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Sirtuin 1 (Sirt1) is a NAD+ dependent lysine deacetylase associated with the

pathogenesis of various diseases including cancer. In many cancer types Sirt1 expression

is increased and higher levels have been associated with metastasis and poor prognosis.

However, it was also shown, that Sirt1 can have tumor suppressing properties and

in some instances even a dual role for the same cancer type has been reported.

Increased Sirt1 activity has been linked to extension of the life span of cells, respectively,

organisms by promoting DNA repair processes and downregulation of tumor suppressor

proteins. This may have the downside of enhancing tumor growth and metastasis.

In mice embryonic fibroblasts depletion of Sirt1 was shown to decrease levels of the

DNA damage sensor histone H2AX. Impairment of DNA repair mechanisms by Sirt1

can promote tumorigenesis but also lower chemoresistance toward DNA targeting

therapies. Despite many biological studies, there is currently just one small molecule Sirt1

inhibitor in clinical trials. Selisistat (EX-527) reached phase III clinical trials for treatment

of Huntington’s Disease. New small molecule Sirt1 modulators are crucial for further

investigation of the contradicting roles of Sirt1 in cancer. We tested a small library of

commercially available compounds that were proposed by virtual screening and docking

studies against Sirt1, 2 and 3. A thienopyrimidone featuring a phenyl thiocyanate moiety

was found to selectively inhibit Sirt1 with an IC50 of 13µM. Structural analogs lacking the

thiocyanate function did not show inhibition of Sirt1 revealing this group as key for the

selectivity and affinity toward Sirt1. Further analogs with higher solubility were identified

through iterative docking studies and in vitro testing. The most active compounds (down

to 5µM IC50) were further studied in cells. The ratio of phosphorylated γH2AX to

unmodified H2AX is lower when Sirt1 is depleted or inhibited. Our new Sirtuin 1 inhibiting

thiocyanates (S1th) lead to similarly lowered γH2AX/H2AX ratios in mouse embryonic

fibroblasts as Sirt1 knockout and treatment with the reference inhibitor EX-527. In
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addition to that we were able to show antiproliferative activity, inhibition of migration and

colony forming as well as hyperacetylation of Sirt1 targets p53 and H3 by the S1th in

cervical cancer cells (HeLa). These results reveal thiocyanates as a promising new class

of selective Sirt1 inhibitors.

Keywords: sirtuins, lysine deacetylase, thiocyanate, DNA damage, histone, H2AX, p53

INTRODUCTION

Sirtuins are deacylases able to cleave off acetyl and also
longer chain acyl groups from the ε-amino residue of lysines
in histones and non-histone proteins in a NAD+-dependent
manner. For their activity on histones they have been designated
to form class III of the histone deacetylases (HDACs). Generally,
HDACs are known to deacetylate resp. deacylate various protein
substrates and for sirtuins many findings actually focus on
non-histone substrates (1). The human genome contains seven
sirtuins isotypes (Sirt1-7) that differ in substrate spectrum and
localization (2). With regard to drug discovery the majority of
efforts has focused on Sirt2 wheremany small molecule inhibitors
are now present. Other isotypes have been addressed as well but
only for Sirt1 a drug is currently in clinical trials (see below)
(3, 4). Due to conflicting evidence of roles of sirtuin isotypes
in different diseases both activators and inhibitors have been
investigated (5–7).

Sirt2 has been discussed as an anticancer target but also tumor
suppressive activities of Sirt2 have been mentioned (8–15). These
effects might be tissue or organ specific which complicates drug
development and no Sirt2 inhibitor has reached clinical trials
yet. Sirt6 has been identified as a tumor suppressor and hence
Sirt6 activators are the focus of drug discovery efforts regarding
this phenotype (16, 17). But also tumor promoting effects of
Sirt6 have been described (18). In addition, Sirt6 inhibition
might be a way to increase the efficacy of cytostatic drugs with
DNA-damaging mode of action (19).

Regarding Sirt1, it has been studied strongly in the context of
neurodegenerative diseases and Selisistat [EX-527 (1), Figure 1]
is a potent and selective Sirt1 inhibitor that was undergoing
clinical testing in Huntington’s disease (20). A strong focus
attention was dedicated to potentially lifespan extending Sirt1
activators. The initial studies mostly dealt with resveratrol,
a natural product with pleiotropic activities which makes
mechanistic studies difficult. Later, drug-like sirtuin activating
compounds (STACs) were identified and went into clinical
trials. While the discussion on the relevance and robustness of
activation of deacetylation by Sirt1 has been very controversial,
some effects of resveratrol have indeed been linked to Sirt1 in
animal models and depending on the deacetylation substrate,
activation has been proven in reliable biochemical assays (21).
With regard to cancer, Sirt1 was postulated as an anticancer
target, e.g., promoting epithelial-to-mesenchymal transition
(EMT) in many cancer types (22) but it was also reported
to suppress EMT in types like ovarian cancer. Yang et al.
postulated that the conflicting behavior of Sirt1 in cancer cells
may depend on its subcellular localization (23). In some cancer

types both tumor promoting and suppressing actions have been
described, for example in prostate cancer. In Sirt1 knockout mice
increased cell proliferation of prostatic intraepithelial neoplasia
was observed, implicating Sirt1 as a tumor suppressor (24).
However, via global transcriptome analysis increased levels of
Sirt1 were identified as a key biomarker for prostate cancer
suggesting a tumor promoting influence of Sirt1 (25). Several
important tumor suppressors like p53, FOXO3a, or E2F1 that
induce apoptosis in malignant cells (e.g., in breast cancer) are
deacetylated by Sirt1, and thereby inactivated, promoting cell
survival (26–29). In breast cancer tissue elevated Sirt1 expression
correlates with tumor size, high histological grades and lymph
node metastasis (30). Nevertheless, Sirt1 can still act as a tumor
suppressor in breast cancer cells as well. It is crucial for DNA
damage response, regulates several DNA repair enzymes like
Ku70 and thereby enables stable, efficient DNA repair (31, 32).
Some known oncogenes like NF-κB are directly deacetylated by
Sirt1 promoting downregulation of the NF-κB-dependent cell
survival pathway (33).

In some cancer types (e.g., glioma, bladder, or ovarian cancer)
lower expression levels of Sirt1 have been detected, although in
most cancer types an increased expression was observed (34).
A meta-analysis showed that Sirt1 overexpression significantly
correlates with poor prognosis in solid tumors (35). Anticancer
effects of sirtuin inhibitors have been described on a cellular
level. In cervical cancer cells EX-527 induced cell death while
inhibition of the isotype Sirt2 led to cell cycle arrest. In the
breast carcinoma cell line MCF-7 though, the opposite effect
was observed, Sirt1 inhibition by EX-527 led to cell cycle arrest
while treatment with Sirtinol or Salermide (Sirt1/2 inhibitors
with a stronger effect on Sirt2) resulted in cell death (36,
37). In melanoma, chronic lymphocytic leukemia as well as
hepatocellular carcinoma cell lines both Sirt1 inhibitors (EX-527)
and Sirt2 inhibitors impaired cell growth and viability (38–40).

As already mentioned, Sirt1 plays a pivotal role in DNA
damage response (DDR). For example, phosphorylation of
the DNA damage sensor H2AX which gets phosphorylated
to γH2AX upon double strand breaks (DSBs) in healthy
cells is significantly downregulated when Sirt1 is inhibited
or depleted (41, 42). DDR can be regulated through Sirt1
either by direct histone deacetylation which changes chromatin
compaction or by activation and inactivation of non-histone
proteins that are involved in the major DNA repair mechanisms:
homologous recombination (HR), non-homologs end joining
(NHEJ), nucleotide excision repair (NER), mismatch repair
(MMR), and base excision repair (BER) (43–47). Due to
Sirt1s implications in DNA damage sensing and recruitment
of repair proteins it can alter resistance toward some cancer
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FIGURE 1 | Structures of S1th 1, 7, S1th 10–13, the pan-DUB inhibitor PR-619 and the reference Sirt1 inhibitor EX-527.

therapies targeting DNA stability. Application of EX-527 reduced
chemoresistance in endometrial carcinoma cells (48).

EX-527 is widely used for studies on the effects of Sirt1
inhibition in cells and living organisms, partially due to a lack
of other selective Sirt1 inhibitors. The only two compounds that
show similar potency toward Sirt1 are its analog CHIC-35 and
the Suramin analog NF675 (49, 50). However, both of them
show slightly less selectivity over Sirt2 (51) and Suramins are
usually poorly cell permeable. Other than that, only few specific
Sirt1 inhibitors have been identified. Several examples with low
micro molar affinity exist, like certain Splitomicin derivatives
or the so-called spiro series (52, 53). To get more insights into

the role of Sirt1 in different cancer types and to better examine
its therapeutic potential in cancer further Sirt1 inhibitors are
needed. Here we present a new class of sirtuin 1 inhibitors
based on a specific interaction with a thiocyanate moiety
that lead to altered γH2AX/H2AX ratios in mouse embryonic
fibroblast cells.

MATERIALS AND METHODS

All test compounds are commercially available and were
purchased from Princeton BioMolecular Research, Sigma
Aldrich, Enamine, or Chembridge and used as received.
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Enzyme Expression and Purification
Recombinant human Sirt537−310 was purchased readily in Tris
Buffer [25mM Tris, 100mM NaCl, 5mM DTT, 10% glycerol
(v/v)] from Enzo Life Sciences (NY, USA). Human Sirt3118−395

was expressed and purified as described previously (54). For
expression of human Sirt1134−747 and Sirt256−356 chemically
competent cells of E. coli BL21 Star (DE3) were transformed
with the expression vectors pET30S-hSirt1134−747 or pET30S-
hSirt256−356. Bacteria were grown at 37◦C in 2×YT medium
supplemented with 50µg·mL−1 of kanamycin to anOD600 of 0.6.
Then isopropyl-β-D-1-thiogalactopyranoside (IPTG) was added
to a final concentration of 1mM to induce gene expression.
After further cultivation at 20◦C for 12 h, the cells were
harvested by centrifugation for 15min at 5,000 g. The cells were
resuspended in lysis buffer [100mM Tris/HCl buffer at pH
8.0, 150mM NaCl and 10% (v/v) glycerol] and disrupted by
ultrasonication (Branson Digital Sonifier 250) at 70% amplitude
for 10min (3 s working, 10 s pause). The crude extract was
cleared by centrifugation at 100,000 g for 1 h, and the supernatant
was loaded onto a Strep-Tactin Superflow cartridge (5ml
bed volume, IBA Lifescience, Germany). Target proteins were
eluted with lysis buffer containing 5mM D-Desthiobiotin (IBA
Lifescience, Germany) and further separated by size-exclusion
chromatography (Superdex S200 26/60, GE Healthcare, IL, USA)
equilibrated in Tris/HCl buffer (20mM, 150mM NaCl, pH
8.0). Pure protein was concentrated by ultrafiltration, flash-
frozen in liquid nitrogen and stored at −80◦C until further
use. Identity as well as purity were verified by SDS-PAGE (55)
and protein concentration was determined by the bicinchoninic
acid (BCA) method, using bovine serum albumin (BSA) as a
standard (56). Deacetylase activity was confirmed to be NAD+-
dependent and could be inhibited with the physiological sirtuin
inhibitor nicotinamide.

In vitro Characterization
Homogeneous ZMAL-Based Fluorescence Assay for

Class I Sirtuins
All compounds were tested in the trypsin-coupled
high-throughput ZMAL-assay in black 96-well plates
(OptiPlateTM−96F, black, 96 well, Pinch bar design,
PerkinElmer, USA), using ZMAL (Z-Lys(acetyl)-AMC) as a
substrate (57). Sirt1134−747, Sirt256−356, and Sirt3118−395 were
mixed with 5 µL substrate (10.5µM final assay concentration,
diluted from a 12.6mM stock in DMSO) and 3 µL Inhibitor in
DMSO at various concentrations or DMSO as a control [final
DMSO concentration 5% (v/v)]. The mixture was supplemented
with assay buffer (50mM Tris/HCl, 137mM NaCl, 2.7mM KCl,
1mM MgCL2, pH 8.0) to a total volume of 55 µL. Enzyme
concentration was adjusted to get a final conversion of 20–30%.
Addition of 5 µL NAD+ (6mM in assay buffer, final assay
concentration of 500µM) initiated the catalytic reaction and the
plates were incubated at 37◦C for 4 h with agitation at 140 rpm.
The catalytic reaction was stopped by addition of 60 µL stop
solution [50mM Tris, 100mM NaCl, 6.7% (V/V) DMSO, 5.5
U/µL trypsin, 8µM nicotinamide, pH 8.0]. The plate was again
incubated at 37◦C and 140 rpm for 20min to release free AMC
from the deacetylated substrate by trypsin digestion. Afterwards,

fluorescence intensity was measured in a microplate reader
(λEx = 390 nm, λEm = 460 nm, BMG POLARstar Optima,
BMG Labtech, Germany). An enzyme-free blank control and
a 100% conversion control containing AMC instead of ZMAL
were measured in addition. Inhibition was calculated in % in
relation to a DMSO control after blank signal subtraction and
IC50 values were determined using a non-linear regression to fit
the dose-response curve with OriginPro 9G (OriginLab, USA).
Pre-tests as well as IC50 determination was carried out at least
twice in duplicates.

Homogeneous ZKsA-Based Fluorescence Assay for

Sirt5
Inhibition of Sirt5 was measured using a general procedure
described before with small modifications (58). Sirt5 was
purchased from Enzo Life Science (NY, USA) and used as
received. Z-Lys(succ)-aminomethyl coumarin (ZKsA) was used
as a substrate for Sirt5 mediated desuccinylation. In black
384-well non-binding plates (Greiner Bio-One, Monroe, NC)
Sirt5 was mixed with 2 µL of ZKsA (1mM stock solution in
assay buffer [(50mM Tris·HCl, 137mM NaCl, 2.7mM KCl,
1mM MgCl2, pH 8.0, and 0.1% PEG8000), 100µM final assay
concentration], 1 µL of Inhibitor dissolved in DMSO or DMSO
as a control [final DMSO concentration 5% (v/v)], 2 µL NAD+

(5mM stock solution in assay buffer, final assay concentration
500µM) and filled up to a total volume of 20 µL with assay
buffer. The mixture was incubated for 1 h at 37◦C and 140
rpm before 4 µL of trypsin solution (50mM Tris, 100mM
NaCl, pH 8.0, 6 mg/mL trypsin buffer, 1 mg/mL final assay
concentration) was added to stop the enzymatic reaction. After
2min of incubation at 37◦C and 140 rpm fluorescence intensity
was detected as described above. Sirt5 concentration was adjusted
to 15–30% substrate conversion. A negative control without
enzyme and a positive control containing AMC instead of ZKsA
were performed as well. Inhibition was calculated in % in relation
to a DMSO control and was determined in triplicates.

Homogeneous ZMAL-Based Fluorescence Assay for

HDAC1 and 6
The inhibition of HDAC1 and 6 by the S1th and PR-619 was
determined via the ZMAL-assay according to the same general
procedure described for sirtuins (2.2.1). 5 µL substrate (10.5µM
final assay concentration) were mixed with 3 µL of inhibitor in
DMSO or DMSO and 10 µL of HDAC solution (concentration
adjusted to 15–30% conversion) and filled up to 60 µL with assay
buffer (50mM Tris, 137mM NaCl, 1mMMgCl2, 2,7mM KCl, 1
mg/ml BSA, pH = 8.0). The mixture was incubated at 37◦C and
140 rpm for 1.5 h. For the stop solution Trichostatin A (3.3µM)
was used instead of nicotinamide. Fluorescence intensity was
measured as described above. An enzyme free blank control and
an AMC containing 100% control were performed as well and
inhibition was calculated in % in relation to a DMSO control.

Jump Dilution Assay
To test the compounds for reversibility a jump dilution assay
based on the trypsin-coupled ZMAL assay described above was
used. In black 96 well plates (OptiPlateTM−96F, black, 96 well,
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Pinch bar design, PerkinElmer, USA) 1 µL Sirt1134−747 in assay
buffer (50mM Tris/HCl, 137mM NaCl, 2.7mM KCl, 1mM
MgCl2, Sirt1 concentration 100-fold higher than normally used)
with 1 µL inhibitor in a concentration 10-fold higher than the
IC50 were preincubated at room temperature for 10min before
the mixture was rapidly diluted 100-fold with assay mix [assay
buffer, ZMAL (final assay concentration 500µM), DMSO (final
assay concentration 5% (v/v), NAD+ (final assay concentration
500µM), pH 8.0] to a total volume of 200 µL. The reaction
was stopped after 2.5, 5, 7.5, 10, 12.5, 15, 20, 25, and 30min
by addition of 60 µL stop solution [50mM Tris, 100mM NaCl,
6.7% (V/V) DMSO, trypsin 5.5 U/µL, 8µM nicotinamide, pH
8.0]. The plate was again incubated at 37◦C and 140 rpm for
20min to get the free AMC from the deacetylated substrate by
trypsin digest. Afterwards fluorescence intensity was measured
in a microplate reader (λEx = 390 nm, λEm = 460 nm, BMG
POLARstar Optima, BMG Labtech, Germany). An enzyme-free
blank control and a 100% conversion control containing AMC
instead of ZMAL were performed additionally. Conversion was
calculated in % in relation to the 100% control after subtraction
of the blank fluorescence signal. Conversion in % was plotted
against time with OriginPro 9G (OriginLab, USA) and an
exponential fit was performed to fit the curves.

NAD+ Competition Assay
NAD+ competition was determined using the trypsin coupled
ZMAL assay. Sirt1134−747, the ZMAL substrate and the inhibitors
or DMSO were mixed and filled up to 55 µL in black 96-well
plates as described above. The reaction was initiated by the
addition of 5 µL of NAD+ in concentrations ranging from 62.5
to 2,000µM final assay concentration. After 4 h of incubation
at 37◦C and 140 rpm the reaction was stopped by addition of
the trypsin containing 60 µL stop solution, incubated again for
20min at 37◦C and 140 rpm and fluorescence was detected
with a BMG POLARstar (λEx = 390 nm, λEm = 460 nm, BMG
POLARstar Optima, BMG Labtech, Germany). An enzyme-free
blank control and a control containing AMC instead of ZMAL
were measured additionally. Conversion was calculated in % in
relation to the 100% control (AMC) after subtraction of the
blank fluorescence signal. Conversion in % was plotted against
NAD+ concentration with OriginPro 9G (OriginLab, USA) and
an exponential fit was performed to fit the curves.

FOXO3a Substrate Competition Assay
Peptide substrate competition was measured using a
homogeneous fluorescence-based fluorescamine assay similar
to that previously reported as an activity assay for Sirt2 and
Sirt3 with Ac-α-tubulin as a substrate (59). For Sirt1 a partial
sequence of the physiological Sirt1 substrate FOXO3a [Ac-
DSPSQLSK(Ac)WPPGTSS-NH2, custom synthesized by PSL,
Heidelberg, Germany], hereafter called FOXO3a-ac, was used
as substrate. Substrates were stored as 1mM stocks in assay
buffer [HEPES 25mM, NaCl 137mM, KCl 2.7mM, MgCl2
1mM, Triton-X 100 0.015% (v/v), pH 8.0] and diluted with
assay buffer to 240µM FOXO3a-ac peptide (20µM final assay
concentration). In black 96-well plates (OptiPlateTM−96F,
black, 96 well, Pinch bar design, PerkinElmer, USA) 0.05 µL

Sirt1134−747 (3 mg/mL, final assay conversion 20–30%) was
mixed with 5 µL of the diluted peptide and 3 µL of inhibitor
dissolved in DMSO in various concentrations or DMSO as
a control [final DMSO concentration 5% (v/v)] and filled up
to 55 µL with assay buffer. After addition of 5 µL NAD+

(6mM, final assay concentration 500µM) to start the enzymatic
reaction the plate was incubated for 1 h at 37◦C and 140 rpm.
Afterwards pH was adjusted with 5 µL of 0.1M NaOH and
the enzymatic reaction was stopped with stopping solution
[8.73mM nicotinamide (final assay concentration 4mM),
0.455mM fluorescamine (final assay concentration 62.5µM)
in acetone]. The fluorescence signal was measured using
a microplate reader (λEx = 390 nm, λEm = 485 nm, BMG
POLARstar Optima, BMG Labtech, Germany). Additionally,
a 100% inhibition control containing the physiological sirtuin
inhibitor nicotinamide (6mM final assay concentration) and a
control simulating 100% conversion containing the deacetylated
FOXO3a peptide (Ac-DSPSQLSKWPPGTSS-NH2, custom
synthesized by PSL, Heidelberg, Germany) in equivalent
concentration as the substrate were performed. Inhibition was
calculated in % in relation to DMSO control after subtraction
of the 100% inhibition fluorescence signal. IC50 values were
determined using a non-linear regression to fit the dose-response
curve with OriginPro 9G (OriginLab, USA).

Fluorescent Thermal Shift Assay (FTSA)
In a 96-well plate (Hard-Shell R© PCR-plates, 96-well, thin-
wall, BioRAD, USA) 14 µL Sirt1134−747 in assay buffer (0.3
mg/mL final assay concentration, 50mM Tris/HCl, 137mM
NaCl, 2.7mM KCl, 1mM MgCL2, pH 8.0) were mixed with
1 µL inhibitor in DMSO (100µM) or DMSO [final assay
concentration 5% (v/v)] as a control and 5 µL SyproOrange
(1:100 in assay buffer). The fluorescence intensity was monitored
during a constant increase of temperature from 20 to 95◦C,
1K per 20 s, using a real-time-PCR-machine (C1000 TouchTM
Thermal Cycler, CFX96TM Real-Time System, BioRAD, USA).
Melting temperatures were calculated via GraphPad Prism
according to a published procedure (60).

Cellular Assays
DUB Labeling on HEK293T Cell Lysate
Pan-inhibition of deubiquitinases (DUBs) was tested using
HEK293T cell lysate (human embryonic kidney cells, human).
Cells were harvested and resuspended in HR buffer (50mM
Tris, 5mM MgCl2, 250mM sucrose, 1mM DTT, pH 7.4).
Cell lysis was achieved by sonication (Bioruptor, Diagenode,
high intensity for 10min with an ON/OFF cycle of 30 s) at
4◦C and the cell debris was removed by centrifugation at
13,500 rpm for 15min. Cell lysate protein concentration was
determined with a NanoDrop spectrophotometer (NanoDrop
OneTM Spektrophotometer, Thermo Fisher, MA, USA) by
measuring absorbance at 280 nm. Nineteen microliter of the
lysate (2 µg/µL) were incubated with inhibitors dissolved in
DMSO at various concentrations or DMSO as a control for
30min at 37◦C. Afterwards 1 µL of Rhodamine-Ub-PA (1µM
final assay concentration) was added to each sample, followed by
further incubation for 40min at 37◦C (61). The labeling reaction
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was stopped by addition of NuPAGE 4× LDS sample buffer
(Invitrogen Life Technologies, Carlsbad, CA, USA) containing β-
mercaptoethanol and boiling for 7min at 95◦C. The proteins of
the samples as well as protein marker (PageRulerTM Pre-stained
Protein Ladder, 10–250 kDa, Thermo Fisher, MA, USA) were
resolved by a 4–12% SDS-PAGE using the NuPAGE system with
MOPS running buffer (Invitrogen Life Technologies, Carlsbad,
CA, USA). The resulting gel was scanned with a Typhoon imager
(GE Healthcare Life Sciences, USA) to visualize the Rhodamine-
Ub-PA probe and Cy5 (marker). Subsequently the gel was stained
with InstantBlueTM Protein Stain (Expedeon, UK) and scanned
on a Amersham scanner (Amersham Typhoon gel and blot
imaging system, GE Healthcare Life Sciences, USA).

γH2AX Level Determination
Sirt1 WT and KO MEFS cells were treated with 10µM EX-
527, 12µM S1th 13 (6), 20µM S1th 12 (5), 30µM S1th 10

(7) and 30µM SirReal2 [Sirt2 inhibitor, synthesized according
to (62)] for 48 h. Oxidative stress was induced using 10µM
Camptothecin 2 h.Whole-cell extracts were performed according
to the Dignam protocol (63). Primary antibodies used for the
western blot were anti-H2AX and anti-γH2AX (ab11175 and
ab2893 resp., Abcam, UK). Densiometric analysis of the western
blots was performed with Quantity One software (Bio-Rad
Laboratories, Inc., USA).

Cell Proliferation Assay With HeLa or MCF7 Cells
1.5 × 104 cells/well were seeded in 24-well plates and grown
in DMEM 10% in presence of DMSO, 20µM EX-527, 12µM
S1th 13, 20µM S1th 12, or 30µM S1th 10. The growth media
containing the drugs was replaced every 48 h. Cells were collected
and counted at the indicated times starting 24 h after seeding (0,
24, 48, 72, 96, and 120 h). The experiment was performed twice
in duplicates.

Wound Healing Assay With HeLa Cells
For wound healing assay 6 × 105 cells per well were seeded
in 6-well plates and grown for 24 h in DMEM containing 10%
FBS. After 24 h, a lineal gap between cells was created in the
middle of the plate by scratching the cell monolayer with a
1mL pipette tip in the same position in each well. Once the
scratching is done, plates were washed twice with PBS and then
grown in DMEM containing 1% FBS and the drugs in the
same concentrations as for the proliferation assay. As described
previously, the growth media 1% FBS containing the drugs
was replaced every 48 h. Images were acquired in an Optimal
microscope (Leica microscopes, DE) using Leica Application
Suite X (LAS X) every 24 h (0, 24, 48, and 72 h) until the gap
closed. The quantification of the area of the gap at the indicated
times was performed with Image J-MRI Wound Healing Tool.
The experiment was performed only once.

Colony Forming Assay With HeLa or MCF7 Cells
For colony assays, 50 cells per well were seeded in 6-well
plates and grown in the same conditions with the same drug
concentrations as for the proliferation assays. In this case, the
growth media containing the drugs was replaced every 48 h.
After 7–10 days, when isolated colonies were formed, wells were

washed with PBS, and cells were fixed with cold methanol for
5min at RT. Cells were stained with crystal violet for 10min
at RT and washed with H2O. Images were acquired using
iBright (Thermo Fisher Scientific, MA, USA). For quantification,
cells of each well were resuspended in 10% glacial acetic
acid to dissolve crystal violet whose levels were monitored by
measuring absorbance at 590 nm. The experiment was performed
in duplicates.

Analysis of Acetylation Status in HeLa Cells by

Western Blotting
5 × 104 cells were plated in 6-well plates and grown
with the conditions and drug concentrations as described
for the proliferation assay. Cells were harvested at 48 h and
resuspendend in protein loading buffer. After sonication the
samples were centrifuged at 14,000 rpm in an Eppendorf
microcentrifuge (Eppendorf, DE) and the supernatants were
analyzed by western-blot. The following antibodies were used:
histone H3 (Cell Signaling #9715), histone H3K9ac (Cell
Signaling # C5B11), GAPDH (Cell Signaling #D16H11), p53
(ThermoFisher #PA527822), and p53K382ac (Abcam 75754).
Quantification was carried out using imageJ.

Computational Methods
3D structures of all compounds under study were generated
from SMILES strings, and a subsequent energy minimization
was carried out using the MMFF94x force field implemented in
Molecular Operating Environment System (MOE) 2014.10
(Chemical Computing Group, Montreal, Canada). All
compounds were used in their neutral form. A maximum
of 100 conformations were generated for each ligand using the
Conformational Search module implemented in MOE.

The structure of Sirt1 protein in complex with NAD+ and
the small molecule inhibitor EX-527 was downloaded from the
Protein Data Bank (PDB ID 4I5I) (64). In addition, crystal
structures of Sirt2 in complex with the EX-527 analog CHIC35
and ADPR (PDB ID 5D7Q) and Sirt3 in complex with EX-
527 and NAD+ (PDB ID 4BV3) were investigated. The protein
structures were prepared by using the Structure Preparation
module in MOE. Hydrogen atoms were added, for titratable
amino acids the protonation state was calculated using the
Protonate 3D module in MOE. Protein structures were energy
minimized using the AMBER99 force field with a tethering force
constant of (3/2) kT/2 (σ = 0.5 Å) for all atoms during the
minimization (65). AM1-BCC charges were used for the studied
ligands (66). All molecules except the zinc ion were removed
from the structures.

Protein-ligand docking was performed using GOLD5.6 (67).
For Sirt1, Ser442 was used to define the size of the grid box
(15 Å radius). In case of Sirt2 and Sirt3, the corresponding
Ser263 and Ser321 were used, respectively. Ten docking poses
were calculated for each inhibitor. All other options were left at
their default values. Using the docking setup, the cocrystallized
inhibitors EX-527 and CHIC35 could be correctly docked with
RMSD values below 0.6 Å. Virtual screening was carried out
using program GOLD5.6 and the settings described above. To
decrease calculation time, the Virtual Screening setup was used
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within GOLD5.6 and only the top-ranked pose was stored
for further evaluation. In total 16 compounds were purchased
and submitted to biochemical testing (eleven compounds from
Princeton Biomolecular Research, one from Sigma-Aldrich and
four from Enamine, Supplementary Table 1). All docking scores
displayed in Supplementary Table 1.

RESULTS

Docking
Based on a previously collected library of putative sirtuin
inhibitors we carried out a virtual screening using the GOLD5.6
docking software and the available crystal structure of Sirt1 in
complex with the inhibitor EX-527 and NAD+ (64). A first
in vitro screening (for primary in vitro screening data see
Supplementary Table 2) on the three class I sirtuins indicated
a thienopyrimidone carrying a thiocyanate moiety which we
termed S1th 1 (2) (structure Figure 1) as a promising hit for
Sirt1 inhibition. Two structural analogs of S1th 1 with the
same heterocyclic system but different functional groups were
docked to the NAD+ binding site of Sirt1 and were submitted
to a second round of biochemical testing (Table 1). Among
the three selected thienopyrimidones only S1th 1 was able to
inhibit Sirt1 in the micro molar range (IC50 13µM). The docking
pose of the active analog showed that the phenyl thiocyanate
moiety is located in the adenine pocket, engaging in a hydrogen
bond to Cys482 (backbone NH, Figure 2A). The pyrimidine
ring is located in the polar phosphate pocket of Sirt1 and
shows a hydrogen bond to Ser442. A third hydrogen bond was
observed between the amide group of the inhibitor and Gln445.
The two inactive analogs (OSSK_338451 and OSSK_531963,
structures Supplementary Figure 1) showed a similar binding
mode lacking an interaction in the adenine pocket. Due to the
close proximity of the potentially reactive thiocyanate group of
S1th 1 and Cys482 we speculated that an irreversible binding
might occur. Therefore, we tested the reversibility of enzyme
inhibition as well as NAD+ competition and competition toward
a peptide analog of the physiological Sirt1 substrate FOXO3a
to confirm the proposed binding mode. In vitro results showed
that the inhibitors are reversible binders and NAD+ competitive
but not substrate competitive which is in agreement with the
predicted binding mode of the thiocyanates (Figure 3).

To confirm the importance of the thiocyanate group we
screened the whole Princeton BioMol. Res. Compound collection

TABLE 1 | Inhibition of class I sirtuins by S1th 1 and its two structural analogs

OSSK_338451 and OSSK_531963 (2nd round of in vitro screening).

Compound IC50 [µM] or % inhibition @ 50 µM

Sirt1 Sirt2 Sirt3

S1th 1 13 ± 0.6 23% n.i.*

OSSK_33845 n.i. n.i. n.i.

OSSK_531963 n.i. n.i. n.i.

*n.i., no inhibition (<10%).

virtually (considering only phenyl thiocyanates) and docked the
resulting 113 thiocyanates to Sirt1. Eight promising hits were
cherry picked, purchased and submitted to a third round of
biochemical testing (Table 2). Among the eight compounds,
S1th 7 (3) showed increased inhibition compared to S1th 1

with an IC50 of 6.34µM (Table 2) which is also supported by
the best docking score. The predicted binding pose of S1th 7

shows two hydrogen bonds to Asp272 and Asn465 (Figure 2B).
Since we encountered solubility problems of the active hits
in cellular testing at higher concentrations, we purchased six
more polar compounds and submitted them to a fourth round
of biochemical testing. S1th 11 (4), 12 (5), and 13 (6) (from
Enamine) were found to be better soluble and equally active as
S1th 7. The binding mode of the active hit S1th 13 (IC50 of
5.2µM, Table 3) is similar to that observed for the previous hits
showing interactions with Cys482, Asn465 and in addition to
Asp272 (Figure 2C).

All active inhibitors, both from the 3rd and the 4th round,
retained the extremely high selectivity of the initial hit for Sirt1
over the isotypes Sirt2 and 3. Docking to Sirt2 and Sirt3 was
subsequently carried out for the active hits in order to rationalize
the observed selectivity. In case of Sirt2, there are three different
amino acid residues in the putative thiocyanate binding pocket
that affect the docking results (Figure 2D): Val266, Arg466, and
Asp481 of Sirt1 are substituted by Thr89, Lys287, and Glu323 in
the Sirt2 structure, respectively. The inhibitors could be docked
in a similar orientation to the Sirt2 binding pocket, however
with less favorable docking scores. Especially the interaction
of the thiocyanate phenyl ring with Arg466 is lost in case of
Sirt2, which might explain the lower docking scores. In case
of Sirt3, there are four amino acid residues substituted in the
putative binding pocket. Val266, Ser267, Cys482, and Asp483 of
Sirt1 are substituted by Thr150, Pro151, Val366, and Val367 in
the Sirt3 structure (Figure 2E). Val366, Val367, and Pro151 are
restricting the size of the putative thiocyanate binding pocket and
consequently the thiocyanate moiety is not able to interact with
the protein as observed for Sirt1.

In vitro Characterization of S1th
We wanted to further elucidate the binding mode and selectivity
of the S1th. Apart from the closely related class I sirtuins (Sirt2
and 3) also inhibition of Sirt5 as a representative of other sirtuin
classes was tested. Although Sirt5 sequence and structure in
general shows less overlap with Sirt1 than the class I sirtuins,
the active side residue Cys482 which is explicitly important for
S1th binding is conserved in Sirt5. Yet, no inhibition of Sirt5
by S1th 10–13 at 10µM was observed. In general, thiocyanates
are known to act as chelating groups making them candidates
for inhibition of ion-dependent enzymes like classical HDACs
which feature a zinc ion in their active site. It has been shown
that cruciferous vegetable isothiocyanates like sulforaphane can
act as potent pan-HDAC inhibitors (68). Consequently, to further
investigate the selectivity of our new thiocyanate Sirt1 inhibitors,
they were tested against two representative zinc dependent
HDACs, HDAC1 (Class I) and HDAC6 (Class II). HDAC1 was
not inhibited by the tested thiocyanates at 100µM at all. For
HDAC6 a very weak inhibition by S1th 10 (7), 12 and 13
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FIGURE 2 | Sirt1 ribbon is colored purple, hydrogen bonds are shown as dashed lines. (A) Docking pose obtained for S1th 1 (colored beige) at the Sirt1 NAD+

binding pocket. (B) Docking pose obtained for S1th 7 (colored cyan) at the Sirt1 NAD+ binding pocket, NAD+ (colored orange) is shown for comparison. (C) Docking

pose obtained for S1th 13 (colored green) at the Sirt1 NAD+ binding pocket. The molecular surface of the binding pocket is colored according to the hydrophobicity

(hydrophobic = green, hydrophilic = magenta). (D) Superimposition of the crystal structure of Sirt1 (PDB ID 4I5I, magenta colored ribbon, white colored residues) with

docked S1th 13 (colored green) and the crystal structure of Sirt2 (PDB ID 5D7Q, brown colored ribbon, pink colored residues). The amino acid residues of Sirt2 that

are different are colored cyan. (E) Superimposition of the crystal structure of Sirt1 (PDB ID 4I5I, magenta colored ribbon, white colored residues) with docked S1th 13

(colored green) and the crystal structure of Sirt3 (PDB ID 4BV3, orange colored ribbon, salmon colored residues). The amino acid residues of Sirt3 that are different are

colored cyan.

(19, 36, and 29% at 100µM) was observed (Table 4). Another
likely off-target effect of thiocyanates could be the inhibition
of deubiquitinases (DUBs). Deubiquitination activity of these
enzymes relies on a cysteine residue in the catalytic core which
acts as a nucleophile (69). Most known DUB inhibitors therefore
feature a functional group that can form specific interactions with
this cysteine. PR-619 (8), a compound featuring two aromatic
thiocyanate moieties, was shown to inhibit more than twenty
DUBs with IC50 values ranging from 5 to 20µM and, as we could
show, is also able to inhibit Sirt1 with an IC50 of 2.7 ± 0.2µM
(70, 71). HDAC1 and 6 are inhibited to ∼50% residual activity
by PR-619 as well. The S1th however did not show inhibition
of DUBs which we could show in a fluorescence based activity
assay using HEK-293 cell lysate and a Rhodamine-Ub-PA probe
(Supplementary Figure 2). These results support the excellent
selectivity of the S1th not only amongst sirtuins but also over
other possible off-targets.

To better understand the binding of the S1th a series
of fluorescent thermal shift assay (FTSA) experiments was

performed. Binding of a ligand usually results in a stabilization
of the protein which can be observed as an increase of the
melting temperature (Tm) in FTSA. For example, binding of
the NAD+ metabolite adenosine diphosphate ribose (ADPR),
which is formed during the catalytic reaction of the sirtuins,
leads to a stabilization up to 4K. The known Sirt1 binders
EX-527 and SRT1720 (72) only cause a very small shift or no
shift at all (Supplementary Figure 3a). For the S1th however
we observed a strong left shift of the Tm from 5.9 up to 9.6 K
for the most potent inhibitors of the fourth round at 100µM
(Figure 3). The decrease of Tm is concentration dependent for
all tested compounds (S1th 10–13), resulting in a smaller 1T at
lower concentrations (Supplementary Figure 3c). Shifts of Tm to
decreased temperatures have been associated with an apparent
destabilization of the protein by covalent binding compounds,
detergent-like compounds or compounds that extract stabilizing
ions from the structure in several cases (73). This could be a
hint toward a covalent interaction of the thiocyanate moiety
with Cys482. However, another widely recognized explanation
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FIGURE 3 | In vitro characterization of the thiocyanates. Evaluation of reversibility, competition with NAD+ or the peptide substrate FOXO3a and enzyme stabilization;

(A) Sirt1 and the respective thiocyanate inhibitor (50µM) were preincubated for 10min and then rapidly diluted 1:100 with assay solution (buffer, ZMAL, NAD+),

activity of Sirt1 was measured at different time points. Increasing activity can be observed for non-covalent inhibitors; (B) thiocyanate inhibitors (100µM) were

incubated with increasing concentrations of NAD+, showing that the inhibitors can be replaced by NAD+; (C) binding of S1th 10–13 (100µM) to Sirt1 leads to a

strong decrease of Tm; (D) S1th (100µM) were incubated with increasing concentrations of the peptide substrate FOXO3a, the inhibitors are not competitive toward

FOXO3a. All biochemical assays were performed at least twice in duplicates.

for left shifts is that these compounds bind more strongly to a
conformation different from the native one (74, 75). In regard to
this, one has to take into account that Tm is considerably more
affected by entropy than by enthalpy. Consequently, enthalpy-
driven binding to the native state can be outnumbered by
weaker entropy-driven binding to a different conformation or
even the denatured state resulting in a left shift (76). The
shift of Tm induced by S1th 10–13 can be reversed through
addition of ADPR. As the thiocyanates are binding to the NAD+

pocket they are also competitive toward the physiological NAD+

metabolite ADPR. Simultaneous application of ADPR and the
S1th resulted in a significantly smaller decrease of Tm(Sirt1)
than treatment with S1th alone (Supplementary Figure 3b). To
ensure that the observation of a left shift is specific for Sirt1 the
compounds were also tested in an FTSA using Sirt2. There was
no decrease of Tm observed, in fact binding of the thiocyanates
leads to a very small positive shift (0.2–0.5 K) of Tm for Sirt2
(Supplementary Figure 3d). As the Cys482 residue is conserved
in five out of the seven human sirtuin isotypes including Sirt2
and 5, this data shows a unique and specific binding mode of the
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TABLE 2 | Inhibition of class I sirtuins by thiocyanate analogs of 3rd round of

virtual screening (S1th 2–9).

Compound IC50 [µM] or % inhibition @ 50 µM

Sirt1 Sirt2 Sirt3

S1th 2 6.4 ± 0.7 n.i.* n.i.

S1th 3 2.8 ± 0.5 n.i. n.i.

S1th 4 5.3 ± 0.5 n.i. n.i.

S1th 5 9.4 ± 1.4 n.i. n.i.

S1th 6 5.1 ± 0.6 n.i. n.i.

S1th 7 6.3 ± 0.5 n.i. n.i.

S1th 8 40% n.i. n.i.

S1th 9 n.i. n.i. n.i.

*n.i., no inhibition (<10%).

TABLE 3 | Inhibition of sirtuins 1, 2 3 and 5 by thiocyanate analgues of 4th round

of virtual screening (S1th 10-13) and PR-619.

Compound IC50 [µM] or % inhibition @ 50 µM

Sirt1 Sirt2 Sirt3 Sirt5**

S1th 10 23 ± 6.0 n.i.* n.i. n.i.

S1th 11 6.3 ± 0.8 n.i. n.i. n.i.

S1th 12 5.9 ± 1.4 n.i. n.i. n.i.

S1th 13 5.2 ± 1.0 n.i. n.i. n.i.

PR-619 2.7 ± 0.2 36% n.i. 28%

*n.i., no inhibition (<10%), **inhibition tested @ 10 µM.

TABLE 4 | Selectivity over histone deacetylases and deubiquitinases compared to

pan-DUB inhibitor PR-619.

Compound % inhibition @ 100 µM Qualitative pan-DUB inhibition

HDAC1 HDAC6 @ 10 µM @ 50 µM

S1th 10 n.i.* 29% n.i. n.i.

S1th 11 n.i. n.i. n.i. n.i.

S1th 12 n.i. 36% n.i. n.i.

S1th 13 n.i. 19% n.i. n.i.

PR-619 54% 49% + +++

*n.i., no inhibition (<10%), + low inhibition, +++ full inhibition.

thiocyanates to the Sirt1 structure that was already proposed by
the docking to Sirt1, 2 and 3 (77).

Effects of S1th in Cellular Systems
Sirt1 Dependent Effects in Mice Embryonic

Fibroblasts (MEFs)
As described previously byWang et al., the phosphorylation level
of H2AX in mice embryonic fibroblasts (MEFs) is decreased
if Sirt1 is depleted or inhibited (42). Phosphorylation of
H2AX is a key step in DNA damage sensing. Determination
of γH2AX/H2AX levels in MEFs via western blotting was
employed to show target engagement in cells of our new class

of Sirt1 inhibitors. To demonstrate the maximum change in
phosphorylation possible, the γH2AX/H2AX levels of wild type
MEFs and Sirt1 KOMEFs were determined. The effect of S1th 10,
12, and 13 (30, 20, and 12µM, respectively) was compared to that
of EX-527 (10µM) as a positive control and to the specific Sirt2
inhibitor SirReal2 (30µM) as a negative control (Figure 4, for
western blots see Supplementary Figure 4). All three inhibitors
showed a reduction of γH2AX/H2AX levels and the observed
effect is similar to that of EX-527. The effect of the sirtuin 1
inhibitors becomes even more apparent when the topoisomerase
I inhibitor Camptothecin is added to the cells (78). Treatment
with Camptothecin induces DNA damage which in functional
cells leads to elevated phosphorylation levels of H2AX. When
EX-527 or the S1th were administered to these cells again a strong
decrease of γH2AX/H2AX was detected. This shows that in cells
with higher stress levels through DNA damage, the S1th can
significantly alter DDR.

Impact of S1th on Cervical Cancer Cells (HeLa)
After showing Sirt1 dependent effects in non-cancerous mouse
cells we wanted to investigate whether our new inhibitors
have an impact on proliferation, migration and colony forming
properties of human cancer cells. As already mentioned Sirt1
can play very contradictory roles in different tissues and even
within one cancer type. Still, cases have been reported where
Sirt1 inhibition impairs cell growth. For cervical cancer cells
(HeLa) effects on cell proliferation upon administration of EX-
527 have been reported (79). Based on these findings we chose
HeLa cells for further examination of the S1th. The three
best characterized inhibitors S1th 10, 12, and 13 as well as
EX-527 were administered to HeLa cells and the effects on
cell proliferation, migration and colony forming were observed
(Figure 5). EX-527, S1th 10 and S1th 13 significantly decreased
cell proliferation, with EX-527 being slightly more effective than
the S1th. S1th12 only showed a mild effect on proliferation.
Interestingly, even though having the most impact on cell
proliferation, EX-527 failed to impair migration of HeLa cells
in a wound healing assay within the first 24 h. A monolayer
of HeLa cells was plated and a “wound” was introduced by
scratching. Through cell migration the cells grow back together
to heal the wound in the monolayer. Other than EX-527, the
S1th all showed good inhibition of cell migration already after
24 h. S1th 13 appeared to be most effective showing an ∼50%
lower reduction of total wound area compared to a control
where no drug was applied. After 72 h also EX-527 showed a
mild effect on wound healing and the inhibition by the S1th
that could already be observed after 24 h became more apparent.
In consistency with the results on proliferation and migration
also a colony forming assay proved S1th 13 to be the most
potent drug of our new class. EX-527 completely suppressed
colony forming of HeLa cells. S1th 13 proved to be almost as
potent as EX-527 while for S1th 10 and 12 only mild effects
were observed. Effects of the S1th on proliferation and colony
forming were also confirmed in initial studies in the breast
cancer cell lineMCF7 (Supplementary Figure 5). In addition, we
performed western blot analysis of the Sirt1 substrates H3K9ac
and p53K382ac (Figure 6). To determine the acetylation status
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FIGURE 4 | Quantification of γH2AX/H2AX levels in MEF cells after Sirt1 depletion or incubation with various inhibitors by western blot analysis (original western blots:

Supplementary Figure 4) with anti-γH2AX and anit-H2AX. γH2AX/H2AX levels are decreased in Sirt1 KO cells and upon addition of EX-527 (10µM), S1th 10

(30µM), S1th 12 (20µM), or S1th 13 (12µM). The selective Sirt2 inhibitor SirReal2 (30µM) does not affect γH2AX/H2AX levels. Addition of Camptothecin increases

DNA damage in cells (A) γH2AX/H2AX levels without Camptothecin; (B) γH2AX/H2AX levels after addition of Camptothecin (10µM). The experiments were

performed at least three times each. *p < 0.05, **p < 0.01, ***p < 0.001.

binding of α-H3K9ac and α-p53K382ac were compared to α-
H3 and α-p53 binding, respectively. Thereby stable expression
of H3 and p53 in all samples was ensured and additionally α-
GAPDH was used as a loading control. All three S1th tested were
able to significantly increase H3K9 and p53K382 acetylation and
thereby affirm selective Sirt1 inhibition in HeLa cells. For EX-527
no hyperacetylation of H3K9 but increased acetylation levels of
p53K382 were observed.

DISCUSSION

To further investigate the role of Sirt1 in cancer, new selective
inhibitors for this isotype will be of great value. However, so far
only few such inhibitors have been reported. In this study we
identified a new class of selective and potent Sirt1 inhibitors, the
Sirtuin 1 inhibiting Thiocyanates (S1th) by an iterative process
of virtual screening and biochemical testing. Molecular docking
of the S1th to the crystal structure of Sirt1 in complex with
its cofactor NAD+ revealed their putative binding mode. In
general, the inhibitors are proposed to bind to the NAD+ binding
pocket of Sirt1. This could be confirmed in a competition assay,
showing competition between the inhibitors and the cofactor
NAD+ but not toward a peptide substrate analog. The most
potent inhibitor of this class S1th 13 is thought to engage in
two hydrogen bonds with Asn465 and Asp272 and a potentially
covalent interaction with Cys482. As indicated by competition
assays binding of the S1th is reversible leading to the conclusion
that even though the interaction with Cys482 could be covalent
it is also fully reversible. Fast reversible covalent inhibitors have
been reported before e.g., for kinases (80). In thermal shift assays
covalent inhibitors often show a characteristic left shift, as they
can destabilize the thermodynamically most stable conformation
of an enzyme or can stabilize a different confirmation. S1th
binding resulted in a strong left shift of Sirt1melting temperature.

Interestingly, the Sirt2 melting temperature was not affected
at all by the S1th, although the respective cysteine residue
is conserved in Sirt2 (Cys324). These results indicate that no
unspecific binding of the S1th’s thiocyanate moiety occurs and
the interaction between the thiocyanate and Cys482 in Sirt1 is
highly selective. Further we could demonstrate that S1th are
selective over sirtuin isotypes 3 and 5, representatives of HDAC
class I and II (HDAC 1 and 6) as well as a set of deubiquitinases
(DUBs). Selectivity over DUBs is especially remarkable since
they are known to be inhibited by thiocyanates through binding
of a catalytically relevant cysteine residue in the active site
of DUBs. The thiocyanate PR-619 for example is a pan-DUB
inhibitor and as we showed also inhibits Sirt1 with a low micro
molar IC50. After ensuring high selectivity and potency of our
new inhibitor class we wanted to prove target engagement in
cells. S1th 10, 12, and 13 were applied to MEF cells and the
effect on H2AX phosphorylation was detected. H2AX is a DNA
damage sensor that gets phosphorylated upon DNA damage.
Phosphorylation of H2AX was significantly decreased by S1th

10, 12, and 13 as well as by the positive control EX-527 while
a selective Sirt2 inhibitor (SirReal2) did not show any effect. The
reduction of γH2AX/H2AX levels observed after application of
Sirt1 inhibitors was similar as in Sirt1 KO MEFs. Additional
treatment with camptothecin, a drug that induces DNA damage
through inhibition of topoisomerase I and thereby increases
γH2AX/H2AX levels, didn’t surpass the inhibitory effect of the
S1th or the positive control but even seemed to increase the
efficacy especially for S1th 13. Finally, we tested the effects of
S1th on proliferation, migration and colony forming capabilities
of human cervical cancer cells. The cervical cancer cell line HeLa
was treated with S1th 10, 12, 13 and EX-527 as a positive control.
S1th 13 showed significant inhibition of proliferation, migration
and colony forming while S1th 10 and 12 only had moderate
effects. EX-527 also showed robust inhibition of cell proliferation
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FIGURE 5 | (A) Impact of EX-527 and S1th 10, 12, and 13 on cell migration of HeLa cells in a wound healing assay. All compounds were able to impair cell migration.

The S1th showed a clear effect already after 24 h, while a decrease of migration only came apparent after 72 h for the positive control EX-527. This experiment was

only carried out once. (B) Impact of S1th 10, 12, and 13 and EX-527 on cell proliferation of HeLa cells. All compounds are able to slow down cell proliferation of HeLa

cells, with S1th 12 only showing a mild effect. The experiments were performed at least three times each. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (C)

Impact of EX-527 and S1th 10, 12, and 13 on colony forming capabilities of HeLa cells. Colony forming is significantly decreased by EX-527 and S1th 13, but barely

affected by S1th 12 and 10. Experiments were carried out in duplicates and quantification was done by staining the colonies with crystal violet and measuring

absorbance at 590 nm.

and colony forming, however for migration a clear effect became
apparent only 72 h after treatment but not already after 24 h, as
observed for the S1th. Finally, western blot analysis confirmed
that the effect of S1th inHeLa cells is associated with concomitant
hyperacetylation of H3K9 and p53K382.

Although the in vitro potency of the S1th is yet lower than
that of the reference EX-527, their discovery, especially their
very high selectivity, still opens up new possibilities. Remarkably,
unlike EX-527 that has strongly decreased potency in the cellular
setting as compared to the biochemical assay, they show similar

potencies in cells as in vitro. This demonstrates their high
potential to further study the role of Sirt1 in cellular model
systems for cancer research but also in other diseases. The
structural knowledge obtained from available crystal structures
of Sirt1 and our docking studies can be utilized for future
inhibitor optimization. Knowing that thiocyanates are able to
engage in a specific interaction right in the catalytic core of
the enzyme, new structures can be designed and synthesized.
Already now the S1th present a valid alternative to EX-527 for
cellular studies.
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FIGURE 6 | Western blot analysis of acetylation status of p53K382 and H3K9 in HeLa cells. A α-GAPDH antibody was used as a loading control. Histone H3 and p53

expression was monitored by α-H3 and α-p53 antibodies and was not altered by application of the inhibitors, while α-H3K9ac and α-p53K382ac indicate the impact

on acetylation status upon inhibitor treatment. 1 (EX-527) was used as a positive control, however it did not show clear hyperacetylation of H3K9. In contrast, a clear

effect on acetylation of these Sirt1 targets is observed when 5, 6, and 7 (S1th 12, 13, 10 resp.) are applied. Quantification of the shown blot is displayed as the ratio

between acetylated and deacetylated protein in relation to a control where no inhibitor was applied.
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