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Abstract
Background &Aims: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive 
cancer type with loco-regional spread that makes the tumor surgically unresectable. 
Novel diagnostic tools are needed to improve detection of PDAC and increase pa-
tient survival. In this study we explore serum protein N-glycan profiles from PDAC 
patients with regard to their applicability to serve as a disease biomarker panel.
Methods: Total serum N-glycome analysis was applied to a discovery set (86 PDAC 
cases/84 controls) followed by independent validation (26 cases/26 controls) using 
in-house collected serum specimens. Protein N-glycan profiles were obtained using 
ultrahigh resolution mass spectrometry and included linkage-specific sialic acid 
information. N-glycans were relatively quantified and case-control classification 
performance was evaluated based on glycosylation traits such as branching, fuco-
sylation, and sialylation.
Results: In PDAC patients a higher level of branching (OR 6.19, P-value 9.21 × 10−11) 
and (antenna)fucosylation (OR 13.27, P-value 2.31 × 10−9) of N-glycans was found. 
Furthermore, the ratio of α2,6- vs α2,3-linked sialylation was higher in patients com-
pared to healthy controls. A classification model built with three glycosylation traits 
was used for discovery (AUC 0.88) and independent validation (AUC 0.81), with 
sensitivity and specificity values of 0.85 and 0.71 for the discovery set and 0.75 and 
0.72 for the validation set.
Conclusion: Serum N-glycome analysis revealed glycosylation differences that 
allow classification of PDAC patients from healthy controls. It was demonstrated 
that glycosylation traits rather than single N-glycan structures obtained in this clini-
cal glycomics study can serve as a basis for further development of a blood-based 
diagnostic test.
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1 |  INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the most 
common type of pancreatic cancer with an increasing inci-
dence in western countries.1 Diagnosis of PDAC implies an 
unfavorable prognosis with five-year survival as low as 5%-
8%, since the disease is characterized by aggressive local 
and early metastatic spread. Upon initial diagnosis more 
than 80% of the tumors is at an advanced stage that does 
not allow curative resection.2 Intensive treatment schedules 
with chemotherapy and/or surgery are associated with com-
plications, side effects and impaired quality of life, while 
overall survival remains poor.3 A recent study reported that 
10% of the PDAC patients carry a BRCA gene mutation 
which could provide an opportunity to apply screening and 
use targeted treatment to improve outcome.4 It is further-
more noted that the number of PDAC deaths is not far from 
that of, for example, breast cancer, and a future screening 
for PDAC may be warranted.5-9 However, screening pro-
grams based on current detection methods that comprise 
imaging techniques and/or fine-needle-aspirations, are 
not feasible.10,11 Moreover, chronic and autoimmune pan-
creatitis (CP) can mimic PDAC and consequently cause a 
5%-10% misclassification.12 For these reasons, new blood-
based biomarker tests are pursued that offer a more cost-ef-
fective way to detect the disease.13 This urgent need for 
additional biomarkers to facilitate clinical decision-making 
is widely acknowledged, since the only marker available is 
carbohydrate antigen (CA) 19-9, which is primarily used 
for patient follow-up (recurrent disease) and has limited 
value for the detection of PDAC.14

Mass spectrometry (MS)-based biomarker studies have 
shown that posttranslational modifications (PTMs) hold 
potential as an “add-on” to the protein marker or as bio-
markers themselves.13,15,16 It is well known that a single 
gene does not transcribe and translate into a single protein 
but rather in a plethora of proteoforms and that proteome 
characterization should include the analysis of PTMs.17 
In this context, the relevancy of protein glycosylation has 
been demonstrated in autoimmune diseases and cancer.18-21 
In-depth glycobiology studies have furthermore revealed 
the importance of protein glycosylation with regard to 
folding, trafficking, cell adhesion, recognition processes, 
and immune response.22,23 Notably, the previously men-
tioned marker CA19-9 is a glycan marker, based on a si-
alyl-Lewis A (sLeA) epitope, which triggered interest in 
protein glycosylation related to pancreatic cancer. A few 
studies on N-glycosylation profiles in pancreatic cancer 

have exemplified a biomarker potential, although sample 
sets were limited.24-30 Here, we use an automated protocol 
for the analysis of the total serum N-glycome with sialic 
acid linkage differentiation and high resolution MS31 and 
aim for a PDAC disease signature in a discovery cohort 
with independent validation.

2 |  MATERIALS AND METHODS

2.1 | Patients

Blood samples in the discovery cohort were obtained from 
88 patients diagnosed with PDAC and collected prior to 
surgery. An equal number of specimens was collected 
from healthy volunteers, which were partners or accom-
panying persons of included patients. All samples from 
cases and controls originated from a Dutch population and 
were matched by sex and age and sample collection date 
(ie, freezer storage duration) in both the discovery and 
validation cohort.32 All patients in the discovery cohort 
were seen at the outpatient clinic of the Leiden University 
Medical Center between October 2002 and December 
2008. For an independent validation cohort, blood speci-
mens were collected between June 2016 and March 2018. 
All selected patients in the discovery and validation co-
horts were candidates for curative surgery. However, not 
all patients underwent surgery due to preoperative metas-
tases. PDAC diagnosis consisted of a combination of an-
nual abdominal magnetic resonance imaging, magnetic 
resonance cholangiopancreatography and/or optionally en-
doscopic ultrasound. Furthermore, all surgical specimens 
were examined according to routine histological evaluation 
and the extent of the tumor spread was assessed by TNM 
classification.33,34

Blood samples in the validation cohort were obtained 
from twenty patients diagnosed with PDAC, two patients 
with duodenal and papillary carcinoma, two patients with 
neuroendocrine tumors and three patients with IPMN. A 
total of twenty-seven healthy controls were randomly se-
lected from the LUMC Biobank. Cases and controls were 
matched by sex and age and sample collection date (ie, 
freezer storage duration) in both the discovery and valida-
tion cohort.

This study was approved by the Medical Ethical 
Committee of the LUMC (protocol number P03-147). All 
patients and healthy volunteers provided written informed 
consent prior to blood collection.

K E Y W O R D S

cancer biomarker analysis, mass spectrometry-based N-glycan profiling, N-glycome analysis, 
pancreatic cancer, serum test
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2.2 | Serum sample collection and 
plate design

Blood specimens from both the discovery and valida-
tion cohorts were collected and processed according to a 
standardized protocol.35 Briefly, all blood samples were 
drawn by antecubital venipuncture. Approximately 8  mL 
of venous blood was collected in a 10 mL BD vacutainer 
SST II advance and centrifuged for 10 minutes at 1000g. 
Processing of blood specimens took place within 4 hours 
after blood collection. After the centrifugation step serum 
samples were distributed into sterile, 500-μL barcode-la-
beled aliquots and stored at −80°C until further analysis. 
Before measurements (ie, serum N-glycome analysis) took 
place, each sample was aliquoted into 60 μL tubes.35 One 
aliquot of each sample was then relocated into a 96-well 
plate format according to a plate design, thus keeping cases 
and their age- and sex-matched controls on the same plate. 
Additionally, for technical quality control (QC) of the 
spectra, each plate contained a minimum of six in-house 
standards and two blanks.

2.3 | Serum sample preparation and mass 
spectrometry analysis of glycans

N-glycans were enzymatically released from serum glyco-
proteins, chemically derivatized, purified, MS-analyzed, 
identified and quantified. Briefly, 6 μL of serum was used 
according to a previously reported protocol.31 The global re-
lease of N-glycans was performed using the enzyme PNGase 
F (Roche Diagnostics, Mannheim, Germany). All follow-
ing steps were carried out in a standardized manner on a 
Hamilton liquid handling platform. In a first step, all sialic 
acid residues at the nonreducing ends of the complex glycan 
structures were derivatized into stable end-products allow-
ing the differentiation between α2,3- and α2,6-linked sialic 
acids by the introduced mass difference. Next, the glycans 
were purified using in-house developed cotton-based hydro-
philic interaction liquid chromatography (HILIC) micro-tips. 
The purified glycans were eluted and premixed with sDHB 
matrix (5 mg/mL in 99% ACN with 1 mmol/L NaOH). The 
mixture was spotted onto a MALDI target plate (800/384 
MTP AnchorChip, Bruker Daltonics, Bremen, Germany) and 
spots were allowed to dry. Measurements were performed 
on a Bruker 15T solariX XR Fourier transform ion cyclo-
tron resonance (FTICR)MS. The system was controlled by 
ftms Control version 2.1.0 and spectra in an m/z-range from 
1011.86 to 5000.00 were recorded with 1 mmol/L data points 
(ie, transient length of 2.307 seconds). DataAnalysis Software 
4.2 (Bruker Daltonics) was used for the visualization and 
data analysis of all MALDI-FTICR spectra. Sample prepara-
tion and subsequent glycan measurements were identical for 

all samples in both cohorts, however the validation cohort 
was processed five months after the discovery cohort.

2.4 | Data processing and statistics

Serum N-glycan profiles were obtained from all 88 cases 
and 88 controls in the discovery cohort, of which 86 case-
profiles and 84 control-profiles passed the quality criteria.31 
These profiles are further referred to as the discovery set. In 
the validation cohort, consisting of 27 cases and 27 controls, 
26 case-profiles and 26 control-profiles passed. These pro-
files are further referred to as the validation set. For both 
the discovery and validation set, the same analyte list with 
84 glycan compositions(Table S1) which passed the quality 
criteria31 was used for data extraction with MassyTools ver-
sion 0.1.8.1.31 To study general glycosylation features, such 
as fucosylation, branching, sialylation and bisection, derived 
traits were calculated to combine the effects of glycans with 
similar structures (Table S2).

To evaluate the potential of total serum N-glycome 
analysis in differentiating PDAC patients from controls, 
logistic regression was performed for each glycoform in-
dividually as well as for each derived trait (Tables S3 and 
S4), using R version 3.3.2 (R Foundation for Statistical 
Computing, Vienna, Austria; Released 31 October 2016) and 
RStudio, version 1.0.136 (RStudio, Boston, MA; Released 
21 December2016).36 The odds ratios (ORs) were calcu-
lated with their 95% confidence intervals (CIs) assuming a 
Student's t-distribution and are referring to an increase of 
1 SD in the tested traits. A fixed-effects model was used 
to combine the data of the discovery and validation set in a 
meta-analysis. Multiple testing correction (Bonferroni) was 
performed on the meta-analyzed data. In order to evaluate 
potential trait differences between the various cancer stages, 
stages Ia, Ib and IIa were merged into one sub-group, IIb 
was considered as a separate sub-group, and stages III and 
IV were also merged into one subgroup. For plotting pur-
poses, the center line is median, box limits are upper and 
lower quartiles, and whiskers give the maximum and mini-
mum values excluding any outliers. All points are individual 
measurements and outliers are the individual measurements 
larger than quartile 3 + 1.5× IQR or smaller than quartile 1 - 
1.5× IQR (IQR = interquartile range). For all glycan compar-
isons between case-control subjects the significance level is 
stated in each corresponding plot after adjusting the P-value 
of Student's t-test using B-H method.

Receiver operating characteristic (ROC) analysis was per-
formed by selecting derived traits representing the different 
glycosylation features that showed the strongest effect sizes 
(antennarity, fucosylation, sialylation) in the meta-analysis. 
Initially, five derived traits were used for the model, namely 
CA2 (diantennary species of complex glycans in spectrum), 
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CA4 (tetraantennary species of complex glycans in spec-
trum), A3FE (α2,6-sialylation of fucosylated triantennary 
glycans), A3F0L (α2,3-sialylation of nonfucosylated trian-
tennary glycans) and CFa (antenna-fucosylation of complex 
glycans). Multiple combinations of these traits were then 
evaluated with regard to classification of diagnosis, resulting 
in a final model based on a combination of CA4, A3F0L and 
CFa. The model was trained using a randomly selected 75% 
of the discovery set and evaluated for its prediction value on 
the remaining 25% to prevent overfitting. More importantly, 
the prediction was replicated on the validation set. The power 
of the classification (area under the curve) was evaluated ten 
times with each time a new random selection of 75% of the 
discovery set, resulting in a mean power that was more robust 
than a single classification.

3 |  RESULTS

The serum N-glycomes of PDAC patients and matched con-
trols in a discovery and independent validation set (Table 1) 
were analyzed by mass spectrometry. Derived traits were 
calculated for structural features shared by multiple glycans, 
such as the level of antennarity (in the following abbreviated 
as CA), α2,3-linked sialylation (L), α2,6-linked sialylation 
(E), fucosylation (F) and bisection (B) (Figure  1). Data of 
consistent quality were obtained as assessed from 19 in-house 
standards that were included in the TSNG measurements. It 
is furthermore noted that the MS-based glycan profiles pro-
vide relative quantitative data that do not explain whether dif-
ferences are caused by different serum protein concentrations 

or to which extent protein-specific glycosylation differences 
contribute. The data revealed age- and sex-associations of the 
glycomic signatures (Figure S1) in accordance with litera-
ture37 supporting the validity of the data. Logistic regression 
analysis was performed both at the single N-glycan level and 
the derived traits (Figure 1) revealing a total of 23 glycosyla-
tion features that where consistently found to differ between 
patients and controls as demonstrated by our meta-analysis 
(Table 2).

A strong increase in the antennarity of the glycans was 
found: tetraantennary N-glycans (CA4) were more abun-
dant in PDAC profiles than in control samples (Table 2 and 
Figure  2), with a concomitant decrease in diantennary N-
glycans (CA2; Table 2 and Figure 2). Moreover, antenna-fu-
cosylation (CFa, difucosylation) was increased (CFa; Table 2 
and Figure 2). Both mono- and difucosylation (F and Fa, re-
spectively) were increased for tri- and tetraantennary glycans 
(A3F, A4F, A3Fa, A4Fa; Table 2).

Also, an increase in α2,6-linked sialylation and a decrease 
in α2,3-linked sialylation was observed (A2F0L, A3F0L, 
A4F0L; Table 2). Increased α2,6-linked sialylation was ob-
served in both fucosylated and non-fucosylated di-, tri- and 
tetraantennary glycans (eg, A3E, A3F0E, A3FE; Table  2).
We further evaluated whether glycan derived traits were as-
sociated with cancer stages such as depicted in Table 1, but 
no differences were found between the various stages (details 
explained in the Methods section).

Finally, receiver operating characteristic (ROC) curves 
were calculated for selected glycan traits. The resulting ROC 
curve illustrates the power of differentiating PDAC from 
matched control samples (Figure 3). With an AUC of 0.88 the 

Discovery Set Validation Set

Cases Controls Cases Controls

(n = 86) (n = 84) (n = 26) (n = 26)

Female sex, n (%) 47 (54.7) 45 (53.4) 11 (42.3) 11 (42.3)

Age in years, mean 
(SD)

64.6 (11.1) 63.2 (10.0) 66.3 (10.5) 66.7 (5.4)

Diagnosis, n

PDAC 86 n/a 20 n/a

Other n/a n/a 6 n/a

Stage, n

Ia 6 n/a 0 n/a

Ib 8 n/a 1 n/a

IIa 10 n/a 3 n/a

IIb 41 n/a 7 n/a

III 3 n/a 1 n/a

IV 18 n/a 8 n/a

Abbreviations: n, number of individuals; n/a, not applicable; SD, standard deviation.

T A B L E  1  Patient characteristics
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F I G U R E  1  Workflow of N-glycosylation analysis of discovery and validation pancreatic cancer case-control cohorts for classification 
analysis. A, Collection of serum samples from pancreatic cancer patients and healthy controls. B, Random distribution of age-and sex-matched 
case-control pairs, in-house standards and blanks. C, Automated sample preparation including enzymatic glycan release, derivatization and 
purification. D, MALDI-FTICR-MS analysis of N-glycome. E, MS-spectrum preprocessing, annotation and quality control. F, Derived trait 
calculation for the analysis of glycosylation features. G, Logistic regression analysis of both cohorts, followed by meta-analysis of the data. H, 
ROC analysis to test glycosylation traits for their classification power
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discriminative performance of the discovery set was good. 
At the optimal case probability score cut-off, the sensitivity 
and specificity were 0.85 and 0.71, respectively. The signa-
ture was replicated in an independent validation cohort with 
a good AUC of 0.81, and with a sensitivity and specificity of 
0.72 and 0.75, respectively.

4 |  DISCUSSION

The objective of this study was to explore the potential of 
serum protein N-glycan profiles from PDAC patients to serve 

as a biomarker panel, aiming for the development of a blood-
based test for diagnosis of PDAC. Using our recently estab-
lished analytical glycomics platform, 112 patient sera were 
analyzed and compared to 110 healthy control samples. The 
observed N-glycosylation changes in the discovery cohort of 
PDAC patients were replicated in an independent validation 
cohort.

Major glycosylation differences were found between 
PDAC patients and controls for N-glycan antennarity, fuco-
sylation and sialylation. Notably, with regard to sialylation, 
our approach included an evaluation of α2,3- and α2,6-linked 
sialic acids separately. We found twenty-three glycosylation 

T A B L E  2  Replicated meta-analyzed associations of serum N-glycans with pancreatic cancer

Derived traits Description of derived traits

Meta P-values Odds ratio
Confidence 
interval

Cases/
Controls

Cases/
Controls

Cases/
Controls

Glycan type

CA2 Diantennary species of complex glycans in spectrum 1.05E-08 0.35 (0.25-0.50)

CA4 Tetraantennary species of complex glycans in spectrum 9.21E-11 6.19 (3.57-10.75)

CFa Antenna-fucosylation of complex glycans 2.31E-09 13.27 (5.68-30.98)

CB0 Nonbisected species of complex glycans in spectrum 5.12E-08 0.39 (0.27-0.54)

Fucosylation (F)

A3F Fucosylation of triantennary glycans 2.07E-07 2.34 (1.70-3.23)

A4F Fucosylation of tetraantennary glycans 5.00E-06 2.04 (1.50-2.78)

A3Fa Antenna-fucosylation of triantennary glycans 1.12E-08 5.35 (3.01-9.52)

A4Fa Antenna-fucosylation of tetraantennary glycans 1.45E-06 2.45 (1.70-3.53)

A2LF Fucosylation of α2,3-sialylated diantennary glycans 3.85E-08 2.67 (1.88-3.78)

A3LF Fucosylation of α2,3-sialylated triantennary glycans 9.32E-09 2.68 (1.91-3.75)

A4LF Fucosylation of α2,3-sialylated tetraantennary glycans 1.70E-06 2.13 (1.56-2.91)

A4EF Fucosylation of α2,6-sialylated tetraantennary glycans 6.06E-06 2.03 (1.49-2.75)

Sialylation (S)

A4F0S Sialylation of nonfucosylated tetraantennary glycans 3.07E-06 0.48 (0.35-0.65)

A3FS Sialylation of fucosylated triantennary glycans 7.41E-05 1.95 (1.40-2.71)

A4FS Sialylation of fucosylated tetraantennary glycans 2.85E-06 2.1 (1.54-2.87)

α2,3-Linked sialylation (L)

A2F0L α2,3-sialylation of nonfucosylated diantennary glycans 5.74E-07 0.38 (0.26-0.55)

A3F0L α2,3-sialylation of nonfucosylated triantennary glycans 8.34E-09 0.34 (0.23-0.49)

A4F0L α2,3-sialylation of nonfucosylated tetraantennary 
glycans

4.50E-07 0.44 (0.32-0.61)

α2,6-Linked sialylation (E)

A3E α2,6-sialylation of triantennary glycans 3.22E-07 2.41 (1.72-3.38)

A2F0E α2,6-sialylation of nonfucosylated diantennary glycans 3.18E-07 2.44 (1.73-3.43)

A3F0E α2,6-sialylation of nonfucosylated triantennary glycans 2.62E-09 3.5 (2.32-5.30)

A3FE α2,6-sialylation of fucosylated triantennary glycans 1.20E-09 3.99 (2.55-6.24)

A4FE α2,6-sialylation of fucosylated tetraantennary glycans 2.02E-08 2.63 (1.88-3.69)

Note: Dark grsy and light gray shading indicate positive and negative associations, respectively, with the healthy controls being the reference. See Table S3 for the 
complete list of tests performed.
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traits to be associated with PDAC in a meta-analysis of the 
two sample sets.

PDAC patients showed higher α 2,6-linked sialylation 
than controls. From tumor cell surface analysis it is known 
that an increase in overall α2,6-linked sialic acids associates 
with cancer progression.38,39 A possible explanation is that 
α 2,6-linked sialic acids promote cancer cell survival since 
binding of proapoptotic galectins to cell surface glycans is 
blocked by these structures. In contrast, α 2,3-linked sialic 
acids do not inhibit galectin binding.38,39 With regard to pro-
tein N-glycosylation, similar functions of α 2,6-linked si-
alylation have been suggested, however the mechanisms in 
this case are not yet understood.39

This study also demonstrated elevated levels of tri- and 
tetraantennary N-glycans and a concomitant decrease of 
diantennary N-glycans in PDAC patients. Previously, simi-
lar observations in PDAC patients have been reported with 
regard to branching in total serum glycosylation profiles as 
well as in studies on specific glycoproteins, such as α-1-
acid glycoprotein (AGP) and haptoglobin.24-26,40 The first 
study reported elevated levels of tri- and tetraantennary 

glycans, however with a limited sample set of two pairs 
of cancer and normal samples only.24 The latter studies re-
ported increased branching of AGP-derived glycans with 
limited sample sets of 19 PDAC patients, six chronic pan-
creatitis patients and six controls, and increased branching 
in HPT and transferrin.25,26 Increased tri- and tetraanten-
nary glycans have furthermore been reported in associa-
tion with progression of disease in sera and cell lines from 
PDAC patients.24,27,28 With regard to other cancer types, 
an increase in branching has been observed in brain and 
colorectal cancer.21,41-43

Besides increased branching, an increased fucosylation 
of tri- and tetraantennary N-glycans was found in PDAC 
patients. Increased fucosylation has been reported in vari-
ous types of cancer such as hepatocellular carcinoma, oral 
and colorectal cancer.21,44,45 Also the previously mentioned 
glycoprotein studies on AGP and HPT reported increased 
fucosylation.25,26 Interestingly, Akimoto and coworkers 
studied serum N-glycan profiles of 79 patients with IPMN 
and found a potential marker for invasive IPMNs based 
on an increased expression of fucosylated complex-type 

F I G U R E  2  Main replicated associations between N-glycan traits and pancreatic cancer, based on the data from the discovery cohort with 
corresponding Student's t-test adjusted P-values
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glycans. Unfortunately, the N-glycan profiles in this study 
were not compared to those obtained from healthy control 
individuals.40

We found an increase of fucosylation of triantennary and 
tetraantennary glycans (A3F and A4F) in PDAC patients, 
specifically, in glycans containing α 2,3-linked sialic acids 
(A2LF, A3LF and A4LF). The combination of α 2,3-linked 
sialylation with fucosylation suggests the formation of si-
alyl-Lewis X (sLex) moieties. The increase of sLex expression 
has been reported with regard to pancreatic cancer.26,28 In ad-
dition, increased sLex expression on AGP and HPT has been 
linked to various cancers (eg, pancreatic cancer, lung cancer, 
advanced ovarian cancer and prostate cancer)18,25,46-49 and 
chronic inflammation (eg, rheumatoid arthritis and inflam-
matory bowel disease).50 As discussed in the Introduction, 
the marker CA19-9 is based on a sialyl-Lewis A (sLeA) epi-
tope. Although this structure differs from sLex with regard 
to glycosidic linkages, both point toward the importance of 
sialylation.

Increased branching and sLex expression have been 
found in acute phase proteins which are released by the 
liver in the event of cancer, but also in case of infection, 
surgery and inflammatory conditions.50 The relation be-
tween inflammation and cancer has been discussed in a re-
view, with the hypothesis that both glycosylation changes 
are a systemic side effect of inflammatory cytokines stim-
ulating the liver under influence of the tumor.51 It has been 

demonstrated that the tumor microenvironment contains 
large amounts of these cytokines and that inflammatory 
pathways are involved in the development of tumors.52 The 
expression of these cytokines was also confirmed in studies 
on cell lines and tissues.53

The here applied glycomics workflow is specifically 
suited for a high-throughput and relatively fast “cancer gly-
cosylation profiling” of body fluids and cell or tissue material 
from a clinical cohort. This strategy does not provide detailed 
information on the protein origin of the potential glycan 
markers. This limitation is well known in the glycobiology 
community and can be tackled with in-depth glycoproteomic 
analyses that come with their own challenges. Thus, although 
the analysis of total serum N-glycosylation shows strong as-
sociations with PDAC, it is expected that analysis of specific 
glycoproteins might further improve accuracy.

The need for a screening test for pancreatic cancer is 
high, especially for patients with increased inherited risk. A 
screening test should meet specific requirements and should 
exhibit suitable sensitivity and specificity specifications.29 
The current results are promising in terms of the discrimina-
tive performance for sensitivity and specificity, but transla-
tion into the clinic depends on the application. The screening 
of patients with a genetically increased risk for PDAC would 
be a first step since no testis currently available to support 
clinicians. For the general population the discriminative 
performance found in this study might be insufficient for 

F I G U R E  3  ROC analysis with a model 
based on CA4, A3F0L and CFa. The model 
was trained with a random selection of 75% 
of the spectra in the discovery cohort and 
applied to the remaining 25% of the cohort 
to test for its prediction value. Moreover, 
it was applied to an independent validation 
cohort to test for its classification power. 
This analysis was repeated ten times, to 
increase the robustness of AUCs. The means 
(and SDs) of 10 predictions are reported for 
the respective AUC
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application but could possibly be complementary to the CA 
19-9 test.14 Detection of PDAC at an earlier stage needs fur-
ther investigation, since early detection is an important argu-
ment for population screening.6

The discriminating performance of case-control ROC-
analysis was good, indicating a strong difference in N-
glycosylation profiles of PDAC patients and healthy controls. 
However, as indicated above, the N-glycosylation shift we 
found in PDAC patients is not necessarily specific for pan-
creatic cancer. In this study, only PDAC patients and healthy 
volunteers were included, while in a clinical application 
other diseases might interfere with the determination of the 
PDAC cases. To address the specificity of the discriminating 
signals in this study, future research should compare PDAC 
signatures with those of benign diseases (eg, pancreatitis) as 
well as other types of cancers and inflammatory diseases.30

5 |  CONCLUSIONS

In this study, serum N-glycome analysis with sialic acid 
isomer differentiation and ultrahigh resolution MS was per-
formed to classify PDAC patients from healthy controls. 
Three major N-glycosylation differences were observed 
and validated between cases and healthy controls, namely 
(antenna-) fucosylation of complex glycans, branching of 
complex glycans and increased α 2,6-linked sialylation com-
pared to the α 2,3-linked analogues. Combination of various 
N-glycosylation traits resulted in classification performance 
that can function as a target for follow-up glycomics research 
aiming for development of a blood-based clinical test. In fu-
ture research the specificity of the observed changes needs to 
be addressed by including samples from benign pancreatic 
diseases including inflammation and preferably other cancer 
types. In addition, longitudinal analysis is warranted to de-
termine the potential for early detection based on the here 
reported serum N-glycan disease signatures.
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