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 CURRENT
OPINION The prospects of targeting DUX4 in

facioscapulohumeral muscular dystrophy
1350-7540 Copyright � 2020 The A
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Purpose of review

Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder, which is caused by
incomplete repression of the transcription factor double homeobox 4 (DUX4) in skeletal muscle. To date,
there is no DUX4-targeting treatment to prevent or delay disease progression. In the present review, we
summarize developments in therapeutic strategies with the focus on inhibiting DUX4 and DUX4 target gene
expression.

Recent findings

Different studies show that DUX4 and its target genes can be repressed with genetic therapies using diverse
strategies. Additionally, different small compounds can reduce DUX4 and its target genes in vitro and in
vivo.

Summary

Most studies that show DUX4 repression by genetic therapies have only been tested in vitro. More efforts
should be made to test them in vivo for clinical translation. Several compounds have been shown to prevent
DUX4 and target gene expression in vitro and in vivo. However, their efficiency and specificity has not yet
been shown. With emerging clinical trials, the clinical benefit from DUX4 repression in FSHD will likely
soon become apparent.
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INTRODUCTION

Double homeobox 4 (DUX4) is a transcription factor
implicated in zygotic genome activation (ZGA) dur-
ing the four-cell stage in human embryos where it
acts as an activator of repetitive elements and cleav-
age-specific genes [1,2]. DUX4 is considered to be
epigenetically repressed in most somatic tissues,
including in skeletal muscles. In patients with facio-
scapulohumeral muscular dystrophy (FSHD; MIM
158900), a progressive neuromuscular disorder char-
acterized by asymmetric weakness and wasting of
the facial, scapular, and humeral muscles [3], epige-
netic repression of the D4Z4 macrosatellite repeat is
lost. This results in transcriptional activity from the
DUX4 locus, which is encoded within each D4Z4
repeat unit [4,5]. DUX4 activates genes that are
generally not expressed in nonaffected skeletal
muscles, including genes that are activated during
ZGA and genes of the immune system [6,7]. DUX4
overexpression in myogenic cells induces different
toxic cascades including an increase in oxidative
stress, nonsense-mediated decay inhibition, and
inhibition of myogenesis. These changes ultimately
uthor(s). Published by Wolters Kluwe
lead to the death of myogenic cells [8–11]. In most
patients (FSHD1), the disease is caused by a contrac-
tion of the D4Z4 repeat to 1–10 units whereas non-
affected individuals carry 8–100 units [12]. FSHD
can only occur when the contracted repeat is located
on a permissive 4qA allele that contains a DUX4
polyadenylation signal (PAS) adjacent to the most
distal D4Z4 unit. Nonpermissive 4qB alleles lack this
PAS, consequently DUX4 is not stably expressed [5].
Approximately 5% of patients (FSHD2) carry a per-
missive 4qA allele of 8–20 D4Z4 units together with
r Health, Inc. www.co-neurology.com
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KEY POINTS

� As there is no molecular therapy that prevents or delays
disease progression in patients with FSHD, there is a
high clinical need for new therapeutic strategies.

� Inappropriate expression of DUX4 in skeletal muscles
causes FSHD, therefore preventing DUX4 or target
gene expression should block all toxic
downstream pathways.

� Using AONs and PMOs could be a promising
therapeutic strategy for FSHD as they only target the
disease gene.

� Different small compounds that have been tested for
other diseases show promising results in vitro and in
vivo, and can be tested in clinical trials in the
short term.
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a mutation in an epigenetic repressor of DUX4,
namely SMCHD1, DNMT3B, or LRIF1 [13–15].
FSHD2 disease genes also act as modifiers in FSHD1,
suggesting that FSHD1 and FSHD2 form a disease
continuum resulting from the loss of epigenetic
repression of DUX4 in skeletal muscle with shared
clinical phenotypes [16–18].

Despite our increased understanding of the dif-
ferent genetic and epigenetic factors that contribute
to FSHD development, there is no treatment that
prevents or delays disease progression; only moder-
ate exercise and cognitive behavioral therapy have
shown some clinical benefit [19,20]. Thus far, most
clinical trials focused on blocking one of the down-
stream pathways of DUX4. Short-term treatment
with the corticosteroid immunosuppressant predni-
sone did not significantly improve muscle strength
or mass [21]. Treating patients with different anti-
oxidants to reduce oxidative stress in the muscles
only slightly improved physical performance [22].
FIGURE 1. Overview of described therapeutics and where the
Therapies that restore epigenetic repression of the D4Z4 repeat. E
state. (c) Therapeutics that block the DUX4 protein or prevent mus

636 www.co-neurology.com
As DUX4 activates many pathways, blocking one of
them may not be sufficient. In the present review,
we will highlight recent progress made in develop-
ing new therapeutic strategies for FSHD, with a focus
on approaches that prevent DUX4 expression,
thereby affecting all downstream pathways.
TARGETING THE DOUBLE HOMEOBOX 4
TRANSCRIPT OR THE D4Z4 REPEAT WITH
GENETIC THERAPIES

FSHD is caused by a gain of function mechanism.
DUX4 suppression is therefore a promising treat-
ment strategy that should block all effects conse-
quent to DUX4 activity in skeletal muscle. However,
numerous highly homologous copies of DUX4 can
be found in the human genome, and the D4Z4
repeat is extremely GC-rich, making it difficult to
target. So far, most studies focused on blocking the
DUX4 transcript as genomic editing has only
recently become an exploitable alternative (Fig. 1,
Table 1). Marsollier et al. [23] and Chen et al. [24]
tested the efficiency of different antisense phos-
phorodiamidate morpholino oligomers (PMOs) to
target the DUX4 transcript. Both studies identified
two PMOs that efficiently repressed DUX4 and tar-
get gene expression in FSHD myotube cultures.
Chen et al. [24,25] also tested the efficiency of a
PMO that targets the DUX4 PAS in a xenograft
mouse model containing an engrafted muscle
biopsy of a patient with FSHD and confirmed the
reduction of DUX4 and target gene expression.
Another study tested different antisense oligonu-
cleotides (AONs) designed to interfere with DUX4
splicing or to target the DUX4 PAS [26]. All six AONs
reduced the percentage of DUX4-positive nuclei and
atrophic myotubes. As an alternative for PMOs and
AONs, DNA aptamers with specific secondary struc-
tural elements that target the DUX4 protein can be
y target. (a) Therapies that repress the DUX4 transcript. (b)
ach triangle represents a D4Z4 repeat unit in euchromatic
cle damage caused by the DUX4 protein.
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Table 1. Overview of studies and their main outcomes using different therapeutic strategies to repress DUX4

Reference Treatment Model Main results

Genetic therapies

Marsollier et al. [23] PMO targeting DUX4 Immortalized FSHD
myotubes

#DUX4 transcript, #target genes

Chen et al. [24] PMO targeting DUX4 Primary FSHD muscle cells
FSHD xenograft mouse

model

In vitro:
#DUX4 protein, #target genes
In vivo:
#DUX4 transcript, #target genes

Ansseau et al. [26] AON targeting DUX4 Primary FSHD myoblast
and myotubes

#DUX4 protein, #atrophic myotubes

Klingler et al. [27&] Aptamers targeting DUX4 – Aptamers can bind to DUX4 protein

Wallace et al. [28,29&] miDUX4.405 Mice overexpressing DUX4
by AAV

#skeletal muscle pathology, #DUX4
transcript,

"grip strength, low toxicity

Lim et al. [30] siRNAs targeting coding
and noncoding regions

Primary FSHD muscle cells #DUX4 transcript, #target genes,

Himeda et al. [31] CRISPR/dCas9 targeting
D4Z4 locus

Primary FSHD myocytes #DUX4 transcript, #target genes

Himeda et al. [32&] CRISPR/dCas9 targeting
D4Z4 activators

Primary FSHD myocytes #DUX4 transcript

Goossens et al. [33&&] Restoring SMCHD1 with
CRISPR/Cas9

Gene edited FSHD
monoclonal myotubes

#DUX4 transcript, #target genes, "wild-
type SMCHD1 transcript

Small compounds

Bosnakovski et al. [35&] iP300w Myotubes from FSHD
myoblast clonal cell lines

iDUX4pA mice

In vitro:
#target genes
In vivo:
#target genes, #fibrosis genes

Campbell et al. [38] BET inhibitors Immortalized FSHD
myogenic cells

#DUX4 transcript, #target genes

Ciszewski et al. [39&] Berberine Immortalized FSHD
myoblasts/myotubes

Mice overexpressing DUX4
by AAV

In vitro:
#DUX4 transcript, #target genes, "fusion

index
In vivo:
#DUX4 protein, "muscle specific force

Oliva et al. [41&&] p38 inhibitors Immortalized FSHD
myotubes/myoblasts

FSHD xenograft mouse
model

In vitro:
#DUX4 transcript, #target genes
In vivo:
#DUX4 transcript, #target genes

Lek et al. [43&&] Hypoxia signaling
inhibitors

Immortalized myoblasts
FSHD primary myotubes

Immortalized myoblasts:
#DUX4-induced cell death, #DUX4

protein
FSHD primary myotubes:
#target genes
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designed that may improve specificity and affinity
[27

&

]. Their efficiency in reducing DUX4 and target
genes in myogenic cells has not yet been shown.
Wallace et al. [28] tested the use of RNA interference
to inhibit the DUX4 transcript. MicroRNA
miDUX4.405 that targets one of the homeodo-
main-encoding sequences in the DUX4 open reading
frame (ORF) reduced DUX4 expression and DUX4-
induced muscle pathology in mice intramuscularly
injected with AAV6.DUX4 and AAV6.miDUX4.405.
The safety and toxicity of miDUX4.405 was assessed
1350-7540 Copyright � 2020 The Author(s). Published by Wolters Kluwe
by injecting different concentrations intramuscu-
larly or intravenously in wild-type mice. Although
miDUX4.405 was well tolerated, another DUX4
microRNA showed high toxicity in skeletal muscles
[29

&

]. Finally, another study tested novel designed
siRNAs and siRNAs that mimic the endogenously
generated small RNAs targeting the DUX4 coding
region and regions upstream of the coding region
[30]. Both siRNAs targeting the coding and noncod-
ing region reduced DUX4 and target gene expression
in FSHD myotubes, indicating that the endogenous
r Health, Inc. www.co-neurology.com 637
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RNAi pathway is involved in maintaining the repres-
sive state of D4Z4 and could be exploited to restore
epigenetic repression.

Several studies used different approaches to rees-
tablish epigenetic repression at the FSHD locus by
targeting D4Z4 modifiers (Fig. 1B). Himeda et al. [31]
tested the recruitment of the transcriptional repres-
sor KRAB to the D4Z4 repeat using catalytically
inactive dCas9 in FSHD myocytes. As dCas9 is
unable to make double-strand breaks in the genome,
it should not induce permanent DNA damage at
other sites, avoiding one of the main concerns for
CRISPR-based therapeutics. The recruitment of
KRAB promoted the repressive regulators KAP1,
HP1a, and HP1b at the D4Z4 repeat and as a result
the expression of DUX4 and target genes was
reduced. The same approach was used to repress
the DUX4 activators BAZ1A, BRD2, KDM4C, and
SMARCA5, which were identified in a targeted
knockdown screen in FSHD myocytes [32

&

]. By using
the CRISPR/dCas9-KRAB approach, they confirmed
that recruitment of KRAB to D4Z4 activators
reduced DUX4 expression in FSHD myocytes.
Another strategy is to genetically manipulate
D4Z4 modifiers, which most often have a single
copy locus. Goossens et al. [33

&&

] identified a
SMCHD1 variant in a FSHD2 family leading to the
inclusion of a pseudo-exon that disrupts the
SMCHD1 ORF. Removal of the pseudo-exon by
genome editing increased wild-type SMCHD1 tran-
script levels and reduced DUX4 and target gene
expression in myotubes derived from the affected
family. Furthermore, it has been shown that mod-
erate SMCHD1 overexpression in FSHD1 and FSHD2
myotubes results in reduced DUX4 and target gene
levels [34]. Thus, restoring SMCHD1 by gene editing
could treat patients with FSHD2 with a loss-of-func-
tion mutation in SMCHD1. For other patients with
FSHD, increasing SMCHD1-mediated repression of
DUX4 could be an alternative strategy.

Blocking the DUX4 transcript or restoring epi-
genetic repression at the FSHD locus may prevent
muscle damage in patients with FSHD. However,
most DUX4 therapeutics have only been tested in
myocytes and are not yet designed to target skeletal
muscles in vivo. To accelerate the availability of a
therapy for patients, more efforts should be made to
test novel therapeutics in animal models.
THERAPEUTIC STRATEGIES USING SMALL
COMPOUNDS

As an alternative approach, compounds can be used
to suppress DUX4 in a direct or indirect manner
(Fig. 1, Table 1). An advantage is that some of these
compounds are already tested for other diseases,
638 www.co-neurology.com
therefore more is known about their safety. One
study used a histone acetyltransferase p300 inhibi-
tor (iP300w) to inhibit the DUX4 protein from
activating its target genes as DUX4 utilizes p300
for this [35

&

,36]. As expected, iP300w barely affected
DUX4 expression in FSHD myotubes, but target
gene expression was severely reduced. In vivo,
iP300w administration prevented muscle mass loss
and reduced the expression of target and fibrosis
genes in iDUX4pA mice carrying a doxycycline-
inducible DUX4 transgene [35

&

,37]. Campbell
et al. [38] performed a screen in FSHD myogenic
cells to identify novel compounds that reduce
DUX4 expression. Different BET bromodomain
inhibitors that have already been tested in clinical
trials for other diseases reduced DUX4 and target
gene expression by inhibiting the BET protein BRD4.
BET proteins enhance gene transcription by recruit-
ing transcriptional elements to acetylated chroma-
tin. Another study tested berberine, a compound
that binds and stabilizes certain secondary nucleic
acid structures including G-quadruplexes [39

&

]. Mul-
tiple G-quadruplexes were identified within the
enhancer and promoter regions of DUX4 and in
the DUX4 transcript itself. In FSHD myoblasts, ber-
berine treatment reduced DUX4 and target gene
expression. To test the effect of berberine in vivo,
mice injected intramuscularly with DUX4 AAVs
received an intraperitoneally injection with berber-
ine. Berberine reduced DUX4 protein expression
and some DUX4-mediated muscle pathology, but
overall the effect was mild [39

&

].
Two studies reported that DUX4 can be repressed

by enhancing cyclic adenosine monophosphate lev-
els using b2 adrenergic receptor agonists or phospho-
diesterase inhibitors [38,40]. Recently, both Fulcrum
Therapeutics and Oliva et al. reported DUX4 suppres-
sion by p38a/b mitogen-activated protein kinase
(MAPK) inhibition [41

&&

,42
&

]. p38 MAPK is activated
by b2 adrenergic signaling and responds to different
stress stimuli. Several commercially available p38
inhibitors reduced DUX4 and target gene expression
in FSHD myotubes and myoblasts [41

&&

]. To study the
effect of p38 inhibitors in vivo, losmapimod and PH-
797804 were tested in a FSHD xenograft mouse model
containing transplanted FSHD myoblasts after bar-
ium chloride-induced muscle damage. Both inhibi-
tors reduced DUX4 and target gene expression in the
xenografted tibialis anterior muscle, however the
exact mechanism of DUX4 suppression by p38 inhib-
itors is unknown. Fulcrum Therapeutics is currently
performing a clinical trial testing losmapimod in
patients with FSHD. The first results are expected
mid-2020. Finally, a genome-wide CRISPR-Cas9
screening approach was recently performed in a myo-
blast cell line containing a doxycycline-inducible
Volume 33 � Number 5 � October 2020
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DUX4 transgene with the aim to identify new path-
ways involved in DUX4-induced cell death [43

&&

].
Doxycycline-induced myoblasts usually die within
48 h, therefore edited cells that survive were hypoth-
esized to carry loss-off-function mutations in genes
required for DUX4-induced cell death. In DUX4-
resistant cells, loss-off-function mutations were iden-
tified in multiple hypoxia signaling pathway genes
including in HIF1A and ARNT, subunits of the tran-
scription factor HIF-1. Treatment with HIF signaling
inhibitors reduced the amount of DUX4 protein,
target gene expression and cell death (Fig. 1C). Dif-
ferentFDA-approvedhypoxia signaling inhibitors are
available, which could lead to a rapid clinical trans-
lation. Also, the other unexplored genes that were
identified in this screen may reveal new pathways
involved in DUX4-induced cell death.

The above described therapeutics can be tested in
the short term in clinical trials as most compounds
have already been studied in FSHD mouse models or
tested in clinical trials for other diseases. However,
some of these therapeutics target factors, like p300
and p38 that are involved in many other pathways,
may give significant side effects in patients [44,45].
CONCLUSION

At present, there is no therapy that prevents or
delays disease progression in patients with FSHD.
Most studies targeting DUX4 have only performed
experiments in myoblast and myotube cultures
derived from patients. Because of the complex dis-
ease mechanism, the restriction of the D4Z4 repeat
to primates, the heterogeneity of DUX4 expression,
and the toxicity of DUX4 during development, ani-
mal models to test new therapeutic strategies were
scarce [7,46,47]. Recently, different mouse models
with controllable DUX4 expression in skeletal
muscles have been developed [37,48–50]. These
models open a new window for the development
and safety assessment of new therapeutics.

As skeletal muscles compromise a large part of
the body, the delivery of the therapeutics may not
be efficient and administration of high doses can be
toxic. For example, the life time of AONs are short
and PMOs show difficulties in penetrating the cell
membrane. Adjustments in their backbone can be
made to increase their stability and delivery to the
skeletal muscles [51]. As not all skeletal muscles are
equally affected in patients with FSHD, local deliv-
ery to a limited number of muscles that are the most
affected or the most important for maintaining
independence may be considered. Also, it is
unknown to what level DUX4 needs to be sup-
pressed in skeletal muscles. DUX4 expression has
been reported in myogenic cells and skeletal muscle
1350-7540 Copyright � 2020 The Author(s). Published by Wolters Kluwe
biopsies in unaffected individuals, suggesting that
low levels of DUX4 may be tolerated [52]. Finally,
DUX4 was considered to be silenced in all somatic
tissues, but recently DUX4 has been detected in the
thymus and epidermis of healthy controls [53,54].
More research is needed to determine whether
DUX4 has a function in somatic tissues and what
the consequences of DUX4 suppression are.
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