is 

more robust to deviations from HWE. (Guedj et al., 2008) 

3.4.2 Genotypic Tests 

The estimated genotypic odds ratio based on the counts in Table 3.1 for genotype A/A relative to 

genotype a/a,      
̂ , is given by 

    ̂   
      

      
 

(3.35) 

and for genotype A/a relative to genotype a/a,     ̂, is given by 

    ̂   
      

      
  (3.36) 

The confidence intervals are computed in much the same way as for the allelic contingency table. For 

the hypothesis test, the test statistic in Equation (3.27) becomes 

          
   ∑∑

(     [   ])
 

 [   ]

 

   

 

   

   
(3.37) 

where  [   ]   
      

  
              . Under the null hypothesis of no association, 

          
     

 . 

The tests discussed so far refer to the general model without any assumption on the underlying 

genetic model. Based on the counts in Table 3.1, Table 3.4 provides the contingency tables that arise 

under the dominant (A) and recessive (B) models. In those cases, the usual    test for independence of 

rows and columns for a     contingency table applies as the one described for the allelic contingency 

table (Equation (3.27)). 
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(A) 

Dominant   

(B) 

Recessive 

a/a A/a + A/A   a/a + A/a A/A 

Cases                Cases              

Controls                Controls              

Total                Total              

Table 3.4: Contingency tables arising under the dominant (A) and recessive (B) models derived based 

on the genotype counts in Table 3.1. 

 

Alternatively, the Cochran-Armitage trend test (CATT - Cochran, 1954; Armitage, 1955) 

modifies the genotypic    test (Equation (3.37)) to incorporate a particular order of the genotypes. The 

test statistic is given by 

   
[∑   (              )

 
   ]

 

      
 

[∑   
    (      )   ∑ ∑           

 
     

 
   

 
   ]

  
(3.38) 

where            are the weights assigned to genotypes a/a, A/a and A/A, respectively. The weights 

are assigned according to the assumed genetic model setting   (     ) for a dominant effect of 

allele A and   (     ) for a recessive effect of allele A. Most of the times, the underlying genetic 

model is unknown and in most genetic association studies the general additive model is used where 

  (     ). CATT with   (     ) is asymptotically equivalent to the allelic test described earlier 

(Equation (3.27), (Sasieni, 1997)). Under the null hypothesis of no association,      
 . 

3.4.2.1 Regression Framework 

All the association tests discussed so far were based on contingency table analyses. Tests based on 

genotype counts can also be formulated in a logistic regression framework. In logistic regression, the 

odds of disease is assumed to be a linear function of the intercept and   explanatory variables (for 

example, genotype variables) on the log scale, that is, 



GENETIC ASSOCIATION STUDIES 

51 

   (    )      ∑    

 

   

  
(3.39) 

where   is the intercept and    is the coefficient for the    variable,        . The corresponding 

parameterization for the different genetic models is given in Table 3.5. 

Using this formulation, it is possible to construct association tests based on the likelihood of 

the model. There are three main testing approaches, namely, the likelihood ratio test (LRT), the Wald 

test and the score test. 

For the LRT, we fit two models, the null model,   , under which the risk of disease is not 

affected by the genotype, that is               and the alternative model,   , under which the risk 

of disease is affected by the genotype, that is,         and then compare the fits. The LRT statistic, 

 , is given by 

       (
             

             
)  

(3.40) 

Note that    is a special case of    and, in fact, the LRT requires nested models. Under the null 

hypothesis of no association,        
 , where    is the difference between the degrees of freedom of 

the null and the alternative model. 

The Wald test is asymptotically equivalent to the LRT and has the advantage that it requires 

the estimation of only one model. For a model with one explanatory variable (for instance, additive, 

dominant and recessive models, see Table 3.5 below), the Wald statistic,  , is given by 

   (
 ̂

  ( ̂)
)

 

  
(3.41) 

where  ̂ is the maximum likelihood estimate of   and   ( ̂) is the standard error of  ̂. Under the null 

hypothesis of no association,       
 . If many variables need to be tested simultaneously (such as for 

the genotypic model, see Table 3.5 below), using matrix notation, the Wald statistic,  , is given by 

    ̂     ̂  (3.42) 

where  ̂ is the vector of maximum likelihood estimates of   and   is the variance matrix. Under the 

null hypothesis of no association,        
 , where    is the number of variables being tested 

simultaneously. 
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Lastly, the score test (often known as the Lagrange multiplier test) also requires the estimation 

of only one model. Contrary to the Wald test, however, the estimated model does not include the 

parameter(s) of interest. Let  ( | ) be the likelihood function depending on one parameter,  , given 

the data  . The score,  ( ), is given by 

 ( )   
      ( ( | ))

  
 

(3.43) 

and corresponds to the slope of the log likelihood with respect to  . The variance of the score,  ( ), is 

known as the Fisher’s information and is given by 

 ( )   {[
      ( ( | ))

  
]

 

}  
(3.44) 

The score test statistic,  ( ̂), is given by 

 ( ̂)   
( ( ̂))

 

 ( ̂)
 

(3.45) 

where  ( ̂) and  ( ̂) are the score and its variance evaluated at  ̂, the maximum likelihood estimate 

of  . Under the null hypothesis of no association,  ( ̂)     
 . As for the Wald test, the multivariate 

version of the test statistic exists and is given by 

 ( ̂)     ( ̂)   ( ̂) ( ̂)  (3.46) 

where  ( ̂) is a vector of scores and    ( ̂) is the inverse of the variance matrix. Under the null 

hypothesis of no association,  ( ̂)      
 , where    is the number of variables tested by the null 

hypothesis. Throughout this thesis, we have used the LRT or the Wald test. 

3.4.3 A Note on Quantitative Traits 

Genetic associations with quantitative traits are typically conducted in a simple linear regression 

framework. All likelihood-based tests described so far for the binary traits are applicable to continuous 

traits as well. For the underlying genetic model, the same parameterization described in Table 3.5 

applies except that the linear relationship modeled is between the mean trait value and the SNP as 

opposed to between the logarithm of the odds of disease and the SNP. 
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Table 3.5: Parameterization of genetic models in a logistic regression framework and the corresponding contingency table analyses described in the text. 

 

 Genetic Model 

 Genotypic (General) Dominant Recessive Multiplicative (log-additive) 

    (    )                    (    )              (    )              (    )           

       OR    OR    OR    OR 

Genotype 

a/a 0 0 1 0 1 0 1 0 1 

A/a 1 0    (  ) 1    ( ) 0 1 1    ( ) 

A/A 0 1    (  ) 1    ( ) 1    ( ) 2    (  )    (    ( ))  

Corresponding 

Contingency Table 

Analysis 

Table 3.1  

(   test on 2df) 

Table 3.4 (A)  

(   test on 1df) 

Table 3.4 (B)  

(   test on 1df) 

At the allelic level, Table 3.2  

(   test on 1df) 
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3.4.4 The Power of    Tests for Contingency Tables 

For a contingency table with   rows and   columns, the test statistic,   , under the null hypothesis of 

independence between the rows and the columns follows a    distribution with (   )(   ) 

degrees of freedom, that is 

     (   )(   )
   (3.47) 

Let   be the probability of falsely rejecting the null hypothesis, that is, of committing a Type I Error, 

given by     (          |           ). The value of α is called the significance level of the test. The 

null hypothesis of independence is rejected if 

    (   )(   )  
   (3.48) 

where  (   )(   )  
  is the critical value of the    distribution with (   )(   ) degrees of freedom 

at the α level of significance, that is,   (     (   )(   )  
 )    . 

Next, let   be the probability of failing to reject the null hypothesis when it is false, that is of 

committing a Type II Error, given by     (                 |            ). We do not reject the null 

hypothesis of independence if 

    (   )(   )   
   (3.49) 

The test statistic under the alternative hypothesis of association,   
 , follows a non-central    

distribution with non-centrality parameter   and (   )(   ) degrees of freedom such that 

  
    (   )(   )

 ( )  (3.50) 

and, hence, 

    (                 |            )    (  
   (   )(   )   

 )  (3.51) 

The power of the test at the α level of significance is then given by the probability of correctly 

rejecting the null hypothesis, that is, 
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        (          |             ) 

     (                 |            ) 

      

      (  
   (   )(   )   

 ) 

   (  
   (   )(   )   

 )  

(3.52) 

Following these principles, the power can be estimated for the allelic or the genotypic    tests that we 

described in Sections 3.4.1 and 3.4.2. This can be achieved by deriving the non-centrality parameter, 

 . We provide here the expression for   for the most general genotypic test (Equation (3.37)). 

For simplicity, we express the genotype counts in Table 3.1 as frequencies for     cases and 

    controls in Table 3.6 below. 

 Genotype Frequencies 

a/a A/a A/A 

Cases      
   

   
      

   

   
     

   

   
  

Controls     
   

   
     

   

   
     

   

   
 

Table 3.6: Genotype frequencies in cases and controls derived from the genotype counts in Table 3.1. 

 

Then, Gordon et al. (2002) derive the non-centrality parameter,           , as 

                  [
(       )

 

              
  

(       )
 

              
  

(       )
 

              
] 

(3.53) 

Therefore, the power of the    tests on contingency tables at a given level of significance,  , depends 

on the degrees of freedom and on the non-centrality parameter  . Through the latter, it also depends on 

number of cases and controls, on the genotype (allele) frequencies and on the effect size (the 

difference between cases and controls based on genotype). 
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3.5 Pitfalls and Limitations of Genome-Wide Association Studies 

We discuss next several of the pitfalls and limitations of genetic association studies specifically in the 

context of GWASs by drawing examples from the literature as well as from our own work. 

3.5.1 Multiple Testing 

In a GWAS, hundreds of thousands to millions of null hypotheses of no association are being tested, 

one for each SNP. If we carry out one million association tests at the 0.05 significance level, we would 

expect approximately 50 000 (1E+6 * 0.05) false positives. Therefore, if we wish to maintain an 

overall Type I Error of 0.05, we need to reduce the significance level of the test. 

One of the most commonly used approach to correct for multiple tests is the Bonferroni 

correction method whereby the pre-specified significance level,  , is adjusted to reflect the number of 

tests,  , that were carried out such that the new significance level,   , is given by        . For a 

typical GWAS,    is set at 1E-7 or stricter. This approach, while simple to apply, is conservative since 

it assumes that all   tests are independent which is not correct as SNPs are correlated due to LD. 

In the previous section (Section 3.4.4), we pointed out that the power to detect association is 

obtained at a given significance level,  . Therefore, if the adjusted significance level is too 

conservative, the power is compromised. 

Alternative methods exist that are less conservative such as the false discovery rate (FDR), 

where the proportion of rejected null hypotheses that were falsely rejected is specified instead 

(Benjamini and Hochberg, 1995). 

3.5.2 Direct, Indirect and Confounded Associations 

A statistically significant difference in the allele or genotype frequencies between cases and controls 

may be indicative of evidence that the SNP is associated with the disease. Moreover, even if the 

detected association is not spurious, it is rarely the case that the SNP’s influence on the trait is direct. 
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For certain traits, prior investigative work has identified potentially causal SNPs. Direct 

association studies target these SNPs. These are powerful studies as prior knowledge is incorporated. 

However, most of the times, little is known on the underlying genetic mechanism of complex traits 

and causal SNPs are rarely directly analyzed. 

In indirect association studies, the SNPs surrounding the causal SNP are analyzed. Since those 

SNPs are likely correlated with the causal SNP (due to LD, see Section 2.3), the association may be 

picked up. The concepts of direct and indirect associations are illustrated in Figure 3.1 below. 

 

 

Figure 3.1: Direct (a) and indirect (b) association studies. In direct association studies, only one SNP, 

the causal (in red), is analyzed. In indirect association studies, several SNPs (in red) that are correlated 

with the causal SNP (in blue) are analyzed. Adapted from (Hirschhorn and Daly, 2005). 

 

A significant SNP association from a GWAS may only be hinting to the location of the causal SNP 

and, therefore, should not be interpreted as the causal SNP. 

Further, the power to detect association with a SNP nearby the causal SNP depends on the LD 

between the two SNPs. The stronger the LD between the genotyped SNP and the causal SNP is, the 

higher the power is to detect the association. Alternatively, Pritchard and Przeworski (2001) 

compared the sample sizes needed to achieve the same power, holding all else fixed, when the causal 

SNP and a SNP in LD with the causal is tested. Let   be the sample size when the causal SNP is tested 

and let    be the sample size when the SNP in LD with the causal is tested. They showed that    

  
  ⁄ , where    is the measure of LD as defined in Equation (2.6). Hence, to achieve roughly the same 

power, a much larger sample size (in the order of    ⁄ ) is necessary when the SNP in LD with the 

causal SNP is tested. 
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Lastly, if the cases and controls are not properly matched, the association may be confounded. 

Large study sample sizes are required for conducting GWASs (see Section 3.5.4). Major international 

collaborations over the years have made that possible. However, with such collaborative efforts 

combining samples of different ethnic origins and from different research centers may lead to biased 

results if not appropriately accounted for. Population stratification (also referred to as population 

structure) arises when the study population is non-homogeneous as, for example, when subjects from 

different ethnic backgrounds having different allele frequencies are included in the study and 

disproportionately represent the cases and controls. However, if population stratification is detected, 

methods exist to appropriately account for it. 

3.5.3 Effect Size and Allelic Frequency 

The dominating hypothesis of the GWAS era was that the genetic variability of common diseases (and 

traits) could be explained by few common genetic variants (with minor allele frequency, MAF ≥ 5%) 

exerting a small to moderate effect on the trait. This is known as the common disease-common variant 

hypothesis (CDCV). Figure 3.2 below shows that the CDCV hypothesis provides a limited view of 

the genetic architecture of complex traits and diseases. 

 

 

Figure 3.2: Effect size (OR) plotted against risk allele frequency. Adapted from (Manolio, 2013). 
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Alternatives to the CDCV hypothesis have since been proposed such as the common disease-

rare variant (CDRV) hypothesis where it is assumed that genetic variation of common diseases may be 

explained by a large number of low frequency or rare variants (MAF < 5%) having large effect sizes 

(Cirulli and Goldstein, 2010). As we saw in Chapter 2, genotyping chips were designed to capture 

only common variation and, hence, rare variants are not tagged by the existing SNPs on the chips. 

Therefore, the GWAS was not designed to detect associations under the CDRV hypothesis. Currently, 

methodological focus has turned to analyzing whole-genome sequence data that would allow 

uncovering the role of rare variants in complex traits. As we saw in Section 3.4.4, for the association 

tests that we have discussed, the power depends on the effect size and on the allele frequency. Holding 

everything else fixed, the power increases with larger effect size and decreases with lower allele 

frequency. 

3.5.4 Study Sample Size 

Figure 3.3 below illustrates the results of a simulation study estimating the required sample size to 

detect associations for given effect sizes and disease-allele frequencies in order to achieve power of 

80% at genome-wide significance threshold (p-value < 10
-6
) under the multiplicative genetic model. 
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Figure 3.3: Required number of cases and controls to achieve 80% power at p-value < 10
-6 

to detect 

associations for given allelic frequencies and effect sizes (OR, shown near each corresponding curve). 

Perfect linkage disequilibrium between the test markers and the disease variants and the multiplicative 

genetic model is assumed. Adapted from (Wang et al., 2005). 

 

Figure 3.3 above illustrates that extremely large sample sizes are required to detect variants of weaker 

effects and/or low allelic frequency. This provided an impetus for the formation of large international 

consortia to combine samples and collaborative efforts for better powered studies. 

The landmark GWAS of age-related macular degeneration in 2005 was conducted on 146 

subjects (96 cases and 50 controls) with roughly 120 000 genotyped SNPs (Klein et al., 2005). Lately, 

GWAS sample sizes have reached the vicinity of tens of thousands of individuals. A GWAS on blood 

pressure and cardiovascular disease risk reported in 2011, for example, evaluated associations between 

roughly 2.5 million SNPs on approximately 70 000 subjects in their discovery dataset and used a 

sample size of roughly 200 000 individuals for their combined discovery and replication datasets 

(Ehret et al., 2011). 



GENETIC ASSOCIATION STUDIES 

61 

3.5.5 Missing Heritability 

In their study, Ehret et al. (2011) estimated that around 120 genetic variants contribute to blood 

pressure explaining 2.2% of the phenotypic variation while the 29 independent variants that they 

identified in their study explained only about 0.9% of the variation. Thus, despite the large sample size 

and large SNP map, more than half of the heritability still remained unexplained. 

In fact, while GWAS have provided significant insights into the genetics of common complex 

traits and diseases, it is important to note that much of the genetic variance of the studied  phenotypes 

has remained largely unexplained – the so called missing heritability problem (Maher, 2008). 

Plausible explanations for the missing heritability problem include overestimation of heritability from 

twin and family studies but mostly surround the limitations of GWAS. 

3.5.6 Underlying Genetic Model 

The power of the genetic association studies depends on the underlying genetic model. Most of the 

times, the underlying genetic model is unknown and typically, in GWASs, the multiplicative (additive 

on the log scale) genetic model is assumed. This can lead to loss of power if the underlying genetic 

model is not the assumed one. It is possible, of course, to use the general model but testing for it 

requires two degrees of freedom instead of one. We saw from Section 3.4.4 that the power depends on 

the number of degrees of freedom and, holding everything else constant, it decreases as the number of 

degrees of freedom increases. 

3.5.7 Modeling Strategies 

We saw in Section 3.5.4 that much larger sample sizes are needed to detect associations with rare 

variants and/or variants with weaker effects and, even then, the GWAS is not well powered. 

Alternative methods need to be considered that may improve the power in these contexts. 

Although this was not the primary focus of my thesis, for the analyses of rare variants, I 

contributed to a comparative study evaluating the power and Type I Error of several novel statistical 
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methods that have been proposed for the analyses of rare variants in simulated data provided by the 

Genetic Analysis Workshop 17 (GAW17) (Saad et al., 2011b). 

Analogously, for the analyses of common SNPs with weak effects (where my focus lies) 

alternative modeling strategies to the somewhat simplistic SNP-by-SNP approach adopted in GWAS 

have been proposed. It has been suggested that estimating SNP effects individually is not optimal and 

does not lead to consistent effect estimates due to LD (see, for example, (de los Campos et al., 2010)). 

Therefore, approaches modeling the effect of all SNPs simultaneously may be better powered at 

identifying the set of SNPs that are associated with the trait or disease of interest. In Sections 3.6.3 and 

3.6.4, we describe two different multi-marker association analyses that we conducted and how they 

compare to the classical single-marker approach. Briefly, though, the results of these studies did not 

convince us of the superiority of these more complex approaches over the classical single-marker 

approach to detect associations. 

 

The remainder of this chapter describes the various genetic association studies that we have 

conducted. 

3.6 Applications 

3.6.1 Role of the 2'-5'-oligoadenylate synthetase 1 (OAS1) gene in interferon 

response in MS patients 

3.6.1.1 Objective 

The objective of this study was to investigate whether the SNP rs2660 in the 2'-5'-oligoadenylate 

synthetase 1 (OAS1) gene was associated with response to interferon treatment in MS patients. OAS1, 

an essential protein involved in the innate immune response to viral infection, is upregulated by 

interferons. Since viral infection is a potential causative factor in MS and established causative factor 

in relapses, OAS1 may be playing a vital role in interferon response in MS patients. A recent study, for 

instance, has found a gender-related immunological action of interferon therapy in MS (Contasta et 
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al., 2012). Therefore, we were also interested in investigating if there was a gender-related genetic 

action. 

3.6.1.2 Dataset 

The dataset consisted of 1162 unrelated MS patients from France, Germany, Italy and Spain. Patients 

with missing response status (1), genotypes (22), gender (22) and non-RRMS patients (3) defined as 

having EDSS at treatment onset > 6 were excluded from the analyses. The final study dataset 

consisted of 1115 patients. All patients were genotyped for the SNP rs2660 (A/G) in the OAS1 gene. 

3.6.1.3 Response Definition 

Response was determined based on the EDSS progression and the number of relapses over two years 

of treatment (see Figure 1.6). Let    be the time at treatment onset and let    be the time at which 

response is evaluated. Here,           . Let       be the EDSS progression since    evaluated at 

time   and let     be the number of relapses experienced up to time   since   . Then, Responders 

were defined as 

            {
      

         

       
 

(3.54) 

All patients not classified as Responders were classified as Non-Responders. Clinical characteristics 

by response status and cohort are provided in Appendix II (Table II.1-Table II.4). 

3.6.1.4 Methods 

Prior all analyses, we tested the SNP rs2660 for deviations from HWE using the HWE exact test. We 

first conducted a stratified analysis by cohort using the CMH test (Equation (3.32)). We computed 

ORs and 95% confidence intervals (CI) with allele A as the reference allele. We tested for 

homogeneity of ORs using the BD test (Equation (3.34)). Pooling cohorts with homogeneous effects, 

we then used logistic regression to test for association including cohort as a covariate and modeling 

different genetic models. All genetic models we considered are described in Table 3.5 except for the 

overdominant model under which both homozygous genotypes (A/A and G/G) are baseline (    
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  ). The LRT (Equation (3.40)) was used to evaluate the significance of these findings. Lastly, we also 

explored whether there was heterogeneity of genetic effects according to gender by conducting logistic 

regression analyses in female and male patients separately. 

Analyses were carried out using PLINK (Purcell et al., 2007) and the R statistical software (R 

Core Team, 2013) and, specifically, the SNPassoc package (González et al., 2007). 

3.6.1.5 Results 

The SNP rs2660 is an A/G polymorphism with the minor allele G having a frequency of 0.36 in the 

European population (HapMap Release #28). The genotype distributions by response status and by 

cohort are given in Table 3.7 below. No deviations from HWE were observed (HWE exact test, all p-

values > 0.05). 

 

 

Table 3.7: Allele and genotype frequencies by response status and cohort for the MS patients included 

in the study. The p-value for the HWE exact test is given as well. 

 

The ORs and the 95% confidence intervals per cohort and for all patients adjusted for cohort are 

presented in a forest plot in Figure 3.4 below. 

HWE Exact Test

A G AA AG GG p-value

France

Responders 164 66% 34% 43% 45% 12% 1.00

Non-Responders 168 61% 39% 38% 46% 16% 0.75

Overall 332 (49%) 63% 37% 40% 46% 14% 0.81

Germany

Responders 123 62% 38% 39% 46% 15% 0.70

Non-Responders 83 72% 28% 47% 49% 4% 0.06

Overall 206 (60%) 66% 34% 42% 47% 11% 0.64

Italy

Responders 252 62% 38% 39% 45% 16% 0.43

Non-Responders 68 66% 34% 47% 38% 15% 0.28

Overall 320 (79%) 63% 37% 41% 43% 16% 0.19

Spain

Responders 144 60% 40% 35% 51% 14% 0.49

Non-Responders 113 71% 29% 53% 36% 11% 0.25

Overall 257 (56%) 65% 35% 43% 45% 12% 0.89

All Patients

Responders 683 62% 38% 39% 46% 14% 0.81

Non-Responders 432 66% 34% 45% 43% 12% 0.52

Overall 1115 (61%) 64% 36% 41% 45% 13% 0.48

Cell counts < 5

ALL PATIENTS
Number of Patients 

(% Responders)

Allele Genotype
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Figure 3.4: Forest plot of the stratified analyses by cohort evaluating the association between the 

OAS1 SNP rs2660 and response to interferon-β. 

 

Overall, there was no evidence that the G allele was associated with response after adjusting for cohort 

(CMH test, p-value = 0.0651). However, there was statistical evidence of non-homogeneous effects 

across cohorts (BD test, p-value = 0.016), with opposite direction of the effect in France and in the 

remaining cohorts. 

To investigate whether the heterogeneity of effects was arising due to one of the cohorts, we 

repeated the analyses four times, each time excluding one of the four cohorts. These analyses revealed 

that the genetic effects in the French cohort were significantly different from those in the remaining 

cohorts (BD test, p-value = 0.53810 when France was excluded from the analyses but p-value < 0.05 

when France was included, see Table 3.8). 

 

 

Table 3.8: CMH and BD test results after excluding one cohort at a time. 

 

We pooled the German, Italian and Spanish cohorts into one as Non-France. From here 

onwards, unless otherwise indicated, by “cohort” we refer to the France/Non-France grouping of the 

patients. 

Breslow-Day

OR 95% CI P-value P-value

France (n=332) 1.46 (1.16, 1.83) 0.0012 0.53810

Germany (n=206) 1.11 (0.91, 1.37) 0.30 0.01581

Italy (n=320) 1.18 (0.96, 1.46) 0.11 0.00579

Spain (n=257) 1.07 (0.87, 1.33) 0.51 0.03491

Excluded Cohort
Cochran-Mantel-Haenszel
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Table 3.9 below provides the association results from the logistic regression analyses. We 

observe weak evidence of association under the dominant and the log-additive models (LRT, p-values 

0.049 and 0.046, respectively). 

 

 

Table 3.9: Association results for logistic regression analysis including cohort as a covariate and 

modeling different genetic models. Statistically significant results from the LRT (uncorrected p-value 

< 0.05) are highlighted in red. AIC: Akaike Information Criterion; R: Responders; NR: Non-

Responders. 

 

Gender was not associated with response (   test on 1 df, p-value=0.26), with cohort (   test 

on 1 df, p-value=0.13) and with the SNP (   test on 1 df, p-value=0.59). Deviations from HWE were 

observed in the male cohort for all patients combined (HWE exact test, p-value = 0.026). 

The results from the logistic regression analyses in females (793 patients) and males (322 

patients) separately are given in Table 3.10 (A) and Table 3.10 (B), respectively. The association was 

significant under the overdominant model in male patients (LRT, p-value = 0.013) but not in female 

patients (LRT, p-value = 0.79). Conversely, the association was borderline significant under the 

recessive model in female patients (LRT, p-value = 0.048) but not in the male patients (LRT, p-value 

= 0.32). 

  

NR % R % OR lower upper p-value1
AIC Log-Likelihood df

Codominant

A/A 194 44.9 268 39.2 1 0.12397 1465 -728.4573 (df=4)

A/G 186 43.1 317 46.4 1.25 0.96 1.63

G/G 52 12 98 14.3 1.39 0.94 2.05

Dominant

A/A 194 44.9 268 39.2 1 0.04879 1463 -728.6037 (df=3)

A/G-G/G 238 55.1 415 60.8 1.28 1 1.64

Recessive

A/A-A/G 380 88 585 85.7 1 0.24445 1466 -729.8676 (df=3)

G/G 52 12 98 14.3 1.24 0.86 1.79

Overdominant

A/A-G/G 246 56.9 366 53.6 1 0.24627 1466 -729.8728 (df=3)

A/G 186 43.1 317 46.4 1.16 0.9 1.48

log-Additive

0,1,2 432 38.7 683 61.3 1.2 1 1.44 0.04581 1463 -728.5508 (df=3)
1 p-value for the likelihood ratio test with respect to the model without the SNP.
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(A) 

 

(B) 

 

Table 3.10: Association results for logistic regression analysis in female (A) and male patients (B) 

including cohort as a covariate and modeling different genetic models. Statistically significant results 

from the LRT (uncorrected p-value < 0.05) are highlighted in red. AIC: Akaike Information Criterion; 

R: Responders; NR: Non-Responders. 

 

NR % R % OR lower upper p-value
1

AIC Log-Likelihood df

Codominant

A/A 142 44.9 197 41.3 1 0.12726 1059 -525.4895 (df=4)

A/G 139 44 204 42.8 1.07 0.79 1.46

G/G 35 11.1 76 15.9 1.59 1.01 2.51

Dominant

A/A 142 44.9 197 41.3 1 0.26836 1060 -526.9385  (df=3)

A/G-G/G 174 55.1 280 58.7 1.18 0.88 1.57

Recessive

A/A-A/G 281 88.9 401 84.1 1 0.04777 1057 -525.592  (df=3)

G/G 35 11.1 76 15.9 1.53 1 2.36

Overdominant

A/A-G/G 177 56 273 57.2 1 0.79172 1061 -527.5162  (df=3)

A/G 139 44 204 42.8 0.96 0.72 1.28

log-Additive

0,1,2 316 39.8 477 60.2 1.21 0.98 1.48 0.07733 1058 -525.991  (df=3)
1 p-value for the likelihood ratio test with respect to the model without the SNP.

NR % R % OR lower upper p-value1
AIC Log-Likelihood df

Codominant

A/A 52 44.8 71 34.5 1 0.0461 402.4 -197.1777 (df=4)

A/G 47 40.5 113 54.9 1.8 1.08 3.01

G/G 17 14.7 22 10.7 0.96 0.45 2.04

Dominant

A/A 52 44.8 71 34.5 1 0.06326 403.1 -198.5297 (df=3)

A/G-G/G 64 55.2 135 65.5 1.58 0.98 2.56

Recessive

A/A-A/G 99 85.3 184 89.3 1 0.31633 405.5 -199.7526 (df=3)

G/G 17 14.7 22 10.7 0.7 0.35 1.41

Overdominant

A/A-G/G 69 59.5 93 45.1 1 0.01319 400.4 -197.1832 (df=3)

A/G 47 40.5 113 54.9 1.82 1.13 2.94

log-Additive

0,1,2 116 36 206 64 1.17 0.82 1.68 0.38307 405.7 -199.8742 (df=3)
1 p-value for the likelihood ratio test with respect to the model without the SNP.
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3.6.1.6 Concluding Remarks 

In the combined sample, the association of OAS1 SNP with interferon response was borderline 

significant under the dominant and the log-additive models (LRT, p-values < 0.05). Using the Quanto 

software (Gauderman and Morrison, 2009), we calculated the power to detect association when the 

true model is log-additive or dominant in the female and male patients at the        level of 

significance. We assumed homogeneous effects of 1.28 (dominant) and 1.20 (log-additive) for females 

and males. In the female patients, assuming a sample size of 793 individuals, the power was less than 

40% under both the genetic models. In the male patients, assuming a sample size of 322 individuals, 

the power was less than 20% under both genetic models. That is, if an association exists under the 

dominant or the log-additive model, we have very low power to detect it. Therefore, although the 

separate analyses by gender appeared to suggest possible difference in the effects of OAS1 (rs2660) in 

interferon response according to gender, the possibility that the underlying genetic model in both 

genders is the same (dominant or log-additive) cannot be excluded. At present, this study awaits 

finalization as an additional cohort from Italy will be added to the analyses. 

 

A puzzling result is the evidence of heterogeneity between the French and the remaining cohorts. 

Indeed, OAS1 SNP genetic effects on response to interferon were found heterogeneous with opposite 

direction in the France and Non-France cohorts. We performed additional analyses attempting to 

delineate the source of this heterogeneity. 

We first investigated the epidemiological and/or clinical characteristics of the French and the 

non-French patients. In fact, and as shown in Table II.5 (Appendix II), several of the tested variables 

significantly differ between the two cohorts. Specifically, the variables are: age at disease onset, 

disease severity (both EDSS at treatment onset and number of relapses 2-year prior treatment onset) 

and type of interferon, with French patients having an older age at disease onset, a more severe MS 

(higher EDSS and number of relapses) and about half of them have been treated with Avonex® (less 

than a third of the non-French patients received the same type of interferon). Therefore, we repeated 

our association analysis adjusting for clinical and epidemiological variables with and without a 

France/Non-France cohort variable to identify the variables that contribute the most to the evidence of 
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heterogeneity. We excluded age at disease onset and number of relapses because of a high rate of 

missing data. Note that age at disease onset is, nonetheless, highly correlated with age at treatment 

onset in both cohorts (correlation > 0.80). Adjusting for interferon type does not improve the model 

containing only the SNP (LRT, p-value = 0.055) but adjusting for age at treatment onset or for EDSS 

at treatment onset does (LRT, p-values = 5.9E-04 and 1.7E-05, respectively). However, the models 

including one of these two covariates have a worse fit than the model including both of them (LRT, p-

value = 2.3E-05 and = 6.9E-07 for age at treatment onset and EDSS, respectively). Yet, the 

France/Non-France cohort variable remains highly significant (LRT, p-value=1.1E-06) thus 

suggesting that factors other than age and EDSS at treatment onset underlie the genetic heterogeneity 

at OAS1. 

Table 3.11 shows the estimated ORs under the different investigated models. Under all but 

one (including age at treatment onset) multivariate models the SNP effect was more significant. 

In summary, despite adjusting for clinical/epidemiological characteristics, the genetic effects of OAS1 

on response to treatment remain heterogeneous between the France and the Non-France cohorts. From 

our data, we have been unable to isolate the underlying reason for this heterogeneity. 

 

Model Including 

SNP Effect 

OR (95% CI) 
P-value 

(Wald test) 

SNP 1.20 (1.01, 1.44) 0.045 

Age at treatment onset + SNP 1.19 (1.00, 1.43) 0.053 

EDSS at treatment onset + SNP 1.22 (1.02, 1.47) 0.031 

Age at treatment onset + EDSS at treatment onset + SNP 1.22 (1.01, 1.46) 0.036 

Cohort + Age at treatment onset + EDSS at treatment onset + SNP 1.22 (1.02, 1.47) 0.033 

Table 3.11: The estimated SNP effect and its significance after adjusting for various covariates. 

 

 

Finally, we evaluated the sensitivity of our association results to the response definition. Various 

response definitions can be found in the literature. Here, we used the same definition as used by 

O’Brien et al. (2010), Couturier et al. (2011) and Malhotra et al. (2011). They are summarized as 

Alternative Definitions 1, 2 and 3, respectively, in Table 3.12 below. These definitions apply 
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increasingly stricter threshold criteria on       
 and/or       as compared to our threshold criteria. 

Consequently, under these alternative response definitions, a larger fraction of patients are classified 

as “unknown” with respect to the phenotype status. For instance, over 40% of our patients are 

unclassified under Alternative Definition 3, thus far reducing the effective sample size of subsequent 

association analyses. 

 

 

Responders Non-Responders 
Unclassified 

Patients 

n (%) 
Definition 

Number 

of 

Patients 

Definition 

Number 

of 

Patients 

Study Definition 
      

         

       
 683 

      
        

       
 432 0 (0%) 

Alternative 

Definitions 

1 
      

       

       
 604         332 179 (16%) 

2 
      

       

       
 439 

      
        

       
 432 244 (22%) 

3 
      

       

       
 439 

      
         

       
 220 456 (41%) 

Table 3.12: Alternative response definitions and how they compare to the definition we adopted for 

this study. 

 

The statistical significance of OAS1 SNP association with interferon response decreased (p-values = 

0.09, 0.07 and 0.11 under definition 1, 2 and 3, respectively). This decrease is likely explained by the 

reduction of the effective sample size. Indeed, the SNP effect estimates remain similar (OR = 1.19, 

1.20 and 1.22 under definition 1, 2 and 3, respectively) and close to the value (OR = 1.19) obtained 

under our response definition. These results suggest that our association finding is robust to the 

threshold criteria used to define response to interferon. 
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3.6.2 Role of the integrin alpha 4 subunit (ITGA4) gene in natalizumab response 

in MS patients 

3.6.2.1 Objective 

Migration of blood into tissues is facilitated by receptors such as the Very Late Antigen-4 (VLA4, α4 

β1 integrin, integrin α/β complex). Natalizumab binds to VLA4 and prevents the migration of immune 

cells into the central nervous system. Thus, because of its mechanism, the ITGA/ITGB complex has 

been proposed as a reasonable candidate region to investigate the role of genetic variants in 

natalizumab response in MS patients. (Pappas and Oksenberg, 2010) The objective of this study was 

to investigate whether the integrin alpha 4 (ITGA4) gene is implicated in response to natalizumab. 

3.6.2.2 Dataset 

A total of 904 French RRMS patients from the BIONAT cohort (Outteryck et al., 2013) were 

genotyped for 94 SNPs in the ITGA4 gene. During quality control (QC) analyses, noninformative 

SNPs, SNPs which failed the HWE or had high missing genotype rates were removed. Similarly, 

individuals with high missing genotype rates were removed. A total of 894 individuals genotyped at 

60 SNPs were included in the study, post-QC. 

3.6.2.3 Response Definition 

The response definition for natalizumab-treated patients is much more complex than for interferon-

treated patients. It relies on clinical as well as radiological measures. Let             and     be as 

defined before (see Section 3.6.1.3). Further, let        be the new T2 lesions observed at time    

with respect to    and let        indicate the presence/absence of gadolinium enhancing (GD
+
) 

lesions at time  . In this study, response was evaluated at one year after treatment onset (         ). 

Responders, Non-Responders and Intermediary Responders were defined as described in Table 3.13 

below. 
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Responders Non-Responders Intermediary Responders 

      
               

              
        

    
            

                              
                       

       
          

      - 

       
                

          - 

Table 3.13: Response classification for natalizumab-treated patients. 

 

Note that Intermediary Responders include patients who experienced relapses within the first 

three months of treatment. Natalizumab is administered through intravenous infusions on a monthly 

basis and a period of three months, that is, three infusions, could be allowed before evaluating 

treatment effectiveness. 

 

Inclusion Criteria I. Intermediary Responders were excluded from this study. Only patients who 

received treatment for at least one year were included in the study. Thus, of the 894 patients, only 734 

(431 Responders, 303 Non-Responders) met the inclusion criteria for the study. 

 

Inclusion Criteria II. Over time patients may develop antibodies against natalizumab thus reducing 

treatment efficacy. Thus, in addition to Inclusion Criteria I, we imposed an additional inclusion 

criterion including only patients who had negative antibody status, that is, they had not develop 

antibodies against natalizumab. This reduced further the study sample size to 579 patients (324 

Responders, 255 Non-Responders). Our conclusions were unchanged and we only report our findings 

under Inclusion Criteria I. 

3.6.2.4 Methods 

We conducted logistic regression analyses under the dominant and recessive models and also without 

assuming any underlying genetic model (genotypic coding, Table 3.5). Significance of the SNP-

response association results was evaluated using the LRT (Equation (3.40)). All QC and association 

analyses were carried out with PLINK (Purcell et al., 2007). We also studied the LD structure of the 

investigated region based on the    measure (Equation (2.6)) using Haploview (Barrett et al., 2005). 
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3.6.2.5 Results 

We found that only one of all 60 tested SNPs, rs155106, was associated with natalizumab response at 

the nominal significance level (uncorrected p-values of 0.045 and 0.032 under the dominant and 

genotypic coding, respectively, and 0.34 under the recessive coding). The results under the dominant 

genetic model are illustrated in Figure 3.5 below. 

 

 

Figure 3.5: Association test results under the dominant genetic model from the ITGA4 candidate gene 

study on response to natalizumab. Results are expressed as the negative logarithm of the p-value of the 

association test for all 60 SNPs tested. The most significant finding is indicated at the top center of the 

graph, the SNP rs155106. Graph generated with LocusZoom (Pruim et al., 2010). 

 

The LD structure of the investigated region is presented in Figure 3.6. The SNP rs155106 is 

circled in blue on the graph. A preliminary scan on fewer patients was carried out by former 

colleagues (Couturier, 2010) and two plausible SNPs had been identified. These two SNPs are also 

circled, in red, in the figure below. 
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Figure 3.6: LD plot (based on    , Equation (2.6)) for the ITGA4 gene. The SNP rs155106 from the 

candidate gene study (circled in blue) and two SNPs from the preliminary study conducted by 

(Couturier, 2010) (circled in red) are noted. Graph generated with Haploview (Barrett et al., 2005). 

 

From Figure 3.6, we can see that the most significantly associated SNP from this study, 

rs155106 (circled in blue), is located in a block of weak LD. Note that this was also apparent from 

Figure 3.5. It can also be seen from Figure 3.6 that the two previously suggested SNPs (circled in red 

on the graph) from the preliminary analyses appear to be independent of rs155106. 

3.6.2.6 Concluding Remarks 

Overall, given the large number of tests carried out (multiple SNPs and two different inclusion criteria 

scenarios), we concluded that this study failed to provide evidence that the ITGA4 gene was implicated 

in response to natalizumab in our cohort of French MS patients. 

We note that, contrary to the study on interferon response, here we evaluated only one 

response definition which also included radiological measures. While no consensus on the actual 

response definition exists, it is believed that combining radiological measures (when available) with 
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clinical measures can lead to more precise evaluation of treatment response. (Río et al., 2009) This is 

because the disease may be active even if there are no clinical manifestations of it. 

Dropping the radiological criteria from our response definition may reclassify Non-

Responders into Responders but never the other way around. Using both clinical and radiological 

criteria, there were 431 Responders and 303 Non-Responders (under Inclusion Criteria I). Without the 

radiological criteria, 41 Non-Responders would be reclassified or, even worse, “misclassified” as 

Responders. 

 

Genome-wide data for all patients from the BIONAT cohort (Outteryck et al., 2013) are being 

generated at the time of writing this manuscript and a GWAS of natalizumab response is planned 

ahead. We describe this upcoming work in greater detail in the concluding chapter of this thesis. 

3.6.3 Multi-Marker Modeling of GWAS Data on Parkinson’s Disease 

3.6.3.1 Background 

Hundreds of thousands to millions of SNPs nowadays are tested in a sample of tens of thousands of 

individuals (ideally). The sample sizes are unlikely to ever reach the number of SNPs tested. Thus, in 

order to carry out simultaneous analyses of all SNPs, we run into the high dimensionality,     , 

problem where   represents the number of SNPs and   the number of individuals. In a multivariate 

framework, when     or    , classical regression methods fail and alternative modeling 

approaches reducing the dimension of the parameter space need to be used. Two main classes of such 

approaches are penalized estimation methods and Bayesian estimation methods. 

In penalized estimation methods, a penalty function is applied to shrink the marker effect 

estimates towards zero relative to their maximum likelihood estimates. Some methods apply the same 

large penalty to all estimates whereas others apply large penalties to some estimates and small 

penalties to the remaining estimates. Thus, the defining factor for these methods is the choice of the 

penalty function. 
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Bayesian estimation methods, on the other hand, require the specification of a prior 

distribution on the marker effects. There is a close relationship between these two classes of 

approaches. In particular, certain penalty functions lead to empirically equivalent estimates under 

certain priors. 

We were thus interested in evaluating how the multi-marker approaches would fare compared 

to the single-marker approach. We note that all of these more sophisticated approaches have been 

primarily used for estimating breeding values in the animal and plant breeding literature and only 

recently their application to human genetics has been considered. 

3.6.3.2 Materials and Methods 

We compared several multi-marker approaches with a focus on Bayesian estimation methods using 

GWAS data on Parkinson’s disease (PD) of 3023 French subjects (1039 cases, 1984 controls) and 

almost 500 000 SNPs. A recent GWAS conducted by our colleagues on this dataset had confirmed the 

association of known PD genes such as SNCA and had identified novel ones such as BST1 in the 

European population (Saad et al., 2011a). 

We treated the disease status as a continuous outcome variable. The linear model is given by 

             (3.55) 

where   is     vector of phenotypes,   is the     incidence matrix,   is     vector of 

covariates,    is a     matrix of observed genotypes (typically coded under the additive genetic 

model),    is the     vector of SNP effects and   is the      vector of random residual effects 

where     (    
 ). 

In a Bayesian regression setting, a prior on            that depends on the SNP-specific 

variance,    

 , and on the proportion of SNPs, π, expected to be associated with the complex trait is 

specified. This prior function is given by 
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  |     

    {
                  (   )

 (     

 )                   
  

(3.56) 

Depending on the choice of these two parameters, namely,    

  and  , different Bayesian models have 

been proposed and have sometimes been referred to under the umbrella term “The Bayesian Alphabet” 

coined by (Gianola et al., 2009). Such models include but are not limited to Bayes A and B 

(Meuwissen et al., 2001) and later extensions Bayes C/Cπ and D/Dπ (Habier et al., 2011). Table 3.14 

compares the parameterization of these four models for illustrative purposes. 

 

Model    

    

Bayes A 
SNP-specific variance,  

   

          
    

Bayes B 
SNP-specific variance,  

   

          
    

Bayes C   
common variance to all SNPs, 

   

     
          

          (   )  

(i.e., treated as unknown) 

Bayes D   
SNP-specific variance,  

   

          

          (   )  

(i.e., treated as unknown) 

Table 3.14: Comparing the parameterization of Bayes A, B, C   and D   models. 

 

The difference between the models lies in whether   is treated as fixed and known or as random and 

unknown and in whether the SNP effects follow a common or SNP-specific random distribution. 

Regardless, the variance in all four models is assumed to follow the scaled inverse    distribution with 

ν degrees of freedom. 

We compared three multi-marker models. The parameter specifications of the three models are 

given in Table 3.15 below. All models were fitted using the GS3 software (Legarra et al., 2011). 
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Model    

    Note 

I 

common variance to all SNPs, 

   

     
         , 

fixed, known 

    

Reduces to the popular 

Best Linear Unbiased 

Predictor (BLUP) 
(Henderson, 1975) 

II 

common variance to all SNPs, 

   

     
           

random, unknown 

          (   ) 

(i.e., treated as unknown) 
Bayes C   

III 

common variance to all SNPs, 

   

     
         , 

random, unknown 

         

fixed, known 
Bayes C 

Table 3.15: Multi-marker models we evaluated on the PD GWAS dataset. 

 

A numerical iterative method (Gauss-Siedel) was used to derive the estimates from Model I 

and a Markov Chain Monte Carlo algorithm (Gibbs sampler) was used for Models II and III (as 

implemented in the GS3 software). We used 100 000 iterations for Model II and 500 000 iterations for 

Model III after ignoring the first 5 000 iterations (burn-in). Convergence criteria (difference between 

solutions of successive iterations less than 10
-8

) were achieved within 100 iterations for Model I. 

Convergence for Models II and III was visually inspected using traceplots (plotting the sampled 

parameter value at each iteration against the iteration number). 

Lastly, to evaluate the evidence of association of the estimated effects by the multi-marker 

models, we ranked the SNPs by the absolute value of their effect estimates. 

3.6.3.3 Results 

Focusing on SNCA, BST1 as well as on two other known PD genes (MAPT and LRRK2), we compared 

the ranking of the SNPs in these genes obtained by the three methods and also compared them to the 

ranks obtained based on the p-values of the estimated effects by the GWAS. Based on the results 

illustrated in Table 3.16, the three multi-marker models appeared to detect the known PD genes. 

The ranks for all SNPs were relatively highly correlated between methods. For example, the 

correlation between Model I and GWAS ranks was 0.43. However, the best SNP rank within a gene 

was not found at the same SNP. Importantly, the SNP effect estimates were on a very different scale 

depending on the model as illustrated, for example, in Figure 3.7 comparing Models II and III. 
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Gene ± 1 Mb Number of SNPs Model I Model II Model III GWAS 

 ̂ Rank  ̂ Rank  ̂ Rank  ̂ P-value Rank 

SNCA 323 -1.8 E-04 1 -5.0 E-04 1 -0.0537 2 0.29 1.3 E-07 1 

BST1 455 1.4 E-04 4 3.6 E-04 8 0.0149 16 -0.27 2.1 E-06 6 

MAPT 330 1.3 E-04 8 3.4 E-04 18 0.0098 26 -0.29 7.30 E-06 8 

LRRK2 713 9.4 E-05 504 2.5 E-04 683 -0.0016 126 0.3535 0.000271 168 

Table 3.16: The SNP effect estimate and the corresponding SNP rank within known PD genes (± 1Mb) for the three multi-marker models, Models I, II, III 

and GWAS. 
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Figure 3.7: Absolute value of SNP effect estimates obtained by Model II (top) and Model III (bottom) 

plotted against the SNP position. The red dashed line on the graph of Model III corresponds to the 

maximum absolute SNP effect estimate under Model II. 
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It took a couple of minutes to run Model I, while it took at least 4 days per 100 000 iterations for 

Model II (used 100 000 iterations) and Model III (used 500 000 iterations). Running times were 

slower for Model II than for Model III due to the additional unknown parameter (the proportion of 

SNPs having an effect,  ). For Model III, the SNP effect estimates remained relatively unchanged 

beyond 300 000 iterations. For Model II, the proportion of SNPs having an effect,  , appeared to reach 

a plateau at just about 100 000 iterations (results not shown). 

3.6.3.4 Discussion and Conclusions 

In this study, we investigated three different multi-marker models (Models I, II and III) to detect SNP-

disease associations in a French Parkinson’s disease GWAS dataset. Focusing on known associated 

genes, we also compared the results from these models to the results from a recent GWAS conducted 

in this same dataset. 

In Model I, the SNP effect variance was treated as a known and fixed quantity and all SNPs 

were assumed apriori to exert an effect on the trait. In Models II and III, the SNP effect variance was 

unknown and estimated from the data. In Model II, the proportion of SNPs exerting an effect was 

treated as unknown while, in Model III, it was assumed to be 0.0001 (only about 50 SNPs influence 

the trait). 

Contrary to the single-marker approach, there is no formal statistical test to evaluate the 

significance of the SNP-specific effects in multi-marker models. To circumvent that, we ranked the 

SNPs by the absolute value of their effect estimate and compared the SNP ranks between the models. 

Our main observations were as follows. First, focusing on four known genes (SNCA, BST1, 

MAPT and LRRK2), we found that the SNP ranks from Model I were closest to the SNP ranks from 

the GWAS (obtained by ranking the p-value of the association test). However, the best rank was not 

observed at the same SNP. 

Second, the scale of the SNP effect estimates obtained by Model III was a couple of hundred 

times higher than that of the other two multi-marker models. This was not surprising since in Model I, 
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for instance, we assumed that all SNPs (approximately half a million) exert an effect, while in Model 

III we limited this number to only 50 SNPs. Thus, the overall additive genetic variance was spread 

over fewer SNPs in Model III. 

Third, the required number of iterations varied by model in the order of 100 for Model I and in 

the order of 100 000 for Models II and III. Consequently, the running times for Models II and III were 

longer, in the order of days, while Model I estimates were obtained within a couple of minutes. For 

Model III, 500 000 iterations appeared largely sufficient as no apparent difference in the SNP effect 

estimates were observed beyond 300 000 iterations. Compared to Model III, Model II had an 

additional unknown parameter, the proportion of SNPs exerting an effect. Although 100 000 iterations 

appeared to be sufficient for this model, it would have been interesting to carry out a higher number of 

iterations. 

Overall, our study suggests that the multi-marker models we evaluated may seem a promising 

tool to detect association of genetic variants with complex traits. However, important considerations 

include the fact that there is no formal statistical test evaluating significance of the SNP effects, 

complex parameterization and heavy computational burden. Therefore, the advantages of multi-marker 

models over the classical GWAS approach remain to be fully investigated. 

 

This work was presented as an oral communication at the European Mathematical Genetics 

Meeting in 2012 and as a poster at the 21
st
 Annual International Genetic Epidemiology Society 

Meeting in 2012. 

3.6.4 Polygenic Score Analyses of Simulated Diastolic Blood Pressure Data 

3.6.4.1 Background 

The one SNP at a time analytical approach adopted by GWASs does not have sufficient power to 

detect SNPs of weak effects at the imposed stringent genome-wide statistical significance levels. 

Therefore, it is possible that a substantial number of causal SNPs remain undetected by GWASs. A 

recent method that has drawn considerable attention so far proposes to account for SNPs having a 
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wide spectrum of effects by aggregating them into a polygenic score (PS) and testing the PS for 

association with the trait. (Purcell et al., 2009) 

Typically, the PS is constructed in two steps. First, the set of SNPs to be included in the score 

is selected. The criteria for SNP selection vary between studies but it is crucial that this set contains 

only independent SNPs to avoid the inclusion of non-independent association signals. Further, this set 

must exclude all established variants as they would drive the association of the PS with the trait 

masking the weaker effects that we are precisely looking to detect. Second, the reference alleles of 

these SNPs may be combined in an unweighted or weighted manner. The former approach assumes 

that all SNPs have the same effect size which oversimplifies the context we are trying to evaluate (that 

is, a mixture of different effect sizes). In the latter approach, on the other hand, each reference allele is 

weighted by its effect estimated in a discovery dataset. 

Based on this theoretical framework, we conducted a study as part of our participation in the 

Genetic Analysis Workshop 18 (GAW18), where we compared PS association analyses using sets of 

SNPs derived from a single-marker and a multi-marker approach. We were interested in evaluating the 

value of PS association analysis in shedding light on the true genetic architecture of complex traits. 

3.6.4.2 Materials and Methods 

Study Dataset. We used the pedigree dataset provided by GAW18 on simulated blood pressure data 

for roughly 900 individuals (from 20 families) genotyped at more than 8.3 million SNPs. A trait, Q1, 

was highly heritable (heritability of 0.68) but was uninfluenced by any of the SNPs and was provided 

to control for Type I Error. We adjusted the simulated traits for age and gender in a linear regression 

framework. A total of 200 replicate datasets were made available but the genotypes were the same 

across the replicates. 

We carried out all our analyses with knowledge of the underlying simulated model. There 

were 1 457 SNPs (in 288 genes) contributing to diastolic blood pressure (DBP) and/or systolic blood 

pressure (SBP) variability. The individual contribution of the genes ranged from as low as 0.001% for 

gene ZZEF1 to as high as 6.5% for gene MAP4 (for DBP). In addition, part of the total variability was 

due to 1 000 SNPs, randomly selected in each replicate. 
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Methods: Analyses Restricted to Associated SNPs/Genes. We first estimated the power to detect 

association with any of the contributing genes accounting for family relatedness using the Measured 

Genotype (MG) test (mixed-linear regression model) (Boerwinkle and Sing, 1987), as implemented in 

QTDT software (Abecasis et al., 2000a; Abecasis et al., 2000b). Single-marker MG test was 

conducted for each SNP using all 200 replicates. We found that MAP4 was the only gene detectable 

(power = 96%) at the genome-wide significance level (p-value < 1E-08), which accounts for the 

largest percentage of the variance of DBP and contains several SNPs three of which had very strong 

individual effects each contributing more than 1% to the trait variability. Any of the remaining SNPs 

or genes were unlikely to be detected at stringent significance criteria (power < 50%). 

We estimated that we would need approximately 40 days to carry out one genome-wide 

association study using the MG test in one replicate for one phenotype. We had 200 replicates and two 

phenotypes (DBP and Q1). Therefore, due to these computational constraints, we took an alternative 

strategy working on the traits adjusted for family relatedness. We derived these new traits using 

GRAMMAR (Aulchenko et al., 2007a) as implemented in the GenABEL add-on package (Aulchenko 

et al., 2007b) developed for the R statistical software (R Core Team, 2013). As such, the classical 

single-marker linear model could be used. 

Lastly, since our goal was to evaluate whether power to detect association with SNPs with 

weak effects could be enhanced by pooling their effects, we further adjusted the de-correlated trait 

DBP for the strong effects of MAP4 (SNPs 3_48040283 and 3_48064367). 

 

Methods: Whole-Genome Analyses. First, in a discovery dataset (in our case it was replicate 1), we 

identified the set of top SNPs,  , varying the size of  ,    {                            }. For 

each SNP we derived two effect estimates, one through a classical single-marker (SM) analysis 

whereby each effect was estimated one at a time and the other through a multi-marker (BLUP, see 

Model I in Table 3.15) analysis whereby all effects were estimated simultaneously. If the SM 

approach was used to obtain the SNP estimates, the SNPs were ranked by the p-value of their effect 

estimate. If BLUP was used, the SNP were ranked based on the absolute value of their effect estimate. 
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In order to ensure that   contained only independent SNPs, the best SNP over a window of 100kb was 

retained until the full SNP map had been covered. (We also considered larger window sizes of 1Mb 

and 5Mb but the results were similar and are not reported here.) 

Second, we constructed the PS as follows 

     ∑ ̂ 

 

   

     
(3.57) 

where     is the polygenic score for the  th
 individual,   is the size of the set of SNPs to combine,  ̂  is 

the estimated effect of SNP   in the discovery dataset and     is the number of reference alleles of the 

SNP   for the  th
 individual in an independent dataset (in our case it was replicates 2 through 200). 

Third, we tested for association between PS and the analyzed trait in replicates 2 through 200 

and we calculated the percentage of replicates in which the association was significant at different 

nominal p-values. Figure 3.8 below provides a schematic representation of our study design. 

 

 

Figure 3.8: Schema of the study design for the GAW18 data. 
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Methods: Evaluating Empirical Type I Error Rates. To evaluate the significance of our findings, we 

carried out PS association analyses in three different scenarios. First, we evaluated the associations 

with the Q1 trait which, we recall, was uninfluenced by any of the genotyped SNPs. Second, we 

evaluated the associations after permuting the DBP trait within family once in each replicate (n=199 

permutations). However, since the number of replicates/permutations was restricted to 199, we could 

only estimate the replication rates at nominal p-value of 0.05.Therefore, to obtain estimates of the 

replication rates at more stringent criteria levels (nominal p-values < 1E-04), we further permuted 

DBP within families 1 000 times in 100 of the replicates thus obtaining 100 000 permutations in total.  

Third, we also conducted PS association analyses with DBP or Q1 using a set of randomly chosen 

SNPs rather than SNPs selected based on their evidence of association. To compute the PS, we used 

the SNP effect estimates derived by each approach (SM or BLUP). 

3.6.4.3 Results 

Replication Rates. Figure 3.9 below illustrates the replication rates we obtained for the DBP trait. For 

the SM strategy, we see that the replication rates tend to increase with the SNP set size until reaching a 

peak at        SNPs after which they begin to decline especially at stringent significance criteria 

levels (p-value ≤ 1E-05). For the BLUP strategy, the peak is reached at          SNPs after which 

the replication rates tend to remain stable. Irrespective of the strategy, however, the replication rates 

are rather high especially at less stringent criteria (1E-03 ≤ p-value ≤ 0.05) and for larger set sizes 

(         ) where they are nearly always at or close to 100%. For smaller set sizes, (       ), 

replication rates are greater under the SM than under the BLUP strategy. The opposite trend is 

observed for larger set sizes (       ). 
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Figure 3.9: Percentage of replicates (out of replicates 2 through 200) with significant evidence of 

association of PS with DBP at a given nominal p-value by SNP set   derived using either Single-

Marker or BLUP strategies in replicate 1. 

 

Empirical Type I Error Rates. The results for Q1, permuted DBP and random SNP set at nominal p-

value of 0.05 are presented in Table 3.17. The results for lower significance thresholds for the 

permuted DBP and the random SNP set are presented in Table 3.18 and Table 3.19, respectively. 

From Table 3.17, we see that, for Q1, the estimated replication rates did not differ 

significantly from their expected theoretical value of 0.05, whether the top SNPs were selected under 

the SM or BLUP and irrespective of the set size,  . In the case of permuted DBP, we obtained slightly 

inflated rates especially for larger set sizes   and under the BLUP strategy (ranging from 8% to 12% 

and from 6% to 17% under SM and BLUP strategies, respectively, or alternatively expressed as fold 

difference, ranging from 1.51 to 2.41 times higher than 0.05 under SM and from 1.21 to 3.42 times 

higher under BLUP). At lower significance thresholds (Table 3.18), except for      under the 

BLUP strategy, all replication rates were inflated and the inflation was a lot more pronounced under 

the SM than under the BLUP approach. For instance, at nominal p-value < 0.1%, the replication rates 

were between 5.55 and 12.56 times higher than expected under SM and between 0.91 and 5.48 times 

higher under BLUP. 

Lastly, for the association analyses with DBP using a random SNP set, the replication rates 

increased with the SNP set size for both approaches and the rates under the SM strategy were at least 

as high as those under BLUP. For larger SNP sets (       ) and irrespective of the significance 

threshold, the replication rates under both approaches were at or nearly 100%. However, for the 
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smaller SNP sets (       ), the stricter the imposed significance threshold, the larger the observed 

difference in the replication rates between SM and BLUP (Table 3.19). For instance, for        , 

the replication rate under BLUP was close to that under SM at nominal p-value of 0.05 but was almost 

half of that of SM at nominal p-value of 1E -04. In contrast, applying the random SNP set strategy on 

Q1, we obtained replication rates that were close to their theoretical values irrespective of the 

approach (results not shown). 
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n = 199 
EMPIRICAL TYPE I ERROR RATES AT α = 0.05 

S = 10 S = 50 S = 100 S = 1000 S = 5000 S = 10000 

Q1 Single-Marker Ratio
1
 1.11 1.41 1.21 0.90 0.90 1.31 

  

95% CI
2
 (0.0235, 0.0871) (0.0349, 0.1059) (0.0272, 0.0934) (0.0163, 0.0741) (0.0163, 0.0741) (0.031, 0.0996) 

 

BLUP Ratio 1.11 1.51 1.41 1.31 1.21 1.11 

  

95% CI (0.0235, 0.0871) (0.0387, 0.1121) (0.0349, 0.1059) (0.031, 0.0996) (0.0272, 0.0934) (0.0235, 0.0871) 

                  

Permuted DBP Single-Marker Ratio 2.41 2.11 2.21 2.21 1.51 1.51 

  

95% CI (0.0754, 0.1658) (0.0628, 0.1482) (0.067, 0.1542) (0.067, 0.1542) (0.0387, 0.1121) (0.0387, 0.1121) 

 

BLUP Ratio 1.21 2.11 1.51 2.91 3.42 2.91 

  

95% CI (0.0272, 0.0934) (0.0628, 0.1482) (0.0387, 0.1121) (0.0967, 0.1947) (0.1186, 0.2232) (0.0967, 0.1947) 

  

  

      
Random SNP Set Single-Marker Ratio 1.91 3.42 15.78 20.00 20.00 20.00 

  

95% CI (0.0547, 0.1363) (0.1186, 0.2232) (0.7322, 0.8456) - - - 

 

BLUP Ratio 0.70 2.31 4.72 19.60 20.00 20.00 

  

95% CI (0.0096, 0.0608) (0.0712, 0.16) (0.1772, 0.2952) (0.9604, 0.9994) - - 

                  

1
Ratio of empirical estimate to nominal value. 

      2
95% CI for empirical estimate. 

        

Table 3.17: Empirical Type I Error rates and 95% confidence intervals (CI) under three scenarios: (1) with trait Q1 uninfluenced by any of the SNPs, (2) with 

permuted DBP within family thus breaking the association between the SNPs and DBP, and (3) with DBP using a randomly chosen sets of top SNPs (the same 

sets were used for both Single-Marker and BLUP). Rates were estimated based on 199 replicates. Due to the small number of replicates, only estimates at 

nominal p-value = 5% are given. Cases where the empirical estimate significantly exceeds the nominal value are underlined. 
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Permuted DBP, n = 100 000 
EMPIRICAL TYPE I ERROR RATES AT A GIVEN THRESHOLD 

S = 10 S = 50 S = 100 S = 1000 S = 5000 S = 10000 

p-value < 0.05 Single-Marker Ratio
1
 2.53 2.74 3.37 4.04 3.51 2.93 

  

95% CI
2
 (0.1243, 0.1285) (0.1348, 0.139) (0.1664, 0.171) (0.1995, 0.2045) (0.1732, 0.178) (0.1441, 0.1485) 

 

BLUP Ratio 0.99 1.44 1.53 2.35 2.46 2.47 

  

95% CI (0.0481, 0.0507) (0.0704, 0.0736) (0.075, 0.0782) (0.1156, 0.1196) (0.1211, 0.1251) (0.1213, 0.1253) 

                  

p-value < 0.01 Single-Marker Ratio 3.67 3.91 5.14 6.80 5.65 4.72 

  

95% CI (0.0355, 0.0379) (0.0379, 0.0403) (0.05, 0.0528) (0.0664, 0.0696) (0.0551, 0.0579) (0.0459, 0.0485) 

 

BLUP Ratio 0.96 1.75 1.88 3.35 3.53 3.59 

  

95% CI (0.009, 0.0102) (0.0167, 0.0183) (0.018, 0.0196) (0.0324, 0.0346) (0.0342, 0.0364) (0.0347, 0.0371) 

                  

p-value < 0.001 Single-Marker Ratio 5.91 5.55 8.10 12.56 9.48 8.51 

  

95% CI (0.0054, 0.0064) (0.0051, 0.0061) (0.0075, 0.0087) (0.0119, 0.0133) (0.0089, 0.0101) (0.0079, 0.0091) 

 

BLUP Ratio 0.91 1.94 2.39 4.99 5.38 5.48 

  

95% CI (0.0007, 0.0011) (0.0016, 0.0022) (0.0021, 0.0027) (0.0046, 0.0054) (0.0049, 0.0059) (0.005, 0.006) 

  

  

      p-value < 0.0001 Single-Marker Ratio 7.80 7.70 9.80 21.00 15.00 17.00 

  

95% CI (0.0006, 0.001) (0.0006, 0.001) (0.0008, 0.0012) (0.0018, 0.0024) (0.0013, 0.0017) (0.0014, 0.002) 

 

BLUP Ratio 0.80 2.20 2.70 7.80 8.00 7.30 

  

95% CI (0, 0.0002) (0.0001, 0.0003) (0.0002, 0.0004) (0.0006, 0.001) (0.0006, 0.001) (0.0005, 0.0009) 

                  

1
Ratio of empirical estimate over nominal value. 

      2
95% CI for empirical estimate. 

       

Table 3.18: Empirical Type I Error rates and 95% confidence intervals (CI) for scenario (2) of Table 3.17 with the number of permutations increased from 

once in each replicate (n=199) to 1 000 times in 100 replicates (n=100 000). Cases where the empirical estimate significantly exceeds the nominal value are 

underlined.  
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Random SNP Set, n = 199 
EMPIRICAL TYPE I ERROR RATES AT A GIVEN THRESHOLD 

S = 10 S = 50 S = 100 S = 1000 S = 5000 S = 10000 

p-value < 0.05 Single-Marker Ratio
1
 1.91 3.42 15.78 20.00 20.00 20.00 

  

95% CI
2
 (0.0547, 0.1363) (0.1186, 0.2232) (0.7322, 0.8456) - - - 

 

BLUP Ratio 0.70 2.31 4.72 19.60 20.00 20.00 

  

95% CI (0.0096, 0.0608) (0.0712, 0.16) (0.1772, 0.2952) (0.9604, 0.9994) - - 

                  

p-value < 0.01 Single-Marker Ratio 1.01 4.02 51.76 100.00 100.00 100.00 

  

95% CI [0, 0.024) (0.0129, 0.0675) (0.4482, 0.587) - - - 

 

BLUP Ratio 0.50 1.01 5.03 91.46 100.00 100.00 

  

95% CI [0, 0.0148) [0, 0.024) (0.0199, 0.0807) (0.8758, 0.9534) - - 

                  

p-value < 0.001 Single-Marker Ratio 0.00 10.05 180.90 994.97 1000.00 1000.00 

  

95% CI - [0, 0.024) (0.1274, 0.2344) (0.9852, 1.00] - - 

 

BLUP Ratio 0.00 0.00 5.03 688.44 1000.00 1000.00 

  

95% CI - - [0, 0.0148) (0.624, 0.7528) - - 

  

  

      p-value < 0.0001 Single-Marker Ratio 0.00 0.00 502.51 9396.98 9949.75 10000.00 

  

95% CI - - (0.0199, 0.0807) (0.9066, 0.9728) (0.9852, 1.00] - 

 

BLUP Ratio 0.00 0.00 0.00 4120.60 9798.99 9748.74 

  

95% CI - - - (0.3437, 0.4805) (0.9604, 0.9994) (0.9532, 0.9966) 

                  

1
Ratio of empirical estimate over nominal value. 

      2
95% CI for empirical estimate. 

             

Table 3.19: Empirical Type I Error rates and 95% confidence intervals (CI) for scenario (3) of Table 3.17 for stricter significance thresholds. Cases where the 

empirical estimate significantly exceeds the nominal value are underlined. If the confidence limit exceeded 0 or 1, the interval was truncated (denoted by “[” 

or “]”). 
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We estimated the probability of choosing a SNP lying in a true gene (as given by the 

simulated model) to be around 0.02 given by the proportion of SNPs lying in true genes out of all 

SNPs. Next, the probability that, say, in a set of ten SNPs there is at least one SNP lying in a true gene 

is 1-(0.98)
10

 = 0.18. Obviously, this probability increases and approaches one as the SNP set size   

increases. We recall that we used windows of size 100kb to identify independent SNPs. Given the 

density of our SNP map, this produced roughly 13 000 windows and thus a set size of          

(that is, top 10 000 windows) approaches full genome coverage. 

Of course, not all genes exert the same influence on the trait and, among the genes implicated, 

not all SNPs within a gene carry the same weight (effect size). Thus, while the composition of the 

random SNP set might be representative of the number of SNPs that were simulated to have an effect 

on DBP, the association results were impacted by the strategy due to the effect estimates that these 

SNPs exert on the trait. The scale of the SNP weights in the PS (that is, the effect estimates) differ 

significantly across the two approaches. In fact, the effect estimates by SM are orders of magnitude 

larger than the BLUP estimates. As an example, the mean and standard deviation of the SNP effects in 

the set of top ten SNPs (    ) is -3.03±7.53 for SM and -7.3E-05±1.7E-04 for BLUP. 

Finally, we compared the replication rates under SM and BLUP between the two Type I Error 

evaluating scenarios: permuted DBP and random SNP set. In absolute terms, the replication rates were 

very different between the scenarios (Table 3.18 and Table 3.19). When using permuted DBP, the 

replication rates under SM increased with increasing SNP set size until         after which they 

began to decline while, when using a random SNP set, the rates continued to increase reaching 100% 

for large SNP sets (       ). For BLUP, the replication rates tended to increase with increasing 

SNP set size in both scenarios also reaching 100% for large SNP sets (       ) when using a 

random SNP set but not when using permuted DBP. 

Irrespective of the significance threshold, for large SNP sets (       ), the replication rates 

under SM and BLUP were higher when using a random SNP set than when using permuted DBP. 

Conversely, for very small SNP set sizes (    ), the replication rates under SM or BLUP were 

lower when using a random SNP set than when using permuted DBP. Thus, for      or S       , 
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SM and BLUP behaved similarly. However, for      or    , SM and BLUP behaved differently 

depending on the scenario. For these two SNP sets, the replication rates under SM tended to be higher 

when using a random SNP set than when using permuted DBP but, under BLUP, were lower (even 

zero at strict significance thresholds, p-values < 0.0001). 

In relative terms, we noted that the replication rates under SM were always at least as high as 

those under BLUP. To see this, we plotted the ratio of the replication rate in SM versus BLUP for each 

SNP set size and for each evaluated significance threshold in both scenarios. The results are given in 

Figure 3.10 below. At the 0.05 significance threshold, a similar trend was observed whether permuted 

DBP or random SNP set was used, that is, the ratio decreased with increasing set size from 2.56 

(      ) to 1.19 (        ) when using permuted DBP and from 2.71 (    ) to 1.00 (   

       ) when using a random SNP set. The same trend was also observed at stricter significance 

thresholds only when using permuted DBP. In contrast, when using a random SNP set, the ratio of 

replication rates in SM versus BLUP increased up until       and then dropped reaching one for 

larger SNP set sizes (       ). 
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Figure 3.10: Ratio of empirical Type I Error rates of Single-Marker to BLUP for permuted DBP (left) and for the random SNP set (right). A dash “-” in the 

table above the right graph indicates that the replication rate under BLUP was zero. 
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3.6.4.4 Discussion and Conclusions 

Overall, using a classical single-marker approach accounting for family relatedness to detect 

association, we found that, with the exception of the SNPs in the MAP4 gene, there was no power to 

detect SNPs of weaker effect at the genome-wide significance level. Through PS association analyses, 

we achieved high replication rates whether SM or BLUP was used especially when large sets of SNPs 

(≥ 1 000) were considered. However, we noted that the replication rates under SM began to decline for 

larger SNP sets (       ) especially at stringent criteria levels. This may be happening due to much 

more noise being added with larger SNP set sizes. However, the empirical Type I Error rates were 

elevated and question whether the actual power of the PS approach is well estimated by these 

replication rates. 

When no SNPs influenced the trait (Q1), the replication rates for both approaches were close 

to their theoretical values. When SNPs influenced the trait but these relationships were broken by 

permuting the trait within family, the replication rates were inflated under both SM and BLUP. This 

trend was exacerbated at stringent significance criteria levels (p-value < 1E-04) and more so under SM 

than under BLUP. Further, when SNPs were chosen randomly versus based on evidence of 

association, we obtained high replication rates for larger SNP sets (≥ 5 000) irrespective of the strategy 

to derive the SNP effect estimates. This was because with this SNP set sizes, we approached full 

genome coverage thus likely including all causal variants. For smaller SNP sets, however, the 

replication raters were higher under SM than under BLUP and this difference became more profound 

the stricter the significance threshold. In fact, small SNP sets were likely to contain functional variants 

and yet the replication rates under BLUP were zero suggesting that BLUP is possibly conservative. 

We recall that the genotypes were the same across replicates making it challenging to ensure 

that we have arrived at evaluating correctly the Type I Error rates. While the error rates appeared well 

controlled for Q1 at the 0.05 significance threshold, we recall that this trait although heritable was 

uninfluenced by any of the SNPs. In contrast to Q1, DBP was influenced by roughly 1 500 functional 

SNPs and 1 000 randomly chosen SNPs in each replicate (polygenic component). 
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This dataset was a family dataset and we used a de-correlation technique by adjusting the trait 

for family relatedness to render the individuals “unrelated.” This is a required assumption for the 

single-marker analyses. However, in the BLUP model, the family structure can be recovered from the 

genome-based relationship matrix and thus adjusted for. (Goddard, 2009) One explanation for the 

particularly inflated rates we observed under SM, therefore, might be that linkage may have affected 

the PS association analyses. In the provided GAW18 pedigree dataset (approximately 900 related 

individuals from 20 pedigrees) there were roughly 150 unrelated individuals. Despite this small 

sample size, it could have been interesting to run our analyses on this set of individuals and evaluate 

whether we would observe the same trends, that is, higher replication rates under SM than under 

BLUP. 

We conclude that the SM approach to PS association analysis should not be used with large 

SNP sets (≥ 5 000) – for these set sizes it performed equally well as choosing SNPs at random. For 

smaller sets of top SNPs, however, it remains a preferable approach to BLUP. However, if we 

controlled well for Type I Error, we point out that the power remained low to detect SNPs of weaker 

effect through PS association analyses. 

Dudbridge (2013) derived a closed form expression of the power of the PS association method 

to detect variants of weak effect as a function of a number of parameters including the sample size for 

the discovery and replication datasets and the SNP weighting method used in the PS (weighted and 

unweighted). Using a simulation study, he found that power was high under both weight alternatives 

but was much higher when the SNPs were weighted by their effect estimates than when the SNPs were 

unweighted (that is, when each SNP carried an equal weight in the score). Also, he showed that low 

power could be due to small discovery sample size. 

We recall that the BLUP effect estimates, contrary to the SM estimates, had very low 

variability and, hence, PS constructed with BLUP estimates was similar with or without weights. 

Hence, this could also explain why the replication rates under BLUP were lower than under SM. 

Moreover, our discovery sample size was small (approximately 900 individuals). 
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This study was further extended to the context of prediction, the results of which are described 

in the next chapter (Section 4.3.2). 

 

Part of this work was presented to the genetic prediction group of GAW18 and is to appear in 

BMC Proceedings (Bohossian et al., 2013). I also contributed to the group summary paper submitted 

to Genetic Epidemiology (Ziegler et al., 2013). 
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4 GENETIC PREDICTION STUDIES 

 

“Prediction is very difficult, especially if it’s about the future” – is a famous quote attributed to the 

Danish physicist and Nobel laureate, Niels Bohr. We wish to make the best decision about the future 

with the best information available today. This is true in every aspect of our lives and especially so for 

health decisions - an emerging science known as evidence based medicine (EBM). EBM is “the 

conscientious, explicit and judicious use of current best evidence in making decisions about the care of 

individual patients.” (Sackett et al., 1996) A more precise definition has been proposed by Donald and 

Greenhalgh (2000) to emphasize the important role of mathematical approaches to achieve this 

objective stating that EBM is “the enhancement of a clinician’s traditional skills in diagnosis, 

treatment, prevention and related areas through the systematic framing of relevant and answerable 

questions and the use of mathematical estimates of probability and risk.” 

Sackett and Rosenberg (1995) summarized the five essential steps of EBM as the following: 

(1) to convert our information needs into answerable questions (to formulate the question); (2) to track 

down, with maximum efficiency, the best evidence with which to answer these questions; (3) to 

appraise the evidence critically to assess its validity (closeness to the truth) and usefulness (clinical 

applicability); (4) to implement the results of this appraisal in our clinical practice; (5) to evaluate our 

performance. Most of the research has been focused on the third step. The whole process, covering all 

five steps, may take years, even decades. 

Personalized medicine is a paradigm of EBM. Although the definition of EBM appears to 

have been formalized only in the mid-90s, EBM is not a new concept. Drug administration, for 

instance, has traditionally been tailored to patients’ characteristics such as age, gender and body size. 

Large amount of genetic information has overwhelmed the medical community in the last decade or so 

changing the scope of EBM. This wealth of new information offers tremendous power for 

revolutionizing diagnosis and treatment and is laying the foundations of genomic medicine (Kumar, 

2007). Understanding how our genomes affect our health may lead to more precise estimates of risk, 
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and thus better treatment. However, predicting risk based on the genetic information that we carry has 

not been met with much success for complex traits. In this chapter, we review the necessary steps 

required to build a clinical prediction model and describe the factors influencing prediction accuracy. 

4.1 Methods 

Steyerberg (2009) presents seven main steps to building valid clinical prediction models. These steps 

apply equally in a genetic and in a non-genetic context. However, one particularity of the genetic 

context may be the high dimensionality of the data (if carrying out whole genome predictions). We 

describe these steps briefly below focusing on the genetic context and MS where applicable. 

4.1.1 Careful Consideration of the Prediction Problem 

Perhaps the most defining aspect of a prediction study is the outcome of interest and the available 

knowledge about the factors which influence it. As we discussed in the introductory chapter of this 

thesis (see Section 1.8), response to treatment in MS is a highly complex outcome to evaluate. Further, 

there is no widely accepted definition of it. 

Additionally, the most commonly used treatment of MS, interferon-β, has been relatively well 

studied. However, to this day, limited prior knowledge exists on the factors (genetic and non-genetic) 

which influence interferon response in MS patients. 

In contrast, we bring back the case of warfarin. The phenotype is a quantitative trait, stable 

warfarin dose, objectively defined. Moreover, prior building a model to predict the correct dose to 

administer to each patient, numerous studies had been carried out evaluating the factors, genetic and 

non-genetic, potentially influencing the correct dose. Thus, a lot of prior knowledge was available at 

the time of building the prediction model for warfarin dose. Of course, we note that warfarin has been 

available as a treatment since the 1950s while interferon-β, the first ever approved treatment of MS, 

has only been available since the late 90s. 
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4.1.2 Coding the Predictors in the Model 

The way the predictors are coded can influence the results of the prediction model. Continuous 

variables could be categorized and categorical variables may be treated as continuous. For example, 

age of disease onset could be categorized into “early disease onset” and “late disease onset” based on a 

predefined threshold age value. Another example is the EDSS which we recall is an ordinal variable 

on a scale from 0.0 to 10.0 measuring disability in MS patients. In most studies, however, it is treated 

as continuous. 

Further, a categorical variable may remain categorical but with reduced number of categories. 

Combining categories which do not have many observations in them, for example, is a common 

practice. Alternatively, categories could be added. For instance, missing data may be treated as a 

separate category although variables with a lot of missing data may need to be imputed or excluded 

from the study altogether. It is necessary and important to evaluate the implications of such coding 

strategies on the predicted outcome. 

4.1.3 Specification of the Model 

This is the most difficult of all steps and typically many different models are specified and evaluated. 

The type of outcome variable usually dictates the type of model to use such as regression for 

continuous variables and classification for categorical variables. The relationship between the type of 

outcome and the predictors may be modeled as linear or non-linear (of which the linear is a special 

case). Further, one may choose to work in a frequentist or in a Bayesian setting, using parametric or 

non-parametric approaches. Lastly, modeling techniques are often borrowed from the data mining and 

machine learning domains especially in the context of high dimensionality arising with genetic 

predictors (thousands to millions of genetic variants). Thus, there is a vast number of modeling 

approaches to choose from. An illustrative example of this is given by one of the prediction algorithms 

for warfarin dose which evaluated all of the following models: ordinary linear and polynomial 

regression, artificial neural networks, support vector regression with polynomial (including linear) and 
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Gaussian kernels, regression trees, model trees, least angle regression, Lasso and multivariate adaptive 

regression splines. (Klein et al., 2009) Of all, ordinary linear regression – the simplest - performed best 

(based on MAE, see Equation (4.10) below). 

4.1.4 Estimation of the Model Parameters 

In a frequentist setting, when the parameter space is of low dimension (   ), the most commonly 

used estimation method is the method of maximum likelihood (ML). The maximum likelihood (ML) 

estimates correspond to the most likely values of the parameters given the observed data. In a high 

dimensional context (that is, when      or     ), penalized estimation methods need to be used 

shrinking the estimates of the parameters towards their ML estimates. 

In a Bayesian setting, the approach is quite different. Let   be the parameter we are interested 

in estimating. The prior distribution of  ,  ( ), is defined by the investigators and reflects any prior 

knowledge on the value of  , if available. Let   denote the observed data and let  ( | ) be the 

likelihood. Bayesian methods estimate the posterior distribution of  ,  ( | ), that is proportional to 

the product of the prior distribution and the likelihood such that  ( | )    ( | ) ( ). Point estimate 

of   may also be obtained using, for instance, the mode of the posterior distribution which, under 

certain priors, is equivalent to the ML estimate. Moreover, for most penalized estimates, there is an 

equivalent Bayesian prior (de los Campos et al., 2010). 

4.1.5 Evaluation of the Model Performance 

Evaluation of the model performance is determined by the type of outcome. Let   be the observed 

outcome and  ̂ be the outcome predicted by the model. We provide a brief review of the performance 

measures for quantitative and binary traits (or outcomes). 
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4.1.5.1 Continuous Outcomes 

For continuous outcomes, the correlation between   and  ̂ is often evaluated. The estimated 

correlation,  , is given by 

   
∑ (     ̅)(  ̂    ̅) 

   

√∑ (     ̅)  
   ∑ (  ̂    ̅)  

   

  
(4.1) 

where    and   ̂,         are the observed and predicted outcomes, respectively, and  ̅ is the mean 

of   ,        . 

The most commonly used measure, however, is the square of   , the coefficient of 

determination,   , defined as 
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Under certain conditions (such as when the   ̂’s have been derived using linear regression), 
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and, hence, Equation (4.2) above can be expressed as 
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(4.4) 

which is the proportion of explained variance by the predictors in the model. 

It has been shown that    is a biased estimate of the true coefficient of determination,   , 

given by 

      
  

 

  
   

(4.5) 

where   
  and   

  are the true variances of the residuals and the dependent variable, respectively. The 

maximum value of the bias is given by 
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(4.6) 

where   is the number of variables in the model including the intercept. Thus, an adjusted   ,      
 , is 

often reported as well and is given by 

    
    (     ) (

   

   
)  

(4.7) 

(This issue is discussed at length by Montgomery and Morrison (1973).) 

Recalling our definition of heritability from the previous chapter (Equation (3.13)), if the 

prediction model contains only genetic predictors with additive effects, then    can be interpreted as 

the proportion of the phenotypic variance attributable to additive genetic factors and its upper bound is 

given by the heritability (narrow-sense) of the trait,   , such that 

         (4.8) 

Finally, a loss function is often specified measuring the “loss” in precision between the real 

and the predicted value. Several popular loss functions include the mean squared error (MSE), the 

mean absolute error (MAE) and the mean relative error (MRE) and are described below. 

The MSE is defined as the mean of the squared differences between   and  ̂. It is given by 
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Alternatively, the MAE is defined as the mean of the absolute differences between   and  ̂. It is given 

by 
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If     ,        , the MRE can be defined as the mean of the relative differences between   and 

 ̂. It is given by 
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4.1.5.2 Binary Outcomes 

Suppose we are interested in predicting disease status (disease/healthy). Table 4.1 illustrates a two-by-

two table with predicted versus observed outcomes. 

 

 OBSERVED 

Disease Healthy 

PREDICTED 
Disease TP FP 

Healthy FN TN 

Table 4.1: Two-by-two table of predicted versus observed disease status. TP: true positive count, FP: 

false positive count, FN: false negative count, TN: true negative count. 

 

Five measures can be derived from Table 4.1: sensitivity, specificity, positive predictive 

value, negative predictive value and overall accuracy. 

The sensitivity is defined as the proportion of correctly classified disease individuals among all 

observed disease individuals and is given by 

             
  

     
  

(4.12) 

The specificity is defined as the proportion of correctly classified healthy individuals among all 

observed healthy individuals and is given by 

             
  

      
  

(4.13) 

The positive predictive value (PPV) is defined as the proportion of correctly classified disease 

individuals among all predicted disease individuals and is given by 
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(4.14) 

The negative predictive value (NPV) is defined as the proportion of correctly classified healthy 

individuals among all predicted healthy individuals and is given by 

     
  

     
  

(4.15) 

Lastly, the overall accuracy is defined as the proportion of correctly classified individuals (disease or 

healthy) among all individuals and is given by 

                  
     

           
  

(4.16) 

These measures are summarized in Table 4.2 below. 

 

 OBSERVED  

Disease Healthy 

PREDICTED 
Disease TP FP PPV = TP/(TP + FP) 

Healthy FN TN NPV = TN/(FN + TN) 

 Sensitivity = 

TP/(TP + FN) 

Specificity = 

TN/(FP + TN) 

Overall Accuracy =  

(TP + TN)/(TP +FP +TN+FN) 

Table 4.2: Summary of several performance measures for a binary outcome. 

 

The accuracy of a prediction model may be assessed in several ways the most common being 

evaluating its discriminatory ability between the two groups (disease and healthy). The most widely 

used measure for that is the area under the receiver operating characteristics (ROC) curve. The ROC 

curve is obtained by plotting sensitivity (true positive fraction) on the y-axis versus 1-specificity (false 

positive fraction) on the x-axis for varying thresholds used to discriminate between disease and 

healthy individuals (for example, consecutive cutoffs for the probability of outcome). 

Figure 4.1 below illustrates hypothetical ROC curves to demonstrate different classification 

accuracies as measured by the area under the curve (AUC). AUC varies between 0 and 1 but 

classifiers with AUC < 0.5 are typically reformulated such that AUC > 0.5 (that is if predicting disease 
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status gives an AUC < 0.5, predicting healthy status will give an AUC > 0.5 with the same model). 

Thus, the focus is on the upper left diagonal such that the AUC is between 0.5 and 1 (0.5 < AUC < 1). 

 

 

Figure 4.1: Hypothetical ROC curves. Adapted from (Zou et al., 2007). 

 

For the binary classifier C, the          (half the area of the unit square). This classifier 

performs as good as a random guess, in other words, it is perfectly useless. On the other extreme, the 

binary classifier A has an       (full unit area) and is a perfect classifier. In other words, the 

model discriminates perfectly between disease and healthy individuals. 

Wray et al. (2010) demonstrated that the maximum achievable AUC,       , when the 

classifier is a genetic predictor depends on the heritability at the liability scale,     and on the 

prevalence of disease,  . Their derived expression for        is given by 

         

(

 
(   )  

√  [(      (   ))   (      (   ))]
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(4.17) 

where  
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  ( ) is the cumulative density function of the standard normal distribution such that if 

     (   ),  ( )   (    ); 

    
 

 
 where   is the height of the standard normal curve and   is the prevalence; 

    
  

(   )
; and 

      (    ). 

Distinction should be made between discrimination and calibration, which is another 

component in assessing the accuracy of a prediction model. Discrimination refers to the ability of the 

model to distinguish between disease and healthy individuals while calibration refers to the agreement 

between the predicted and the observed values. For instance, for continuous outcomes, calibration can 

be evaluated graphically by plotting   ̂ versus   ,        . If the model is well calibrated, the 

scatter plot should fall closely along the diagonal. Analogous approaches have been developed for 

binary outcomes although they are rather imperfect. 

A model may be good at discriminating but poorly calibrated. In other words, a model may be 

predicting a higher risk for disease individuals than for healthy individuals but the actual predicted 

risks by the model may be in poor agreement with the true risks. Alternatively, if there is little 

difference in the true risks between disease and healthy individuals, that is, the risk distribution has 

narrow spread, a model may not be able to discriminate well even if the predicted risks are in good 

agreement with the true risks. In fact, there is typically a trade-off between discrimination and 

calibration and the only time a model may be perfect at both is when the true and the predicted risks 

are 0 or 100%, that is, the risk distribution is U-shaped. (Cook, 2007) 

Other performance metrics have been developed to circumvent the limitations of the AUC 

such as reclassification tables (Cook, 2007). The idea is to evaluate how many subjects are reclassified 

after including additional predictor(s) in the model. This metric can sometimes better illustrate the 

classification improvement which may be reflected with a small or insignificant change in the AUC. 
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All metrics discussed so far assume that false positives and false negatives carry equal weight 

and a theoretical framework to account for different weights has been developed by Vickers and Elkin 

(2006). Net benefit,    , is a measure that tries to accommodate different weights for each wrong 

decision. It is given by    (      )   where   is the weight derived from the ratio of harm to 

benefit. Of course, in this measure, the challenging part is to come up with the value of  . 

Several traditional and novel performance metrics have been reviewed by Steyerberg et al. 

(2010) who also address performance metrics for survival outcomes. We note that, for some 

investigators (for example, Pepe et al., 2007) sensitivity and specificity (and, hence, AUC) remain the 

classical and pertinent piece of metric to be supplied in a prediction study. 

4.1.6 Generalizability of the Model 

A central concern of predictive modeling is over-fitting which occurs when the model describes noise 

in the data rather than a true existing relationship between the predictor(s) and the outcome. In that 

case, the detected relationship will fail to be reproduced in an independent dataset. To guard against 

that, the performance metrics described in the previous step need to be evaluated in a new independent 

dataset. Ideally, three datasets are necessary: training sample, testing sample and a target population. 

The model is learned (built) on the training sample, its performance is evaluated in the testing sample 

and only then the model is applied in practice in a target population. In the training and testing 

samples, the outcome is known, while in the target population it is unknown. 

Obtaining samples is a costly and lengthy process if at all possible so clever statistical 

approaches have been developed to circumvent this limitation as much as possible when building 

prediction models without limiting too much their generalizability. These approaches rely on the 

concept of data splitting or sample reuse techniques. Cross validation (CV), initially introduced in the 

mid-70s, is one of the most widely used such approach (Stone, 1974; Geisser, 1975). We discuss it at 

length here. 
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The main objectives of CV are: (1) to evaluate the error of the model giving an idea of how it 

can be generalized; (2) to compare the performance between models; and (3) to tune model 

parameters. (Refaeilzadeh et al., 2009) To achieve these objectives, there are many alternative ways in 

which the data could be split. 

To illustrate the many alternative ways in which the data can be split, we generated a simple 

dataset with one dependent variable ( ) and one independent variable ( ) for 20 subjects given in 

Figure 4.2 below. 

 

 

Figure 4.2: A simple dataset generated with one dependent variable ( ) and one independent variable 

( ) for      subjects. 

 

In the worst case scenario, the model is both trained and tested on the same dataset as 

illustrated in Figure 4.3. The red line in the figure illustrates the model fit and the blue lines illustrate 

the difference between the simulated and the predicted values (the “loss”). 
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Figure 4.3: The fitted model (red line) to the dataset in Figure 4.2. The blue lines illustrate the 

difference between the simulated and the predicted values. 

 

This procedure leads to over-fitting, where the model fits the random error rather than the 

relationship being modeled. To avoid the problem of over-fitting, one alternative would be to 

randomly split the dataset into two parts, training and testing. The model is learned on the training set 

and its predictive performance is evaluated in the testing set (Figure 4.4). The limitation of this 

approach is that only part of the data is used for training and as such the results may be strongly 

impacted by a specific split of the data. It is possible to repeat this procedure several times but this 

may only partially avoid the problem as the full data may remain still unused for training. 
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Figure 4.4: Random split of the dataset in Figure 4.2 into training (red points) and testing (blue) 

points. The model is fitted (red line) on the training datasets and its loss function evaluated in the 

testing dataset. 

 

An alternative to that is to use the famous  -fold cross validation. In this setting, the data are 

split into   equal partitions. Of these,     partitions are used for training and the remaining partition 

is used for testing. This procedure is iterated   number of times (Figure 4.5). Then, the prediction 

error obtained in each iteration is averaged over all   iterations. The optimal value of   may be 

determined from the data or a commonly used value such as     or      may be chosen. 
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Figure 4.5: The  -fold cross validation illustrated on the dataset in Figure 4.2. That is, in each 

iteration, the model is trained on   
 

 
 observations (red) and tested on  

 

 
 observations (blue). This 

process is repeated until all observations in the dataset have been used for testing. Here,    . 

 

A special case of this is when     (where   is the number of subjects in the full sample). 

This is referred to as leave-one-out CV (Figure 4.6). This type of approach is often used when the 

sample size is very small (dozen or so subjects). 
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Figure 4.6: Leave-one-out cross validation illustrated on the dataset in Figure 4.2. In each iteration, 

the model is trained on     observations (red) and tested on one observation (blue). This process is 

repeated until all observations in the dataset have been used for testing. 

 

Lastly, an extension to the last method is sometimes used, where the  -fold CV is repeated   

number of times thus creating   different sets of   partitions (Figure 4.7). Therefore, whereas with  -

fold CV we would have   estimates of the prediction error, with   repeated  -fold CV we have     

estimates. In other words, this approach produces a greater number of estimates of the prediction error 

hopefully leading to more accurate error estimates. 
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Figure 4.7: Repeated k-fold cross validation illustrated on the dataset in Figure 4.2. The  -fold cross 

validation illustrated in Figure 4.5 is repeated three times (   ). 

 

Lastly, one alternative method to CV is bootstrapping where, in its simplest form, instead of 

repeatedly analyzing subsets of the data, one repeatedly draws subsamples with replacement, fits the 

model on the subsamples and evaluates the predictive performance in the remaining observations not 

included in these bootstrap samples. This approach was introduced by Efron (1983). There is typically 

a bias-variance trade-off between the two approaches with CV producing less biased but more variable 

estimates of the prediction error than those derived by the bootstrap approach. Kohavi (1995) 

compared CV and bootstrapping approaches and favored the stratified 10-fold CV. Since then 

alternatives have been developed such as the .632+ bootstrap method which appears to outperform 

CV. (Efron and Tibshirani, 1997) Nevertheless, in a high dimensional context, Binder and 

Schumacher (2008) recommend against approaches relying on sampling with replacement. 
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4.1.7 Presentation of the Model 

An important final step in prediction model building is facilitating its usability. For instance, Figure 

4.8 below illustrates a snapshot of a free website created to help physicians and health professionals 

assess the appropriate initial warfarin dose to administer to patients based on the prediction algorithms 

that have been built for that purpose. Using this website, a patient’s clinical and genetic information is 

entered and an estimate of the warfarin dose is then derived based on that information. 

 

 

Figure 4.8: Snapshot of the free website created to help physicians and health professionals assess the 

warfarin dose to administer to patients based on the predictive models that have been built for that 

purpose. Adapted from (The Warfarin Dose Refinement Collaboration and International Warfarin 

Pharmacogenetics Consortium, 2013). 
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Another example of prediction algorithms with facilitated implementation is the prediction of 

cardiovascular disease risk. Figure 4.9 below illustrates the risk assessment tool based on data from 

the Framingham Heart Study (Anderson et al., 1991) available freely for anyone wishing to assess 

their 10-year risk of heart attack. 

 

 

Figure 4.9: Snapshot of the free website created for anyone wishing to assess their 10-year risk of 

heart attack. Adapted from (National Heart Lung and Blood Institute, 2013). 

 

Both for warfarin dose and for cardiovascular risk prediction, several prediction algorithms 

exist and, in the case of cardiovascular risk, implementations of the different methods are also freely 

accessible (see for example the University of Edinburgh’s cardiovascular risk calculator which allows 

the estimation of risk based on different risk prediction models (The University of Edinburgh, 2010)). 

Despite their complexity and variety, however, it is clear that an indispensable component of the 

successful application of prediction algorithms in practice is their simplicity of use. 
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4.2 Pitfalls and Limitations of Genetic Prediction Studies 

Analogously to the previous chapter where we discussed the limitations of genetic association studies, 

we discuss next several of the limitations of genetic prediction studies by drawing examples from the 

literature as well as from our own work. 

4.2.1 Direct, Indirect and Confounded Associations: Implications on Prediction 

Accuracy 

In a training dataset, we may conduct a genetic association study to identify the genetic factors which 

contribute to the trait and evaluate the predictive performance of these factors in a testing dataset. For 

quantitative traits, Equation (4.8) illustrates that the explained variation by the model attributable to 

additive genetic factors is bounded by the heritability of the trait. Similarly, for binary (disease) traits, 

the AUC is bounded by the heritability of the trait (and the prevalence of the disease) (Equation 

(4.17)). This upper limit is achievable only if all causal variants contributing to the variability of the 

trait are known and if their effects are estimated without error (Wray et al., 2013). 

However, as we saw in the last chapter, first of all, most of the genetic association studies are 

indirect association studies, where the genetic variants (SNPs) being analyzed are typically not the 

causal variants but rather those surrounding and correlated to the causal variants. Since not all causal 

variants may be tagged by neighboring SNPs on the genotyping chips, it is unlikely that all causal 

variants are identified in the training dataset. Second, it is possible that the effect of the actual causal 

SNP is larger than that estimated for its neighboring SNPs (effect gets “diluted”). Therefore, the 

estimated effects are also not accurate (they are underestimated). 

Moreover, another factor impacting the prediction accuracy of the model is spurious 

associations due to population stratification and cryptic relatedness. The predictive accuracy might be 

inflated if the training and testing datasets arise from the same population (if, for example, using data 

splitting techniques to derive training and testing datasets) which is different from the target 

population for which the predictive model is aimed. A recent study has suggested for instance that 

population structure has confounded a genetic classifier for autism. (Belgard et al., 2013) 
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4.2.2 Hypothesis-Driven versus Hypothesis-Free 

Prediction models in human traits incorporating genetic information have been so far restricted to the 

inclusion of a handful of genes the choice of which has been driven by prior knowledge. On the other 

hand, in animal breeding, genetic risk prediction of complex (quantitative) traits such as milk yield 

based on the whole-genome has been common practice. Particularly, breeding programs rely heavily 

on estimates of genetic values in the parent generation to predict offspring traits. The breeding value of 

an animal is defined as the sum of genetic effects of a breeding animal as measured by the 

performance of its progeny. In the absence of dominance, the genetic effects correspond to the additive 

genetic effects. The breeding value is estimated by summing the additive effects of the alleles and is 

referred to as the estimated breeding value or EBV. 

The recent study by Vazquez et al.(2012) is one of the first to apply whole-genome prediction 

techniques used in animal breeding to predict risk for a complex disease phenotype in humans. The 

investigators compared four models to predict risk for skin cancer: (1) the baseline risk model 

including gender and cohort, (2) model 1 with family history added, (3) model 2 with geographic 

ancestry (based on genomic information) added and (4) model 1 with 41 000 SNPs across the genome. 

The AUCs for the four models were 0.53, 0.58, 0.62 and 0.64, respectively. That is, they found that 

the whole-genome prediction model outperformed all other models albeit not by much. 

4.2.3 Guarding Against False Predictions 

For quantitative traits, if the predictors in the model do not explain any of the phenotypic variation, 

then   
     

  and the population coefficient of determination (Equation (4.5)) is zero, that is,     . 

The estimated coefficient of determination,   , from the discovery (training) sample is biased with the 

expected value of the bias being 
   

 
 (Equation (4.6)), where   is the number of variables including the 

intercept. That is, if randomly chosen   predictors are included in the model, the expected explained 

variation would be     
   

 
 with      as     even if the predictors are not associated with the 

phenotype of interest. Therefore, if the number of predictors,  , is large relative to the sample size,  , 
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   may represent a significantly inflated estimate of the true explained variation to be expected in an 

independent (testing) dataset. This also illustrates why it is never a good idea to train a model and 

evaluate its predictive performance in the same dataset and that it is essential that the training and 

testing datasets be independent and drawn from the same target population. 

4.2.4 Genetic Architecture of Complex Traits and Diseases 

For monogenic (Mendelian) traits (see Section 3.3), genetic profiles provide 100% accurate 

predictions. Most traits, however, are not Mendelian and variants associated with these traits cover a 

wide spectrum of penetrance values. Common variants, such as those identified by GWASs, have 

typically low penetrance, while rare variants have high penetrance. 

Predicting non-Mendelian traits is therefore based on probabilistic modeling and certainly 

involves errors in prediction accuracy. The more frequent the genetic variant, the lower its penetrance. 

The lower the penetrance, the weaker its role and the stronger the role of environmental factors in 

predicting the trait. 

For example, the BRCA1 and BRCA2 mutations occur in less than 1% of the US population. 

Their penetrance for breast cancer at age 70 years was estimated at 0.57 and 0.49, respectively. (Chen 

and Parmigiani, 2007). Nevertheless, family history remains one of the strongest predictors of the 

disease. 

4.2.5 Study Sample Size and Marker Panel Coverage 

Since the SNPs included in genome-wide SNP chips are typically not the causal SNPs the variation 

they capture does not fully explain the phenotypic variation that is due to genetic factors. Let   
  

denote the genetic variation captured by the genotyped SNPs and let    be the heritability in the 

narrow-sense as defined before (Equation (3.13)). Then, typically,   
    . This is especially true if 

rare variants contribute to the phenotypic variation as current marker panels capture only common 

genetic variation. 
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4.2.5.1 Quantitative Traits 

For quantitative traits, we recall that the estimated proportion of phenotypic variation due to genetic 

factors is bounded by the heritability, that is,       (Equation (4.8)). It depends on the number of 

independently measured genetic variants,  , the proportion of total variance that they explain,   
 , and 

the sample size in the training (discovery) dataset,   . It is given by (Wray et al., 2013; Daetwyler et 

al., 2008) 

    
  

 

   
 

    
 (    )

  
(4.18) 

Figure 4.10 below illustrates the variation of    as a function of   , the discovery sample size, for 

different proportions of total variance explained by the genotyped SNPs,   
 . We see that high marker 

panel coverage and very large sample sizes in the discovery set are needed to achieve high   . 

 

 

Figure 4.10: The explained variation,   , as a function of discovery sample size,   , for different 

proportions of total variance explained by the genotyped SNPs,   
 . Adapted from (Wray et al., 2013). 

 

In other words, Figure 4.10 above illustrates that unless the discovery sample sizes are very large 

(         ),      
    , that is,    underestimates the heritability. 
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4.2.5.2 Binary Traits 

For binary (disease) traits, we give some examples in Table 4.3 and Table 4.4 to illustrate the impact 

heritability, disease prevalence and discovery sample size have on the maximum achievable AUC. All 

results are taken from the analyses conducted on polygenic score studies by Dudbridge (2013). 

Table 4.3 illustrates the maximum achievable AUC for two similarly heritable diseases, 

coronary artery disease and Crohn’s disease but the former is roughly 50 times more prevalent than the 

latter. 

 

 Coronary Artery Disease Crohn’s Disease 

Prevalence,   0.056 0.001 

Heritability,    0.72 0.76 

Discovery Sample Size,    ~2000 cases / 1480 controls 

Variance explainable by markers,   
  

  
   

 

 
   0.547 (0.843) 0.620 (0.948) 

  
      0.592 (0.948) 0.727 (0.995) 

Table 4.3: Maximum achievable AUC (in italic) for two diseases, coronary artery disease (CAD) and 

Crohn’s disease, with similar heritability but with very different prevalence. The maximum achievable 

AUC is given under the current discovery sample sizes and for marker panels explaining half (  
  

 
 

 
  ) or full (  

    ) heritability. In parenthesis, the AUC achievable with infinite discovery sample 

sizes, that is, when     , is given. Values adapted from Table 2 in (Dudbridge, 2013). 

 

Alternatively, Table 4.4 illustrates the maximum achievable AUC for two diseases, 

schizophrenia and prostate cancer, with similar prevalence but the former being almost twice more 

heritable than the latter. 
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 Schizophrenia Prostate Cancer 

Prevalence,   0.01 0.024 

Heritability,    0.80 0.44 

Discovery Sample Size,    
3322 cases / 

3587 controls 

1164 cases / 

1113 controls 

Variance explainable by markers,   
  

  
   

 

 
   0.62 (0.91) 0.52 (0.80) 

  
      0.72 (0.99) 0.54 (0.90) 

Table 4.4: Maximum achievable AUC (in italic) for two diseases, schizophrenia and prostate cancer, 

with similar prevalence but with very different heritability. The maximum achievable AUC is given 

for the current discovery sample sizes and for marker panels explaining half (  
   

 

 
  ) or full 

(  
     ) heritability. In parenthesis, the AUC achievable with infinite discovery sample sizes, that 

is, when     , is given. Values adapted from Table 3 in (Dudbridge, 2013). 

 

We see from Table 4.3 and Table 4.4 that the maximum achievable AUC increases with 

higher marker coverage and that this increase is more significant for more heritable and/or diseases 

having a low prevalence. However, the sample size of the discovery dataset has by far the largest 

impact on the maximum achievable AUC where AUC levels deemed clinically useful (AUC > 0.75) 

are achieved only with infinite (hypothetical) sample sizes. 

In the extreme, if we compare a rare, highly heritable disorder such as Crohn’s disease 

(               ) with a common, modestly heritable disease such as breast cancer (  

             ), we see from Figure 4.11 that extremely large sample sizes are needed to achieve 

clinically useful AUC levels in the order of tens of thousands for the former disease and hundreds of 

thousands to a million for the latter. 
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Figure 4.11: Maximum achievable AUC as a function of sample size (number of cases and controls) 

for Crohn’s disease (rare, highly heritable) and for breast cancer (common, modestly heritable). 

Adapted from Figure 4 in (Dudbridge, 2013). 

4.2.6 Phenotype Issues 

It is clear that more precise measures of the phenotype can lead to improved prediction accuracy (due 

to reduced noise in the model). Nevertheless, we saw that the prediction performance of a model is 

positively correlated with the sample size of the discovery set and heritability and, in the case of 

binary traits, it is negatively correlated with the prevalence. While the sample size could be a 

component of the study design that can be controlled for, the properties of the studied phenotype such 

as its heritability and prevalence cannot be modified. It is, therefore, important to recognize the 

limitations of the study imposed by the phenotype being investigated and adjust performance 

expectations accordingly. 

4.2.7 Clinical Use of the Findings 

A final remark is needed on the correspondence between the OR of a binary predictor and its 

predictive accuracy. Figure 4.12 below illustrates hypothetical accuracy curves corresponding to 

different ORs for a binary marker. 
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Figure 4.12: Correspondence between the accuracy curves and the ORs for binary markers with ORs 

as indicated on the various curves. Adapted from (Pepe et al., 2004). 

 

Figure 4.12 illustrates that binary predictors with OR as high as 3 which is considered strong 

association in traditional epidemiological studies will be very poor classifiers. From the graph, it is 

apparent that very strong ORs (    ) are needed to achieve clinically meaningful classification 

performance. Most of the genetic variants that have been identified through GWASs exert a small to 

moderate effects (           ) on the traits. Moreover, as we mentioned in the previous chapter, 

the OR is an estimate of the true risk ratio,   , and       only if the disease under study is rare, 

otherwise it overestimates it. 

Based on family history alone, siblings would have the same risk estimate. Incorporating 

genetic information, therefore, may lead to differential risk estimates. Family history and genetic 

profiling have typically been regarded as competing sources of information (one or the other) in 

estimating risk but recent studies have shown that there are benefits to be gained by incorporating 

genetic information into risk prediction models that have already accounted for family history. (Do et 

al., 2012) In many cases, however, these improvements would be marginal and perhaps of limited 

clinical utility (Ware, 2006). 
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4.2.8 Modeling Strategies 

We mentioned earlier in Section 4.1.3, that the most difficult step in building a clinical prediction 

model lies in the specification of the model. Oftentimes, many different models need to be specified 

and evaluated. Typically, there is a trade-off to be made between model complexity and prediction 

accuracy. 

We conducted two studies to evaluate the prediction performance of different modeling 

approaches for a binary and a quantitative trait. We compared classical logistic regression with a data 

mining approach (binary tree with recursive partitioning) to predict natalizumab response one year 

after treatment onset in MS patients using non-genetic factors. Further, we extended our work on the 

simulated blood pressure data from GAW18 to the prediction context. We describe these two studies 

in Section 4.3.1 and Section 4.3.2, respectively. 

4.3 Applications 

4.3.1 Logistic Regression versus Binary Tree with Recursive Partitioning 

4.3.1.1 Objective 

A recent study on 48 MS patients investigated several potential clinical predictors of natalizumab 

response and found that the number of relapses one year prior treatment onset (alternatively expressed 

as the number of relapses per year and referred to as the annualized relapse rate) was the only good 

predictor of response. (Sargento-Freitas et al., 2013) So far, however, little is known on the non-

genetic factors that influence natalizumab response. The objective of this study was to compare the 

performance of two modeling approaches, logistic regression and a classification tree algorithm, to 

predict response to natalizumab one year after treatment onset based on clinical, biological and 

radiological measures in French MS patients. 
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4.3.1.2 Dataset 

A total of 531 patients from the BIONAT cohort (Outteryck et al., 2013) were included in our study. 

Detailed description of the clinical, biological and radiological characteristics by response status for 

these patients is provided in Appendix III (Table III.1-Table III.3). (The data shown in these tables 

are taken from the most recent version of the BIONAT database, frozen November 2013, and may not 

necessarily correspond to the data we had at hand at the time this study was started.) 

All clinical variables, namely, gender, EDSS at treatment onset, number of relapses one year 

prior treatment onset, disease duration at treatment onset, previous immuno-modulatory treatment use 

and previous immuno-suppressory treatment use, were included in the study. Additionally, select 

biological and radiological variables at treatment onset were also included, namely, specific types of 

white blood cell (CD4, CD8 and CD19) counts and gadolinium (MRI GD+) enhancing lesions. For the 

majority of these patients, genotype data (SNPs from the ITGA4 gene) were available. However, given 

the unconvincing role of the ITGA4 in natalizumab response that we observed in the genetic 

association study that we conducted (Section 3.6.2), we did not include any genetic variants from this 

gene in the prediction model. 

4.3.1.3 Response Definition 

In Table 3.13, we defined Responders, Non-Responders and Intermediary Responders for 

natalizumab-treated MS patients one year after treatment onset. In the ITGA4 candidate gene study, we 

excluded Intermediary Responders. In this study, Intermediary Responders were included along with 

the Responders group (that is, the Responder-classification criteria were relaxed). Any patient who had 

developed antibodies against natalizumab was excluded from the study. Moreover, only patients 

whose clinical, biological and radiological data had been validated by two independent neurologists 

were included in the study. 

4.3.1.4 Methods 

We compared the performance of two modeling techniques, a logistic regression (LR) model with 

stepwise backward selection and a binary tree with recursive partitioning (BT) algorithm to predict 
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natalizumab response based on the non-genetic factors that we included in the study. All analyses were 

carried out with the R statistical software package (R Core Team, 2013). 

We used the rpart R package (Therneau and Atkinson, 2012) for the implementation of the BT 

model. Specifically, the procedure involves splitting the dataset recursively until an optimal 

classification of the Responders/Non-Responders is achieved based on pre-defined parameters 

controlling the fit of the tree. 

A tree consists of linked nodes. Any node in a binary tree can have at most two child nodes 

and at most one parent node. The node without a parent node is called the root node (at the top of the 

tree) and the node without any child nodes is called a terminal node. The depth of a node is the 

number of nodes on the path to its root node. The root node has a depth of zero. The resulting model 

fit is represented as a tree where the terminal nodes indicate the predicted response status. 

At each node, except for terminal nodes, the algorithm identifies the best variable on which to 

split, that is, the variable that best classifies the patients compared to all other remaining variables. For 

each possible split variable, the algorithm computes an impurity measure. This measure is at a 

maximum when the split classifies an equal number of patients as Responders and Non-Responders 

and is at a minimum when the split results in only one class (either Responders or Non-Responders). 

The chosen split variable then is the one which has the minimum impurity. Various impurity measures 

are implemented in the rpart package. We used a measure based on the Gini index (  ) which is 

closely related to the AUC (discussed in Section 4.1.5.2) through the formula           . 

(Gail and Pfeiffer, 2005) 

The largest advantage of BT over LR is its treatment of missing data. As long as the response 

status and at least one predictor variable are not missing, the patient can be included in the study. This 

is achieved as follows. First, if a potential split variable has missing values, the impurity measure is 

computed only over the observations which are not missing. Next, if a chosen split variable has 

missing values, rpart “imputes” the missing values by applying the partitioning algorithm to predict 

the split outcome based on the remaining independent variables. This approach could be particularly 

advantageous in studies with clinical data where missing data are the norm rather than the exception 
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and our study is no different. Table 4.5 below lists all predictor variables in our study dataset as well 

as the number and proportion (out of 531 patients) of missing values for each variable. 

 

Predictors Missing n (%) 

CD19 count 124 (23) 

CD8 count 53 (10) 

CD4 count 51 (10) 

Disease Duration 0 (0) 

MRI GD
+
 lesions 0 (0) 

Relapses prior treatment 0 (0) 

EDSS 0 (0) 

Gender 0 (0) 

Previous immuno-modulatory treatment use 0 (0) 

Previous immuno-suppressory treatment use 0 (0) 

Table 4.5: The number and proportion (out of 531 patients) of missing values per predictor variable in 

our study dataset. 

 

Thus, in the BT analyses all 531 patients were included, while in the LR analyses only patients 

with non-missing data in all ten predictors were included. 

Several parameters can be specified which influence the resulting model fit. These include 

 the minimum number of observations in a node required to partition the data (defaults to 20); 

 a parameter to control the selection of surrogate variables. For instance, the default option is to 

select surrogate variables leading to the highest number of correct classifications. 

Alternatively, surrogates may be selected based on the highest proportion of correct 

classifications calculated after excluding the number of missing values of the specific 

surrogate variable; 

 the maximum depth of any node (defaults to 30).  

For this study, we restricted the node depth to 3, a somewhat arbitrary choice. We used the default 

settings for the remaining parameters. 

We used repeated two-fold cross validation with 100, 500 or 1 000 repetitions. In each 

repetition, we trained each of the two modeling techniques on one partition of the data and we 

evaluated its predictive performance in the other partition. We then evaluated the sensitivity, 
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specificity, PPV, NPV and overall accuracy (Equations (4.12) through (4.16)) for both approaches 

averaging them over each validation run and then over the repetitions. 

We also constructed ROC curves (using the ROCR R package, (Sing et al., 2009)) in one 

repetition chosen at random. The curves were constructed by varying the threshold of the predicted 

probabilities of being a Responder by each approach and evaluating the sensitivity and the specificity 

at each threshold. Lastly, we evaluated the number of times each predictor was chosen by the model 

(that is, selected by the backward selection algorithm for the LR approach or selected as a split 

variable for the BT approach) over the repetitions. We then ranked the predictors from most selected 

to least selected and compared the ranks across the approaches. 

4.3.1.5 Results 

The performance metrics obtained for each of the two modeling approaches are illustrated in Table 

4.6 below. The number of repetitions (100, 500 or 1 000) had little impact on the results and here we 

report only the results for 1000 repetitions. 

 

On 1000 Repetitions LR BT 

Sensitivity 0.92 0.83 

Specificity 0.07 0.17 

PPV 0.61 0.62 

NPV 0.23 0.36 

Accuracy 0.58 0.58 

Table 4.6: Sensitivity, specificity, PPV, NPV and overall accuracy for the logistic regression (LR) and 

the binary trees with recursive partitioning (BR) models averaged over 1000 repetitions of two-fold 

cross validation runs. 

 

From Table 4.6 we see that LR classifies better Responders (sensitivity is 0.92 for LR versus 

0.83 for BT), while BT classifies better Non-Responders (specificity is 0.07 for LR versus 0.17 for 

BT). Both approaches lead to similar PPVs while the BT predicts slightly better the Non-Responder 

status than LR (NPV is 0.36 for BT versus 0.23 for LR). Both approaches, however, have the same 

and quite poor overall accuracy of 0.58 (a random guess has an expected overall accuracy of 0.50). 
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The ROC curves generated from the predicted probabilities in a randomly chosen repetition 

are illustrated in Figure 4.13 below. The ROC curve was smoother under the LR approach than under 

the BT approach due to more variable predicted probabilities although the range for both approaches 

was similar (from 0.36 to 0.79 for LR and from 0.44 to 0.82 for BT – right vertical axis in Figure 

4.13). For both approaches, the curves were quite close to the diagonal line which, as we saw in 

Figure 4.1 with classifier C, is equivalent to a random guess (       ). 

 

 

Figure 4.13: ROC curves for the LR and the BT approaches for a randomly chosen repetition. 

 

Lastly, Table 4.7 below illustrates the ranking of the predictors selected by each approach 

from most often to least often over 1000 repetitions. 
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LR BT 

Top Predictor Selection Rate 

Over 1000 

Repetitions (%) 

Top Predictor Selection Rate 

Over 1000 

Repetitions (%) 

MRI GD
+
 lesions 32 CD8 count 67 

Relapses prior treatment 28 CD19 count 59 

Disease duration 20 CD4 count 39 

CD4 count 18 Disease duration 22 

CD19 count 17 MRI GD
+ 

lesions 21 

EDSS 12 Relapses prior treatment 18 

Previous immuno-

modulatory treatments 

12 EDSS 4 

CD8 count 8 Gender 4 

Gender 7 Previous immuno-

suppressory treatments 

3 

Previous immuno-

suppressory treatments 

6 Previous immuno-

modulatory treatments 

< 1 

Table 4.7: Predictors ranked by the percentage of times over the 1000 repetitions that they were 

selected when using the logistic regression with backward selection (LR) or the binary tree with 

recursive partitioning model (BT). 

 

As Table 4.7 illustrates, the order as well as the selection rate of top predictors varies by 

approach. Interestingly, the most selected predictor by the BT approach, the CD8 count selected 67% 

of the times, was among the least selected by the LR approach (8%). Disease duration, on the other 

hand, was the only predictor with comparable selection rates between the two approaches (selection 

rate of 20% by LR and of 22% by BT). Overall, CD4 count, CD19 count and disease duration were 

identified among the top five predictors by both approaches. We note that the correlation (estimated in 

the complete dataset) between the CD4 and CD19 counts was 0.35, between CD4 count and disease 

duration was 0.004 and between CD19 count and disease duration was -0.05. Additionally, CD4 and 

CD8 counts were correlated (correlation = 0.51) as well as disease duration and EDSS (correlation = 

0.33). 

4.3.1.6 Concluding Remarks 

In summary, from our study we were unable to identify any potential predictors of response of clinical 

usefulness irrespective of whether LR or BT was used. Nevertheless, from the variables included, both 
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approaches consistently selected the immune cell counts and disease duration suggesting perhaps that 

these variables may be playing an important role in determining response. Referring back to the study 

by Sargento-Freitas et al. (2013), we note that the number of relapses was more consistently selected 

by the LR approach than by the BT approach. Interestingly, Sargento-Freitas et al. (2013) also used 

logistic regression (with stepwise forward selection) to build their prediction model. 

Of the two methodologies we evaluated, we recommend always considering the BT approach 

due to its significant advantage of missing data treatment even if in this instance it did not bring much 

benefit over the classical logistic regression. We note, however, that BT consistently selected the 

variables with the highest missing rates as predictors. In fact, one of the flaws of BT in its way of 

treating missing data is that a potential split variable with only two observations (extreme scenario of 

missing data) would be assigned an impurity measure of zero guarantying its selection as a split 

variable. The authors of the package acknowledge this bias of the method towards selection of 

variables with missing data and mention that it is unclear how it carries through to less extreme cases 

of missing data. (Section 5.1 in Therneau and Atkinson (2012)) 

BT is more heavily parameterized than LR. Although we did not do it in this study, it is 

desirable to evaluate the impact on the results using several different parameterizations of BT. For 

instance, we could have evaluated whether increasing the depth of the tree from our arbitrarily set 

choice of 3 would have improved or worsened classification performance. Deeper trees may be 

expected to lead to improved performance but, of course, the deeper the tree, the larger the risk for 

over-fitting. Finally, we note that the BT approach can be easily applied to continuous and survival 

outcomes. 

The clinical, biological and radiological information for this cohort is being continuously 

revised and updated and missing information, where possible, filled in. A much more ambitious study 

incorporating also genomic data for each patient is planned in the near future (see Section 5.2). 

 

Part of this work was presented as a poster at the UEPHA*MS Final Network Conference 

“Multiple Sclerosis and the Omics Spring” in April 2012. 
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4.3.2 Single-Marker and Multi-Marker Models for Polygenic Score Analyses 

4.3.2.1 Background 

We are interested in building a genetic (based on SNPs) predictor of a trait. To achieve this we follow 

a typical two-step procedure. In the first step, the SNP effects are estimated and the SNPs that are 

associated with the trait are identified in a training set. In the second step, a model based on the SNPs 

identified in the first step is built and the model’s predictive performance is evaluated in an 

independent testing set. In both steps, it is necessary to make important decisions on the choice of 

modeling approach that might have important implications on the performance of the prediction 

model. 

Specifically, we discussed in the last chapter a recent trend to move away from the simplistic 

GWAS approach to estimating SNP effects individually to more complex whole-genome regression 

methods that allow the estimation of SNP effects simultaneously. Earlier in this chapter, we also 

discussed the fact that the accuracy of the SNP effect estimates has important implications on the 

prediction accuracy of the model (Section 4.2.1). Thus, any methodology that reduces the SNP effect 

estimation error in the first step of the procedure is likely to lead to improved predictive performance. 

In the second step, the issue is how to combine the different SNP effects. It has been argued 

that whole-genome prediction methods are expected to achieve better prediction accuracy than 

methods which impose significance thresholds (such as, polygenic scores) and as such fail to capture 

all the genetic variability. (Daetwyler et al., 2008) 

4.3.2.2 Material and Methods 

As an extension to our study described in the previous chapter (see Section 3.6.4), we evaluated the    

(Equation (4.2)) and the     (Equation (4.9)) in the simulated diastolic blood pressure (DBP) and Q1 

traits from the GAW18 dataset averaged over replicates 2 through 200.We recall that we constructed 

PS based on sets of varying number of top SNPs (10, 50, 100, 1 000, 5 000 and 10 000) with effect 

estimates derived by a single-marker (SM) approach and a multi-marker (BLUP) approach and 

evaluated the association of the PS with the respective trait of interest (DBP or Q1). 
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We also computed the average    and     values using top SNPs from the MAP4 gene 

alone. We recall that this gene contributed the most to DBP variation (6.5%). For SM, we used the two 

SNPs for which we adjusted the DBP trait for the effects of MAP4 (SNPs 3_48040283 and 

3_48064367 – SNP name refers to <chromosome>_<position>). For BLUP, we refitted the model but 

this time on chromosome 3 only (where the MAP4 gene is located) and identified the top two SNPs 

which happened to be from that gene (SNPs 3_48024629 and 3_48096735). 

Finally, for the BLUP approach only, we computed the average    and     values using the 

expected breeding value (EBV) (see Section 4.2.2) which is essentially a PS computed with all 8.3 

million SNPs (no selection of SNPs). 

4.3.2.3 Results 

Trait: DBP. Figure 4.14 (A) and (B) show, respectively, the estimated    and     for the DBP trait 

averaged over replicates 2 through 200 for each of the six different SNP set sizes that we evaluated. 

 

 

Figure 4.14: The mean explained variation,    (A), and MSE (B) averaged over replicates 2 through 

200 of the PS constructed using sets of top SNPs derived by the single-marker and the BLUP 

approaches for the DBP trait. Error bars indicate the standard deviations of the    and the     values 

in each set. 

We observed higher    under SM than BLUP for smaller SNP set sizes (     ) while the 

reverse was true for larger SNP sets (       ). The two approaches did not seem to differ on the 

    measure. Both approaches gave almost identical results for        , where          and 
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For the analyses including only the top two SNPs from the MAP4 gene, we obtained mean    

of 0.0586 (± 0.013 standard deviations) and of 0.0178 (± 0.007 standard deviations) for the SM and 

BLUP approaches, respectively. Similarly, the     was 99 (± 4.8 standard deviations) and 103 (± 4.9 

standard deviations) for the SM and BLUP approaches, respectively. These results are summarized in 

Table 4.8 below. 

 

DBP 

  (± standard deviations)     (± standard deviations) 

Single-Marker BLUP Single-Marker BLUP 

Top two SNPs from MAP4 gene 0.0586 (± 0.013) 0.0178 (± 0.007) 99 (± 4.8) 103 (± 4.9) 

EBV (full genome - > 8.3 million 

SNPs) 

N/A 0.0405 (± 0.009) N/A 92 (± 4.7) 

Table 4.8: Summary of mean    and     values for DBP under the single-marker and BLUP 

approaches when taking only top two independent SNPs from the MAP4 gene, and under BLUP when 

taking all SNPs. N/A: Not Applicable. 

 

On the other extreme, Table 4.8 also gives the average    and     values under BLUP when 

the EBV ( > 8.3 million SNPs) was used as a predictor. For DBP, the mean    was 0.0405 (± 0.009 

standard deviations) and the     was 92 (± 4.7 standard deviations). 

 

Trait: Q1. For the trait Q1, within each approach there was little difference across the various SNP set 

sizes in the mean    and the    . On average, the mean    was 0.001238 (± 0.002 standard 

deviations) and 0.001364 (± 0.002 standard deviations) for the SM and BLUP approaches, 

respectively. We evaluated the MSE at 114 (± 5.6 standard deviations) under both approaches. 

We recall that Q1 was highly heritable but was uninfluenced by any of the genotyped SNPs. 

Therefore, we obtained    values consistent with the expected bias in    (see Section 4.2.3). 

Specifically, the PS association analyses were conducted on roughly 900 individuals (857 precisely) 

for whom both phenotypic and genotypic data were available. The linear regression model included 

the intercept and the PS obtained either by SM or BLUP and thus there were     parameters. 
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Following Equation (4.6), the expected bias, therefore, was 
(   )

   
⁄          . Also, not 

surprisingly, the MSE values for Q1 were higher than those for DBP at 114 (± 5.6 standard deviations) 

under both approaches. 

4.3.2.4 Discussion and Conclusions 

For smaller SNP sets, (     ), higher    values were obtained under SM than under BLUP. The 

reverse was true for larger SNP sets (       ). Based on the     metric, there was no difference 

between SM and BLUP. When no SNPs were associated with the trait (Q1), the    and the     

values were similar between the two approaches and across the different SNP set sizes. Further, the 

observed    was close to its expected value and the     was higher than the     obtained for the 

DBP trait. 

Based on the    metric, for larger SNP set sizes, the BLUP approach would therefore be 

preferable. However, under this approach, it does not seem necessary to carry out SNP selection 

apriori. When the full genome was included in the PS (that is, the EBV was computed), the obtained 

   (and    ) was essentially identical to that for         and         . In other words, under 

BLUP, including all SNPs (and thus correlated) versus only independent SNPs did not impact the 

results. This is not surprising due to the way BLUP estimates the SNP effects. In fact, in BLUP, the 

effects are spread over all SNPs which results in very small effects for a single SNP. (Meuwissen, 

2009) 

On the other hand, when only the two independent SNPs with strong effects from the MAP4 

gene were included, the    was much higher than that of any of the SNP set sizes under SM and was 

also higher for the smaller SNP sets under BLUP (     and   ). In other words, under SM, 

including few SNPs with strong effects appears to predict at least as well or better than including 

thousands of small to moderate effect sizes. This comes at a price, however, because the     was 

much higher but more so under BLUP than under SM. 

In conclusion, we come back once again to the underlying genetic architecture of the trait. Our 

results seem to suggest that if few SNPs exert a strong effect and a large number exert small or 
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moderate effects on the trait, there is little benefit in terms of predictive performance in including the 

SNPs with small or moderate effect sizes in the PS using SM-derived estimates as weights. On the 

other hand, if the SNP sets sizes are allowed to include many SNPs, the BLUP-derived estimates are 

better suited as weights, and for that matter, also without the necessity to apply any apriori SNP 

selection criterion. 
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5 CONCLUSION 

 

While the hype of genetic association studies is slowly winding down, that of prediction studies is just 

starting to pick up. What have we learned about MS in this era of genetic discoveries and of what 

utility have these findings been in the understanding and treatment of this debilitating disease? 

5.1 What have we learned? 

When trying to answer this question, it is necessary to distinguish between the susceptibility of the 

disease and response to its treatment as our knowledge and understanding of these two areas have not 

evolved in a similar fashion. It is of interest to note that genetic association studies for alternative 

phenotypes related to MS have also been conducted such as a GWAS of disease severity 

(International Multiple Sclerosis Genetics Consortium, 2011) and a GWAS of brain lesion distribution 

(Gourraud et al., 2013). 

5.1.1 Susceptibility to Multiple Sclerosis 

While genetic variation appears to be an important determinant of susceptibility to MS, as we 

discussed in the introduction, estimates of its heritability vary widely between 25% and 76%. (Hawkes 

and Macgregor, 2009) Despite that many genetic variants have been associated with susceptibility to 

MS through GWASs, as with other complex diseases, a large portion of its heritability still remains 

unexplained. Alternative methods to GWAS have been explored with the aim of explaining this 

missing heritability. 

The successful application of polygenic score analyses in explaining the missing heritability in 

susceptibility to schizophrenia (Purcell et al., 2009) motivated a similar study in susceptibility to MS 

(Bush et al., 2010). The investigators found that, through polygenic score analyses, which relax 

significantly the SNP inclusion significance threshold from the typically imposed genome-wide 
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significance thresholds, they were able to explain approximately 3% of the variance in MS risk in 

another independent MS GWAS dataset. Another study using a multi-step logistic regression approach 

provided consistent evidence supporting a polygenic model of inheritance for MS risk (Wang et al., 

2011). 

To date, several studies to predict susceptibility to MS by incorporating a handful of known 

genetic risk variants have been carried out. For instance, De Jager et al. (2009) constructed a 

polygenic score based on 16 known MS susceptibility genes and evaluated the AUC for various 

models including the score with and without taking into consideration additional environmental 

factors. The obtained AUC for the purely genetic model was 0.70 and improved to 0.74 when gender 

was added (1340 cases / 1109 controls). In a second validation cohort (143 cases / 281 controls), the 

investigators obtained an AUC of 0.64 which improved to 0.68 after adding information on smoking 

and exposure to Epstein-Barr virus. The higher achieved AUC in the first validation cohort could be 

due to the much larger sample size. Nevertheless, in both validation cohorts, the models incorporating 

environmental factors improved the prediction accuracy. 

Jafari et al. (2011) also used a polygenic score approach including a varying number of 

identified SNPs by GWASs without considering any environmental factors. The AUC increased as 

more SNPs were included ranging from 0.64 (six SNPs) to 0.69 (53 SNPs). The investigators also 

conducted a simulation study illustrating that many more common variants (at least 50) with weak 

effect sizes would be needed to achieve AUC of 0.85. This led the authors to conclude that even if new 

MS susceptibility variants are continuously being identified they will have limited utility in the clinical 

setting. 

5.1.2 Response to Multiple Sclerosis Therapies 

In the introductory chapter of this thesis (see Section 1.9), we reviewed the current state of the art for 

genetic association studies of response in MS. First and foremost, in contrast to MS susceptibility 

studies, mostly candidate gene studies have been conducted for treatment response in MS. Second, 
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sample sizes were orders of magnitude smaller. For instance, the two GWASs on interferon response 

were carried out in 200-300 patients (discovery and replication combined). Third, the treatment 

response definition is extremely complex and is subjectively chosen by the investigator as no 

standardized response definition exists. 

Fourth, a total of eight drugs have been approved for MS treatment based on five different 

acting mechanisms the most widely studied being interferon-β. Despite the many studies conducted, 

however, the genetic basis for interferon response is yet to be fully determined. Our study on 

interferon response (Section 3.6.1) and a polymorphism in the OAS1 gene awaits finalization but, 

based on the results we obtained so far, if an association is detected, it is unlikely that it will be a 

strong one and will need replication in an independent dataset. To our knowledge, no genetic 

association studies have been carried out for natalizumab or fingolimod. The candidate gene 

association study we conducted (Section 3.6.2) did not show any evidence that ITGA4 polymorphisms 

were associated with natalizumab response. 

Fifth, the environmental factors influencing MS susceptibility have been widely studied. In the 

case of response to therapy in MS, not only the genetic associations are weak but also no non-genetic 

factors are known to date to be influencing response. Some studies have suggested that response in 

interferon is gender-specific but this remains to be fully investigated. Apart from a recent study that 

found the number of relapses to be a good predictor of natalizumab response (Sargento-Freitas et al., 

2013), little is known on the influence of non-genetic variables on response. The results from our 

prediction study of natalizumab response based on non-genetic factors also did not lead to any definite 

conclusions (Section 4.3.1). 

Finally, all studies on treatment response discussed so far were association studies. To our 

knowledge, no genetic prediction study has been reported. 

In summary, the need for personalized treatment in MS is widely acknowledged. (Sormani 

and De Stefano, 2013) Nevertheless, many challenges need to be overcome before we consider this 
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approach plausible in the context of MS and further studies in this area are clearly needed to achieve 

that. Such is the goal of a study designed as part of this dissertation work and which we discuss next.  

5.2 Future Directions 

The BIONAT cohort consists of roughly 1200 French MS patients with clinical, biological and 

radiological information. (Outteryck et al., 2013) The data management for this cohort requires a 

substantial effort to which I have also contributed. 

A GWAS of natalizumab response is planned on this cohort. The GWAS data are being 

generated at the time of writing this manuscript. (The GWAS was scheduled for earlier throughout my 

thesis but there were unexpected delays in generating the genotype data). 

Using this vast dataset, the main objective is to investigate the relationship between the 

different variables and response to natalizumab and to build a model predicting response by combining 

genetic with clinical, biological and radiological variables. 

The model may include the top genetic variants identified through the GWAS (restricted to 

low dimensional setting) or include the whole genome (high-dimensional setting) similarly to the 

study by Vazquez et al. (2012) discussed in the previous chapter (see Section 4.2.2). Contrary to the 

model in the low-dimensional setting, with this approach it is not necessary to identify top SNPs 

apriori. On the other hand, however, the study by Vazquez et al. (2012) was conducted on more than 

5100 subjects genotyped at 41 000 SNPs across the genome. From the BIONAT cohort, there may be 

at best 1200 subjects (not all patients may have sufficiently complete information to be included in the 

model) with at least half a million SNPs each. Thus, with these resources, the high-dimensional 

approach also has serious limitations. 

It is unlikely that the derived prediction model would achieve the desirable properties to be 

directly useful in a clinical setting. In the best case scenario, any leading findings would have to await 

replication in a completely independent dataset and perhaps in subjects of different origin (non-
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French). Such datasets are rare, expensive and take years to compile. Nevertheless, as Kitsios and Kent 

(2012) argue, “we still lack even a basic framework that permits the multiple patient attributes that 

influence the effect of treatment (be they clinical, genetic, biological, or environmental) to be 

meaningfully integrated to support personalized decision making”. Therefore, this work could make 

an important contribution in constructing such a framework to develop integrated tools for 

personalized medicine in MS. 

Finally, it is important to recognize that it is not only study limitations that influence the 

successful transition of scientific findings into medical practice. Many other factors are at play and, 

although not exhaustively, we try to address them as well. 

5.3 Other Considerations of Pharmacogenomic Studies 

So far we have been focused on methodological aspects of pharmacogenomic studies. We devote the 

remaining pages to important ethical, social, economic and legal considerations relevant to these 

studies. 

Personal genetic testing is on the rise. There are already several companies to choose from 

which offer direct-to-consumer (DTC) genetic testing such as 23andme®, Navigenics®, Knome® and 

deCodeme® to name a few. Anyone who wishes to know their genetic risk of MS (and of numerous 

other traits or diseases) can simply mail in a sample of their saliva and, shortly after, will receive a 

report of their estimated risks. This report is based on the sort of risk-SNP association findings that we 

discussed in the third chapter of this thesis and that have been extensively compiled from the scientific 

literature by these companies. While recognizing that genetic testing can be a “valuable tool to aid in 

diagnostic and therapeutic decisions”, the American Medical Association (AMA) warned against 

DTC genetic testing arguing that “patients may spend money on direct-to-consumer genetic tests 

needlessly or misinterpret the results of the tests, causing them to make unnecessary or unhealthy 

lifestyle changes.” (Todd and Craine, 2011) 
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The truth is that, as Elton (2009) put it, “personal genomics is a wildly unregulated and 

woefully immature field.” It took US legislature 13 years to approve the Genetic Information 

Nondiscrimination Act (GINA) in 2008. While previous protections existed before GINA, this was the 

first piece of law at the nationwide level to protect against genetic discrimination in health insurance 

and employment. GINA is far from perfect, however, as it does not address for instance other 

insurance policies such as life or disability insurance. It is clear that the substantial investment in 

genetic science that we have seen to date needs to be matched by innovation in regulation. (Hudson et 

al., 2008) The regulatory framework in Europe is as much, if not more, complex and challenging. 

(Borry et al., 2012) 

In fact, such regulations would only foster collaboration from the public. Individuals might be 

more willing to participate in medical research that involves genetic testing and participate in projects 

such as the Personal Genome Project (PersonalGenomes.org, 2013) as they would no longer fear 

genetic discrimination. 

Of course, protecting the information once it has been made available is one issue. The debate 

continues on whether genetic testing should be carried out only under the supervision of a medical 

professional trained to interpret genetic test results. France, for instance, does not allow the provision 

of DTC genetic tests, while Belgium does. (Borry et al., 2012) Moreover, how much of the genetic test 

results should be disclosed to the individual? If the test was carried out for one purpose in mind but 

substantial risk was noted for another condition, a so called “incidental finding”, should the individual 

be made aware of it especially if no measures can be taken to prevent it? 

The overall attitude towards genetic testing to optimize therapy decisions is somehow different 

from that to evaluate disease risk. An increasing number of FDA-approved drugs recommend genetic 

testing in their labels while, to date, genetic tests are required for three drugs (Cohen et al., 2013). The 

observed benefits so far of pharmacogenomics studies in patient stratification (for example, breast 

cancer and trastuzumab), in predicting adverse events (for example, HIV/AIDS and abacavir) and in 
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determining optimal dose (for example, blood clotting and warfarin) have perhaps contributed to this 

more positive outlook. However, we must be cautiously optimistic. 

Translating scientific findings into the clinical practice is a slow process. Kitsios and Kent 

(2012) described the process as comprising of the following three clinical translation phases: (1) basic 

biomedical research; (2) clinical research; and (3) clinical application. While warfarin, the most 

popular success case of pharmacogenomic studies, has passed phases (1) and (2), it has had very 

limited impact in phase (3). Despite recommended genetic testing by the FDA, Centers for Medicare 

and Medicaid Services (CMS) has refused to routinely pay for these tests arguing that “the available 

evidence does not demonstrate that pharmacogenomic testing of CYP2C9 or VKORC1 alleles to 

predict warfarin responsiveness improves health outcomes in Medicare beneficiaries.” (Centers for 

Medicare and Medicaid Services, 2013) That is, despite mounting scientific evidence of the benefit of 

incorporating genetic information into warfarin dose prediction, for the purposes of health insurance 

policies this evidence may still fail to be sufficiently convincing. 

Drug therapy remains suboptimal for a significant proportion of individuals (Wolpe, 2009). 

One of the promises of pharamacogenomics is that it will reduce health care costs by optimizing 

treatment options. Many are skeptical. It is true that the cost of genetic testing is quickly reaching 

affordable levels. However, the drug development process was complex, long and expensive even 

prior to the genomics era. Thus, it is not clear that incorporating genetic information into this process 

would make it more efficient. In fact, drugs with pharmacogenomics tests may be even more 

expensive targeting smaller populations and their cost-effectiveness would be far from certain. 

In fact, personalized medicine reflects a fundamental shift in the conceptual basis of drug 

development moving away from blockbuster drugs to targeted therapies. (Olivier et al., 2008) One 

serious repercussion of this is that drug companies would be driven by “profitable genotypes” focusing 

research and development of drugs for the most prevalent genotypes. (Wolpe, 2009) Entire sections of 

a population and/or ethnic and racial groups may be left out in this process. 
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In conclusion, as we continue to improve our understanding of the genetic information we 

carry and develop the necessary technologies and methodologies to analyze it appropriately, we 

believe that it is only a matter of time before the clinical utility of genetic testing in improving the 

effectiveness and efficiency of preventive interventions for many conditions is attained. Nevertheless, 

as has been already suggested, measuring only the clinical utility of genetic testing is somewhat a 

restrictive concept of the overall benefit that it may lead to. (Grosse and Khoury, 2006) Economical, 

ethical, social and legal issues, of which we have only scratched the surface here, need to be 

considered in evaluating the net balance between benefit and harm of genetic testing, whether 

treatment optimization or risk prediction is the goal. 

 



REFERENCES 

147 

REFERENCES 

Abecasis, G. R., D. Altshuler, A. Auton, L. D. Brooks, R. M. Durbin, R. A. Gibbs, M. E. Hurles, G. A. 
McVean, and G. P. Consortium, 2010, A map of human genome variation from population-

scale sequencing: Nature, v. 467, p. 1061-73. 

Abecasis, G. R., A. Auton, L. D. Brooks, M. A. DePristo, R. M. Durbin, R. E. Handsaker, H. M. 
Kang, G. T. Marth, G. A. McVean, and G. P. Consortium, 2012, An integrated map of genetic 

variation from 1,092 human genomes: Nature, v. 491, p. 56-65. 

Abecasis, G. R., L. R. Cardon, and W. O. Cookson, 2000a, A general test of association for 

quantitative traits in nuclear families: Am J Hum Genet, v. 66, p. 279-92. 
Abecasis, G. R., W. O. Cookson, and L. R. Cardon, 2000b, Pedigree tests of transmission 

disequilibrium: Eur J Hum Genet, v. 8, p. 545-51. 

Agresti, A., 2007, An introduction to categorical data analysis, 400 p. 
Ali, R., R. S. Nicholas, and P. A. Muraro, 2013, Drugs in development for relapsing multiple sclerosis: 

Drugs, v. 73, p. 625-50. 

Altshuler, D. M., R. A. Gibbs, L. Peltonen, E. Dermitzakis, S. F. Schaffner, F. Yu, P. E. Bonnen, P. I. 

de Bakker, P. Deloukas, S. B. Gabriel, R. Gwilliam, S. Hunt, M. Inouye, X. Jia, A. Palotie, M. 
Parkin, P. Whittaker, K. Chang, A. Hawes, L. R. Lewis, Y. Ren, D. Wheeler, D. M. Muzny, 

C. Barnes, K. Darvishi, M. Hurles, J. M. Korn, K. Kristiansson, C. Lee, S. A. McCarrol, J. 

Nemesh, A. Keinan, S. B. Montgomery, S. Pollack, A. L. Price, N. Soranzo, C. Gonzaga-
Jauregui, V. Anttila, W. Brodeur, M. J. Daly, S. Leslie, G. McVean, L. Moutsianas, H. 

Nguyen, Q. Zhang, M. J. Ghori, R. McGinnis, W. McLaren, F. Takeuchi, S. R. Grossman, I. 

Shlyakhter, E. B. Hostetter, P. C. Sabeti, C. A. Adebamowo, M. W. Foster, D. R. Gordon, J. 
Licinio, M. C. Manca, P. A. Marshall, I. Matsuda, D. Ngare, V. O. Wang, D. Reddy, C. N. 

Rotimi, C. D. Royal, R. R. Sharp, C. Zeng, L. D. Brooks, J. E. McEwen, and I. H. 

Consortium, 2010, Integrating common and rare genetic variation in diverse human 

populations: Nature, v. 467, p. 52-8. 
Anderson, K. M., P. M. Odell, P. W. Wilson, and W. B. Kannel, 1991, Cardiovascular disease risk 

profiles: Am Heart J, v. 121, p. 293-8. 

Armitage, P., 1955, Tests for linear trends in proportions and frequencies: Biometrics, v. 11, p. 375-
386. 

Ascherio, A., and K. L. Munger, 2007a, Environmental risk factors for multiple sclerosis. Part I: the 

role of infection: Ann Neurol, v. 61, p. 288-99. 

Ascherio, A., and K. L. Munger, 2007b, Environmental risk factors for multiple sclerosis. Part II: 
Noninfectious factors: Ann Neurol, v. 61, p. 504-13. 

Aulchenko, Y. S., D. J. de Koning, and C. Haley, 2007a, Genomewide rapid association using mixed 

model and regression: a fast and simple method for genomewide pedigree-based quantitative 
trait loci association analysis: Genetics, v. 177, p. 577-85. 

Aulchenko, Y. S., S. Ripke, A. Isaacs, and C. M. van Duijn, 2007b, GenABEL: an R library for 

genome-wide association analysis: Bioinformatics, v. 23, p. 1294-6. 
Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene), 2009, Genome-wide 

association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 

20: Nat Genet, v. 41, p. 824-8. 

Baranzini, S. E., J. Wang, R. A. Gibson, N. Galwey, Y. Naegelin, F. Barkhof, E. W. Radue, R. L. 
Lindberg, B. M. Uitdehaag, M. R. Johnson, A. Angelakopoulou, L. Hall, J. C. Richardson, R. 

K. Prinjha, A. Gass, J. J. Geurts, J. Kragt, M. Sombekke, H. Vrenken, P. Qualley, R. R. 

Lincoln, R. Gomez, S. J. Caillier, M. F. George, H. Mousavi, R. Guerrero, D. T. Okuda, B. A. 
Cree, A. J. Green, E. Waubant, D. S. Goodin, D. Pelletier, P. M. Matthews, S. L. Hauser, L. 

Kappos, C. H. Polman, and J. R. Oksenberg, 2009, Genome-wide association analysis of 

susceptibility and clinical phenotype in multiple sclerosis: Hum Mol Genet, v. 18, p. 767-78. 
Barrett, J. C., B. Fry, J. Maller, and M. J. Daly, 2005, Haploview: analysis and visualization of LD and 

haplotype maps: Bioinformatics, v. 21, p. 263-5. 



REFERENCES 

148 

Belgard, T. G., I. Jankovic, J. K. Lowe, and D. H. Geschwind, 2013, Population structure confounds 

autism genetic classifier: Mol Psychiatry. 

Benjamini, Y., and Y. Hochberg, 1995, Controlling the false discovery rate: a practical and powerful 
approach to multiple testing: Journal of the Royal Statistical Society. Series B 

(Methodological), v. 57, p. 289-300. 

Bentley, D. R., S. Balasubramanian, H. P. Swerdlow, G. P. Smith, J. Milton, C. G. Brown, K. P. Hall, 
D. J. Evers, C. L. Barnes, H. R. Bignell, J. M. Boutell, J. Bryant, R. J. Carter, R. Keira 

Cheetham, A. J. Cox, D. J. Ellis, M. R. Flatbush, N. A. Gormley, S. J. Humphray, L. J. Irving, 

M. S. Karbelashvili, S. M. Kirk, H. Li, X. Liu, K. S. Maisinger, L. J. Murray, B. Obradovic, T. 

Ost, M. L. Parkinson, M. R. Pratt, I. M. Rasolonjatovo, M. T. Reed, R. Rigatti, C. Rodighiero, 
M. T. Ross, A. Sabot, S. V. Sankar, A. Scally, G. P. Schroth, M. E. Smith, V. P. Smith, A. 

Spiridou, P. E. Torrance, S. S. Tzonev, E. H. Vermaas, K. Walter, X. Wu, L. Zhang, M. D. 

Alam, C. Anastasi, I. C. Aniebo, D. M. Bailey, I. R. Bancarz, S. Banerjee, S. G. Barbour, P. 
A. Baybayan, V. A. Benoit, K. F. Benson, C. Bevis, P. J. Black, A. Boodhun, J. S. Brennan, J. 

A. Bridgham, R. C. Brown, A. A. Brown, D. H. Buermann, A. A. Bundu, J. C. Burrows, N. P. 

Carter, N. Castillo, M. Chiara E Catenazzi, S. Chang, R. Neil Cooley, N. R. Crake, O. O. 
Dada, K. D. Diakoumakos, B. Dominguez-Fernandez, D. J. Earnshaw, U. C. Egbujor, D. W. 

Elmore, S. S. Etchin, M. R. Ewan, M. Fedurco, L. J. Fraser, K. V. Fuentes Fajardo, W. Scott 

Furey, D. George, K. J. Gietzen, C. P. Goddard, G. S. Golda, P. A. Granieri, D. E. Green, D. 

L. Gustafson, N. F. Hansen, K. Harnish, C. D. Haudenschild, N. I. Heyer, M. M. Hims, J. T. 
Ho, A. M. Horgan, et al., 2008, Accurate whole human genome sequencing using reversible 

terminator chemistry: Nature, v. 456, p. 53-9. 

Binder, H., and M. Schumacher, 2008, Adapting prediction error estimates for biased complexity 
selection in high-dimensional bootstrap samples: Stat Appl Genet Mol Biol, v. 7, p. Article12. 

Biomarkers Definitions Working Group, 2001, Biomarkers and surrogate endpoints: preferred 

definitions and conceptual framework: Clin Pharmacol Ther, v. 69, p. 89-95. 

Boerwinkle, E., and C. F. Sing, 1987, The use of measured genotype information in the analysis of 
quantitative phenotypes in man. III. Simultaneous estimation of the frequencies and effects of 

the apolipoprotein E polymorphism and residual polygenetic effects on cholesterol, 

betalipoprotein and triglyceride levels: Ann Hum Genet, v. 51, p. 211-26. 
Bohossian, N., M. Saad, A. Legarra, and M. Martinez, 2013, Single-marker and multi-marker mixed 

models for polygenic score analysis in family-based data, BMC Proceedings. To appear. 

Borry, P., R. E. van Hellemondt, D. Sprumont, C. F. Jales, E. Rial-Sebbag, T. M. Spranger, L. Curren, 
J. Kaye, H. Nys, and H. Howard, 2012, Legislation on direct-to-consumer genetic testing in 

seven European countries: Eur J Hum Genet, v. 20, p. 715-21. 

Bush, W. S., S. J. Sawcer, P. L. de Jager, J. R. Oksenberg, J. L. McCauley, M. A. Pericak-Vance, J. L. 

Haines, and I. M. S. G. C. (IMSGC), 2010, Evidence for polygenic susceptibility to multiple 
sclerosis--the shape of things to come: Am J Hum Genet, v. 86, p. 621-5. 

Byun, E., S. J. Caillier, X. Montalban, P. Villoslada, O. Fernández, D. Brassat, M. Comabella, J. 

Wang, L. F. Barcellos, S. E. Baranzini, and J. R. Oksenberg, 2008, Genome-wide 
pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis: 

Arch Neurol, v. 65, p. 337-44. 

Centers for Medicare and Medicaid Services, 2013, Pharmacogenomic testing to predict warfarin 
responsiveness. 

Charcot, J.-M., 1868, Histologie de la sclérose en plaques., Gazette Hôpitaux, p. 554, 557–558, 566. 

Chen, R., G. I. Mias, J. Li-Pook-Than, L. Jiang, H. Y. Lam, E. Miriami, K. J. Karczewski, M. 

Hariharan, F. E. Dewey, Y. Cheng, M. J. Clark, H. Im, L. Habegger, S. Balasubramanian, M. 
O'Huallachain, J. T. Dudley, S. Hillenmeyer, R. Haraksingh, D. Sharon, G. Euskirchen, P. 

Lacroute, K. Bettinger, A. P. Boyle, M. Kasowski, F. Grubert, S. Seki, M. Garcia, M. Whirl-

Carrillo, M. Gallardo, M. A. Blasco, P. L. Greenberg, P. Snyder, T. E. Klein, R. B. Altman, A. 
J. Butte, E. A. Ashley, M. Gerstein, K. C. Nadeau, H. Tang, and M. Snyder, 2012, Personal 

omics profiling reveals dynamic molecular and medical phenotypes: Cell, v. 148, p. 1293-307. 

Chen, S., and G. Parmigiani, 2007, Meta-analysis of BRCA1 and BRCA2 penetrance: J Clin Oncol, v. 

25, p. 1329-33. 



REFERENCES 

149 

Cirulli, E. T., and D. B. Goldstein, 2010, Uncovering the roles of rare variants in common disease 

through whole-genome sequencing: Nat Rev Genet, v. 11, p. 415-25. 

Clamp, M., B. Fry, M. Kamal, X. Xie, J. Cuff, M. F. Lin, M. Kellis, K. Lindblad-Toh, and E. S. 
Lander, 2007, Distinguishing protein-coding and noncoding genes in the human genome: Proc 

Natl Acad Sci U S A, v. 104, p. 19428-33. 

Cochran, W. G., 1954, Some methods for strengthening the common chi-squared tests: Biometrics, v. 
10, p. 417-451. 

Cohen, J., A. Wilson, and K. Manzolillo, 2013, Clinical and economic challenges facing 

pharmacogenomics: Pharmacogenomics J, v. 13, p. 378-88. 

Comabella, M., D. W. Craig, M. Camiña-Tato, C. Morcillo, C. Lopez, A. Navarro, J. Rio, X. 
Montalban, R. Martin, and B. S. Group, 2008, Identification of a novel risk locus for multiple 

sclerosis at 13q31.3 by a pooled genome-wide scan of 500,000 single nucleotide 

polymorphisms: PLoS One, v. 3, p. e3490. 
Comabella, M., D. W. Craig, C. Morcillo-Suárez, J. Río, A. Navarro, M. Fernández, R. Martin, and X. 

Montalban, 2009, Genome-wide scan of 500,000 single-nucleotide polymorphisms among 

responders and nonresponders to interferon beta therapy in multiple sclerosis: Arch Neurol, v. 
66, p. 972-8. 

Contasta, I., R. Totaro, P. Pellegrini, T. Del Beato, A. Carolei, and A. M. Berghella, 2012, A gender-

related action of IFNbeta-therapy was found in multiple sclerosis: J Transl Med, v. 10, p. 223. 

Cook, N. R., 2007, Use and misuse of the receiver operating characteristic curve in risk prediction: 
Circulation, v. 115, p. 928-35. 

Cotte, S., N. von Ahsen, N. Kruse, B. Huber, A. Winkelmann, U. K. Zettl, M. Starck, N. König, N. 

Tellez, J. Dörr, F. Paul, F. Zipp, F. Lühder, H. Koepsell, H. Pannek, X. Montalban, R. Gold, 
and A. Chan, 2009, ABC-transporter gene-polymorphisms are potential pharmacogenetic 

markers for mitoxantrone response in multiple sclerosis: Brain, v. 132, p. 2517-30. 

Couturier, N., 2010, Pharmacogenetics of MS: Response to Tysabri Treatment. 

Couturier, N., F. Bucciarelli, R. N. Nurtdinov, M. Debouverie, C. Lebrun-Frenay, G. Defer, T. 
Moreau, C. Confavreux, S. Vukusic, I. Cournu-Rebeix, R. H. Goertsches, U. K. Zettl, M. 

Comabella, X. Montalban, P. Rieckmann, F. Weber, B. Müller-Myhsok, G. Edan, B. Fontaine, 

L. T. Mars, A. Saoudi, J. R. Oksenberg, M. Clanet, R. S. Liblau, and D. Brassat, 2011, 
Tyrosine kinase 2 variant influences T lymphocyte polarization and multiple sclerosis 

susceptibility: Brain, v. 134, p. 693-703. 

Crick, F. H., 1956, Ideas on Protein Synthesis. 
Crick, F. H., 1958, On protein synthesis: Symp Soc Exp Biol, v. 12, p. 138-63. 

Crick, F. H., 1990, What Mad Pursuit: A Personal View of Scientific Discovery, Basic Books. 

Cunningham, S., C. Graham, M. Hutchinson, A. Droogan, K. O'Rourke, C. Patterson, G. McDonnell, 

S. Hawkins, and K. Vandenbroeck, 2005, Pharmacogenomics of responsiveness to interferon 
IFN-beta treatment in multiple sclerosis: a genetic screen of 100 type I interferon-inducible 

genes: Clin Pharmacol Ther, v. 78, p. 635-46. 

Cénit, M. D., F. Blanco-Kelly, V. de las Heras, M. Bartolomé, E. G. de la Concha, E. Urcelay, R. 
Arroyo, and A. Martínez, 2009, Glypican 5 is an interferon-beta response gene: a replication 

study: Mult Scler, v. 15, p. 913-7. 

Daetwyler, H. D., B. Villanueva, and J. A. Woolliams, 2008, Accuracy of predicting the genetic risk 
of disease using a genome-wide approach: PLoS One, v. 3, p. e3395. 

De Jager, P. L., L. B. Chibnik, J. Cui, J. Reischl, S. Lehr, K. C. Simon, C. Aubin, D. Bauer, J. F. 

Heubach, R. Sandbrink, M. Tyblova, P. Lelkova, E. Havrdova, C. Pohl, D. Horakova, A. 

Ascherio, D. A. Hafler, E. W. Karlson, S. c. o. t. B. study, S. c. o. t. B. study, S. c. o. t. L. 
study, and S. c. o. t. C. study, 2009, Integration of genetic risk factors into a clinical algorithm 

for multiple sclerosis susceptibility: a weighted genetic risk score: Lancet Neurol, v. 8, p. 

1111-9. 
de los Campos, G., D. Gianola, and D. B. Allison, 2010, Predicting genetic predisposition in humans: 

the promise of whole-genome markers: Nat Rev Genet, v. 11, p. 880-6. 

Dempster, E. R., and I. M. Lerner, 1950, Heritability of Threshold Characters: Genetics, v. 35, p. 212-

36. 



REFERENCES 

150 

Do, C. B., D. A. Hinds, U. Francke, and N. Eriksson, 2012, Comparison of family history and SNPs 

for predicting risk of complex disease: PLoS Genet, v. 8, p. e1002973. 

Donald, A., and T. Greenhalgh, 2000, A hands-on guide to evidence based healthcare: practice and 
implementation: Oxford, Blackwell Science. 

Dudbridge, F., 2013, Power and predictive accuracy of polygenic risk scores: PLoS Genet, v. 9, p. 

e1003348. 
Efron, B., 1983, Estimating the error rate of a prediction rule: improvement on cross-validation: 

Journal of the American Statistical Association, v. 78, p. 316-331. 

Efron, B., and R. Tibshirani, 1997, Improvements on cross-validation: the .632+ bootstrap method: 

Journal of the American Statistical Association, v. 92, p. 548-560. 
Ehret, G. B., P. B. Munroe, K. M. Rice, M. Bochud, A. D. Johnson, D. I. Chasman, A. V. Smith, M. 

D. Tobin, G. C. Verwoert, S. J. Hwang, V. Pihur, P. Vollenweider, P. F. O'Reilly, N. Amin, J. 

L. Bragg-Gresham, A. Teumer, N. L. Glazer, L. Launer, J. H. Zhao, Y. Aulchenko, S. Heath, 
S. Sõber, A. Parsa, J. Luan, P. Arora, A. Dehghan, F. Zhang, G. Lucas, A. A. Hicks, A. U. 

Jackson, J. F. Peden, T. Tanaka, S. H. Wild, I. Rudan, W. Igl, Y. Milaneschi, A. N. Parker, C. 

Fava, J. C. Chambers, E. R. Fox, M. Kumari, M. J. Go, P. van der Harst, W. H. Kao, M. 
Sjögren, D. G. Vinay, M. Alexander, Y. Tabara, S. Shaw-Hawkins, P. H. Whincup, Y. Liu, G. 

Shi, J. Kuusisto, B. Tayo, M. Seielstad, X. Sim, K. D. Nguyen, T. Lehtimäki, G. Matullo, Y. 

Wu, T. R. Gaunt, N. C. Onland-Moret, M. N. Cooper, C. G. Platou, E. Org, R. Hardy, S. 

Dahgam, J. Palmen, V. Vitart, P. S. Braund, T. Kuznetsova, C. S. Uiterwaal, A. Adeyemo, W. 
Palmas, H. Campbell, B. Ludwig, M. Tomaszewski, I. Tzoulaki, N. D. Palmer, T. Aspelund, 

M. Garcia, Y. P. Chang, J. R. O'Connell, N. I. Steinle, D. E. Grobbee, D. E. Arking, S. L. 

Kardia, A. C. Morrison, D. Hernandez, S. Najjar, W. L. McArdle, D. Hadley, M. J. Brown, J. 
M. Connell, A. D. Hingorani, I. N. Day, D. A. Lawlor, J. P. Beilby, R. W. Lawrence, R. 

Clarke, et al., 2011, Genetic variants in novel pathways influence blood pressure and 

cardiovascular disease risk: Nature, v. 478, p. 103-9. 

Elton, C., 2009, The burden of knowing, Boston Magazine. 
FDA, 2008, E15 Definitions for Genomic Biomarkers, Pharmacogenomics, Pharmacogenetics, 

Genomic Data and Sample Coding Categories: Guidance for Industry. 

FDA, 2013, Table of Pharmacogenomic Biomarkers in Drug Labels. 
Fernández, O., V. Fernández, C. Mayorga, M. Guerrero, A. León, J. A. Tamayo, A. Alonso, F. 

Romero, L. Leyva, G. Luque, and E. de Ramón, 2005, HLA class II and response to 

interferon-beta in multiple sclerosis: Acta Neurol Scand, v. 112, p. 391-4. 
Fox, R. J., F. Bethoux, M. D. Goldman, and J. A. Cohen, 2006, Multiple sclerosis: advances in 

understanding, diagnosing, and treating the underlying disease: Cleve Clin J Med, v. 73, p. 91-

102. 

Fox, R. J., and J. A. Cohen, 2001, Multiple sclerosis: the importance of early recognition and 
treatment: Cleve Clin J Med, v. 68, p. 157-71. 

Frazer, K. A., D. G. Ballinger, D. R. Cox, D. A. Hinds, L. L. Stuve, R. A. Gibbs, J. W. Belmont, A. 

Boudreau, P. Hardenbol, S. M. Leal, S. Pasternak, D. A. Wheeler, T. D. Willis, F. Yu, H. 
Yang, C. Zeng, Y. Gao, H. Hu, W. Hu, C. Li, W. Lin, S. Liu, H. Pan, X. Tang, J. Wang, W. 

Wang, J. Yu, B. Zhang, Q. Zhang, H. Zhao, J. Zhou, S. B. Gabriel, R. Barry, B. Blumenstiel, 

A. Camargo, M. Defelice, M. Faggart, M. Goyette, S. Gupta, J. Moore, H. Nguyen, R. C. 
Onofrio, M. Parkin, J. Roy, E. Stahl, E. Winchester, L. Ziaugra, D. Altshuler, Y. Shen, Z. 

Yao, W. Huang, X. Chu, Y. He, L. Jin, Y. Liu, W. Sun, H. Wang, Y. Wang, X. Xiong, L. Xu, 

M. M. Waye, S. K. Tsui, H. Xue, J. T. Wong, L. M. Galver, J. B. Fan, K. Gunderson, S. S. 

Murray, A. R. Oliphant, M. S. Chee, A. Montpetit, F. Chagnon, V. Ferretti, M. Leboeuf, J. F. 
Olivier, M. S. Phillips, S. Roumy, C. Sallée, A. Verner, T. J. Hudson, P. Y. Kwok, D. Cai, D. 

C. Koboldt, R. D. Miller, L. Pawlikowska, P. Taillon-Miller, M. Xiao, L. C. Tsui, W. Mak, Y. 

Q. Song, P. K. Tam, Y. Nakamura, T. Kawaguchi, T. Kitamoto, T. Morizono, A. Nagashima, 
Y. Ohnishi, A. Sekine, T. Tanaka, T. Tsunoda, et al., 2007, A second generation human 

haplotype map of over 3.1 million SNPs: Nature, v. 449, p. 851-61. 

Frazer, K. A., S. S. Murray, N. J. Schork, and E. J. Topol, 2009, Human genetic variation and its 

contribution to complex traits: Nat Rev Genet, v. 10, p. 241-51. 



REFERENCES 

151 

Fromont, A., C. Binquet, E. A. Sauleau, I. Fournel, A. Bellisario, J. Adnet, A. Weill, S. Vukusic, C. 

Confavreux, M. Debouverie, L. Clerc, C. Bonithon-Kopp, and T. Moreau, 2010, Geographic 

variations of multiple sclerosis in France: Brain, v. 133, p. 1889-99. 
Fusco, C., V. Andreone, G. Coppola, V. Luongo, F. Guerini, E. Pace, C. Florio, G. Pirozzi, R. 

Lanzillo, P. Ferrante, P. Vivo, M. Mini, M. Macrì, G. Orefice, and M. L. Lombardi, 2001, 

HLA-DRB1*1501 and response to copolymer-1 therapy in relapsing-remitting multiple 
sclerosis: Neurology, v. 57, p. 1976-9. 

Gail, M. H., and R. M. Pfeiffer, 2005, On criteria for evaluating models of absolute risk: Biostatistics, 

v. 6, p. 227-39. 

Gauderman, J., and J. Morrison, 2009, Quanto: A computer program for power and sample size 
calculations for genetic-epidemiology studies. 

Geisser, S., 1975, The predictive sample reuse method with applications: Journal of the American 

Statistical Association, v. 70, p. 320-328. 
GeneticsSuite, 2013, Recombination: Creating variation in gametes. 

Gianola, D., G. de los Campos, W. G. Hill, E. Manfredi, and R. Fernando, 2009, Additive genetic 

variability and the Bayesian alphabet: Genetics, v. 183, p. 347-63. 
Goddard, M., 2009, Genomic selection: prediction of accuracy and maximisation of long term 

response: Genetica, v. 136, p. 245-57. 

Goldenberg, M. M., 2012, Multiple sclerosis review: P T, v. 37, p. 175-84. 

González, J. R., L. Armengol, X. Solé, E. Guinó, J. M. Mercader, X. Estivill, and V. Moreno, 2007, 
SNPassoc: an R package to perform whole genome association studies: Bioinformatics, v. 23, 

p. 644-5. 

Gordon, D., S. J. Finch, M. Nothnagel, and J. Ott, 2002, Power and sample size calculations for case-
control genetic association tests when errors are present: application to single nucleotide 

polymorphisms: Hum Hered, v. 54, p. 22-33. 

Gourraud, P. A., M. Sdika, P. Khankhanian, R. G. Henry, A. Beheshtian, P. M. Matthews, S. L. 

Hauser, J. R. Oksenberg, D. Pelletier, and S. E. Baranzini, 2013, A genome-wide association 
study of brain lesion distribution in multiple sclerosis: Brain, v. 136, p. 1012-24. 

Grosse, S. D., and M. J. Khoury, 2006, What is the clinical utility of genetic testing?: Genet Med, v. 8, 

p. 448-50. 
Grossman, I., N. Avidan, C. Singer, D. Goldstaub, L. Hayardeny, E. Eyal, E. Ben-Asher, T. Paperna, I. 

Pe'er, D. Lancet, J. S. Beckmann, and A. Miller, 2007, Pharmacogenetics of glatiramer acetate 

therapy for multiple sclerosis reveals drug-response markers: Pharmacogenet Genomics, v. 17, 
p. 657-66. 

Guedj, M., G. Nuel, and B. Prum, 2008, A note on allelic tests in case-control association studies: Ann 

Hum Genet, v. 72, p. 407-9. 

Habier, D., R. L. Fernando, K. Kizilkaya, and D. J. Garrick, 2011, Extension of the bayesian alphabet 
for genomic selection: BMC Bioinformatics, v. 12, p. 186. 

Hafler, D. A., A. Compston, S. Sawcer, E. S. Lander, M. J. Daly, P. L. De Jager, P. I. de Bakker, S. B. 

Gabriel, D. B. Mirel, A. J. Ivinson, M. A. Pericak-Vance, S. G. Gregory, J. D. Rioux, J. L. 
McCauley, J. L. Haines, L. F. Barcellos, B. Cree, J. R. Oksenberg, S. L. Hauser, and I. M. S. 

G. Consortium, 2007, Risk alleles for multiple sclerosis identified by a genomewide study: N 

Engl J Med, v. 357, p. 851-62. 
Hardy, G. H., 1908, MENDELIAN PROPORTIONS IN A MIXED POPULATION: Science, v. 28, p. 

49-50. 

Hastings, A., 2001, Hardy–Weinberg Theorem, Encyclopedia of Life Sciences, Macmillan Publishers 

Ltd, Nature Publishing Group. 
Hawkes, C. H., and A. J. Macgregor, 2009, Twin studies and the heritability of MS: a conclusion: 

Mult Scler, v. 15, p. 661-7. 

Hemminki, K., X. Li, J. Sundquist, J. Hillert, and K. Sundquist, 2009, Risk for multiple sclerosis in 
relatives and spouses of patients diagnosed with autoimmune and related conditions: 

Neurogenetics, v. 10, p. 5-11. 

Henderson, C. R., 1975, Best linear unbiased estimation and prediction under a selection model: 

Biometrics, v. 31, p. 423-447. 



REFERENCES 

152 

Hindorff, L. A., P. Sethupathy, H. A. Junkins, E. M. Ramos, J. P. Mehta, F. S. Collins, and T. A. 

Manolio, 2009, Potential etiologic and functional implications of genome-wide association 

loci for human diseases and traits: Proc Natl Acad Sci U S A, v. 106, p. 9362-7. 
Hirschhorn, J. N., and M. J. Daly, 2005, Genome-wide association studies for common diseases and 

complex traits: Nat Rev Genet, v. 6, p. 95-108. 

Hudson, K. L., M. K. Holohan, and F. S. Collins, 2008, Keeping pace with the times--the Genetic 
Information Nondiscrimination Act of 2008: N Engl J Med, v. 358, p. 2661-3. 

Huynh, T., 2010, The multiple sclerosis market: Nat Rev Drug Discov, v. 9, p. 759-60. 

International HapMap Consortium, 2003, The International HapMap Project: Nature, v. 426, p. 789-

96. 
International HapMap Consortium, 2005, A haplotype map of the human genome: Nature, v. 437, p. 

1299-320. 

International Human Genome Sequencing Consortium, 2004, Finishing the euchromatic sequence of 
the human genome: Nature, v. 431, p. 931-45. 

International Multiple Sclerosis Genetics Consortium, 2011, Genome-wide association study of 

severity in multiple sclerosis: Genes Immun, v. 12, p. 615-25. 
Jafari, N., L. Broer, C. M. van Duijn, A. C. Janssens, and R. Q. Hintzen, 2011, Perspectives on the use 

of multiple sclerosis risk genes for prediction: PLoS One, v. 6, p. e26493. 

Jakkula, E., V. Leppä, A. M. Sulonen, T. Varilo, S. Kallio, A. Kemppinen, S. Purcell, K. Koivisto, P. 

Tienari, M. L. Sumelahti, I. Elovaara, T. Pirttilä, M. Reunanen, A. Aromaa, A. B. Oturai, H. 
B. Søndergaard, H. F. Harbo, I. L. Mero, S. B. Gabriel, D. B. Mirel, S. L. Hauser, L. Kappos, 

C. Polman, P. L. De Jager, D. A. Hafler, M. J. Daly, A. Palotie, J. Saarela, and L. Peltonen, 

2010, Genome-wide association study in a high-risk isolate for multiple sclerosis reveals 
associated variants in STAT3 gene: Am J Hum Genet, v. 86, p. 285-91. 

Kitsios, G. D., and D. M. Kent, 2012, Personalised medicine: not just in our genes: BMJ, v. 344, p. 

e2161. 

Klein, R. J., C. Zeiss, E. Y. Chew, J. Y. Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J. P. 
SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C. Barnstable, and 

J. Hoh, 2005, Complement factor H polymorphism in age-related macular degeneration: 

Science, v. 308, p. 385-9. 
Klein, T. E., R. B. Altman, N. Eriksson, B. F. Gage, S. E. Kimmel, M. T. Lee, N. A. Limdi, D. Page, 

D. M. Roden, M. J. Wagner, M. D. Caldwell, J. A. Johnson, and I. W. P. Consortium, 2009, 

Estimation of the warfarin dose with clinical and pharmacogenetic data: N Engl J Med, v. 360, 
p. 753-64. 

Kleinewietfeld, M., A. Manzel, J. Titze, H. Kvakan, N. Yosef, R. A. Linker, D. N. Muller, and D. A. 

Hafler, 2013, Sodium chloride drives autoimmune disease by the induction of pathogenic 

TH17 cells: Nature, v. 496, p. 518-22. 
Kohavi, R., 1995, A study of cross-validation and bootstrap for accuracy estimation and model 

selection: 14th International Joint Conference on Artificial Intelligence, p. 1137-1143. 

Kumar, D., 2007, From evidence-based medicine to genomic medicine: Genomic Med, v. 1, p. 95-
104. 

Kurtzke, J. F., 1983, Rating neurologic impairment in multiple sclerosis: an expanded disability status 

scale (EDSS): Neurology, v. 33, p. 1444-52. 
Kurtzke, J. F., 2000, Multiple sclerosis in time and space--geographic clues to cause: J Neurovirol, v. 

6 Suppl 2, p. S134-40. 

Lander, E. S., L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. 

Doyle, W. FitzHugh, R. Funke, D. Gage, K. Harris, A. Heaford, J. Howland, L. Kann, J. 
Lehoczky, R. LeVine, P. McEwan, K. McKernan, J. Meldrim, J. P. Mesirov, C. Miranda, W. 

Morris, J. Naylor, C. Raymond, M. Rosetti, R. Santos, A. Sheridan, C. Sougnez, N. Stange-

Thomann, N. Stojanovic, A. Subramanian, D. Wyman, J. Rogers, J. Sulston, R. Ainscough, S. 
Beck, D. Bentley, J. Burton, C. Clee, N. Carter, A. Coulson, R. Deadman, P. Deloukas, A. 

Dunham, I. Dunham, R. Durbin, L. French, D. Grafham, S. Gregory, T. Hubbard, S. 

Humphray, A. Hunt, M. Jones, C. Lloyd, A. McMurray, L. Matthews, S. Mercer, S. Milne, J. 

C. Mullikin, A. Mungall, R. Plumb, M. Ross, R. Shownkeen, S. Sims, R. H. Waterston, R. K. 
Wilson, L. W. Hillier, J. D. McPherson, M. A. Marra, E. R. Mardis, L. A. Fulton, A. T. 



REFERENCES 

153 

Chinwalla, K. H. Pepin, W. R. Gish, S. L. Chissoe, M. C. Wendl, K. D. Delehaunty, T. L. 

Miner, A. Delehaunty, J. B. Kramer, L. L. Cook, R. S. Fulton, D. L. Johnson, P. J. Minx, S. 

W. Clifton, T. Hawkins, E. Branscomb, P. Predki, P. Richardson, S. Wenning, T. Slezak, N. 
Doggett, J. F. Cheng, A. Olsen, S. Lucas, C. Elkin, E. Uberbacher, M. Frazier, et al., 2001, 

Initial sequencing and analysis of the human genome: Nature, v. 409, p. 860-921. 

Lee, S. J., 2012, Clinical Application of CYP2C19 Pharmacogenetics Toward More Personalized 
Medicine: Front Genet, v. 3, p. 318. 

Legarra, A., A. Ricard, and O. Filangi, 2011, GS3: Genomic Selection - Gibbs Sampling - Gauss 

Seidel (and Bayes Cpi). 

Lessard, C. J., J. A. Ice, I. Adrianto, G. B. Wiley, J. A. Kelly, P. M. Gaffney, C. G. Montgomery, and 
K. L. Moser, 2012, The genomics of autoimmune disease in the era of genome-wide 

association studies and beyond: Autoimmun Rev, v. 11, p. 267-75. 

Levy, S., G. Sutton, P. C. Ng, L. Feuk, A. L. Halpern, B. P. Walenz, N. Axelrod, J. Huang, E. F. 
Kirkness, G. Denisov, Y. Lin, J. R. MacDonald, A. W. Pang, M. Shago, T. B. Stockwell, A. 

Tsiamouri, V. Bafna, V. Bansal, S. A. Kravitz, D. A. Busam, K. Y. Beeson, T. C. McIntosh, 

K. A. Remington, J. F. Abril, J. Gill, J. Borman, Y. H. Rogers, M. E. Frazier, S. W. Scherer, 
R. L. Strausberg, and J. C. Venter, 2007, The diploid genome sequence of an individual 

human: PLoS Biol, v. 5, p. e254. 

Lewontin, R. C., 1964, The Interaction of Selection and Linkage. I. General Considerations; Heterotic 

Models: Genetics, v. 49, p. 49-67. 
Lewontin, R. C., and K.-i. Kojima, 1960, The Evolutionary Dynamics of Complex Polymorphisms: 

Evolution, v. 14, p. 458-472. 

Leyva, L., O. Fernández, M. Fedetz, E. Blanco, V. E. Fernández, B. Oliver, A. León, M. J. Pinto-
Medel, C. Mayorga, M. Guerrero, G. Luque, A. Alcina, and F. Matesanz, 2005, IFNAR1 and 

IFNAR2 polymorphisms confer susceptibility to multiple sclerosis but not to interferon-beta 

treatment response: J Neuroimmunol, v. 163, p. 165-71. 

Li, M., C. Li, and W. Guan, 2008, Evaluation of coverage variation of SNP chips for genome-wide 
association studies: Eur J Hum Genet, v. 16, p. 635-43. 

London School of Hygiene and Tropical Medicine, 2013, Basic Epidemiology module: Study Design 

Types. 
Lopez-Diego, R. S., and H. L. Weiner, 2008, Novel therapeutic strategies for multiple sclerosis--a 

multifaceted adversary: Nat Rev Drug Discov, v. 7, p. 909-25. 

López-Gómez, C., A. Pino-Ángeles, T. Órpez-Zafra, M. J. Pinto-Medel, B. Oliver-Martos, J. Ortega-
Pinazo, C. Arnáiz, C. Guijarro-Castro, J. Varadé, R. Álvarez-Lafuente, E. Urcelay, F. 

Sánchez-Jiménez, Ó. Fernández, and L. Leyva, 2013, Candidate gene study of TRAIL and 

TRAIL receptors: association with response to interferon beta therapy in multiple sclerosis 

patients: PLoS One, v. 8, p. e62540. 
Maher, B., 2008, Personal genomes: The case of the missing heritability: Nature, v. 456, p. 18-21. 

Malhotra, S., C. Morcillo-Suárez, D. Brassat, R. Goertsches, J. Lechner-Scott, E. Urcelay, O. 

Fernández, J. Drulovic, A. García-Merino, F. Martinelli Boneschi, A. Chan, K. Vandenbroeck, 
A. Navarro, M. F. Bustamante, J. Río, D. A. Akkad, G. Giacalone, A. J. Sánchez, L. Leyva, R. 

Alvarez-Lafuente, U. K. Zettl, J. Oksenberg, X. Montalban, and M. Comabella, 2011, IL28B 

polymorphisms are not associated with the response to interferon-β in multiple sclerosis: J 
Neuroimmunol, v. 239, p. 101-4. 

Manolio, T. A., 2013, Bringing genome-wide association findings into clinical use: Nat Rev Genet, v. 

14, p. 549-58. 

Martínez, A., V. de las Heras, A. Mas Fontao, M. Bartolomé, E. G. de la Concha, E. Urcelay, and R. 
Arroyo, 2006, An IFNG polymorphism is associated with interferon-beta response in Spanish 

MS patients: J Neuroimmunol, v. 173, p. 196-9. 

Matesanz, F., A. González-Pérez, M. Lucas, S. Sanna, J. Gayán, E. Urcelay, I. Zara, M. Pitzalis, M. L. 
Cavanillas, R. Arroyo, M. Zoledziewska, M. Marrosu, O. Fernández, L. Leyva, A. Alcina, M. 

Fedetz, C. Moreno-Rey, J. Velasco, L. M. Real, J. L. Ruiz-Peña, F. Cucca, A. Ruiz, and G. 

Izquierdo, 2012, Genome-wide association study of multiple sclerosis confirms a novel locus 

at 5p13.1: PLoS One, v. 7, p. e36140. 
Mayo Clinic staff, 2011, How genetic disorders are inherited. 



REFERENCES 

154 

McDonald, W. I., A. Compston, G. Edan, D. Goodkin, H. P. Hartung, F. D. Lublin, H. F. McFarland, 

D. W. Paty, C. H. Polman, S. C. Reingold, M. Sandberg-Wollheim, W. Sibley, A. Thompson, 

S. van den Noort, B. Y. Weinshenker, and J. S. Wolinsky, 2001, Recommended diagnostic 
criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of 

multiple sclerosis: Ann Neurol, v. 50, p. 121-7. 

Meuwissen, T. H., 2009, Accuracy of breeding values of 'unrelated' individuals predicted by dense 
SNP genotyping: Genet Sel Evol, v. 41, p. 35. 

Meuwissen, T. H., B. J. Hayes, and M. E. Goddard, 2001, Prediction of total genetic value using 

genome-wide dense marker maps: Genetics, v. 157, p. 1819-29. 

Montgomery, D. B., and D. G. Morrison, 1973, A note on adjusting R-squared: The Journal of 
Finance, v. 28, p. 1009-1013. 

MS Society of Western Australia, 2013, Types of MS. 

National Heart Lung and Blood Institute, 2013, Risk assessment tool for estimating your 10-year risk 
of having a heart attack. 

Nischwitz, S., S. Cepok, A. Kroner, C. Wolf, M. Knop, F. Müller-Sarnowski, H. Pfister, D. Roeske, P. 

Rieckmann, B. Hemmer, M. Ising, M. Uhr, T. Bettecken, F. Holsboer, B. Müller-Myhsok, and 
F. Weber, 2010, Evidence for VAV2 and ZNF433 as susceptibility genes for multiple 

sclerosis: J Neuroimmunol, v. 227, p. 162-6. 

Novartis, 2007, Tegretol: prescribing information. 

O'Brien, M., R. Lonergan, L. Costelloe, K. O'Rourke, J. M. Fletcher, K. Kinsella, C. Sweeney, G. 
Antonelli, K. H. Mills, C. O'Farrelly, M. Hutchinson, and N. Tubridy, 2010, OAS1: a multiple 

sclerosis susceptibility gene that influences disease severity: Neurology, v. 75, p. 411-8. 

Olivier, C., B. Williams-Jones, B. Godard, B. Mikalson, and V. Ozdemir, 2008, Personalized 
medicine, bioethics and social responsibilities: re-thinking the pharmaceutical industry to 

remedy inequities in patient care and international health: Current Pharmacogenomics and 

Personalized Medicine, v. 6, p. 108-120. 

Outteryck, O., J. C. Ongagna, B. Brochet, L. Rumbach, C. Lebrun-Frenay, M. Debouverie, H. Zéphir, 
J. C. Ouallet, E. Berger, M. Cohen, S. Pittion, D. Laplaud, S. Wiertlewski, P. Cabre, J. 

Pelletier, A. Rico, G. Defer, N. Derache, W. Camu, E. Thouvenot, T. Moreau, A. Fromont, A. 

Tourbah, P. Labauge, G. Castelnovo, P. Clavelou, O. Casez, P. Hautecoeur, C. Papeix, C. 
Lubetzki, B. Fontaine, N. Couturier, N. Bohossian, M. Clanet, P. Vermersch, J. de Sèze, D. 

Brassat, and a. C. BIONAT network, 2013, A prospective observational post-marketing study 

of natalizumab-treated multiple sclerosis patients: clinical, radiological and biological features 
and adverse events. The BIONAT cohort: Eur J Neurol. 

Pappas, D. J., and J. R. Oksenberg, 2010, Multiple sclerosis pharmacogenomics: maximizing efficacy 

of therapy: Neurology, v. 74 Suppl 1, p. S62-9. 

Pennisi, E., 2003, Bioinformatics. Gene counters struggle to get the right answer: Science, v. 301, p. 
1040-1. 

Pepe, M. S., H. Janes, and J. W. Gu, 2007, Letter by Pepe et al regarding article, "Use and misuse of 

the receiver operating characteristic curve in risk prediction": Circulation, v. 116, p. e132; 
author reply e134. 

Pepe, M. S., H. Janes, G. Longton, W. Leisenring, and P. Newcomb, 2004, Limitations of the odds 

ratio in gauging the performance of a diagnostic, prognostic, or screening marker: Am J 
Epidemiol, v. 159, p. 882-90. 

PersonalGenomes.org, 2013, The Personal Genome Project. 

Polman, C. H., S. C. Reingold, B. Banwell, M. Clanet, J. A. Cohen, M. Filippi, K. Fujihara, E. 

Havrdova, M. Hutchinson, L. Kappos, F. D. Lublin, X. Montalban, P. O'Connor, M. 
Sandberg-Wollheim, A. J. Thompson, E. Waubant, B. Weinshenker, and J. S. Wolinsky, 2011, 

Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria: Ann 

Neurol, v. 69, p. 292-302. 
Polman, C. H., S. C. Reingold, G. Edan, M. Filippi, H. P. Hartung, L. Kappos, F. D. Lublin, L. M. 

Metz, H. F. McFarland, P. W. O'Connor, M. Sandberg-Wollheim, A. J. Thompson, B. G. 

Weinshenker, and J. S. Wolinsky, 2005, Diagnostic criteria for multiple sclerosis: 2005 

revisions to the "McDonald Criteria": Ann Neurol, v. 58, p. 840-6. 



REFERENCES 

155 

Pritchard, J. K., and M. Przeworski, 2001, Linkage disequilibrium in humans: models and data: Am J 

Hum Genet, v. 69, p. 1-14. 

Pruim, R. J., R. P. Welch, S. Sanna, T. M. Teslovich, P. S. Chines, T. P. Gliedt, M. Boehnke, G. R. 
Abecasis, and C. J. Willer, 2010, LocusZoom: regional visualization of genome-wide 

association scan results: Bioinformatics, v. 26, p. 2336-7. 

Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. 
de Bakker, M. J. Daly, and P. C. Sham, 2007, PLINK: a tool set for whole-genome association 

and population-based linkage analyses: Am J Hum Genet, v. 81, p. 559-75. 

Purcell, S. M., N. R. Wray, J. L. Stone, P. M. Visscher, M. C. O'Donovan, P. F. Sullivan, P. Sklar, and 

I. S. Consortium, 2009, Common polygenic variation contributes to risk of schizophrenia and 
bipolar disorder: Nature, v. 460, p. 748-52. 

R Core Team, 2013, R: A language and environment for statistical computing. 

Ramirez, A. H., Y. Shi, J. S. Schildcrout, J. T. Delaney, H. Xu, M. T. Oetjens, R. L. Zuvich, M. A. 
Basford, E. Bowton, M. Jiang, P. Speltz, R. Zink, J. Cowan, J. M. Pulley, M. D. Ritchie, D. R. 

Masys, D. M. Roden, D. C. Crawford, and J. C. Denny, 2012, Predicting warfarin dosage in 

European-Americans and African-Americans using DNA samples linked to an electronic 
health record: Pharmacogenomics, v. 13, p. 407-18. 

Refaeilzadeh, P., L. Tang, and H. Liu, 2009, Cross-validation, in L. Liu, and M. Tamer Özsu, eds., 

Encyclopedia of Database Systems, p. 532-538. 

Reich, D. E., M. Cargill, S. Bolk, J. Ireland, P. C. Sabeti, D. J. Richter, T. Lavery, R. Kouyoumjian, S. 
F. Farhadian, R. Ward, and E. S. Lander, 2001, Linkage disequilibrium in the human genome: 

Nature, v. 411, p. 199-204. 

Ritchie, M. D., 2012, The success of pharmacogenomics in moving genetic association studies from 
bench to bedside: study design and implementation of precision medicine in the post-GWAS 

era: Hum Genet, v. 131, p. 1615-26. 

Rosati, G., 2001, The prevalence of multiple sclerosis in the world: an update: Neurol Sci, v. 22, p. 

117-39. 
Río, J., M. Comabella, and X. Montalban, 2009, Predicting responders to therapies for multiple 

sclerosis: Nat Rev Neurol, v. 5, p. 553-60. 

Río, J., M. Comabella, and X. Montalban, 2011, Multiple sclerosis: current treatment algorithms: Curr 
Opin Neurol, v. 24, p. 230-7. 

Saad, M., S. Lesage, A. Saint-Pierre, J. C. Corvol, D. Zelenika, J. C. Lambert, M. Vidailhet, G. D. 

Mellick, E. Lohmann, F. Durif, P. Pollak, P. Damier, F. Tison, P. A. Silburn, C. Tzourio, S. 
Forlani, M. A. Loriot, M. Giroud, C. Helmer, F. Portet, P. Amouyel, M. Lathrop, A. Elbaz, A. 

Durr, M. Martinez, A. Brice, and F. P. s. D. G. S. Group, 2011a, Genome-wide association 

study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson's disease in 

the European population: Hum Mol Genet, v. 20, p. 615-27. 
Saad, M., A. S. Pierre, N. Bohossian, M. Macé, and M. Martinez, 2011b, Comparative study of 

statistical methods for detecting association with rare variants in exome-resequencing data: 

BMC Proc, v. 5 Suppl 9, p. S33. 
Sackett, D. L., and W. M. Rosenberg, 1995, The need for evidence-based medicine: J R Soc Med, v. 

88, p. 620-4. 

Sackett, D. L., W. M. Rosenberg, J. A. Gray, R. B. Haynes, and W. S. Richardson, 1996, Evidence 
based medicine: what it is and what it isn't: BMJ, v. 312, p. 71-2. 

Sadovnick, A. D., A. Dircks, and G. C. Ebers, 1999, Genetic counselling in multiple sclerosis: risks to 

sibs and children of affected individuals: Clin Genet, v. 56, p. 118-22. 

Sanna, S., M. Pitzalis, M. Zoledziewska, I. Zara, C. Sidore, R. Murru, M. B. Whalen, F. Busonero, A. 
Maschio, G. Costa, M. C. Melis, F. Deidda, F. Poddie, L. Morelli, G. Farina, Y. Li, M. Dei, S. 

Lai, A. Mulas, G. Cuccuru, E. Porcu, L. Liang, P. Zavattari, L. Moi, E. Deriu, M. F. Urru, M. 

Bajorek, M. A. Satta, E. Cocco, P. Ferrigno, S. Sotgiu, M. Pugliatti, S. Traccis, A. Angius, M. 
Melis, G. Rosati, G. R. Abecasis, M. Uda, M. G. Marrosu, D. Schlessinger, and F. Cucca, 

2010, Variants within the immunoregulatory CBLB gene are associated with multiple 

sclerosis: Nat Genet, v. 42, p. 495-7. 

Sargento-Freitas, J., S. Batista, C. Macario, F. Matias, and L. Sousa, 2013, Clinical predictors of an 
optimal response to natalizumab in multiple sclerosis: J Clin Neurosci, v. 20, p. 659-62. 



REFERENCES 

156 

Sasieni, P. D., 1997, From genotypes to genes: doubling the sample size: Biometrics, v. 53, p. 1253-

61. 

Sawcer, S., M. Ban, J. Wason, and F. Dudbridge, 2010, What role for genetics in the prediction of 
multiple sclerosis?: Ann Neurol, v. 67, p. 3-10. 

Sawcer, S., G. Hellenthal, M. Pirinen, C. C. Spencer, N. A. Patsopoulos, L. Moutsianas, A. Dilthey, Z. 

Su, C. Freeman, S. E. Hunt, S. Edkins, E. Gray, D. R. Booth, S. C. Potter, A. Goris, G. Band, 
A. B. Oturai, A. Strange, J. Saarela, C. Bellenguez, B. Fontaine, M. Gillman, B. Hemmer, R. 

Gwilliam, F. Zipp, A. Jayakumar, R. Martin, S. Leslie, S. Hawkins, E. Giannoulatou, S. 

D'alfonso, H. Blackburn, F. Martinelli Boneschi, J. Liddle, H. F. Harbo, M. L. Perez, A. 

Spurkland, M. J. Waller, M. P. Mycko, M. Ricketts, M. Comabella, N. Hammond, I. Kockum, 
O. T. McCann, M. Ban, P. Whittaker, A. Kemppinen, P. Weston, C. Hawkins, S. Widaa, J. 

Zajicek, S. Dronov, N. Robertson, S. J. Bumpstead, L. F. Barcellos, R. Ravindrarajah, R. 

Abraham, L. Alfredsson, K. Ardlie, C. Aubin, A. Baker, K. Baker, S. E. Baranzini, L. 
Bergamaschi, R. Bergamaschi, A. Bernstein, A. Berthele, M. Boggild, J. P. Bradfield, D. 

Brassat, S. A. Broadley, D. Buck, H. Butzkueven, R. Capra, W. M. Carroll, P. Cavalla, E. G. 

Celius, S. Cepok, R. Chiavacci, F. Clerget-Darpoux, K. Clysters, G. Comi, M. Cossburn, I. 
Cournu-Rebeix, M. B. Cox, W. Cozen, B. A. Cree, A. H. Cross, D. Cusi, M. J. Daly, E. Davis, 

P. I. de Bakker, M. Debouverie, M. B. D'hooghe, K. Dixon, R. Dobosi, B. Dubois, D. 

Ellinghaus, I. Elovaara, F. Esposito, et al., 2011, Genetic risk and a primary role for cell-

mediated immune mechanisms in multiple sclerosis: Nature, v. 476, p. 214-9. 
Shapiro, J. A., 2009, Revisiting the central dogma in the 21st century: Ann N Y Acad Sci, v. 1178, p. 

6-28. 

Sherry, S. T., M. H. Ward, M. Kholodov, J. Baker, L. Phan, E. M. Smigielski, and K. Sirotkin, 2001, 
dbSNP: the NCBI database of genetic variation: Nucleic Acids Res, v. 29, p. 308-11. 

Sing, T., O. Sander, N. Beerenwinkel, and T. Lengauer, 2009, ROCR: Visualizing the performance of 

scoring classifiers. 

Slatkin, M., 2008, Linkage disequilibrium--understanding the evolutionary past and mapping the 
medical future: Nat Rev Genet, v. 9, p. 477-85. 

Sormani, M. P., and N. De Stefano, 2013, Defining and scoring response to IFN-β in multiple 

sclerosis: Nat Rev Neurol, v. 9, p. 504-12. 
Sriram, U., L. F. Barcellos, P. Villoslada, J. Rio, S. E. Baranzini, S. Caillier, A. Stillman, S. L. Hauser, 

X. Montalban, and J. R. Oksenberg, 2003, Pharmacogenomic analysis of interferon receptor 

polymorphisms in multiple sclerosis: Genes Immun, v. 4, p. 147-52. 
Steinman, L., 2005, Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab: Nat 

Rev Drug Discov, v. 4, p. 510-8. 

Steyerberg, E. W., 2009, Clinical prediction models: a practical approach to development, validation, 

and updating: Statistics for Biology and Health, Springer, 500 p. 
Steyerberg, E. W., A. J. Vickers, N. R. Cook, T. Gerds, M. Gonen, N. Obuchowski, M. J. Pencina, and 

M. W. Kattan, 2010, Assessing the performance of prediction models: a framework for 

traditional and novel measures: Epidemiology, v. 21, p. 128-38. 
Stone, M., 1974, Cross-validatory choice and assessment of statistical predictions: Journal of the 

Royal Statistical Society. Series B (Methodological), v. 36, p. 111-147. 

The University of Edinburgh, 2010, Cardiovascular Risk Calculator. 
The Warfarin Dose Refinement Collaboration, and International Warfarin Pharmacogenetics 

Consortium, 2013, Warfarin Dosing. 

Therneau, T. M., and B. Atkinson, 2012, rpart: Recursive Partitioning. 

Todd, H. L., and B. Craine, 2011, AMA to FDA: genetic testing should be conducted by qualified 
health professionals. 

Vazquez, A. I., G. de los Campos, Y. C. Klimentidis, G. J. Rosa, D. Gianola, N. Yi, and D. B. Allison, 

2012, A comprehensive genetic approach for improving prediction of skin cancer risk in 
humans: Genetics, v. 192, p. 1493-502. 

Venter, J. C., M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. Smith, M. 

Yandell, C. A. Evans, R. A. Holt, J. D. Gocayne, P. Amanatides, R. M. Ballew, D. H. Huson, 

J. R. Wortman, Q. Zhang, C. D. Kodira, X. H. Zheng, L. Chen, M. Skupski, G. Subramanian, 
P. D. Thomas, J. Zhang, G. L. Gabor Miklos, C. Nelson, S. Broder, A. G. Clark, J. Nadeau, V. 



REFERENCES 

157 

A. McKusick, N. Zinder, A. J. Levine, R. J. Roberts, M. Simon, C. Slayman, M. Hunkapiller, 

R. Bolanos, A. Delcher, I. Dew, D. Fasulo, M. Flanigan, L. Florea, A. Halpern, S. 

Hannenhalli, S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K. Remington, J. Abu-Threideh, E. 
Beasley, K. Biddick, V. Bonazzi, R. Brandon, M. Cargill, I. Chandramouliswaran, R. Charlab, 

K. Chaturvedi, Z. Deng, V. Di Francesco, P. Dunn, K. Eilbeck, C. Evangelista, A. E. 

Gabrielian, W. Gan, W. Ge, F. Gong, Z. Gu, P. Guan, T. J. Heiman, M. E. Higgins, R. R. Ji, 
Z. Ke, K. A. Ketchum, Z. Lai, Y. Lei, Z. Li, J. Li, Y. Liang, X. Lin, F. Lu, G. V. Merkulov, N. 

Milshina, H. M. Moore, A. K. Naik, V. A. Narayan, B. Neelam, D. Nusskern, D. B. Rusch, S. 

Salzberg, W. Shao, B. Shue, J. Sun, Z. Wang, A. Wang, X. Wang, J. Wang, M. Wei, R. 

Wides, C. Xiao, C. Yan, et al., 2001, The sequence of the human genome: Science, v. 291, p. 
1304-51. 

Vickers, A. J., and E. B. Elkin, 2006, Decision curve analysis: a novel method for evaluating 

prediction models: Med Decis Making, v. 26, p. 565-74. 
Villoslada, P., L. F. Barcellos, J. Rio, A. B. Begovich, M. Tintore, J. Sastre-Garriga, S. E. Baranzini, 

P. Casquero, S. L. Hauser, X. Montalban, and J. R. Oksenberg, 2002, The HLA locus and 

multiple sclerosis in Spain. Role in disease susceptibility, clinical course and response to 
interferon-beta: J Neuroimmunol, v. 130, p. 194-201. 

Visscher, P. M., W. G. Hill, and N. R. Wray, 2008, Heritability in the genomics era--concepts and 

misconceptions: Nat Rev Genet, v. 9, p. 255-66. 

Vukusic, S., V. Van Bockstael, S. Gosselin, and C. Confavreux, 2007, Regional variations in the 
prevalence of multiple sclerosis in French farmers: J Neurol Neurosurg Psychiatry, v. 78, p. 

707-9. 

Wang, J., W. Wang, R. Li, Y. Li, G. Tian, L. Goodman, W. Fan, J. Zhang, J. Li, Y. Guo, B. Feng, H. 
Li, Y. Lu, X. Fang, H. Liang, Z. Du, D. Li, Y. Zhao, Y. Hu, Z. Yang, H. Zheng, I. Hellmann, 

M. Inouye, J. Pool, X. Yi, J. Zhao, J. Duan, Y. Zhou, J. Qin, L. Ma, G. Li, G. Zhang, B. Yang, 

C. Yu, F. Liang, W. Li, S. Li, P. Ni, J. Ruan, Q. Li, H. Zhu, D. Liu, Z. Lu, N. Li, G. Guo, J. 

Ye, L. Fang, Q. Hao, Q. Chen, Y. Liang, Y. Su, A. San, C. Ping, S. Yang, F. Chen, L. Li, K. 
Zhou, Y. Ren, L. Yang, Y. Gao, G. Yang, Z. Li, X. Feng, K. Kristiansen, G. K. Wong, R. 

Nielsen, R. Durbin, L. Bolund, X. Zhang, and H. Yang, 2008, The diploid genome sequence 

of an Asian individual: Nature, v. 456, p. 60-5. 
Wang, J. H., D. Pappas, P. L. De Jager, D. Pelletier, P. I. de Bakker, L. Kappos, C. H. Polman, L. B. 

Chibnik, D. A. Hafler, P. M. Matthews, S. L. Hauser, S. E. Baranzini, J. R. Oksenberg, and A. 

a. N. Z. M. S. G. C. (ANZgene), 2011, Modeling the cumulative genetic risk for multiple 
sclerosis from genome-wide association data: Genome Med, v. 3, p. 3. 

Wang, W. Y., B. J. Barratt, D. G. Clayton, and J. A. Todd, 2005, Genome-wide association studies: 

theoretical and practical concerns: Nat Rev Genet, v. 6, p. 109-18. 

Ware, J. H., 2006, The limitations of risk factors as prognostic tools: N Engl J Med, v. 355, p. 2615-7. 
Watson, C. T., G. Disanto, F. Breden, G. Giovannoni, and S. V. Ramagopalan, 2012, Estimating the 

proportion of variation in susceptibility to multiple sclerosis captured by common SNPs: Sci 

Rep, v. 2, p. 770. 
Watson, J. D., and F. H. Crick, 1953, Molecular structure of nucleic acids; a structure for deoxyribose 

nucleic acid: Nature, v. 171, p. 737-8. 

Weinberg, W., 1908, Über den Nachweis der Vererbung beim Menschen. Jahresh. Ver. Vaterl. 
Naturkd.: Württemb., v. 64, p. 369–382. 

Weinstock-Guttman, B., M. Tamaño-Blanco, K. Bhasi, R. Zivadinov, and M. Ramanathan, 2007, 

Pharmacogenetics of MXA SNPs in interferon-beta treated multiple sclerosis patients: J 

Neuroimmunol, v. 182, p. 236-9. 
Wheeler, D. A., M. Srinivasan, M. Egholm, Y. Shen, L. Chen, A. McGuire, W. He, Y. J. Chen, V. 

Makhijani, G. T. Roth, X. Gomes, K. Tartaro, F. Niazi, C. L. Turcotte, G. P. Irzyk, J. R. 

Lupski, C. Chinault, X. Z. Song, Y. Liu, Y. Yuan, L. Nazareth, X. Qin, D. M. Muzny, M. 
Margulies, G. M. Weinstock, R. A. Gibbs, and J. M. Rothberg, 2008, The complete genome of 

an individual by massively parallel DNA sequencing: Nature, v. 452, p. 872-6. 

Wolpe, P. R., 2009, Personalized Medicine and its Ethical Challenges: World Medical & Health 

Policy, v. 1, p. 47-55. 



REFERENCES 

158 

Woolf, B., 1955, On estimating the relation between blood group and disease: Ann Hum Genet, v. 19, 

p. 251-3. 

World Health Organization, 2008, Atlas: Multiple Sclerosis Resources in the World. 
Wray, N. R., J. Yang, M. E. Goddard, and P. M. Visscher, 2010, The genetic interpretation of area 

under the ROC curve in genomic profiling: PLoS Genet, v. 6, p. e1000864. 

Wray, N. R., J. Yang, B. J. Hayes, A. L. Price, M. E. Goddard, and P. M. Visscher, 2013, Pitfalls of 
predicting complex traits from SNPs: Nat Rev Genet, v. 14, p. 507-15. 

Ziegler, A., N. Bohossian, V. P. Diego, and C. Yao, 2013, Genetic prediction in the Genetic Analysis 

Workshop 18 sequencing data: Genetic Epidemiology. Submitted. 

Zou, K. H., A. J. O'Malley, and L. Mauri, 2007, Receiver-operating characteristic analysis for 
evaluating diagnostic tests and predictive models: Circulation, v. 115, p. 654-7. 

 

  



APPENDIX I 

159 

I. APPENDIX I: Gene Names for Genes Cited Throughout the Thesis 

GENE SYMBOL GENE NAME 

ABC ATP-binding cassette 

ADAR adenosine deaminase, RNA-specific 

BST1 bone marrow stromal cell antigen 1 

CAST calpastatin 

CD86 T-lymphocyte activation antigen CD86 

CFTR cystic fibrosis transmembrane conductance regulator 

CIT citron (rho-interacting, serine/threonine kinase 21) 

COL25A1 collagen, type XXV, alpha 1 

CTSS cathepsin S 

CYP2C9 cytochrome P450, family 2, subfamily C, polypeptide 9 

FAS Fas (TNF receptor superfamily member 6) 

GPC5 glypican 5 

GRIA3 glutamate receptor, ionotropic, AMPA 3 

HAPLN1 hyaluronan and proteoglycan link protein 1 

HLA Class II major histocompatibility complex, class II 

HTT huntingtin 

IFNAR1 interferon (alpha and beta) receptor 1 

IFNAR1 interferon (alpha and beta) receptor 1 

IFNAR2 interferon (alpha, beta and omega) receptor 2 

IFNG interferon gamma 

IL12RB2 interleukin 12 receptor, beta 2 

IL1R1 interleukin 1 receptor, type I 

IL28B interleukin 28B (interferon, lambda 3) 

IL2RA interleukin 2 receptor, alpha 

IL7RA interleukin 7 receptor 

ITGA4 integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor) 

LMP7 large multifunctional protease 7 

LRRK2 leucine-rich repeat kinase 2 

MAP4 microtubule-associated protein 4 

MAPT microtubule-associated protein tau 

MBP myelin basic protein 

MxA myxovirus (influenza) resistance A 

NPAS3 neuronal PAS domain protein 3 

OAS1 2'-5'-oligoadenylate synthetase 1 

SNCA synuclein, alpha (non A4 component of amyloid precursor) 

STARD13 StAR-related lipid transfer (START) domain containing 13 

TRAIL tumor necrosis factor (TNF) related apoptosis inducing ligand 

TRAILR-1 TRAIL receptor 1 

TRAILR-2 TRAIL receptor 2 

TRAILR-3 TRAIL receptor 3 

TRAILR-4 TRAIL receptor 4 

VKORC1 vitamin K epoxide reductase complex, subunit 1 

ZFAT zinc finger and AT hook domain containing 

ZFHX4 zinc finger homeobox 4 

ZZEF1 zinc finger, ZZ-type with EF-hand domain 1 

Table I.1: Gene symbols and corresponding names. (Source: http://www.ncbi.nlm.nih.gov/gene/) 
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II. APPENDIX II: Clinical Characteristics of the Cohorts Included in the 

OAS1 Study 

France 

 

Table II.1: Clinical characteristics of the French cohort in the OAS1 study. 

  

P-value
1

Responders Non-Responders

164 (49%) 168 (51%)

Gender 0.26

NA - -

Female n (%) 127 (51%) 120 (49%)

Male n (%) 37 (44%) 48 (56%)

Age (years)

At disease onset 0.009

NA 1 1

mean (sd) 30.24 (8.65) 27.87 (8.59)

median (range) 30.00 (13.00, 52.00) 27.00 (12.00, 51.00)

At treatment onset 0.01046

NA 8 8

mean (sd) 35.51 (9.31) 32.72 (9.16)

median (range) 36.00 (15.00, 58.00) 33.00 (15.00, 55.00)

Disease Severity

EDSS at treatment onset 0.27

NA - -

mean (sd) 2.07 (1.24) 2.17 (1.33)

median (range) 2.00 (0.00, 6.00) 2.00 (0.00, 5.00)

Relapses 2-year prior treatment onset 0.05885

NA 1 2

mean (sd) 2.29 (1.01) 2.52 (1.20)

median (range) 2.00 (0.00, 5.00) 2.00 (7.00)

Type of Interferon- β 0.71

NA 1 -

Avonex n (%) 84 (50%) 85 (50%)

Betaferon n (%) 45 (52%) 42 (48%)

Rebif n (%) 34 (45%) 41 (55%)

France

1
 Chi-square test used for categorical variables (Gender, Type of Interferon-β) and Mann-Whitney test used for the 

remaining variables.
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Germany 

 

Table II.2: Clinical characteristics of the German cohort in the OAS1 study. 

  

P-value1

Responders Non-Responders

123 (60%) 83 (40%)

Gender 0.0614

NA - -

Female n (%) 87 (56%) 69 (44%)

Male n (%) 36 (72%) 14 (28%)

Age (years)

At disease onset 0.19

NA 93 73

mean (sd) 28.6 (8.74) 24.80 (6.46)

median (range) 28.00 (13.00, 51.00) 23.50 (16.00, 37.00)

At treatment onset 0.57

NA - -

mean (sd) 36.15 (9.09) 35.27 (10.58)

median (range) 36.00 (19.00, 57.00) 36.00 (16.00, 63.00)

Disease Severity

EDSS at treatment onset 0.001

NA - -

mean (sd) 1.71 (1.21) 2.16 (1.22)

median (range) 1.50 (0.00, 6.00) 2.00 (0.00, 6.00)

Relapses 2-year prior treatment onset 0.62

NA 94 74

mean (sd) 1.64 (0.94) 1.78 (0.83)

median (range) 1.50 (0.00, 5.00) 2.00 (1.00, 3.00)

Type of Interferon- β 0.74

NA 1 -

Avonex n (%) 20 (57%) 15 (43%)

Betaferon n (%) 73 (58%) 52 (42%)

Rebif n (%) 29 (64%) 16 (36%)

Germany

1 Chi-square test used for categorical variables (Gender, Type of Interferon-β) and Mann-Whitney test used for the 

remaining variables.
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Italy 

 

Table II.3: Clinical characteristics of the Italian cohort in the OAS1 study. 

  

P-value
1

Responders Non-Responders

252 (79%) 68 (21%)

Gender 0.06077

NA

Female n (%) 168 (86%) 54 (14%)

Male n (%) 84 (76%) 14 (24%)

Age (years)

At disease onset 8.53E-04

NA - -

mean (sd) 29.78 (9.09) 25.63 (7.59)

median (range) 28.70 (13.80, 60.00) 23.80 (10.90, 45.30)

At treatment onset 0.001972

NA - -

mean (sd) 34.53 (9.31) 30.58 (8.51)

median (range) 34.05 (15.60, 63.80) 29.25 (17.10, 59.30)

Disease Severity

EDSS at treatment onset 0.96

NA - -

mean (sd) 1.66 (0.66) 1.70 (0.78)

median (range) 1.50 (0.00, 4.50) 1.50 (0.00, 4.00)

Relapses 2-year prior treatment onset 0.01166

NA - -

mean (sd) 1.80 (0.95) 2.24 (1.24)

median (range) 2.00 (0.00, 5.00) 2.00 (0.00, 7.00)

Type of Interferon- β 0.67

NA - -

Avonex n (%) 81 (82%) 18 (18%)

Betaferon n (%) 13 (76%) 4 (24%)

Rebif n (%) 158 (77%) 46 (23%)

Italy

1
 Chi-square test used for categorical variables (Gender, Type of Interferon-β) and Mann-Whitney test used for the 

remaining variables.
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Spain 

 

Table II.4: Clinical characteristics of the Spanish cohort in the OAS1 study. 

  

P-value1

Responders Non-Responders

144 (56%) 113 (44%)

Gender 0.92

NA

Female n (%) 95 (56%) 73 (44%)

Male n (%) 49 (55%) 40 (45%)

Age (years)

At disease onset 0.82

NA 7 -

mean (sd) 26.26 (7.51) 26.16 (7.14)

median (range) 26.00 (10.00, 47.00) 24.00 (13.00,  45.00)

At treatment onset 0.62

NA - -

mean (sd) 32.01 (8.10) 31.50 (8.47)

median (range) 31.00 (15.00, 55.00) 31.00 (16.00, 51.00)

Disease Severity

EDSS at treatment onset 6.36E-04

NA - -

mean (sd) 1.97 (1.07) 2.34 (1.02)

median (range) 2.00 (0.00, 5.50) 2.00 (0.00, 5.50)

Relapses 2-year prior treatment onset 0.17

NA - -

mean (sd) 2.54 (1.04) 2.88 (1.71)

median (range) 2.00 (0.00, 5.00) 3.00 (0.00, 15.00)

Type of Interferon- β 0.74

NA - -

Avonex n (%) 39 (53%) 35 (47%)

Betaferon n (%) 70 (58%) 50 (42%)

Rebif n (%) 35 (56%) 28 (44%)

Spain

1 Chi-square test used for categorical variables (Gender, Type of Interferon-β) and Mann-Whitney test used 

for the remaining variables.
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All Patients (France/Non-France) 

 

Table II.5: Clinical characteristics of the France/Non-France cohorts in the OAS1 study. 

  

P-value
1

France Non-France

332 (30%) 783 (70%)

Gender 0.1337

NA - -

Female n (%) 247 (31%) 546 (69%)

Male n (%) 85 (26%) 237 (74%)

Age (years)

At disease onset 0.0163

NA 2 173

mean (sd) 29.04 (8.37) 27.72 (8.69)

median (range) 29.00 (12.00, 52.00) 26.65 (10.00, 60.00)

At treatment onset 0.3152

NA 16 -

mean (sd) 34.10 (9.32) 33.62 (9.19)

median (range) 34.00 (15.00, 58.00) 33.00 (15.00, 63.80)

Disease Severity

EDSS at treatment onset 5.36E-04

NA - -

mean (sd) 2.12 (1.00) 1.88 (1.29)

median (range) 2.00 (0.00, 6.00) 1.50 (0.00, 6.00)

Relapses 2-year prior treatment onset 2.68E-03

NA 3 168

mean (sd) 2.41 (1.11) 2.21 (1.25)

median (range) 2.00 (0.00, 7.00) 2 (0.00, 15.00)

Type of Interferon- β 8.42E-15

NA 1 1

Avonex n (%) 169 (45%) 208 (55%)

Betaferon n (%) 87 (25%) 262 (75%)

Rebif n (%) 75 (19%) 312 (81%)

All Patients

1 Chi-square test used for categorical variables (Gender, Type of Interferon-β) and Mann-Whitney test used 

for the remaining variables.
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III. APPENDIX III: Baseline Characteristics of the Patients Included in the 

Prediction Study on Natalizumab Response (Section 4.3.1) 

Clinical Characteristics 

 

Table III.1: Clinical characteristics of a subset of patients from the BIONAT cohort (database version 

November 2013) included in the prediction study on natalizumab response (Section 4.3.1.2). 

  

All Patients Responders Non-Responders

531 331 (62%) 200 (38%)

Gender 0.73

NA - - -

female n (%) 396 249 (63%) 147 (37%)

male n (%) 135 82 (61%) 53 (39%)

EDSS at treatment onset 0.78

NA - - -

mean (sd) 3.36 (1.66) 3.37 (1.64) 3.33 (1.68)

median (range) 3.50 (0.00, 7.50) 3.00 (0.00, 7.50) 3.50 (0.00, 7.00)

Relapses 1-year prior treatment onset 0.15

NA - - -

mean (sd) 2.10 (1.11) 2.04 (1.06) 2.19 (1.17)

median (range) 2.00 (0.00, 8.00) 2.00 (0.00, 6.00) 2.00 (0.00, 8.00)

Disease duration (years) 0.27

NA - - -

mean (sd) 8.94 (7.00) 9.08 (6.84) 8.71 (7.26)

median (range) 8.00 (0.00, 42.00) 8.00 (0.00, 41.00) 7.00 (0.00, 42.00)

Previous immuno-suppressant use 0.95

NA - - -

yes n (%) 111 70 (63%) 41 (37%)

no n (%) 420 261 (62%) 159 (38%)

Previous immuno-modulatory use 0.86

NA - - -

yes n (%) 475 295 (62%) 180 (38%)

no n (%) 56 36 (64%) 20 (36%)

1 Chi-square test used for categorical variables, Mann-Whitney test used for numeric variables. NA: Not available.

CLINICAL CHARACTERISTICS P-value
1
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Biological Characteristics 

 

Table III.2: Biological characteristics of a subset of patients from the BIONAT cohort (database 

version November 2013) included in the prediction study on natalizumab response (Section 4.3.1.2). 

  

All Patients Responders Non-Responders

531 331 (62%) 200 (38%)

IgG at treatment onset 0.039

NA 64 39 25

mean (sd) 9.94 (2.54) 10.07 (2.51) 9.72 (2.58)

median (range) 9.80 (0.90, 19.70) 10.00 (0.90, 17.20) 9.35 (3.00, 19.70)

IgA at treatment onset 0.10

NA 64 39 25

mean (sd) 2.00 (0.80) 2.04 (0.81) 1.94 (0.77)

median (range) 1.92 (0.20, 5.52) 1.98 (0.20, 5.52) 1.84 (0.31, 5.04)

IgM at treatment onset 0.53

NA 66 40 26

mean (sd) 1.38 (1.10) 1.39 (1.16) 1.37 (0.98)

median (range) 1.19 (0.21, 18.00) 1.21 (0.21, 18.00) 1.17 (0.24, 10.94)

Lymphocytes at treatment onset 0.28

NA 59 41 18

mean (sd) 2.38 (3.15) 2.42 (3.50) 2.30 (2.52)

median (range) 1.80 (0.19, 33.80) 1.80 (0.59, 33.80) 1.85 (0.19, 27.20)

CD3 count at treatment onset 0.12

NA 255 149 106

mean (sd) 1402 (530.91) 1364 (529.78) 1475 (528.29)

median (range) 1326 (372, 4970) 1298 (372, 4970) 1373 (594, 2919)

CD4 count at treatment onset 0.09

NA 51 35 16

mean (sd) 965 (418.06) 947.40 (436.08) 993.20 (386.75)

median (range) 897 (237, 4596) 862 (237, 4596) 938 (252, 2250)

CD8 count at treatment onset 0.04291

NA 53 36 17

mean (sd) 441.30 (211.97) 432.60 (223.56) 455.40 (191.55)

median (range) 395 (43, 1850) 379 (106, 1850) 408 (43, 1162)

CD19 count at treatment onset 0.73

NA 124 83 41

mean (sd) 298.20 (264.00) 284.60 (148.13) 319.60 (379.93)

median (range) 249.50 (33.00, 4442.00) 252 (44, 990) 240 (33, 4442)

JC virus at treatment onset 0.27

NA 70 35 35

detected n (%) 268 166 (62%) 102 (38%)

not detected n (%) 193 130 (67%) 63 (33%)

1 Chi-square test used for categorical variables, Mann-Whitney test used for numeric variables. NA: Not available.

BIOLOGICAL CHARACTERISTICS P-value1
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Radiological Characteristics 

 

Table III.3: Radiological characteristics of a subset of patients from the BIONAT cohort (database 

version November 2013) included in the prediction study on natalizumab response (Section 4.3.1.2). 

  

All Patients Responders Non-Responders

531 331 (62%) 200 (38%)

GD+ enhancing lesions at treatment onset 0.02323

NA - - -

yes n (%) 308 205 (67%) 103 (33%)

no n (%) 223 126 (56%) 97 (44%)

T2 superior to 9 at treatment onset 0.54

NA 3 3 -

yes n (%) 482 297 (62%) 185 (38%)

no n (%) 46 31 (67%) 15 (33%)

T2 confluent lesions at treatment onset 0.29

NA - - -

yes n (%) 36 19 (53%) 17 (47%)

no n (%) 495 312 (63%) 183 (37%)

Black holes at treatment onset 0.91

NA 181 109 72

yes n (%) 112 71 (63%) 41 (37%)

no n (%) 238 151 (63%) 87 (37%)

1 Chi-square test used for categorical variables. NA: Not available.

RADIOLOGICAL CHARACTERISTICS P-value
1
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IV. APPENDIX IV: Scientific Production 
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1. Bohossian N, Brassat D. “A multi-center study evaluating long-term natalizumab treatment: 

the France study.” Biosignature Workshop, Muenster, Germany, October 2011. 

2. Bohossian N, Saad M, Legarra A, Martinez M. “Exploring models for simultaneous analysis of 
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Mathematical Genetics Meeting, Gottingen, Germany, April 2012. 

Selected Poster Presentations 
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