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Abstract
Lipidomics has emerged as a powerful technique to study cellular lipid metabolism. As the lipidome contains numerous isomeric
and isobaric species resulting in a significant overlap between different lipid classes, cutting-edge analytical technology is
necessary for a comprehensive analysis of lipid metabolism. Just recently, differential mobility spectrometry (DMS) has evolved
as such a technology, helping to overcome several analytical challenges. We here set out to apply DMS and the Lipidyzer™
platform to obtain a comprehensive overview of leukocyte-related lipid metabolism in the resting and activated states. First, we
tested the linearity and repeatability of the platform by using HL60 cells. We obtained good linearities for most of the thirteen
analyzed lipid classes (correlation coefficient > 0.95), and good repeatability (%CV < 15). By comparing the lipidome of
neutrophils (PMNs), monocytes (CD14+), and lymphocytes (CD4+), we shed light on leukocyte-specific lipid patterns as well
as lipidomic changes occurring through differential stimulation. For example, at the resting state, PMNs proved to contain higher
amounts of triacylglycerides compared to CD4+ and CD14+ cells. On the other hand, CD4+ and CD14+ cells contained higher
levels of phospholipids and ceramides. Upon stimulation, diacylglycerides, hexosylceramides, phosphatidylcholines,
phosphoethanolamines, and lysophosphoethanolamines were upregulated in CD4+ cells and PMNs, whereas CD14+ cells did
not show significant changes. By exploring the fatty acid content of the significantly upregulated lipid classes, we mainly found
increased concentrations of very long and polyunsaturated fatty acids. Our results indicate the usefulness of the Lipidyzer™
platform for studying cellular lipid metabolism. Its application allowed us to explore the lipidome of leukocytes.
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Introduction

Lipids are a dynamic group of molecules consisting of differ-
ent classes and subclasses [1]. The biological functions of
lipids are very diverse, ranging from their role as structural
elements of cellular membranes, and energy storage pool, to
the regulation of intracellular signaling [2, 3]. Lipidomics has
emerged as a useful strategy to measure and study lipids and
lipid-mediated cellular processes [4, 5]. Traditionally, shotgun
or multi-dimensional mass spectrometry-based lipidomics ap-
proaches have been used [6]. However, the lipidome contains
numerous isomeric and isobaric species resulting in a signifi-
cant overlap between different lipid classes. On this regard,
differential mobility spectrometry (DMS) has just recently
evolved as a useful tool to overcome this issue [7, 8]. In
DMS, the ions formed by electrospray ionization are guided
through a gas stream between two planar electrodes in which
gas phase separation on the millisecond scale can be achieved
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by fine tuning separation and compensation voltages in com-
bination with organic modifiers affecting the molecular shape
[8]. For lipidomics analysis, this technology has been an im-
portant development as it allows the gas-phase separation of
lipid classes thereby overcoming isobaric cross-talk [9].
Recently, a commercial platform, called the Lipidyzer™, has
become available as a validated quantitative lipidomics plat-
form. The Lipidyzer™ quantifies roughly 1.100 lipid species
across 13 lipid classes employing a series of deuterium-
labeled internal standards. The platform comprises a flow in-
jection system coupled to a QTrap® 5500 operated in
electrospray ionization mode (ESI), equipped with a
SelexION DMS device. By applying a compensation voltage
(COV) within the DMS, cell lipid classes are separated in the
gas phase before entering the QTrap® mass spectrometer
(MS) thereby overcoming isobaric overlap between the clas-
ses. Subsequently, the MS is operated in multiple reaction
monitoring (MRM) mode, selectively scanning the individual
(separated) lipid classes (8) (cf materials and methods and
Electronic Supplementary Material (ESM) S1 and S2). Thus,
far few reports have evaluated the platform; Contrepois et al.
tested the Lipidyzer™ and compared its performancewith that
of conventional LC-MS-based untargeted lipidomics strate-
gies. The authors concluded that the Lipidyzer™ is a robust
platform delivering comparable results with conventional
lipidomics analysis strategies [10]. Just recently, Cao et al.
described a high reproducibility of the platform when analyz-
ing tissue samples [11]. However, while the platform has
shown excellent results for reproducibility, relative quantifica-
tion, and fatty acid compositional analysis [12], it has some
limitations.While lipid species are being characterized includ-
ing fatty acid carbon and double bond number, double bond
position and geometry are not defined. Technologies helping
to possibly overcome such limitations involve photochemical
derivatization [13] and ozonolysis [14].Moreover, care should
be taken when reporting absolute quantifications as no report
has yet described the actual accuracy of the platform.
Nevertheless, the Lipidyzer™ platform together with several
other technological developments has made lipidomics anal-
ysis applicable to the study of lipid metabolism and biology.
For many years, studies about the effect of dietary lipids on
health and disease were mainly focused on cardiovascular
diseases. However, it has become accepted that lipid metabo-
lism is linked to the development of different pathologies as
for example diabetes, blood clotting, Alzheimer’s disease, and
cancer, as well as in physiological processes like the inflam-
matory response [15, 16]. The biosynthesis of red blood cells,
monocytes, polymorphonuclear neutrophils (PMNs), and
platelets has been shown to be largely dependent on lipids as
energy source and modulators of hematopoietic stem and pro-
genitor cell (HSPC) differentiation [12].

Immune cells derived from both myeloid and lymphoid
lineages work together in immune and inflammatory

response, preventing and limiting infection and promoting
tissue regeneration and homeostasis [17]. However, to date,
no comprehensive study has described the lipidome of these
lineages in resting and activated states. We here set out to
apply cutting-edge technology and obtain a comprehensive
lipidomics overview of PMNs, monocytes (CD14+), and the
major population of circulating lymphocytes (CD4+).
Additionally, we compared their lipidomes and shed light on
lipidomic changes that occur upon stimulation. We initially
investigated the platforms’ linearity and repeatability using
different amounts of HL60 cells as readily available surrogate
cells. Subsequently, we applied the Lipidyzer™ platform to
generate quantitative lipid profiles of PMN, CD14+, and
CD4+ cells in the resting and activated states. Our data forms
the basis for a better understanding of immune cell-specific
lipid metabolism and is a rich source comprehensively de-
scribing immune cell-specific lipidomes and lipidomic chang-
es during activation.

Materials and methods

Cell culturing

Human leukemia cells (HL60) were obtained from the ATCC
(Manassas, VA) and were grown in a humidified atmosphere
of 5% CO2 at 37 °C and maintained in RPMI 1640 from
Gibco (Carlsbad, CA) supplemented with 10% heat-
inactivated fetal bovine serum from Hyclone (Logan, UT)
and 1X antibiotic mix (Gibco, Carlsbad, CA). Cell density
was kept between 0.2 and 2 × 106 cells/mL.

Isolation of PMNs, CD14+ monocytes, and CD4+ T
cells

This study was approved by the local medical ethical commit-
tee of the LUMC (METC), and written informed consent was
given by all donors. Isolation of human PMNs from three
fresh 50-mL EDTA blood containers was done via
DextranT500 sedimentation (Pharmacosmos, Holbaek,
Denmark), taking only the upper layer followed by Ficoll
density gradient separation. Hypotonic lysis removed the re-
mainder of erythrocytes. Purity was checked by FACS
(LSRIII, BD, San Jose, USA), staining the cells with 2 CD3-
AF700 (clone UCHT1)/CD15-APC (clone HI98)/CD16-PE
(clone 3G8)/CD19-FITC (clone HIB19). Isolated PMNs were
resuspended in Dulbecco’s phosphate-buffered saline with
MgCl2 and CaCl2 (Merck, Darmstadt, Germany). Cell purity
was > 98%.

Human peripheral blood mononuclear cells (PBMCs) were
isolated by Ficoll density gradient from three healthy 50 mL
donor buffy coats (Sanquin, Amsterdam, The Netherlands).
Blood monocytes were isolated by positive selection from
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PBMCs using MACS CD14 Microbeads (Miltenyi Biotec,
Cologne, Germany), and purity was checked by FACS
(LSRIII, BD, San Jose, USA) staining the cells with CD14-
PE (clone MφP9). Cell purity was > 98%.

CD4+ T cells were obtained by further purifying the CD14
negative fraction with Dynabeads™ FlowComp Human CD4
positive Isolation Kit (Invitrogen) according to the manufac-
turer’s protocol. CD4+ T cells were kept in IMDM medium
(Gibco) containing 4500 mg/L D-glucose and L-glucose, 10%
FCS (LUMC apothecary), 100 U/mL penicillin and strepto-
mycin (LUMC apothecary), and 2 mM Glutamax (LUMC
apothecary). Cell purity was > 97%.

Cell stimulation

Both PMNs and CD14+ monocytes were stimulated for
10 min with 4 μM calcium ionophore A23178 (Merck,
Darmstadt, Germany). CD4+ cells were activated using
αCD3/CD28 beads (Gibco). Purity and activation were
checked by FACS (LSRIII, BD, San Jose, USA) staining the
cells with CD3-PE (clone SK7)/CD4-APC (clone SK3)/CD8-
FITC (clone SK1)/CD14-PEcy7 (clone M5E2) and activation
using CD25-AF700 (clone BC96). The percentage of CD25+
cells was > 35%.

Lipid extraction

For quantitative lipidomics analysis using the Lipidyzer™
platform, the cells were washed twice with PBS (+/+) contain-
ing 0.1% fatty acid free BSA after stimulation. The pelleted
cells were stored at − 80 °C until analysis. For Lipidyzer™
analysis, 100 μL IS (Lipidyzer™ internal standard kit, con-
taining > 50 labeled internal standards for 13 lipid classes) in
methanol:dichloromethane (50:50 (v/v)) and 250 μL of 2-
propanol (IPA) was added to 5 × 106 cells. After 30 min of
agitation, the samples were centrifuged for 10 min at 13.200g
at 20 °C. The supernatant was collected, and the pellet was
subjected to an additional extraction using 200 μL of IPA. The
samples were then dried under a gentle stream of nitrogen, and
suspended in 250 μL 10 mM ammonium acetate in (50:50
(v/v)) methanol:dichloromethane.

Lipid measurement

Acquisition and quantification was performed using the
Lipidyzer™ platform, consisting of a QTrap 5500 mass spec-
trometer (Sciex) with DMS, coupled to a Shimadzu Nexera
X2 LC system, for flow injection, and the Lipidomics
workflow manager software [8]. A detailed description of
the quantitation process can be found in references [10, 11].
Briefly, 50 μL of resuspended sample was injected twice
using a Shimadzu SIL 30AC autosampler into a running buff-
er consisting of 10 mM ammonium acetate in 50:50 (v/v)

dichloromethane:methanol at a flow rate of 7 μL/min. Two
different methods were applied. Method #1 operated with ac-
tive DMS separation under the following conditions, DMS
temperature low, modifier (propanol) composition low, sepa-
ration voltage 3500 V, DMS resolution enhancement low. The
DMS cell was not activated for method #2. The MS operated
under the following conditions: curtain gas 17, CAD gas me-
dium, ion spray voltage 4100V in ESI+mode and − 2500V in
ESI−mode, temperature 200 °C, nebulizing gas 17, and heater
gas 25. First, PC, PE, LPC, LPE, and SM lipid classes were
analyzed according to the method detailed in ESM S1. Next,
FFA, TAG, DAG, CER, DCER, LCER, HCER, and CE lipids
were analyzed applying method #2 as outlined in ESM S2.
EachMRMQ1/Q3 pair is specific to a lipid species where Q1
is the precursor mass and Q3 is the mass of one of its constit-
uent fatty acid product ions. Quantification of lipid species
was achieved by internal calibration using several deuterated
internal standards (IS) (Sciex cat# 504156) (cf ESM S1 and
S2) for each lipid class within the lipidomics workflow man-
ager. Each lipid species is corrected by the closest deuterated
IS within its lipid class, in terms of carbon and double bond
number of the fatty acid side chain. Subsequently, the obtained
area ratio is multiplied by the concentration of the respective
IS and corrected for volume and weight; as a consequence,
this quantitation can be considered accurate within a specified
quantitative bias. The so-obtained lipid concentration is then
converted to nmol/50 × 106 cells, taking into account that 5 ×
106 cells have been used in our experiments. On every day of
analysis, the system was initially cleaned and calibrated. For
additional details, please also refer to reference [10].

The following 13 lipid classes were quantitatively assessed:
CE, cholesterol ester; CER, ceramides; DAG, diacylglycerides;
DCER, dihydroceramides; FFA, free fat ty acids;
HCER, hexosylceramides; LPC, lysophosphatidylcholine;
LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine;
PE, phosphatidylethanolamine; SM, sphingomyelin; and TAG,
triacyltriglycerides. Although this nomenclature slightly devi-
ates from the recommendations of LipidMaps, we adapted the
given abbreviations as it facilitates a direct comparison between
the raw data from the Lipidyzer™ platform and the results
presented in the manuscript.

Expression of results and statistical analysis

The Lipidyzer™ platform provides several readouts which are
as follows: lipid class concentration (nmol/50 × 106 cells), lip-
id species concentration (nmol/50 × 106 cells), and fatty acid
concentration (nmol/50 × 106 cells) being the concentration of
all lipids of a specific lipid class containing a specific fatty
acid species. Moreover, compositional data (%) for the afore-
mentioned items is being presented. Please refer to the entire
lipidomics datasets as presented in ESM S3 to S5 for further
details. All data was normalized with cell numbers. All values
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were expressed as mean ± SD. Missing values were replaced
with the lowest data measured, unless more than 50% of the
data was missing, in which case the lipid was discarded. For
statistical analysis, we used R 3.6.1 and Graphpad Prism 8.
Parametric tests were performed (MANOVA, and Student’s t)
for data with a normal distribution; otherwise, a nonparametric
test was used (Kruskal-Wallis and Mann-WhitneyU) (Fig. 1).
The significance level was set at p < 0.05; the Holm-Sidak
method was used to corroborate the significance.

Results

Analytical evaluation

The Lipidyzer™ platform has been validated for plasma
using a dichloromethane modified Bligh and Dyer extrac-
tion of lipids [9]. However, the approach uses large
amounts of chlorinated organic solvents and did not seem
appropriate to our study using small amounts of purified
immune cells. Many different lipid extraction methods
exist, and most result in method-specific recoveries and
lipid coverages [18]. As this study is not about a compar-
ison of different extraction methods and deals with small
amounts of immune cells, we opted for repeated IPA ex-
traction, a solvent which has been found useful for
lipidomics analysis [19]. Nevertheless, we investigated
the linearity (cell numbers) and repeatability (replicates)
of this extraction method using the human lymphoma cell

line HL60 (Table 1). The observed correlation coefficient
was in most cases higher than 0.9. Under our conditions,
the abundance of DCER was low compared to that of the
other lipid classes, and considerably close to the measured
values in the blank (< 1.5× blank). For FFA, we observed
some background signals averaging roughly 25 nmol/106

cells for the entire lipid class. Hence, we assessed linear-
ity up to 50 × 106 cells and established a lower cut-off for
the use of the platform at an empirical value of at least
1.5× blank or approximately 10 × 106 cells being -
65.8 nmol/10 × 106 cells. In other words, pilot experi-
ments with other cell lines should ensure that the ob-
served lipid concentrations with specific cell numbers
and cell types are within the linear range and at least 1.5
times higher than the observed blank values. For our data
presented here, many immune cells showed FFA concen-
trations well above 2× the blank value and were thus
considered further for data analysis. Furthermore, the plat-
form performed very robust when comparing the obtained
results for a repeated analysis of 5 × 106 HL60 cells,
resulting in CV values < 15% relative standard deviation.
As FFA showed stable results with respect to standard
deviation during our study and we observed concentra-
tions well within the established linear range, we took
the obtained data along for analysis. In the case of
DCER, we decided to exclude the obtained data from
further evaluations as the observed analytical performance
was poor for this lipid class. It is important to note that as
for any lipidomics or metabolomics screening platform,

Fig. 1 Data processing diagram. The following flowchart is a schematic
guideline of how the data was processed for this study. The data was
divided in two sections: unstimulated state and stimulation. 1For the
unstimulated state, all cell populations were compared. 2For the
stimulation part, a cell-specific comparison between resting and activa-
tion was carried out. 3In this sub-section, we explore the FA composition

for specific lipid classes selected from the analysis of the stimulation part.
Data was tested using nonparametric tests for raw data or parametric tests
upon log transformation. Data was mainly lipid fractional composition
except for FA content for which we used lipid concentration as observed
changes were better visible
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specific validation steps should be undertaken when fur-
ther investigating biological and phenotypic relations.

Lipid profiling at the unstimulated state

We analyzed the lipid profiles of CD14+, CD4+, and PMN.
After lipid extraction with IPA, three replicates from three
donors were measured resulting in nine replicates per cell
population. Our first aim was to draw a comparison between
the lipid profiles of the different immune cell populations at
the unstimulated state. We used the Kruskal-Wallis test to
compare among lipid classes in each population (ESM S7)
and found that, except for LPE, most of the lipid classes
showed significant differences specific to the immune cell
type. Figure 2 depicts the behavior for the different lipid

classes among the three populations. The CD4+ and CD14+
population were quite similar to each other. This finding was
also supported by a Mann-Whitney test (ESM S8) in which
DAG, and FFA, showed no significant differences between
these two populations. PMN, on the other hand, proved to
be divergent (Fig. 2 and ESM S8). In particular, PMN showed
the highest fraction of TAG lipids and they were the only
population with measurable LPC class lipids. CD4+ cells
displayed a trend towards an increased CER fraction, showing
a high percentage of the lipidome consisting of SM, CER, and
DCER lipids. Moreover, CD4+ together with CD14+ cells
showed higher levels of FFA and PC class lipids.

Lipid profiling under stimulation

Next, we moved forward to explore changes in lipid me-
tabolism after stimulation. To this end, we treated PMNs
and CD14+ cells with calcium ionophore for 10 min;
CD4+ cells were treated with CD3/CD28 antibodies over-
night which induces activation of the cells and prolifera-
tion. We used a multiple Student’s t analysis to evaluate
changes after stimulation within each population (ESM
S9). Figure 3 shows the lipid classes presenting a major
variation after stimulation. Our results show that PMN
after calcium ionophore stimulation had a significant rise
in the DAG and FFA fraction (Fig. 3a, b), and a reduction
of the PC class (Fig. 3d). On the other hand, the CD4+
population showed major changes after antibody stimula-
tion, in which the fraction of DAG, HCER, PE, and LPE
was increased compared to the unstimulated state (Fig. 3a,
c, e, f). Interestingly, CD14+ cells showed no significant
differences in the lipid profile after 10 min of ionophore
stimulation.
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Fig. 2 Lipid composition comparison of CD4+, CD14+, and PMNs.
Cells from three donors were analyzed, and three technical replicates
(5 × 106 cells per replicate) were measured. Data represent the mean ±
SD of the lipid class fraction percentage

Table 1 Linearity and repeatability of IPA extraction methodology.
Human lymphoma cell line HL60 was cultured in RPMI 10% FCS and
1% PS. Linearity was assessed by calculating the correlation coefficient

(Corr) using different numbers of cells (1.25, 2.5, 5.0, and 10.0 × 106).
For repeatability, coefficient of variation (%CV) was used as a parameter,
and was evaluated on four replicates (5.0 × 106). See also ESM S6

Cell # × 106 CE CER DAG DCER FFA HCER LCER LPC LPE PC PE SM TAG

1.25 7.6 1.1 3.9 0.6 29.2 1.1 3.6 0.4 0.2 214.2 121.7 89.7 11.3

2.5 13.4 2.1 6.7 0.8 27.1 2.1 6.9 1.0 0.5 427.5 245.9 158.2 20.2

5 23.1 4.3 13.7 1.1 25.4 4.1 14.1 1.9 0.9 842.2 457.3 282.1 40.9

10 32.9 7.3 23.5 0.7 65.8 7.2 24.1 7.0 1.7 1401.5 413.7 417.0 72.1

25 120.4 8.8 90.0 3.8 91.9 22.5 49.5 13.8 3.8 3034.0 1385.2 681.8 114.1

50 243.5 15.3 ND ND 135.2 43.9 ND 25.9 8.3 5617.7 2394.2 1262.3 217.5

Blank 0.5 0.05 ND 3,1 22.9 ND ND ND ND ND ND 3.3 0.8

Coeff. corr 1.00 0.93 0.98 0.87 0.93a 1.00 0.99 0.99 1.00 1.00 0.99 0.99 0.99

%CV 2.73 4.40 8.64 12.20 22.57 6.43 8.78 3.77 3.05 6.60 12.45 5.50 3.96

Data represent the mean of the concentration (nmol/106 cells) for the 13 lipid classes

ND not determined
a Linearity ranged from 5 until 50 × 106 cells
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CD4+ lipid profile after stimulation

We could identify specific lipid classes involved in the activa-
tion of CD4+ cells and PMN after specific stimulation with
anti CD3/CD28 or calcium ionophore, respectively. As FAs
are known to be important precursors for several lipid media-
tors such as for example the eicosanoids and docosanoids
[20], we specifically explored the FA concentration instead
of composition for the significantly affected lipid classes.
We decided to use lipid concentration because fractional lipid
composition is based on the total number of measured species;
hence, in those lipid classes in which only a few or one species
was measured, the alterations upon stimulation were less ev-
ident. For CD4+ cells, we analyzed FA changes in the DAG,
HCER, and PE lipid classes, respectively. Figure 4a, c, d
shows the FAs with significant changes related to the afore-
mentioned lipid classes. Interestingly, increased concentra-
tions of palmitic acid (FA (16:0)) were a common feature
shared by all three lipid classes. The DAG and PE classes
presented important changes in the concentration of long-
chain and polyunsaturated fatty acids, such as stearic (FA
(18:0)), oleic (FA (18:1)), linoleic (FA (18:2)), and

arachidonic acid (FA (20:4)). The HCER and PE classes
displayed a significant boost in the FA concentration of
long-chain FA. In order to investigate a possible source for
the observed changes in the FA composition, we assessed the
FA content for the FFA and TAG lipid classes (Fig. 4b, e). In
particular, myrisitic acid (FA (14:0)) was increased after stim-
ulation; at the same time FA (16:0), FA (16:1), and FA (20:4)
showed increased concentration in the TAG lipid class. A
common feature in FFA and TAG was an increased concen-
tration of palmitoleic acid (FA(16:1)).

PMN lipid profile after stimulation

PMN showed significant differences for the DAG, FFA, and
PC (Fig. 3a, b, d) lipid classes. Increased concentrations in FA
(16:0), FA (18:0), FA (18:1), and FA (18:2) were common for
DAG and FFA (Fig. 5a, b). Calcium ionophore stimulation
also augmented the concentration of FA (20:4) and very long
chain fatty acids in the FFA lipid class. However, when spe-
cifically analyzing the FA content of the PC fraction, we found
that only FA (20:4) showed a significant change correlating
with calcium ionophore stimulation (Fig. 5c).

Fig. 3 Stimulation of CD4+, CD14+, and PMNs induces significant
changes in DAG, FFA, HCER, PC, PE, and LPE. Cells from three
donors were isolated and stimulated with calcium ionophore (CD14 and
PMNs) or CD3/CD28 (CD4); three replicates (5 × 106 cells per replicate)
were measured. Results from multiple Student’s t test showed six lipid

classes mainly affected after cell stimulation: a DAG, b FFA, c HCER, d
PC, e PE, and f LPE. Data show composition percentage, *p ≤ 0.05,
**p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. The significance level was
set at p < 0.05. C, control; S, stimulation; blue, donor 1; green, donor 2;
red, donor 3
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Discussion

In the present study, we applied a quantitative DMS-based
lipidomics platform (Lipidyzer™) to comprehensively study

the lipidome of different immune cells in unstimulated and
activated states, using IPA for lipid extraction. In total, we
detected #790 unique lipid species (including 26 CE, 11
CER, 7 DCER, 38 DAG, 26 FFA, 7 HCER, 5 LCER, 15

Fig. 4 Fatty acid concentration in different lipid classes after activation of
CD4 cells with CD3/CD28 antibodies. CD4+ cells from three donors
were isolated and stimulated with CD3/CD28; three replicates (5 × 106

cells per replicate) were measured. Lipid classes showing statistical most
significant changes were selected. The FA side chain concentration was

quantitatively measured. Graphics depicted species with the most signif-
icant variations, upon Log transformation. aDAG, b FFA, cHCER, d PE,
and e TAG. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. The
significance level was set at p < 0.05

Lipid metabolism of leukocytes in the unstimulated and activated states 2359



Fig. 5 Specific fatty acids being involved during the PMN stimulation
with calcium ionophore. PMN cells from three donors were isolated and
stimulated with calcium ionophore; three replicates (5 × 106 cells per
replicate) were measured. Lipid classes showing the statistically most
significant change were selected. Fatty acid side chain concentration

was quantitatively measured. Graphics depicted species with the most
significant variations, upon Log transformation. a DAG, b FFA, c PC,
d TAG. *p ≤ 0.05. **p ≤ 0.01. ***p ≤ 0.001. ****p ≤ 0.0001. The
significance level was set at P < 0.05

Table 2 Summary. 1R significant differences in the resting state
compared with the other cell populations under study. 2S significant
differences after stimulation comparing unstimulated with resting state.

3FAwith a significant change after stimulation shown for the specific lipid
class. Direction of arrow shows increase in lipid composition (lipid
classes) or concentration (FA content). NC no change
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LPC, 6 LPE, 62 PC, 91 PE, 12 SM, and 484 TAG species)
present in CD4+, CD14+, and PMN cell extracts (ESM S5).

We tested the linearity and repeatability of this methodol-
ogy using human leukemia cells (HL60). Ten out of the thir-
teen evaluated lipid classes displayed a correlation coefficient
above 0.95 (Table 1), showing a good linearity of the meth-
odology. For repeatability, four biological replicates from a
single cell batch were tested. Table 1 shows %CVs for the
different lipid classes; with the exception of DCER and FFA,
all the lipid classes had values below 15%, indicating low
variability in replicates or methodology. Even though, com-
pared to Bligh and Dyer, or MTBE, IPA is a less popular
methodology, for our purpose, this lipid extraction worked
properly as can be judged by good %CVs and linearity.

We profiled three different immune cell populations
CD14+, CD4+, and PMN (Table 2). Today, only few re-
ports describe the lipidomics analysis of immune cells,
PBMCs [21], lymphocytes, and PMNs [22], and red blood
cells (RBC) [23]. However, most studies carried out anal-
ysis solely at resting state. Just recently, a study by Leidl
et al. [24] compared the lipid species in monocytes, lym-
phocytes, granulocytes, platelets, and RBC of healthy vol-
unteers at resting state using flow injection ESI tandem
mass spectrometry. The authors found PE, SM, and PC
species to be the most prominent lipid classes found in the
investigated cell types. Another study investigated the
lipidome of PMN and particularly found high levels of
TAG lipids in these cells [25]. In our study, we could
confirm this finding, proving that particularly PE, PC,
and SM lipids were prominent in the investigated immune
cells. A specific characteristic of the CD4+ population
was high percentages of CER, and SM lipids, pinpointing
to a particular involvement of these cells in CER metab-
olism. Indeed, CER metabolism has been related to the
activation and pro-inflammatory response in T cells [26,
27]. It is important to highlight that these cell types are
very different in size and granularity (morphology); con-
sequently, they have a different composition of cell
membrane/intracellular membrane/compartments. This
probably explains much of the differences we found.

When comparing the lipidomes derived from activated
immune cells with the resting state, several significant obser-
vations could be made. In the CD4+ population, notable
changes in the DAG, HCER, and PE lipid classes were ob-
served. Interestingly, DAG species with elongated FA (FA >
16) and PUFA side chains were predominant. This upregula-
tion is a common feature after lymphocyte activation, in
which DAG lipids are released mainly from membrane phos-
pholipids [28] by the actions of phophatidylinositol and
phosphatidylcholine-dependent phospholipases. Once the in-
tracellular concentration of DAG lipids is increased, they can
act as signal transducers by stimulating the enzyme protein
kinase C, and downstream regulate cell differentiation and

activation [29]. In our hands, mainly PE (Fig. 3d) and PC
(ESM S1) were affected. However, contrary to what we ex-
pected, they did not seem to be the source of increased DAG
lipids. In order to investigate another possible origin of the
observed PUFA side chains, we investigated the TAG and
FFA lipid classes. TAG showed increased concentration in
saturated fatty acid, specifically FA (14:0) was boosted (Fig.
4e); this observation can be the result of a mechanism to
control cytotoxic FFA in the cytoplasm by increasing TAG
synthesis and lipid droplets as previously described [30].

With regard to the observed increase of HCER lipids under
activation of CD4+ cells, the work by Hanief Sofi and co-
workers showed that de novo synthesis of CER is an impor-
tant feature involved in T cell proliferation and inflammatory
response [27]. Their work underlined CER synthetase 6
(CerS6) to be involved in the biosynthesis of C16 CER being
important in T cell biology. In turn, the here observed upreg-
ulation of HCER lipids can possibly be related to the actions
of CerS6, and likely other CER synthases.

Finally, we found an upregulation of PE lipids under
CD4+ stimulation. When investigating the FA composi-
tion of this lipid class, we found an unexpected increased
amount of PE lipids containing arachidonic acid (FA20:4)
and its elongation product adrenic acid (FA22:4). In
2004, Tomita and co-workers showed that during CD4+
cell activation arachidonic acid was unidirectionally
transferred from PC to PE [31]. In the present study, we
observed an increase in PE concentration (Fig. 3e), in-
cluding arachidonic acid, other PUFAs, and long-chain
fatty acids (Fig. 4d). In contrast with the results of
Tomita, we did not see significant changes in the PC
fraction (ESM S9). However, our results in PC-derived
FA concentration showed a significant reduction in the
PC-derived FA (20:3) (ESM S10). Our results also
showed a clear PE enrichment, but the biological signif-
icance of it and its biosynthetic pathway should be sub-
ject to further studies.

Surprisingly, CD14+ cells presented no significant changes
after calcium ionophore stimulation (ESM S11) even though
we observed a trend towards increased concentrations of
DAG, FFA, PC, and SM lipids. This observation is in corre-
lation with a decrease in the TAG, and CER lipid classes
(ESM S11).

Under calcium ionophore stimulation, PMN showed an
upregulation in the DAG and FFA lipid classes. This finding
is very well in line with the report by Schlager et al. [32],
showing the involvement of adipose triglyceride lipase
(ATL) during PMN activation. Importantly, while Schlager
et al. mainly focused on the production of downstream eicos-
anoids and their correlation with the activity of ATL, we here
provide evidence for this mechanism on the level of the DAG
and FFA lipid class. Further evaluating this relation in more
detail, we investigated the FA concentration of the produced
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DAG and FFA lipids in order to shed some light on the spec-
ificity of this process for certain lipid classes. Both lipid clas-
ses showed an accumulation of saturated C16 and C18 FA, as
well as mono- and di-unsaturated C18 lipids; specifically,
PUFAs were found to accumulate in the FFA fraction.
Interestingly and in line with other reports [33, 34], we did
find a predominant upregulation of arachidonic acid (FA20:4)
levels after calcium ionophore stimulation.While the origin of
this FA has been coined to be the inner membranes of PMN as
well as TAG lipids [35], it was still remarkable to see that the
only fatty acid being downregulated was arachidonic acid.
This speaks for the fact of a highly selective action of cytosolic
phospholipase on the PE lipid class.

In conclusion, the present work is a primer for the use of the
Lipidyzer™ platform for cellular lipid profiling. The platform
behaved overall linear and provided very robust and reproduc-
ible results. Although we did not compare efficiencies with
other extraction methodologies, IPA extraction of cellular
lipids proved to be linear and reproducible. This will mainly
be related to limited matrix effects encountered in cellular
incubations and should not be generalized towards more com-
plicated matrices such as serum or plasma. Moreover, some
pilot experiments depending on the cell line under investiga-
tion seem mandatory when evaluating other cell systems.
However, using approximately 5 × 106 cells, we obtained
highly robust and reproducible results allowing to carry out
sound statistical analysis of the data resulting in molecular
observations, which align very well with other reports.
Nevertheless, as for all metabolic screening platforms, specific
validation experiments should be considered when moving
forward into biological and phenotypic correlations. Our
here-presented results show that the Lipidyzer™ platform
can serve as an intriguing quantitative lipidomics platform
for studying cellular lipid metabolism and generating new
biological hypothesis. It will be important that the
Lipidyzer™ community will evaluate and provide cell and
tissue specific protocols further expanding the usefulness of
this platform and allowing its validation for specific
applications.
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