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Abstract
Given the median survival of 15 months after diagnosis, novel treatment strategies are needed for glioblastoma. Beta-blockers
have been demonstrated to inhibit angiogenesis and tumor cell proliferation in various cancer types. The aim of this study was to
systematically review the evidence on the effect of beta-blockers on glioma growth. A systematic literature search was performed
in the PubMed, Embase, Google Scholar, Web of Science, and Cochrane Central to identify all relevant studies. Preclinical
studies concerning the pharmacodynamic effects of beta-blockers on glioma growth and proliferation were included, as well as
clinical studies that studied the effect of beta-blockers on patient outcomes according to PRISMA guidelines. Among the 980
citations, 10 preclinical studies and 1 clinical study were included after title/abstract and full-text screening. The following
potential mechanisms were identified: reduction of glioma cell proliferation (n = 9), decrease of glioma cell migration (n = 2),
increase of drug sensitivity (n = 1), induction of glioma cell death (n = 1). Beta-blockers affect glioma proliferation by inducing a
brief reduction of cAMP and a temporary cell cycle arrest in vitro. Contrasting results were observed concerning glioma cell
migration. The identified clinical study did not find an association between beta-blockers and survival in glioma patients.
Although preclinical studies provide scarce evidence for the use of beta-blockers in glioma, they identified potential pathways
for targeting glioma. Future studies are needed to clarify the effect of beta-blockers on clinical endpoints including survival
outcomes in glioma patients to scrutinize the value of beta-blockers in glioma care.
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Introduction

Glioblastomas are the most common primary malignant brain
tumors [1]. With a median survival of just 16 months despite
neurosurgical resection and chemoradiation, prognosis is poor
and novel treatment strategies are needed [2–6].

Beta-blockers are competitive antagonists of the sympa-
thetic effects of catecholamines on beta-adrenergic receptors
[7, 8]. They have affinity for beta-1-, beta-2-, or beta-3-
adrenergic receptors but do not evoke a response from these
receptors. Therefore, the binding of a beta-blocker and adren-
ergic receptor prevents the binding and subsequent effects of
catecholamines [9]. In cardiovascular diseases, beta-blockers
are widely prescribed to counter these effects, including an
increase in heart rate and blood pressure. Within the field of
oncology, catecholamines have been demonstrated to stimu-
late secretion of pro-angiogenic factors such as vascular en-
dothelial growth factor (VEGF) and boost tumor migration in
several cancer cell lines [10–12]. Consequently, beta-blockers
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have been reported to inhibit angiogenesis and tumor cell
proliferation in breast cancer, multiple myeloma, pancreatic
cancer, and neuroblastoma cell lines by decreasing
catecholamine-driven proliferation [13–16]. While the pres-
ence of beta-1-, beta-2-, and beta-3-adrenergic receptors has
been demonstrated in glioma cell lines [17–19], the potential
efficacy of beta-blockers in this cancer type remains to be
elucidated [20]. The aim of this study was to systematically
review preclinical and clinical studies on the effects of beta-
blockers on glioma.

Methods

Search strategy

A systematic literature review according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [21]. The Embase, Medline Ovid
(PubMed), Web of Science, Cochrane Central, and Google
Scholar databases were searched to identify all relevant arti-
cles up to May 10, 2019. A professional librarian was
consulted in order to construct a search syntax, which used
synonyms for glioma and beta-blockers (suppl. Table 1). All
selective and non-selective beta-blockers were included in the
syntax. Clinical studies were included if they investigated the
association between beta-blocker use and survival or other
outcomes in glioma patients. Furthermore, all preclinical stud-
ies that investigated the effect of beta-blockers in glioma cell
lines or in animal models were included as well. Case reports
or articles written in languages other than Dutch or English
were excluded. No restrictions based on the date of publica-
tion were used. This systematic search was complemented by
screening the references of the included articles to identify
additional publications. Titles and abstracts of retrieved arti-
cles were first screened by two independent authors (IRT, SK).
Afterwards, two authors read the full text of potentially suit-
able articles separately (IRT, SK). Discrepancies were re-
solved by discussion and, if necessary, a third reviewer was
consulted (JS).

Data extraction

The following data were extracted from the included preclin-
ical studies: year of publication, name of the first author, type
of cell line, beta-blocker used, optimum concentration, cyclic
adenosine monophosphate (cAMP) formation, morphology,
and percentage of beta-adrenergic receptor blocked as deter-
mined relative to all cells on the plate. From clinical studies,
the following parameters were extracted: year of publication,
name of the first author, glioma categorized by grade, beta-
blocker used, number of patients, 1-year survival rate, and
median overall survival in months.

Results

The search identified 980 unique studies. After screening
of title and abstract followed by screening of the full text,
we included 11 studies (10 preclinical and one clinical)
that examined the effect of beta-blockers on glioma
growth and patient outcomes (Fig. 1) [18, 20, 22–30].
Characteristics of all included preclinical studies can be
found in Table 1.

The identified preclinical studies investigated the following
mechanisms through which beta-blockers could affect glioma
growth: (i) reduction of glioma cell proliferation [18, 20,
23–26, 28, 29], (ii) decrease of tumorigenesis and glioma cell
migration [22, 27], (iii) increase of drug sensitivity [24], and
(iv) induction of cell death [24].

Reduction of glioma cell proliferation

Eight studies investigated the effect of beta-blockers on glio-
ma cell proliferation [18, 20, 23–26, 28, 29]. Two pathways
were identified through which beta-blockers could potentially
reduce glioma cell proliferation: a decrease in intracellular
cyclic adenosine monophosphate (cAMP) levels resulting in
lower cell activity [18, 20, 23–26, 28, 29] and a time-
dependent cell cycle arrest [18].

cAMP and cell metabolism

In two in vitro studies, elevated cAMP levels were associ-
ated with increased glioma cell proliferation and stellate
transformation [18, 24]. Stellate transformation indicates
that the (tumor) cell is more active, i.e., cytoplasmatic pro-
cesses rise. Therefore, overall cell activity and proliferation
are stimulated in this formation. This is a negative devel-
opment in the treatment of a tumor. The spherical morphol-
ogy could be induced by beta-agonists and suppressed by
beta-blockers [18]. This process indicates increased tumor
cell activity and extensive proliferation and could be in-
duced by beta-agonists and suppressed by beta-blockers
[18]. A schematic representation of the cAMP pathway in
glioma can be found in Fig. 2. Six studies further investi-
gated the relationship between beta-blockers and reduced
cAMP levels, as well as the underlying pathways [23–26,
28, 29]. First, beta-blockers initiated a time- and dose-
dependent decrease in cAMP formation caused by a block-
ade of the substrate (i.e., beta-agonists) bound activity [18,
24–26, 28, 29]. Second, suppression of the unbound, con-
stitutive activity of adrenergic receptors was observed (i.e.,
beta-blockers functioning as inverse agonists) [28]. In
three studies, however, maximum levels of cAMP forma-
tion could still be reached despite a blockade of > 90% of
the beta-adrenergic receptors. This indicates that cAMP
formation possibly occurs at receptor sites other than the
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beta-adrenergic variant [23, 28, 29]. Lastly, beta-blockers
initiated a time- and dose-dependent decrease in adenylate
cyclase, a protein that catalyzes the conversion of adeno-
sine 5-triphosphate (ATP) to cAMP [18, 23–26, 28, 29].

Time-dependent cell cycle arrest

Erguven et al. explored the effect of beta-blockers on the cell
cycle [24]. In their study, carvedilol appeared to increase the
percentage of glioma cells in the mitotic S- and G2-phases at
24 h after administration. However, it induced a cell cycle
arrest in the G0/G1 phase at 72 h after administration.

Decrease of glioma cell migration

Two studies examined the effect of beta-blockers on angiogen-
esis and glioma cell migration [22, 27]. Pavlova et al. injected
rats with rat C6 glioma cells and treated half of them with ICI-
118551 p.o., a specific beta-2-receptor antagonist, starting from
the first day after implantation [27]. Upon implantation of the
C6 glioma cells into the caudate putamen area, the control
group was divided in rats that received either saline or isopro-
terenol in the same volume. The rats that received ICI-118551
survived longer than the control group (median 45 versus
20 days). All rats that received isoproterenol developed metas-
tasis in the first 7 days after implantation. Furthermore, confocal

Fig. 1 Flowchart

671Neurosurg Rev (2021) 44:669–677



imaging of fluorescent gliomas in vivo and ex vivo revealed
that blockade of the beta-2-adrenergic receptors decreased gli-
oma cell migration by 20% and reduced the disruption of the
blood-brain barrier significantly (p < 0.001).

Annabi et al. did not observe a direct association with cell
migration in vitro but reported an association between pro-
pranolol administration and matrix metalloproteinase nine
(MMP-9) and Hu antigen R (HuR) [22]. MMP-2 was not

Fig. 2 Schematic illustration of cAMP pathway

Table 1 Characteristics of preclinical articles

Author Year β-Blocker Cell line β-Agonist Anti-tumor effect Main observation Δ control group*

Edström et al. 1975 Sotalol Human glioma cells Isoproterenol Antiproliferative cAMP decrease 92%

Terasaki et al. 1979 Propranolol Rat C6 glioma cells Isoproterenol Antiproliferative cAMP decrease x

Homburger et al. 1984 Pindolol Rat C6 glioma cells Isoproterenol x < 100% β-receptors blocked 52.2%

Homburger et al. 1985 Pindolol Rat C6 glioma cells Isoproterenol x < 100% β-receptors blocked 85%

Balmforth et al. 1986 Propranolol G-CCMa Isoprenaline Inhibition
secondary sites

x x

Conroy et al. 1988 Propranolol AC glioma cells Isoproterenol Antiproliferative Decrease in stellate morphology 45%

Sokolowska et al. 2005 Propranolol Rat C6 glioma cells Isoprenaline Inverse agonism cAMP decrease 80%

Annabi et al. 2009 Propranolol HBMECb x Anti-angiogenic MMP-9 decrease 40%

Erguven et al. 2009 Carvedilol Rat C6 glioma cells x Antiproliferative cAMP decrease 80%

Pavlova et al. 2018 Propranolol In vivo x Antimigration Decrease in
migration/increase
in survival

20%/50%

The "x" implies that they have not reported or did not use this variable in the study
aG-CCM human astrocytoma cell line
b HBMEC human microvascular endothelial cells of the brain

*All shown percentages demonstrate the relative difference in the main observation between control group (beta-agonist + cell line) and beta-blocker +
beta-agonist + cell line
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affected by propranolol. MMP-9 and MMP-2 are associated
with the integrity of the blood-brain barrier [31, 32] and have
been shown to increase the invasiveness of human glioma
cells [33, 34]. Annabi et al. observed that MMP-9 levels were
positively correlated with the expression of beta-adrenergic
receptors and reduced after treatment with propranolol [22].
Moreover, capillary structure formations were inhibited by
propranolol in vitro. HuR and RNA-binding proteins are
known to positively affect proliferation, survival, and transla-
tional efficiency in other cancer types including lung, breast,
ovarian, and colon cancer cells [35–41]. Annabi et al. ob-
served that propranolol does not directly affect HuR expres-
sion, but that it inhibits HuR translocation into cytosol where
it stabilizes MMP-9 [22].

Increase of drug sensitivity

One study investigated the effect of beta-blockers on the sen-
sitivity of glioma cells to cytotoxic drugs [24]. In this in vitro
study, Erguven et al. targeted the p-glycoprotein (p-Gp), a key
efflux transporter in the blood-brain barrier known to attenuate
the efficacy of various drugs by limiting transport to the cen-
tral nervous system [42, 43]. Carvedilol administration in
combination with imatinib, a kinase inhibitor that is primarily
used for leukemia, resulted in increased imatinib-induced cell
death [24].

Induction of glioma cell death

Erguven et al. also examined the effect of beta-blockers on
programmed cell death [24]. They showed that carvedilol
treatment established lytic changes in glioma cells, especially
in the mitochondria, thereby initiating cell apoptosis. A single
dose of carvedilol induced apoptotic cell death of 5% in all
monolayer-cultured C6 glioma cells after 24 h (p < 0.05). At
72 h, this percentage of apoptotic cells was decreased to 2%
(p < 0.01) [24]. The underlying mechanism, however, remains
to be elucidated [24] (Fig. 3).

Clinical evidence of beta-blockers affecting glioma

Johansen et al. studied the effect of beta-blockers on recurrent
glioblastoma in a retrospective cohort of 218 patients [30].
This study compared patients that received beta-blockers with
patients that did not receive any antihypertensive drug, while
both groups were being treated with bevacizumab. After
adjusting for multifocal disease, use of steroids, WHO perfor-
mance status, and neurocognitive deficits, no association was
found between beta-blocker usage and overall survival (haz-
ard ratio 0.79; CI 95% 0.38–1.65; p value 0.53) or
progression-free survival (hazard ratio 0.78; CI 95% 0.36–
1.68; p value 0.52).

Discussion

This systematic review synthesizes all preclinical and clinical
evidence on the effect of beta-blockers on glioma growth and
patient outcomes. Preclinical studies have identified several po-
tential mechanisms of action through which beta-blockers might
have a potential effect on (i) glioma cell proliferation [18, 20,
23–26, 28, 29], (ii) glioma cell migration [22, 27], (iii) drug
sensitivity [24], and (iv) glioma cell death [24]. First, beta-
blockers were demonstrated to lower tumor cell proliferation
by decreasing levels of cAMP with dose and time dependency.
Second, after administering beta-blockers a time-dependent cell
cycle arrest was observed [18, 20, 23–26, 28, 29]. Third, block-
ade of the beta-2-adrenergic receptor decreased glioma cell mi-
gration [27]. Last, p-glycoprotein expression is possibly altered
by beta-blockers resulting in an increase in drug sensitivity. One
observational clinical study was included, which did not find an
effect of beta-blockers on overall survival or progression-free
survival in recurrent glioblastoma [30].

Beta-blockers have been suggested to reduce the risk of
prostate cancer [44], as well as hepatocellular carcinomas in
hepatitis C patients [45], and to prolong survival and reduce
mortality in breast cancer patients [46]. In addition, it has been
demonstrated that beta-blockers affect cell proliferation and
migration in neuroblastoma cell lines [13]. Moreover, beta-
blockers were demonstrated to elevate the therapeutic concen-
tration of co-administered medications. Interestingly, this ele-
vation of drug sensitivity did not seem to be related to a var-
iation in p-Gp expression [13].

The current literature provides limited evidence to integrate
beta-blockers into glioma treatment. However, the preclinical
studies have identified various mechanisms through which the
application of non-selective beta-blockers could potentially
attenuate glioma cell proliferation.

Microglia have been demonstrated to upregulate matrix-
altering enzymes, especially MMP-2 andMMP-9, to facilitate
glioma infiltration. Downregulation of the MMP-cascade re-
sults in less glioma invasion, angiogenesis, and growth [47].
This systematic review identified contrasting results
concerning the effect of propranolol on cell migration and
the potential role of MMP-2 and MMP-9 [22, 27]: MMP-2
levels were not affected by propranolol, while MMP-9 levels
were. Still, propranolol was not observed to directly affect
glioma cell migration. This could indicate that even though
both MMP-2 and MMP-9 affect migration, blocking one of
these does not preclude alternative pathways from promoting
cell migration. AlthoughMMP-9 andMMP-2 are mostly sim-
ilar substrates, it is hypothesized that they are regulated by
different mediators, expressed under different conditions,
and therefore have different instances in which they affect
the tumor micro-environment [48, 49]. However, more studies
are needed to elucidate how MMP-9 and/or MMP-2 directly
or indirectly affect glioma cell migration in patients.
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Finally, the observational study did not find a significant
effect of beta-blockers on the survival rate of recurrent glio-
blastoma patients. In the multivariate analysis, neurocognitive
deficits and steroids were included without reported associa-
tion with overall survival. The aforementioned variables were
included as a result of a study which reviewed variables
influencing the quality of life and prognosis in glioblastoma
patients [50]. The statistical insignificance of the hazard ratio
of 0.79 could be due to an underpowered analysis. Moreover,
the research question of this study was focused on angiotensin
system inhibitors and the sample size of the sub-analysis

regarding beta-blockers was not reported [30]. Pavlova et al.
[27] observed a survival increase in rats with glioma. The
significant decrease of glioma cell migration combined with
the observation that all rats receiving isoproterenol developed
metastasis within the first 7 days after implantation empha-
sizes the possibility of the beta-adrenergic pathway being a
tumor migration pathway [27]. However, additional studies
are still needed to elucidate this question.

There are limitations to the present review. Most studies
predominantly focused on associations between beta-
blockers and mediator enzymes (such as MMP-9) instead of

Fig. 3 Morphological
observations and effect on glioma
cell proliferation
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examining their direct effect on clinical (e.g., survival and
tumor progression) or physiological endpoints (e.g., cell pro-
liferation and cell migration). As such, no inferences can be
drawn on the direct association between beta-blockers and
these endpoints. Studies that consider mediating proteins as
surrogate endpoints rely on the strong assumption that these
mediators are included in the causal pathway. Outcomes such
as cell growth or migration are independent of such assump-
tions and thus would be able to support more robust conclu-
sions. Additionally, this systematic review is subject to publi-
cation bias. Despite these limitations, we believe this review
provides valuable insights into the potential utility of beta-
blockers in glioma care and valuable target mechanisms for
the development of anti-glioma drugs. To the best of our
knowledge, this is the first systematic review synthesizing
the current body of evidence on the effects of beta-blockers
on glioma growth and patient outcomes, both in the preclinical
and clinical realms.

Future research

Preclinically, almost all studies were performed in vitro.
Therefore, future research on the effect of beta-blockers in
addition to conventional treatment of glioma should ideally
be performed in vivo. Preclinical studies could further inves-
tigate the effect of beta-blockers in vivo by measuring clini-
cally relevant outcomes (e.g., survival and recurrence rates)
and physiological endpoints (e.g., both cell proliferation and
cell migration) in mice. Preliminary results of an ongoing
clinical study suggest that propranolol in combination with
etodolac (VT-122) might have a positive effect on survival
in recurrent glioblastoma patients. Hypothetically, VT-122 at-
tenuates inflammation and thereby increases tolerability for
anticancer therapy [51, 52]. Additionally, including medica-
tion and beta-blocker usage in large prospective neuro-
oncological registries could be valuable in investigating the
effect on cancer-related patient outcomes.

Conclusion

Although preclinical research provides limited evidence for
the effectiveness of beta-blocker usage in glioma care, this
review identifies potential mechanisms through which beta-
blockers might affect glioma proliferation, migration, drug
sensitivity, and programmed cell death. However, the effect
on patient outcomes remains unclear due to the limited body
of clinical evidence. In addition to identifying potential medi-
ators, future preclinical research should further explore the
effect of beta-blockers on physiological and clinical end-
points. Including medication and beta-blocker usage in large
prospective neuro-oncological registries could be a valuable

step for examining the direct or conjunct effect on cancer-
related patient outcomes.
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