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Abstract: Uveal melanoma (UM) is fatal in ~50% of patients as a result of disseminated disease.
This study aims to externally validate the Liverpool Uveal Melanoma Prognosticator Online V3
(LUMPO3) to determine its reliability in predicting survival after treatment for choroidal melanoma
when utilizing external data from other ocular oncology centers. Anonymized data of 1836 UM
patients from seven international ocular oncology centers were analyzed with LUMPO3 to predict
the 10-year survival for each patient in each external dataset. The analysts were masked to the
patient outcomes. Model predictions were sent to an independent statistician to evaluate LUMPO3’s
performance using discrimination and calibration methods. LUMPO3’s ability to discriminate
between UM patients who died of metastatic UM and those who were still alive was fair-to-good,
with C-statistics ranging from 0.64 to 0.85 at year 1. The pooled estimate for all external centers was
0.72 (95% confidence interval: 0.68 to 0.75). Agreement between observed and predicted survival
probabilities was generally good given differences in case mix and survival rates between different
centers. Despite the differences between the international cohorts of patients with primary UM,
LUMPO3 is a valuable tool for predicting all-cause mortality in this disease when using data from
external centers.

Keywords: eye cancer; uveal melanoma; prognostic model; LUMPO3; discrimination; calibration;
C-statistics; survival probabilities; external centers.

1. Introduction

Uveal melanoma (UM) is a rare eye cancer occurring in adults, causing liver metastasis in
approximately 50% of cases [1]. Patients’ survival is directly related to the presence of hepatic
metastases. After detection of metastatic disease, most patients die within a year, with only a few
responding to current therapies [2].

There is some evidence that prognostication in UM improves the quality of life of some patients,
even when the probability of survival is poor [3–5]. Prognostication is an important aspect of patient
care, identifying high-risk UM patients requiring special care (e.g., increased frequency of liver
surveillance using high-resolution imaging, enrollment in clinical trials of systemic adjuvant therapy
including immunotherapies [6]), while allowing low-risk UM patients to be reassured and to have
less intensive surveillance. Many predictive factors of metastasis from UM have been identified [3].
Several of these have been incorporated into our prognostic algorithm, the Liverpool Uveal Melanoma
Prognosticator Online (LUMPO) (www.lumpo.net) [7].

LUMPO was developed to estimate survival probability in patients treated for UM,
combining (a) anatomical predictors, such as largest basal diameter of the tumor, tumor thickness,
ciliary body involvement and extra-ocular extension; (b) histological predictors, including epithelioid
cell type, presence of closed loops and tumor mitotic count; and (c) genetic predictors,
including chromosome-3 deletion and polysomy 8q [8,9]. The tool was validated in 2012 [7] with data
from a cohort of patients with UM, with a follow up of more than 20 years at the Liverpool Ocular
Oncology Clinic (LOOC).

The first externally available version of LUMPO was validated in 2015, at the Department
of Ophthalmology, University of Medical Sciences in Poznan, Poland [10]. This validation study
concluded that LUMPO is a useful tool for calculating survival probabilities in an individual patient
with UM; however, the authors emphasized that the use of cytogenetic data, which were lacking
in their analysis, would potentially improve the accuracy of the prognosis. In 2016, LUMPO was
externally validated further by examining data from the USA, in a cohort of UM patients treated at the
University of California, San Francisco (UCSF) [11]. Evaluation of these data revealed that there were
differences between the two cohorts of patients with respect to anatomical and clinical characteristics,
probably because these were not defined and measured in the same standardized fashion. There were
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also differences in the type of treatment provided to UM patients in the two centers, and, furthermore,
genetic data were unavailable within the UCSF dataset at that time [11]. Despite these differences,
the external validation showed that LUMPO accurately estimated all-cause mortality for UM patients
treated at UCSF.

A revised version of LUMPO (called LUMPO3) was created, incorporating not only chromosome
3 but also 8q data and also calculating mortality using competing-risk methodology [12] This aspect
is particularly relevant to prognostication in UM subjects, since in frail populations, such as elderly
subjects, other causes of death may occur prior to the occurrence of the event of interest, thus preventing
its realization. In that study, estimates of crude cumulative incidence from the raw data showed that
metastatic death has a different pattern from death from other causes, thereby necessitating the need
for a competing-risks model. Such a model facilitates prediction of metastatic death as a distinctive
event from other causes of death. LUMPO3 was internally validated using bootstrap resampling [13],
a nonparametric method that allows estimation of optimal model performance measures by random
sampling with replacement of data used to fit the model.

The aim of this study was to perform an external validation of LUMPO3 as a tool for estimating
all-cause mortality. All-cause mortality was selected as the primary outcome as it is a readily available
outcome, obtainable from national records where relevant. All-cause mortality was estimated from
LUMPO3 by aggregating the probability of metastatic death and death from other causes. To this
end, the Liverpool Ocular Oncology Research Group (LOORG; wwww.loorg.org) facilitated collection
of relevant independent data from members of the European Ophthalmic Oncology Group (OOG;
www.oogeu.com) and ocular oncology centers located in the USA.

2. Results

2.1. Patient Characteristics

The cohort comprised 1836 patients diagnosed with UM (ciliary body and choroidal).
These included 1086 patients from Leiden (LUMC), 218 from Rotterdam (EMCH), 138 from San
Francisco (UCSF), 138 from Rostock (UHSH), 134 from Moscow (HIED), 73 from Genoa (SCOO),
and 49 from Essen (UHE). These data are shown in Table 1 together with characteristics of the original
Liverpool dataset that was used for the development of the model for comparison purposes. Pooled
estimates across the different cohorts are also provided. For the medians, the method described in [14]
has been applied.

As seen in Table 1, compared to patients treated in Liverpool, those treated in Moscow tended
to be more frequently female (Binomial Test: z = 3.421 (p = 0.001)), who were relatively young and
with tumors having a greater basal diameter (T Test: t = 6.819 (p < 0.001) and t = 9.017 (p < 0.001)
respectively). The latter was also true of patients from Genoa (T Test: t = 6.885 (p < 0.001)). A higher
percentage of patients from Leiden (21%) had extraocular melanoma compared to those treated in
other centers (Binomial Test: z = 52.75 (p < 0.001)). The prevalence of UM containing epithelioid cells
also differed between the eight groups in which this feature was documented: it was significantly
lower in tumors from San Francisco than those in the Liverpool data set (Binomial Test: z = 2.147 (p =

0.032)), and much lower than those from Rostock (Fisher’s Exact Test (p < 0.001)). All UM from Genoa
had epithelioid cells present, which is much higher than the Liverpool dataset (Fisher’s Exact Test (p <

0.001)). Genetic data for the UM chromosome 3 status were available from all ocular oncology centers
with the exception of Rostock (Table 1). Similarly, most centers also provided information concerning
the status of chromosome 8q, with the exceptions of Rostock and Essen (Table 1). Of the cohorts with
available genetic data, patients from Genoa had a higher percentage of alterations in both chromosome
3 and chromosome 8q than was seen in Liverpool (Binomial Test: z = 2.718 (p < 0.001) and z = 3.45 (p =

0.001) respectively). There was a moderate difference between the Liverpool and Rotterdam datasets
in the percentage of alterations in chromosome 3 (Binomial Test: z = 2.341 (p = 0.02)) and significant
difference for chromosome 8q (Binomial Test: z = 4.46 (p < 0.001)).

wwww.loorg.org
www.oogeu.com
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Table 1. Patient characteristics. Development data (Liverpool) and external validation data (from seven ocular oncology centers—Leiden, Rotterdam, San Francisco,
Rostock, Moscow, Genoa and Essen). The last column reports the pooled estimates of the characteristics.

Characteristics, n (%) Unless Otherwise Stated Liverpool
(n = 4145)

Leiden
(n = 1086)

Rotterdam
(n = 218)

San Francisco
(n = 138)

Rostock
(n = 138)

Moscow
(n = 134)

Genoa
(n = 73)

Essen
(n = 49)

Pooled
Estimates

Age at treatment (years), mean (SD) 61.4 (14.1) 60.7 (14.4) 62.0 (14.3) 60.0 (13.1) 64.8 (13.8) 53.0 (13.7) 62.0 (16.2) 63.8 (14.7) 61.2 (14.2)

Sex
Female 2010 (48) 498 (46) 111 (51) 67 (49) 80 (58) 84 (63) 26 (36) 27 (55) 2903 (48)
Male 2135 (52) 588 (54) 107 (49) 71 (51) 58 (42) 50 (37) 47 (64) 22 (45) 3078 (52)

Missing 0 0 0 0 0 0 0 0 0

Largest Ultrasound Diameter (mm), mean (SD) 12.4 (3.8) 11.2 (3.7) 12.9 (3.6) 11.2 (3.3) 11.3 (3.5) 15.4 (3.3) 15.5 (3.3) 13.8 (3.7) 12.3 (3.7)
Missing 110 0 4 4 0 0 0 0 118

Ultrasound tumour Height (mm), mean (SD) 5.3 (3.4) 5.6 (3.3) 7.38 (3.5) 5.3 (2.1) 5.2 (2.9) 9.1 (2.9) 10.8 (3.5) 8.6 (3.5) 5.6 (3.3)
Missing 98 1 6 0 0 0 1 0 106

Ciliary Body Involvement
No 3046 (73) 803 (74) 154 (71) 32 (84) 130 (94) 93 (69) 63 (86) 33 (69) 4354 (74)
Yes 1098 (27) 283 (26) 64 (29) 6 (16) 8 (6) 41 (31) 10 (14) 15 (31) 1525 (26)

Missing 1 0 0 100 0 0 0 1 102

Extraocular Melanoma
No 3872 (93) 848 (79) 191 (88) 134 (99) 130 (96) 119 (89) 73 (100) 35 (92) 5402 (90)
Yes 273 (7) 228 (21) 27 (12) 1 (1) 5 (4) 15 (11) 0 (0) 3 (8) 552 (10)

Missing 0 10 0 0 3 0 0 11 24

Epithelioid cells present
No 915 (42) 351 (33) 74 (34) 38 (55) 31 (97) 61 (46) 0 (0) - 1470 (39)
Yes 1268 (58) 720 (67) 144 (66) 31 (45) 1 (3) 71 (53) 56 (100) - 2291 (61)

Missing 1962 15 0 0 106 2 17 49 2151

Closed PAS+ Loops
No 600 (50) 230 (40) 124 (58) - - - - - 954 (48)
Yes 597 (50) 346 (60) 88 (42) - - - - - 1031 (52)

Missing 2948 510 0 138 138 134 73 49 3990

MITOC (n, %)
0 673 (38) 173 (17) 14 (8) 1 (20) 32 (100) - - - 893 (30)
1 414 (23) 282 (28) 27 (16) 0 (0) 0 (0) - - - 723 (24)
2 366 (21) 291 (29) 45 (27) 4 (80) 0 (0) - - - 706 (24)
3 307 (17) 264 (26) 81 (49) 0 (0) 0 (0) - - - 652 (22)

Missing 2385 76 51 133 106 134 73 49 3007

Chromosome 3 loss
No 333 (55) 201 (50) 100 (46) 22 (58) - 77 (57) 27 (39) 37 (76) 797 (53)
Yes 269 (45) 202 (50) 117 (54) 16 (42) - 57 (43) 43 (61) 12 (24) 716 (47)

Missing 3543 683 1 100 138 0 3 0 4468

Chromosome 8 gain
No 330 (55) 186 (53) 82 (38) 21 (55) - 97 (72) 23 (34) - 739 (52)
Yes 272 (45) 162 (47) 136 (62) 17 (45) - 37 (28) 45 (66) - 669 (48)

Missing 3543 738 0 100 138 0 5 49 4573
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Table 1. Cont.

Characteristics, n (%) Unless Otherwise Stated Liverpool
(n = 4145)

Leiden
(n = 1086)

Rotterdam
(n = 218)

San Francisco
(n = 138)

Rostock
(n = 138)

Moscow
(n = 134)

Genoa
(n = 73)

Essen
(n = 49)

Pooled
Estimates

Follow-up time (years), median 6.5 5.2 4.0 0.7 2.7 5.0 2.0 2.7 6.5
(IQR) (3.2–11.7) (4.3–5.9) (2.3–8.0) (0.5–2.1) (1.0–6.5) (4.5–5.7) (1.1–3.0) (2.1–3.3) (3.2–11.7)

Outcome
Alive 2480 (60) 440 (41) 98 (45) 94 (68) 121 (88) 92 (69) 54 (74) 42 (86) 3421 (57)
Dead 1665 (40) 646 (59) 120 (55) 44 (32) 17 (12) 42 (31) 19 (26) 7 (14) 2560 (43)

Missing 0 0 0 0 0 0 1 0 1

Cause of Death
Other 770 (46) 291 (45) 36 (30) - 4 (27) 5 (12) 2 (11) 2 (33) 1110 (43)

Possible UM metastasis 0 (0) 0 (0) 0 (0) - 6 (40) 10 (24) 2 (11) 1 (17) 19 (2)
Definite UM metastasis 893 (54) 355 (55) 78 (70) - 5 (33) 27 (64) 16 (84) 3 (50) 1377 (55)

Missing 2 0 6 44 2 0 0 1 55

Legend: SD = Standard deviation; PAS = Periodic Acid Schiff; MITOC = mitotic cell count (see Methods); IQR = interquartile range; UM = uveal melanoma.
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The median follow-up period varied between the external cohorts (range, 0.7–5.2 years) with
the shortest median follow-up time being from San Francisco (8 months). Kaplan-Meier curves for
all-cause mortality based on the Liverpool dataset and the external datasets are shown in Figure 1.
The datasets from Essen and San Francisco matched the Liverpool (development) dataset most closely.
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Figure 1. Kaplan–Meier estimates of all-cause mortality for the centers involved in the study.
The Liverpool development dataset is shown in solid blue line for comparison. The figure shows that
datasets from Essen and San Francisco had the closest match to the Liverpool dataset. The numbers
below the figure are the number of subjects at risk entering the corresponding time point for each dataset.

2.2. Statistical Analyses

2.2.1. Discrimination

The C-statistic, which examines the discriminative capacity of the model, was evaluated for all
participating centers yearly up to 4 years (Table 2) [15]. Values ranged from 0.64 (San Francisco) to 0.85
(Essen) at year 1, through to 0.65 (Moscow) to 0.89 (Essen) at year 4. Pooled estimates of discrimination
were fairly consistent across the years at 0.72 (0.68 to 0.75) in year 1 and 0.73 (0.70 to 0.77) in years 2 to
4. This indicated generally good ability of the LUMPO3 model to discriminate between patients who
died and those who survived, in independent datasets.

Table 2. Discrimination—per year up to 4 years of follow up.

Dataset 1 year 2 year 3 year 4 year

Essen 0.85 (0.72, 0.98) 0.87 (0.77, 0.98) 0.89 (0.80, 0.98) 0.89 (0.80, 0.98)
Genoa 0.78 (0.68, 0.88) 0.78 (0.68, 0.88) 0.78 (0.69, 0.88) 0.78 (0.69, 0.88)
Leiden 0.72 (0.70, 0.74) 0.73 (0.71, 0.75) 0.73 (0.71, 0.75) 0.73 (0.71, 0.75)

Moscow 0.65 (0.56, 0.74) 0.64 (0.54, 0.75) 0.65 (0.54, 0.75) 0.65 (0.54, 0.75)
Rostock 0.70 (0.57, 0.84) 0.72 (0.59, 0.84) 0.71 (0.57, 0.84) 0.71 (0.58, 0.84)

Rotterdam 0.73 (0.69, 0.78) 0.74 (0.69, 0.78) 0.74 (0.69, 0.78) 0.74 (0.69, 0.78)
San Francisco 0.64 (0.56, 0.72) 0.66 (0.58, 0.74) 0.66 (0.58, 0.74) 0.66 (0.58, 0.74)

Pooled estimate 0.72 (0.68, 0.75) 0.73 (0.70, 0.77) 0.73 (0.70, 0.77) 0.73 (0.70, 0.77)
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2.2.2. Calibration

Calibration plots showing predicted probabilities of the outcome against actuarial survival
estimates are shown in Figure 2. The plots show good agreement between observed and predicted
probabilities. Limited event data in the Essen and Genoa datasets account for the wide confidence
bands. Data from Leiden suggests that LUMPO3 over-predicted the survival probability while data
from Moscow suggests that LUMPO3 under-predicted mortality, although the event rate was relatively
low in the Moscow dataset.
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Figure 2. Calibration graphs comparing observed and predicted survival in each of the external datasets
at 3 years post-treatment. Subjects were divided into five distinct prognostic groups according to their
predicted survival and the average predicted survival for each group was plotted against observed
survival. The dashed diagonal line is the line of equality and so markers along this line show perfect
agreement between their predicted and observed survival.

3. Discussion

This is the first multicenter, international, collaborative study to validate and demonstrate the
value of a multiparameter prognostic tool in UM—i.e., LUMPO3 developed on large well-phenotyped
datasets and robust statistical modelling—for the individualized stratification of patients with respect
to metastatic risk and all-cause mortality.
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To our knowledge, there currently are no other validated, multifaceted tools that take into account
clinical characteristics, histopathologic, and genetic data to predict patient prognosis. Such tools are
crucial for reliable decision-making for the identification of patients who may possibly be harmed
(physically or psychologically) by inappropriate disease management. Although this is not a major
concern in cancers that have a relatively good prognosis and have multiple treatment options with
proven clinical benefit, it is an important determinant of clinical care.

Numerous prognostic factors have been identified for primary UM. These have been analyzed
alone and in combination to predict the risk of metastasis. These factors can be divided into three main
categories: clinical, histologic and genetic [16]. The resulting prognostic tools have led to personalized
surveillance regimens [3,17,18] and targeted recruitment to clinical trials for adjuvant therapies.

Prognostic tools that combine multiple factors include the American Joint Committee on Cancer
(AJCC) Tumor Node Metastasis (TNM) staging system for UM, which is based on only tumor size,
location and extraocular spread. Genetic characteristics of UM are not included in this system as
yet [19]. It is possible to improve the accuracy of prognostic tools by multivariable analysis. This is
evidenced by the enhanced prognostic accuracy of the AJCC/TNM staging system when chromosome
3 and 8q status are included [20]. A prognostic nomogram combining AJCC/TNM staging, monosomy
3 and 8q gain has been developed but requires further validation using a larger study group [21].
Similarly, the largest basal tumor diameter was shown to provide additional prognostic information
independently of the DecisionDx-UM gene expression profile (GEP) tool classification [22].

The National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology
for UM (National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology
(NCCN Guidelines®) Uveal Melanoma Version 1.2018. Natl Compr. Cancer Network, Inc. 2018)
stratifies patients as having a low, medium or high risk of metastasis based on a combination of
anatomic, histologic and genetic features of the primary tumor. However, it would appear that this
prognostic method has not been validated as yet. The Predicting Risk of Metastasis in Uveal Melanoma
(PRiMeUM) tool employs a multivariate approach to predict the risk of metastasis developing within
48 months of treatment for the primary tumor. An accuracy of ~85% (derived from Area Under
the curve of the Receiver Operating Characteristic [AUROC] analysis) was achieved with a logistic
regression model using a combination of clinical and genetic factors. However, the PRiMeUM tool also
has yet to be externally validated [23]. Further, an artificial neural network has been created to predict
survivorship 5 years from brachytherapy. The network incorporates demographic and clinical data
only and again used only data collected at a single center. An accuracy of 84% was achieved (c-index
0.81) when 16 neurons were used in the artificial neural network [24].

GEP of 12 discriminating genes has been commercialized as DecisionDx-UM (Castle Biosciences)
and classifies patients as at low, medium or high risk of metastasis. The GEP tool was validated in
prospective multicenter studies [25,26]. The study by Onken et al. examined the correlation between
number of events and GEP classification in UM patients with a short follow-up time of 17.4 months
(median) [25]. Plasseraud et al., on the other hand, looked at correlations between pathologic
characteristics and molecular class in UM patients with a median follow-up of 27.3 months [26].
However, neither of the GEP studies examined for the calibration aspect of providing accurate
probability of survival. Despite these limitations, these studies did demonstrate early promise for the
role of GEP in decision making in UM.

These previous experiences attest to the difficulty faced in studying the strongest prognostic
factors for UM. The rarity of this disease makes it hard to collect a wide and comprehensive series
of the prognostic factors, with great variations being seen in the modalities of diagnosis, histologic
and genetic assessments, as well as in treatments during the observational period. However, with the
availability of new regional therapies and targeted drugs, a simple and validated model for risk
stratification of the patient such as LUMPO3 is urgently needed.

In this multicenter collaborative study, sufficient data were collected to perform a reliable validation
of the prognostic accuracy of the LUMPO3 model. A limitation of this study is the relatively short
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follow-up time in some centers, because of the rarity of the disease, as well as its retrospective nature.
Despite the differences between cohorts, the model’s ability to discriminate between UM survivors
and patients who died either from the disease or other causes was fair to good, as was the agreement
between observed and predicted survival probabilities in most centers. Therefore, the LUMPO3 model
is able to stratify the prognosis for UM patients and appears to be a valuable tool for predicting all-cause
mortality in patients with UM. This model may therefore inform physicians’ management when caring
for UM patients, allowing for a better allocation of resources with respect to systemic surveillance.

4. Material and Methods

4.1. Ethics

This study conformed to the principles of the Declaration of Helsinki. Approval for this study
was obtained from the Health Research Authority (NRES REC ref 18/NW/0748) and anonymized data
from consented patients were transferred from external centers according to local approvals.

4.2. Data Collection

In November 2017, a call for participation in this external validation of LUMPO3 was made
to 14 centers involved in OOG and collaborative studies (Figure 3). After an initial expression of
interest by 11 centers, seven centers ultimately submitted their data for analysis. The study protocol
was shared with the participating centers. The participating centers (Leiden University Medical
Centre (LUMC), Leiden and Erasmus Medical Centre Hospital (EMCH), Rotterdam in the Netherlands,
University of California San Francisco (UCSF), U.S.A., University Hospital Schleswig-Holstein (UHSH)
in Rostock, Germany, the Helmholz Institute of Eye Diseases (HIED) in Moscow, Russia, S.C. Oculistica
Oncologica (SCOO) in Genoa, Italy, and University Hospital of Essen (UHE) Germany) were asked
to provide the following data: (1) demographic data—sex and age; (2) anatomical data—ultrasound
or histopathological measurements of largest basal tumor diameter, tumor thickness, presence or
absence of ciliary body involvement and presence or absence of extraocular extension; (3) histological
data—presence or absence of extravascular matrix loops, presence or absence of epithelioid cells,
and mitotic cell count (MITOC) per 40 high power fields (HPF); and (4) genetic data—chromosome 3
and 8q status. The MITOC was dichotomized as follows: 0—1/40 HPF = 1; 2—3/40 HPF = 2; 4—7/40
HPF = 3; >7/40 HPF = 4. Histological analysis was undertaken by all Centers using standard protocols,
as previously described [9]. Full descriptions of how genetic data were obtained and classified (e.g.,
Fluorescence in situ hybridization (FISH) methods, Multiplex Ligation Probe Amplification (MLPA) [27]
or other methods) were also requested.

Cases were pseudo-anonymized in accordance with local institutional policies and guidelines to
export patient data. Cases were excluded if missing data included age, sex or basal tumor diameter as
these have been established to be highly predictive of outcome. If any other variables are missing,
they can be imputed using a model-projection framework as detailed in Eleuteri et al. 2018 [12].
The result of this imputation process will be reflected upon in the confidence interval—the more
missing variables, the wider the interval. The data were transferred to the data manager (co-author
MT) at the Liverpool Bio-Innovation Hub (LBIH) Biobank at the University of Liverpool (UoL), where
patient identification and outcome were masked before passing the datasets to co-authors ACR and AT
for LUMPO3 analysis. Using LUMPO3, ACR and AT predicted outcomes, which were then compared
with the actual outcomes by a neutral Biostatistician mediator, LJB, to determine the performance
of the LUMPO3 tool (Figure 1). The comparative results were analyzed as below using statistical
methods by LJB.
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4.3. Statistical Analyses

Characteristics of the Liverpool (development) and external (validation) datasets were visually
assessed for agreement. A Kaplan–Meier curve of all-cause mortality was also produced to evaluate
event rates across the datasets.

The LUMPO3 model was designed by co-authors AE and AT to predict the probability of survival
at yearly intervals for each UM patient [12]. The survival predictions were sent to the independent



Cancers 2020, 12, 477 11 of 13

statistician (LJB) to undertake external validation using discrimination and calibration methods [28].
Discrimination refers to the ability of the prognostic model to differentiate between patients who died
during this study and those who did not. The discriminative capacity of the model was measured
using Harrell’s C-statistic [15,29]. It is measured on a scale ranging from 0.5 (no better than chance)
to 1 (perfect prognosis). A pooled estimate of discrimination was calculated using a random effects
meta-analysis, which accounted for the correlation between studies [29]. Calibration refers to how
closely the probability of the event predicted by the model agrees with the observed probability [28].
Calibration was assessed graphically [28]; if predicted and observed probabilities agree over the whole
range of probabilities, the plots show a 45◦ line. Statistical analyses were conducted using R statistical
software version 3.5.0.

5. Conclusions

Despite the differences between cohorts, LUMPO3 appears to be a reasonably accurate and
valuable tool predicting all-cause mortality in patients with UM. It should be noted that prognostic
tools evolve as new information regarding tumor biology accrues. Whilst the genetic information
incorporated into LUMPO3 are the copy number variations of chromosome 3 and 8, future versions
of our tool are likely to incorporate key mutations as described in primary UM [30]. However,
such revisions require sufficient data (and therefore time) for the revised algorithm to be made robust.
We are also currently exploring the possibility of recalibrating the model, so that its predictions can be
adapted to external data with different baseline hazard rates.
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