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PERSPECTIVE

A high-stringency blueprint of the human proteome
Subash Adhikari et al.#

The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in

2010, creating an international framework for global collaboration, data sharing, quality

assurance and enhancing accurate annotation of the genome-encoded proteome. During the

subsequent decade, the HPP established collaborations, developed guidelines and metrics,

and undertook reanalysis of previously deposited community data, continuously increasing

the coverage of the human proteome. On the occasion of the HPP’s tenth anniversary, we

here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is

essential for discerning molecular processes in health and disease, as we demonstrate by

highlighting potential roles the human proteome plays in our understanding, diagnosis and

treatment of cancers, cardiovascular and infectious diseases.

A decade after the release of the draft Human Genome Project (HGP), the Human Proteome
Organization (HUPO) leveraged this genomic encyclopedia to launch a visionary inter-
national scientific collaboration called the Human Proteome Project (HPP)1–4. Utilizing

substantial community data, the HPP connects scientists, clinicians, industry, institutions and
knowledgebase (KB) partners to create a framework for collaboration, data sharing and quality
assurance—all targeted at discovering credible evidence for the entire complement of human
genome-coded proteins (Box 1).

Here we report and discuss HUPO’s first high-stringency HPP blueprint (https://www.nextprot.
org/about/statistics, data release 17-01-2020). This blueprint was assembled over 10 years by the
HPP and covers >90% of the human proteome, paralleling progress made by the HGP5. This effort
relied heavily upon community efforts that enabled HPP data inspection and re-analysis, culmi-
nating in the creation of a high-stringency human proteome KB. To illustrate the many historical
innovations driving growth in proteomics, HUPO has created a historical timeline that will be
released coincidentally with this publication (https://hupo.org/Proteomics-Timeline).

HPP mission and strategic aims
The HPP mission is to assemble and analyse community data, bringing increased granularity to
our molecular understanding of the dynamic nature of the proteome, its modifications and
relationships to human biology and disease. This aligns closely with HUPO’s aim of ‘translating
the code of life’, providing crucial biochemical and cell biological information that genomics
per se cannot deliver, while laying better foundations for diagnostic, prognostic, therapeutic and
precision medicine applications.

From its inception, the HPP stated two strategic objectives as follows:

1. To credibly catalogue the human proteome parts list and discover its complexity
(including posttranslational modifications (PTMs), splice variants, interactions and
functions) by:
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a. Establishing agreed, stringent, reliable standards,
b. Identifying >1 protein product from each protein-

coding gene and
c. Detecting expression of the remaining missing proteins

(see below).

2. To make proteomics an integrated component of multi-
omics studies to advance life sciences, biomedical sciences
and precision medicine.

Comparisons with the HGP are numerous. Both global projects
are ambitious cooperative community efforts seeking to identify
how genes (HGP) or proteins (HPP) help define the molecular
mechanisms underlying health and disease. Both groups have
implemented exhaustive data sharing and stringent quality con-
trol efforts. However, we now know that sequencing human
genomes is necessary but not sufficient to understand the com-
plexity of human biology or pathology. Knowledge of expressed
proteins (including concentration, spatio-temporal localization,
activities, protease-processed forms, transport, interactions, splice
isoforms, PTMs and the many proteoforms derived from the
proteome) cannot be predicted by genome sequencing alone.

HPP structure and achievements
HUPO launched the HPP in 2010 at the 9th HUPO Annual World
Congress in Sydney, with Gil Omenn as the inaugural chair. The
HPP started without long-term funding. Financial support over
the decade came through individual principal investigator
projects, institutional infrastructure/core facilities and philanthropy,
without large-scale, long-term, integrated multi-government stra-
tegic funding.

The HPP grew from several archetypal HUPO projects
(plasma, liver, brain, cardiovascular, kidney/urine proteomes). At
present, the HPP comprises two strategic initiatives—chromo-
some-centric (C-HPP; 25 teams) and biology/disease-centric (B/
D-HPP; 19 teams)—organized in a strategic matrix underpinned
by four Resource Pillars: antibodies (AB), mass spectrometry
(MS), KB and Pathology (Fig. 1a). Before explaining these ele-
ments in more detail, we will describe HPP’s criteria underlying
the establishment of the high-stringency human proteome.

Defining the human proteome at high-stringency. The HPP
relies upon a coordinated system developed by neXtProt and
UniProtKB, which attributes five levels of supporting evidence for
protein existence (PE)6. Evidence at PE1 indicates clear experi-
mental evidence for the existence of at least one proteoform,
based on credible identification by MS, Edman sequencing, X-
ray, nuclear magnetic resonance (NMR) structure of purified
natural protein, reliable protein–protein interaction and/or anti-
body data. PE2 indicates evidence limited to the corresponding
transcript (cDNA, reverse-transcriptase PCR, northern blotting).
PE3 indicates the existence of orthologs in closely related species.
PE4 refers to entries based on gene models without evidence at
protein, transcript or homology levels. PE5 classifications indicate
that coding evidence is doubtful and/or probably corresponds to
an incorrect in silico translation of a non-coding element. As PE5
entries are largely non-coding, the HPP preferentially tracks
only PE1,2,3,4 protein-coding entries. Proteins classified as
PE2,3,4 are colloquially referred to as missing proteins7,8. Since
2013, neXtProt and the HPP (Fig. 1b) have issued annual tallies of
PE1,2,3,4,5 status (www.nextprot.org/about/protein-existence),
which have been reported in annual collaborative metrics
manuscripts (ref. 9 and references therein).

The latest neXtProt HPP reference release (https://www.
nextprot.org/about/statistics, data release: 17-01-2020) designates
credible PE1 evidence for 90.4% of the human proteome (17,874
PE1s from the 19,773 PE1,2,3,4 protein entries excluding the
dubious 577 PE5 entries). This leaves 1899 (9.6%) PE2,3,4
missing human proteome entries to be identified at high-
stringency.

Here, the term high-stringency refers to rigorous HPP
standards for post-acquisition processing and any protein
inference made from raw MS peptide spectral data10. This term
avoids confusion with the pre-existing term ‘high-accuracy’

Box 1 |

HPP decadal achievements

● Generated a framework, plan and governance structure for
community-based mapping of the human proteome.

● Confirmed neXtProt as the HPP reference knowledgebase and
supported creation and use of ProteomXchange (PX) to register and
make proteomics raw mass spectrometry (MS) and metadata
available and reusable under FAIR (findable, accessible, interoperable
and reusable) principles.

● Engaged neXtProt, PeptideAtlas, PRIDE and MassIVE as partners in
the generation of annual neXtProt HPP release and a high-stringency
HPP knowledgebase (KB).

● Encouraged community support of high-stringency protein inference
and proteomic data analysis.

● Built MS data interpretation guidelines that promoted the application
of standardized analysis of community human MS and proteomic data
to progressively complete the human proteome parts list.

● Aligned with the Human Protein Atlasʼ (HPA) cell and tissue spatio-
temporal maps in health/disease and supported community efforts to
raise awareness of antibody specificity and quality assurance issues.

● Partnered with SRMAtlas to develop quantitative targeted proteomics
assays for the analysis of key proteins and hallmark pathways/networks.

● Proposed and built global collaborative initiatives to investigate the
biology of human health and disease at a proteomic-wide scale.

● Raised the profile and visibility of proteomics, as an essential component
of life sciences and biomedical research by promoting the development
of instrumentation and methods for proteoform analysis, as well as
activity/function that cannot be addressed by genomics.

● Initiated a programme to determine the biological function for
uncharacterized PE1 proteins (see below) that currently lack functional
annotation.

● Established a HUPO Early Career Researcher network to engage, mentor
and highlight research from young scientists/clinicians, while actively
promoting gender and regional balance.

Future goals

● Establish a community initiative to systematically map all human
proteoforms.

● Establish optimized workflows for human proteome detection,
quantification and functional characterization, including low
abundance and/or temporo-spatially restricted proteins.

● Continue to support and promote the provision of technical standards,
metrics and stringent guidelines for confident protein identification
and quantification.

● Create a comprehensive, accurate, publicly-accessible, reference
human proteome knowledgebase, reusable under FAIR principles.

● Maintain education and training programmes in all aspects of
proteomics including proteomic data analysis for early career
researchers and clinical scientists.

● Be a focal point for life sciences researchers, pathologists, clinicians
and industry communities seeking to translate and leverage proteomic
and proteogenomic data to improve human health through: (i) greater
understanding of the molecular mechanisms of common and rare
diseases, (ii) identification of pathophysiological changes to generate
disease and wellness diagnostic biomarkers, and (iii) development of
new effective and safe personalized therapeutics.
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frequently used in MS parlance, which relates to the generation of
high (mass)-accuracy spectra from modern instruments.

The use of high-stringency influences the quality of all protein
inferences derived from any raw MS data. The HPP routinely
applies high-stringency protein inference analytics10, generated
through the Trans-Proteomic Pipeline11. Claims for detection of
new PE1s and/or detection of coding elements not previously in
neXtProt, should meet minimum evidence thresholds. The
current HPP guidelines10 require at least two uniquely mapping
peptides (using neXtProt’s Peptide Uniqueness Checker Tool12),
which are at least nine amino acid residues long. Peptides must be
non-nested (i.e., one not fully contained within another) but may
overlap partially so coverage exceeds >18 residues. The HPP also

requires full declaration of false discovery rate (FDR) calculation
procedures at peptide and protein levels, with a maximum
allowable protein-level FDR of 1%. Within HPP missing protein
publications, further validation is required through synthetic
peptide spectra matching13. Going forward, the HPP also requests
association of Universal Spectrum Identifiers with every MS
spectrum10.

We emphasize that MS-based data from high-accuracy14,15 MS
instruments combined with subsequent high-stringency protein
inference analysis provide definitive best-practice confirmation of
protein identification and abundance. To ensure high-quality
analyses, increasingly stringent criteria have been applied10,16 and
the latest HPP MS Guidelines v3.010 are designed to make
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Fig. 1 Structure of HUPO’s Human Proteome Project. a The HPP matrix formed by creating two major initiatives (C-HPP and B/D-HPP). The initiatives
and their teams are underpinned by 4 Resource Pillars (AB, MS, KB and pathology). b The HPP KB pipeline demonstrates how MS, AB and other biological
data are collected, processed, re-analysed and presented annually for FAIR (see below) use by the scientific community. MS datasets are deposited, tagged
with a PXD identifier, and stored by PX repositories (PRIDE, PeptideAtlas, MassIVE, Panorama, iProX, JPOST). Data selection, extraction and re-analysis by
PeptideAtlas and MassIVE results in processed data that is transmitted to neXtProt. Subsequently, neXtProt annotates and curates other biological data
(like Sanger sequencing, protein : protein interaction and other structural/crystallographic data) that is aggregated, integrated and then disseminated to the
community. The HUPO HPP KB uses reverse date versions (e.g., the latest 2020 neXtProt HPP reference release 17-01-2020).
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spectral data Findable, Accessible, Interoperable and Reusable
(FAIR)17.

Many previous studies use high (mass)-accuracy instruments
with subsequent protein inference identifications undertaken at
lower default settings, such as accepting single peptides or those
only seven amino acids in length and/or not conforming to more
rigid neXtProt proteotypic analysis18,19. These analyses can result
in spurious identification of many more false positives20, with
lower-quality single non-proteotypic spectra data colloquially
referred to as one-hit wonders, better explained by sequence
variation in other highly observed proteins21.

Chromosome-centric (C)-HPP. The C-HPP (https://www.hupo.
org/C-HPP) aims to annotate all genome-encoded proteins7,8 in
an unbiased and high-stringency manner. It explores proteins
that have not previously been confidently observed by MS or
other analytical methods7,8,22. International C-HPP teams are
organized according to chromosomes (Chrs), namely Chrs 1–22,
Chr X, Chr Y and mitochondrial (Mt) genome teams.

From 2017, the C-HPP expanded its mission to include
functional characterization of the 1899 PE2,3,4 proteins that have
not been confidently observed and 1254 PE1s that have no
neXtProt curated function (uncharacterized PE1s or uPE1s),
cumulatively referred to as the dark proteome23,24.

Biology/disease-centric (B/D)-HPP. The B/D-HPP (https://
www.hupo.org/B/D-HPP) measures and interprets human pro-
teome data under a range of physiological and pathological
conditions. It focuses on the following: (i) elucidating the hall-
mark protein drivers of biology/disease and (ii) promoting
development of new proteomics analytical tools such as Ab-based
approaches and targeted selected/multiple/parallel reaction
monitoring (SRM/MRM/PRM) assays.

As an example, the initial HUPO liver proteome project grew
into a B/D-HPP team focussing on liver expression profiles, PTMs,
tissue expression, subcellular localization, interactions, physiology
and pathologies25. The Chinese CN-HPP have characterized four
liver cell types, emphasizing benefits of acquiring cell-type specific
maps to understand underlying biology/pathology26. In addition,
they mapped landscapes of early hepatocellular and lung carcinoma,
generating cancer subtype alterations where proteomic signatures
identified poor prognosis patients and/or those benefiting from
targeted therapy27,28. In other studies, they analysed microdissected
cell types with gross anatomical resolution using MS26,29, revealing
circadian cycles and spatio-temporal proteome expression in the
liver, brain, heart and stomach30, providing resources to better
understand organ biochemistry, physiology and pathology.

Significant discoveries continue to be made from all B/D-HPP
teams across personalized cancer immunotherapy and therapeu-
tic modalities (e.g., lymphoma31, ovarian32, liver27 and lung28

cancers), with PTMs orchestrating many outcomes including
response to therapy33–35.

B/D-HPP resources include the Human SRMAtlas36, a unique
compendium of high-resolution spectra and multiplexed SRM/
MRM/PRM assays developed from 166,174 synthetic proteotypic
peptides. This assay library enables targeted identification and
quantification of a theoretical maximum of 99.7% of the human
proteome36, provided proteins are expressed spatiotemporally at
concentrations amenable to MS detection. For example, SRMA-
tlas supported the C-HPP Chr X team’s confident identification
of missing proteins37.

HPP resource pillars. The B/D-HPP and C-HPP are supported
by four HPP Resource Pillars that ensure effective data genera-
tion, integration and implementation, including the establishment

of metrics and guidelines, enhancement of technology platforms,
reagent development and optimal use of existing and emerging
data streams (Fig. 1a).

The HPP MS Resource Pillar informs the community about
MS technology/workflow advances, appropriate high-stringency
standards and liaises with industry regarding instrument devel-
opment, all leading to improved depth and accuracy of proteome
identification, quantification and modification. These include
methods like matrix-assisted laser desorption ionization time of
flight (MALDI-TOF)-MS, electrospray-MS, bottom-up (shotgun)
MS, data-dependent acquisition MS, data-independent acquisi-
tion (DIA) MS, targeted SRM/MRM/PRM, top-down MS, cross-
linking MS, PTM analysis, N- and C-termini measurement, MS
data computational analysis and interactomics.

The MS Resource Pillar previously undertook a SWATH/DIA-
MS reproducibility study38 and are currently coordinating a
phosphopeptide challenge involving >20 participating labs with
partners SynPeptide Shanghai and Resyn Biosciences South
Africa, who have provided a human phosphopeptide standard
set with unphosphorylated counterparts, as peptide mixtures
spiked into a yeast tryptic digest background. This will result in a
better understanding of phosphopeptide enrichment, MS data
analytics and informatics tools.

The HPP Ab Resource Pillar, ostensibly led by the Human
Protein Atlas (HPA; www.proteinatlas.org), was initiated in 2003
and uses Ab-based strategies to analyse spatio-temporal aspects of
the proteome39. Linking the identification of proteins with ‘real-
time’ localization at tissue, cell and subcellular levels supports a
more comprehensive understanding of biology, health and
disease. This requires information at resolution not currently
available by MS (see single-cell section below). Approaches for
spatio-temporal proteomics include single-cell in situ MS,
fractionated cell lysates, proximity labelling or imaging-based
proteomics40,41. Imaging-based proteomics has a clear advantage,
namely analysing proteins in their native location at single-cell
resolution. To this end, the HPA has developed industrial scale
epitope-directed Abs for community use.

HPA also integrates multi-omics data. It contains extensive
transcriptome data and neXtProt PE assignments, and contri-
butes to the open-access catalogue Antibodypedia, containing >4
M Abs (www.antibodypedia.org)42 against >19,000 targets that
assist the community to select application-appropriate Abs.

At HPP launch, the HPA had detected >50% of the protein-
coding genome43. Currently, ~87% of the proteome is targeted by
>1 HPA Ab, detected though an encyclopaedia of >10M
annotated high-resolution digital images, partitioned into a
number of sub-atlases that are interconnected44–48. These
currently comprise the; Tissue Atlas (protein distribution across
all major tissues), Cell Atlas (subcellular localization and
heterogeneity in single cells), Pathology Atlas (correlations
between gene expression and patient survival in major human
cancer types), Blood Atlas (protein profiles across major immune
cells and blood levels), Brain Atlas (protein distribution in the
brain), and the Metabolic Atlas (various tissue metabolic enzymes
localizations). Over the decade, HPA’s open-access database44–48

has become one of the world’s most visited biological resources
(>3.6 M visits in toto annually).

The HPA also plays an emerging role in establishing guidelines
around the appropriate use of Abs and ensuring immunoassay
validation49–51. It recently spent considerable effort validating the
selectivity of their Abs, including championing efforts of the
International Working Group for Ab Validation proposing many
new approaches implemented across >10,000 Abs42. In addition,
HPA’s massive collection of images has supported a multitude of
publications and become a citizen science resource for developing
AI classification learning models52,53. The HPA is sustained
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through community contribution to ELIXIR54, that allows scientists
from academia and industry to explore spatio-temporal aspects of
the human proteome55–57.

Since 2018, the HPP Pathology Resource Pillar has coordinated
identification of areas of unmet clinical need, develops fit-for-
purpose clinical assay guidelines/standards, promotes best-practice
awareness, coordinates access to quality clinical samples/metadata
and liaises with pathology organizations, diagnostic companies and
regulatory agencies to promote professional application of proteo-
mics in pathology.

The HPP KB Resource Pillar captures, collects, collates,
analyses and re-distributes all human proteome data. As cohesive
knowledge transfer plays such a crucial role in big data science,
including the HPP, the KB pillar’s activities are addressed in the
expanded section that follows.

The human proteome in the neXtProt HPP reference KB
Assembly and curation of neXtProt. Prior to the HPP, HUPO
established a Protein Standards Initiative (PSI; www.hupo.org/
Proteomics-Standards-Initiative), emphasizing from the outset
their priority for defining high-quality community standards,
minimal requirements for experimental information58 and high-
stringency data metrics. PSI continues to work cooperatively with
the HPP KB to inform HPP initiatives, pillars and teams.

In 2013, neXtProt59,60 was officially designated as the HPP
reference KB61. Annually, a neXtProt release is designated as the
‘HPP release’ and this serves as the basis for subsequent HPP
high-stringency analyses, planning and reporting progress10. It
receives and curates data from UniProtKB/SwissProt62, adding
MS evidence from PeptideAtlas63 and since 2019 from Mas-
sIVE64. neXtProt also curates Ab-based, genome, transcriptome
and other biological data to create an assembled snapshot of the
human proteome6,65.

PeptideAtlas (http://www.peptideatlas.org) uses sequence
search engines Comet66, X!Tandem67 and SpectraST68 to
reprocess publicly uploaded MS/MS data deposited through
ProteomeXchange (PX). Data are aggregated using rigorous
criteria including peptide spectral matching with FDR ~ 0.0009%
in the latest PeptideAtlas build to achieve ≤1% FDR at the protein
level. MassIVE searches public datasets using the MS-GF+ search
engine69, also with strict criteria70 to enforce global <1% FDR at
the protein level for single-peptide identifications and stricter
<0.01% FDR for proteins identified by >2 peptides. PeptideAtlas
and MassIVE peptide lists are integrated into current neXtProt
builds. neXtProt then cross-references all peptides to protein
entries and validates PE levels, requiring at least two MS-
identified uniquely mapping 9-mer non-nested peptides coming
from either PeptideAtlas or MassIVE.

neXtProt builds on UniProtKB/SwissProt PE1 entries that
include MS, partial or complete Edman sequencing, X-ray or
NMR structure, reliable protein–protein interaction data or Ab
detection by considering additional PeptideAtlas/MassIVE data
that meets minimum peptide uniqueness, number, length,
nestedness and other requirements to upgrade entries to PE1.
Noticeably, neXtProt is becoming more reliant on MS than
non-MS data (e.g., 1860 non-MS data PE1s in 2016 down to
950 in 2020).

To ensure only high-quality Ab data are used, in 2018
neXtProt/HPP Ab pillar revised criteria to upgrade entries to PE1,
including specificity and other rigorous criteria suggested by the
International Working Group for Ab Validation50. As an
example, neXtProt recently analysed 41 Ab-based publications
and upgraded three PE2,3,4 entries to PE1. Discussions regarding
data provenance delivered by non-MS data for PE1 assignment
actively continues in the HPP71.

Expansion of the high-stringency proteome. The baseline
number of protein-coding genes in the reference proteome given
by neXtProt is managed by UniProtKB/SwissProt. Every protein-
coding gene is assigned a protein entry (inclusive of all proteo-
forms), with chromosome location and other data organized
under these entries. The number of protein-coding genes ori-
ginally estimated by the HGP dropped from >100,00072 to a
relatively stable ~19,700 at HGP draft release, a number that is
close to the current neXtProt’s 2020 release of 19,773 protein-
coding genes (Supplementary Fig. 1)60.

Confident detection of the human proteome has consistently
risen from 69.8% neXtProt PE1 entries in 2011 to 90.4% in 2020
(Fig. 2a). However, progress has recently slowed (Fig. 2a),
suggesting that it may be difficult to confidently identify all 1899
missing proteins. Parenthetically, the HGP celebrated a provi-
sional 90% completion ten years after its launch5 and annotation
of the human genome still remains incomplete or uncertain,
especially in regions of repeat sequences and Z-DNA inserts.

In each of the seven annual HPP metrics papers published to
date (9 and refs therein), PE1,2,3,4,5 entries have been added,
deleted, renamed, merged and/or de-merged, indicating ongoing
fine-tuning of the HPP reference proteome. The Sankey flow
diagram73 (Fig. 2b) illustrates that significant fluidity has occurred
across all PE classifications since 2011. The largest shifts occur with
increases in PE1s (13,603 up to 17,874), followed by decreases in
PE2s (5,587 down to 1,596), despite increasingly stringent HPP MS
data guidelines adopted in 2015 (v2.1) and 2019 (v3.0). Linear
regression of PE1 increases against PE2 decreases results in a strong
(R2= 97%) inverse correlation, suggesting new PE1s come from
PE2s where mRNA expression has been previously observed.
Extrapolation of this PE1 discovery curve suggests that 95%
PE1s may be reached sometime between 2024 and 2027. Minor
conversions occurred between other PE categories, with down-
grading of PE1 or PE2s and upgrading of PE4s, and even a few
PE5s, to PE1s. Although a plethora of studies show low linear
correlations (40–60%) between mRNA level and protein
abundance74,75, our binary data (Fig. 2) supports the contention
that once a neXtProt entry has mRNA expression verified, those
PE2s are amenable to upgrade to PE1, whereas PE3s, PE4s and
particularly PE5s are more resistant to PE1 upgrade.

Missing protein analyses. neXtProt protein descriptors and
associated data can be used to analyse protein groups/families
according to their Chr location or PE classification. Missing
protein (PE2,3,4) analysis indicates that some groups/families
have been upgraded to PE1 more successfully than others
(Fig. 3a). For example, between 2011 and 2020, 372 zinc (Zn)
finger proteins, 171 transmembrane proteins, 93 carbohydrate
metabolism proteins, 90 testes-, sperm-, prostate-associated pro-
teins, 78 coiled-coil domain-containing proteins and 58 homeo-
box proteins have been upgraded from PE2,3,4 to PE1.
These represent the six most prominent protein groups upgraded
to PE1 over the decade (Fig. 3a, green). In contrast, two G
protein-coupled receptor (GPCR) chemosensory families prove
particularly resistant to PE1 upgrade: many olfactory receptors
(ORs) are still missing in 202076 (417 of the 2011 PE2,3,4 entries,
including putative and uncharacterized ones) and 17 of 20 taste
receptors remain PE2,3,4 s (Fig. 3a, magenta). In addition, some
groups with a large number of PE1-upgraded protein entries still
contain many PE2,3,4 entries (e.g., 85 non-GPCR transmem-
brane, 69 Zn finger and 33 keratin-associated proteins remain
PE2,3,4 s (Fig. 3a).

When Chr distribution of the most resistant (ORs) or most
discovered (Zn-finger proteins) groups were plotted (Fig. 3b),
difficult-to-find ORs mapped mostly to Chr 11 (~55%) and
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Zn-finger proteins mapped mostly to Chr 19 (~55%). Our data
demonstrate that 46% of all Chr 19 proteins elevated to PE1 were
Zn-finger family members, illustrating this protein family has
been highly amenable to confident MS detection over the decade.
Therefore, it was not surprising that most Zn-finger protein
members were coded on Chr 19 (i.e., 255/698 total Zn-finger
genes), which has the highest Chr PE1 reclassification rate over
the decade (Fig. 3b).

These data suggest that gene family duplication on particular
Chrs explains why some families are resistant or sensitive to PE1
reclassification. In agreement, PE1 discovery has occurred
productively, but not uniformly, across all chromosomes (Fig. 4).
Missing protein decadal upgrade statistics range from 16% for
Chr Y up to 29% for Chr 1, with raw data representing 425
protein entries for Chr 1 down to only 5 for Chr Y. A higher
percentage of Chr 19 proteins (29%) ascended to PE1 compared
to those on Chrs 11, 14, 21 or Y (<17%). The HPA chromosome
viewer (www.proteinatlas.org/humanproteome/proteinevidence)
illustrates many recently-evolved protein family members are
present on Chr Y, many ORs on Chr 11 and many keratin-
associated proteins on Chr 21. Proteins on these three Chrs have
proven relatively resistant to PE1 reassignment. Notably, there

was just a single Mt missing protein in 2011 and over the decade
all Mt protein-coding genes have now been identified.

PE1 upgrade success by the 25 C-HPP teams could be pre-
determined by the presence of resistant or more easily-identified
missing protein families on particular Chrs. However, the current
HPP KB processing pipeline utilizing PeptideAtlas, MassIVE and
neXtProt (Fig. 1b) makes it impossible to isolate decadal PE1
contributions from any particular C-HPP team as opposed to the
overall community. Although the HPP explores capturing full data
provenance (i.e., from quantification/identification back to original
data source) for FAIR data practices17, we can only historically
estimate PE1s emanating from community deposition.

In silico analysis reveals only 22 human proteins cannot
produce the characteristic >2 high-stringency proteotypic pep-
tides of the required length after tryptic digestion36. However,
many missing proteins may be present at levels below detection
limits or in under-studied cell types/tissues, expressed under
particular conditions (e.g., stress/infection) or only found in
developmental stages (e.g., embryo/fetus)77. Equally, difficult-to-
solubilize, hydrophobic multi-transmembrane domain membrane
proteins may only generate short tryptic peptides that do not
meet high-stringency guidelines or are indistinguishable from
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Fig. 2 Completing >90% of the high-stringency human proteome. a Annual neXtProt HPP evidence of protein existence (PE1,2,3,4,5) metrics from 2010
to 2020. This data demonstrates a strong and progressive increase in PE1 identifications across the decade (13,588 in 2011 to 17,874 in 2020), correlative
equivalent decrease in PE2 (5,696 to 1596), a post-2015 rise in PE3 coincident with revised guideline implementation (239 to 253) and decrease in PE4
identifications (90 down to 50). PMS Pantone colours employed match in the figure match for all past annual neXtProt HPP KB reference PE1,2,3,4,5 data
release colours, namely PE1: light green, PE2: teal, PE3: yellow, PE4: orange, and PE5: red). b Decadal Sankey diagram of changes in PE1,2,3,4,5 status of
neXtProt entries between 2011 and 2020, where arrow widths are proportional to the number of decadal PE entries that change category. This Sankey
diagram displays fluidity in PE status of neXtProt entries. PMS Pantone colours match those used for all past annual neXtProt HPP KB reference PE1,2,3,4,5
data releases https://www.nextprot.org/about/protein-existence (i.e., PE1: light green, PE2: teal, PE3: yellow, PE4: orange and PE5: cerise). All neXtProt
protein entries that were deleted or newly introduced during the decade are represented in black, noting that 432 neXtProt entries were deleted and 676
introduced. Sankey analysis demonstrates that 2011 PE2 entries were the most significant (but not exclusively) the source for the majority of additional
2020 PE1s. Year-by-year transition data can be found in metrics publications associated with annual (2013–2019) HPP special issues9 and refs therein,
guided by high-stringency HPP Guidelines10.
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other family member sequences76. Furthermore, transmembrane
protein regions cut at single sites are unlikely to release embedded
hydrophobic membrane-anchored protein strands76.

We anticipate that finding the 9.6% remaining PE2,3,4 missing
proteins will require exceptional future effort, including careful
sampling of rare cells/tissues78 combined with better sample
fractionation and improved detection limits. Low abundance
proteins might be enriched using Abs prior to MS. To this end,
the HPA has developed Abs against proteotypic sequences in many
missing proteins79. Several other labs are working on improved
protocols for insoluble keratin-associated cross-linked missing
proteins, non-tryptic or chemical digestion strategies to increase
proteotypic peptide productivity78,80, higher efficiency search
engines81, and compendia of missing protein biological evidence
(e.g., MissingProteinPedia)71. Future HPP projects anticipate a shift
to detection of biologically functional proteoforms82, noting their
numbers are far larger and more difficult to measure83 because of
heterogeneous nuclear RNA splicing, many PTMs and detection of
peptides with single amino acid variants (SAAVs). Considerable
PTM and splicing isoform data are already available through
neXtProt, including 190,938 PTM sites and 9,193,365 SAAVs84.

Community impact on the human proteome
One barometer of community engagement in the HPP is the
magnitude of investigator-submitted raw MS data that have been

re-analysed. Many journals require raw data submission and HPP
action was a significant factor in journals adopting requirements
aligned to HPP data deposition guidelines. Raw data deposition
occurs through PX, which registers and standardizes capture/dis-
semination of public MS data from partner repositories, including
founders PRIDE62 and PeptideAtlas and recent members Mas-
sIVE64, jPOST85, iProX86 and Panorama Public87. As of 2020, a
total of 4634 human MS datasets have been received. Each PX
dataset is branded with a unique PXD identifier with depositors,
publications and voluntary metadata noted88,89. Illustrating the
magnitude of this community data, ~470 TBs of data have come
from 5658 human datasets (~47% of 1 petabyte PRIDE volume),
with only 358 (6.3%) of these specifically tagged by depositors as
from the HPP. The HPP encourages raw human MS data/metadata
submission (including association to HPP) through PX, and that
journals request that PXD identifiers be published in accordance
with FAIR principles17 as discussed above.

To provide an additional measure of global scientific impact,
HUPO commissioned the website construction of the Human
Proteome Reference Library (HPRL; https://hupo.org/HPP-
HPRL/), where all HPP-associated PubMed searches are hyper-
linked and can be accessed and re-run routinely by the
community. These hyperlinked searches automatically produce
the latest PubMed outputs in a manner where all PubMed fil-
tering, ranking and timeline tools can be applied subsequently by
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a user as required. As an example of the fascinating data
unearthed, a ‘human proteome project’ search showed that the
structural biologists Montelione and Anderson first suggested the
possibility of building a HPP in their 1999 Nature Structural
Biology publication90—well before HUPO or the HPP began.

The HPRL can also be used to measure impact (Fig. 5), where
PubMed identifiers (PMIDs) from 2010 to 2019 references can
be captured using web APIs or software, e.g., NCBI E-utilities
like https://www.ncbi.nlm.nih.gov/books/NBK25501 or the easy-
PubMed R interface (www.rdrr.io/cran/easyPubMed) that enable
extraction and aggregation of PubMed bibliometric records.
Paralleling the low percentage of PX datasets tagged as emanating
from the HPP, HPRL data show only ~1000 PubMed title and
abstract searches that specifically and cumulatively mention
either the terms HPP, C-HPP and/or B/D-HPP (or their unab-
breviated counterparts) out of a total of more than 50,000 ‘human
AND proteomics’ title/abstract search outcomes over the decade.
In contrast to this and more reassuringly, HPRL searches of the
community’s biology/ or disease studies covered by nine of the
B/D-HPP teams generated >5000 publications each since 2010
(Fig. 5b), with ‘cancer proteomics’ topping rankings at around
20,000 publications. Although this may seem surprising, a PubMed
search of ‘human genome project’ produced a similarly modest
number of ~1900 hits during the HGP’s first decade. To visualize
outputs from various HPP teams and the proteomics community
in general, we have employed VOSviewer91 to construct and
visualize bibliometric networks from collective PubMed searches

(example shown in Fig. 5c). This particular analysis revealed a
remarkable number of highly-interconnected relationships that
have evolved between HPP teams, pillars and initiatives—provid-
ing evidence for the impressive level of established international
collaboration developed over the decade.

Translating proteomics to precision medicine
A key aspect of biomedical research lies in translating discovery
into clinical use. Protein assays remain a cornerstone of diag-
nostics. Although individual proteins can be measured diag-
nostically with high precision (i.e., sensitivity and specificity),
some assays suffer low specificity due to cross-reactivity with
interfering substances including autoantibodies (e.g., thyr-
oglobulin immunoassays). Modern SRM/MRM/PRM assays allow
multiple proteins to be measured simultaneously, accurately,
sensitively and with high specificity. In addition, the use of liquid
chromatography MS with immunocapture assays has been
reported to eliminate interferences92. Moreover, as most diseases
are heterogeneous and multigenic, it is likely that multiplexed
proteomic or multi-omics panels will achieve higher accuracy
(e.g., optimized biomarkers for ovarian malignancy with adnexal
masses93). The HPP assists in the development of proteomic
educational programmes with pathology societies to train the
pathology community on the potential impact of proteomic
technologies.

Below, in recognition of the impact human proteomics can
and is having in precision medicine, we highlight examples
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demonstrating the role of the HPP and proteomics in tackling
contemporary medical grand challenges.

Cancer precision medicine. As mentioned above, PubMed
extracts ~20,000 published human cancer proteome studies since
2011 (Fig. 5b). Although genomics can routinely determine high-
risk, predisposition and aspects related to tumour burden and
recurrence, effective targeted cancer treatment is still not available
for all cancers. For example, systematic genome-wide studies like

the Pan-Cancer Analysis integrated analyses of >2600 whole
genomes from 38 tumour types with matching normal tissues,
uncovered many cancer-associated genes94, chromosome rear-
rangements, some unknown drivers but few new therapeutic
targets. This is mainly because mutations do not automatically
cause predicted changes in the proteome, making it difficult to
establish which changes are crucial biochemical drivers from
those that are not.

Integrating genomic and proteomic data (i.e., proteogenomics)
has the potential to provide insights into causes and mechanisms
underlying diseases, including the hallmarks of cancer biology95.
This can facilitate the implementation of effective therapeutic
intervention. The value of a proteogenomic analysis of functional
consequences of cancer somatic mutations has assisted in
narrowing down candidate driver genes within large deletions
and amplified regions96. Reviewing the underlying causes of
breast cancer also demonstrates that coupling genomic/transcrip-
tomic data with proteomic/phosphoproteomic analysis was more
insightful than any individual approach. Of note, melanoma
tumour genomic BRAF driver mutations match corresponding
protein sequences97, illustrating that proteomic landscapes add
value to genomic data, when considered with patient tumour
histopathology and clinical metadata98.

Proteomics substantially benefits a comprehensive under-
standing of precision medicine. To illustrate this, NCI’s Clinical
Proteomic Tumor Analysis Consortium (CPTAC; proteomics.
cancer.gov) in collaboration with the B/D-HPP cancer team,
established guidelines, data sharing, and standards in analytical
and computational workflows to ensure rigour in designing and
performing research99–103. CPTAC applied these standards and
workflows to tumours previously genomically characterized by
The Cancer Genome Atlas. In doing so, CPTAC pioneered the
integration of proteomics with genomics (i.e., proteogenomics) to
produce a more unified and comprehensive understanding of
cancer biology and implemented its transition into cancer clinical
research studies96,104,105. Largely due to these efforts, NCI hosts
open-access repositories of unified proteogenomics datasets,
assays and reagents, including the Proteomic Data Commons
(pdc.cancer.gov), a fit-for-purpose targeted assay site (assays.
cancer.gov)102,106 and an Ab portal (antibodies.cancer.gov)107.
These activities empowered the recent creation of the Interna-
tional Proteogenome Consortium (ICPC; icpc.cancer.gov)108.
Collectively, CPTAC and ICPC collaborators have comprehen-
sively characterized 13 cancer types at the proteogenomics level,
with all datasets publicly accessible109–117.

Cardiovascular diseases. Cardiovascular disease (CVD) research
is challenged by daunting structural heterogeneity and molecular
complexity. For example, cardiac circuitry function/dysfunction
cannot be reduced to differentially expressed single genes. On the
other hand, proteogenomics allows assessment of interactions,
pathways and networks and informs diagnosis and therapy of
multifactorial CVDs. Over the decade, CVD proteomics has
broadened from identifying single canonical proteins to mapping
proteoforms derived from combinations of alternative splicing,
cleavage, and PTMs33,83. Now, identification of proteoforms (e.g.,
genetic variations, alternatively spliced products, phosphoryla-
tion118, glycosylation119, oxidative120 and other PTMs121) allow
CVD sub-classification. In parallel, the heart is uniquely sensitive
to alternative splicing (frequently altered in congenital heart
diseases), explaining the B/D-HPP’s interest in developing assays
for splice isoform-specific changes in cardiomyocyte development
and maturation122,123.

Many technological developments have been prominent,
including phospho-PTM analysis to identify PDE5A targets in

0

5000

10,000

15,000

20,000 Cancer
Kidney/urine
Food and nutrition
Cardiovascular
Liver
Brain
Plasma
Infectious disease
Rheumatic disorders

C
u

m
u

la
ti

ve
 P

u
b

M
ed

 b
ib

lio
m

et
ri

c 
o

u
tp

u
ts

a

b

0

200

400

600

800

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

B/D-HPP

C-HPP

HPP

c

Fig. 5 Assembly of the Human Proteome Reference Library (HPRL). Data
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heart failure therapy118 and proximity labelling to assess
protein–protein interactions involved in β-adrenergic signalling
of contractility in cardiac fight-or-flight responses124 and
evaluation of regenerative stem cell therapy efficacy in post-
infarct hearts125. Proteomic studies have also addressed the
kilometres of vascular beds and extracellular matrix responsible
for transporting blood, giving valuable insights into the molecular
anatomy of aneurysms and atherosclerosis126,127. Targeted MS
methods have been developed, again especially where interfer-
ences obfuscate immunoassays128 or where additional biological
context is required129. Likewise, volumetric absorptive micro-
sampling VAMS blood collection devices (e.g., Mitra devices or
dried blood spots) allow patients to mail samples from home to
analytical labs to undertake SRM/MRM/PRM assays quantifying
CVD risk-associated apolipoproteins130 or other markers131. In
summary, consumer-based CVD proteomics-based precision
medicine testing services are now coming of age.

Microorganism detection. Proteomics and the HPP have made
fundamental contributions to understanding pathogenic infec-
tion, providing diagnostics and developing therapies132. The B/D-
HPP Infectious Diseases team promotes international proteomics
collaborations investigating viral, bacterial, fungal and parasitic
diseases.

MALDI–time-of-flight (TOF)–MS, once considered revolu-
tionary, is now established as a routine tool in clinical
microbiology133. Classical phenotypic tests identify unknown
and potentially pathogenic microorganisms, but may require
incubation for several days, with misidentification resulting in
adverse treatment consequences. MALDI–TOF–MS provides
significantly shortened analyses (now minutes) with improved
accuracy on single colony or bacterial pellets for difficult-to-
detect microorganisms, using automated spectra acquisition and
extensive reference spectra databases134. Minor spectral differ-
ences enable typing below species levels135, allowing subspecies
identification through epidemiological analyses. Bacteria and
yeasts (most clinical identifications), mycobacteria136 and
moulds137 can now be identified accurately and rapidly. Further
MS clinical diagnostic applications are being investigated (e.g.,
antibiotic resistance (ART) and susceptibility testing (AST)
based on hydrolytic β-lactamase activity138), with kits under
development commercially through STAR-Carba, STAR-Cepha
and Bruker Daltonics.

SARS-CoV-2 virology. The recent severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) outbreak that causes
COVID-19 disease represents a major threat to human health and
our economies139–141. The pandemic underscores our need to
understand virus pathobiology, identify host-pathogen interac-
tions that support replication, find biomarkers correlative with
clinical outcome and expand surveillance.

Many omics studies followed the 2003 SARS-CoV-1 and related
MERS and IBV coronavirus outbreaks142–146. The cell surface
receptor for the CoV-1 and CoV-2 surface spike protein has been
identified by affinity-MS to be angiotensin-converting enzyme 2
(ACE2)147, which in a recent large-scale study based on antibody-
based proteomics was shown to be mainly localized to the digestive
system, kidney, heart, testis, placenta, eye and upper respiratory
epithelia148. Virus binding leads to proteolysis by the transmem-
brane serine protease TMPRSS2 expressed in airway epithelia149,
thus a clinically approved TMPRSS2 inhibitor (camostat mesylate)
is being investigated to block infections150,151. Furthermore,
proteomics has characterized the infectious CoV-1 viral particle143,
temporal changes in host cells during infection142 and virus-
induced endoplasmic reticulum membrane remodelling into

double-membrane vesicles152,153 that house viral replication
compartments146. Proximity labelling revealed >500 host and 14
viral protein associations with the viral replicase NPS2146, high-
lighting vesicular trafficking, autophagy and splicing proteins in
coronavirus replication, which if shown to also be the case for CoV-
2, indicate potential drug targets.

Building on this knowledge of coronavirus infection, recent
proteomics studies have focused on SARS-CoV-2, uncovering
additional potential therapeutic targets154,155. MS and array-based
proteomics serology has screened for potential biomarkers and Abs
against infection156,157. Clinical isolate infection models have been
developed using Caco-2 cells154 with temporal proteome changes
identified during infection using multiplexed MS by combining
metabolic labelling with tandem mass tagging methods. Consis-
tently, host vesicular trafficking, translation, RNA splicing, nucleo-
tide synthesis and glycolysis pathway proteins were upregulated
following infection143,144 and targeting these processes with
inhibitors revealed potential therapeutic targets158,159. Additionally,
affinity-MS interactome studies examined 26 of 29 total SARS-
CoV-2 proteins expressed within HEK293T human cells155,
suggesting 69 existing drugs merit further investigation. Moreover,
a recent phosphoproteome analysis pointed to the regulation of
viral proteins through PTMs160.

The SARS-CoV-2 pandemic highlights the need for applying
proteomic approaches to the development of serologic testing and
preclinical and computational model systems to evaluate patient
responses to infection156. Serological biomarkers of asymptomatic/
symptomatic infection, disease severity, risk of re-infection and/or
vaccine efficacy are being characterized157,161. In addition to this
accumulating omics knowledge, many aspects of SARS-CoV-2
pathobiology await further exploration including development of
additional methods for clinical virus detection, identification of
infection stage, and an in-depth understanding of functional spatio-
temporal virus–host protein interactions and organelle remodel-
ling162–164. For example, recent studies that utilize targeted MS for
SARS-CoV-2 protein detection and proteomic characterization of
serological immune responses161,165–167 from patient samples may
bolster PCR screening for the assessment of disease severity168.
Other proteomics approaches can also be deployed to further
expand the understanding of SARS-CoV-2 biology. Among these is
the application of TAILS N-terminomics that promises to identify
many SARS-CoV-2 protease substrates and those cellular pathways
inactivated by viral proteolysis, as reported for other viruses169.

In summary, proteomics plays increasingly important roles in
understanding viral outbreak biology, accurate diagnosis and
effective treatment and is positioned to continue to co-ordinate
and drive international collaborations towards these goals.

Conclusions and future directions
Western and Eastern cultures urge us to know thyself and thy
enemy. These axioms resonate with precision medicine where
future benefits arise from a detailed omics understanding of the
hallmarks of health and disease. Here, we reviewed the con-
struction of a community-endorsed, high-stringency blueprint of
the human proteome. The decadal neXtProt HPP PE metrics
shown here demonstrate the community’s progressive success in
PE1 identification from 13,588 in 2011 to 17,874 PE1s in 2020,
marking the completion of >90% of the human proteome parts
list (see strategic objective 1 above). We also present specific
examples demonstrating proteomics will be an integrated com-
ponent (with genomics and other omics) in future biomedical
science discovery and precision medicine.

HUPO recommits to its original HPP strategic aims as well as
the FAIR data principles17, while anticipating the following future
priorities:
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1. Unearth credible proteomics data for the majority of
current PE2 proteins: Since most PE1 identifications come
from former PE2s, our future strategy is to find credible
data for 95–99% of current PE2s, allowing reclassification of
these to PE1. PE3 also remain promising, as homologous
proteins are detected in related species.

2. Unravel currently unknown proteome functionalities:
Fill functional annotation gaps for all protein-coding
elements, with a priority on credibly identified proteins170

and develop, expand and apply function prediction
tools24,171,172.

3. Expand the HPP KB: Maintain a sustainable knowledge-
transfer HPP KB infrastructure with funding that captures/
displays high-stringency partner omics data streams and
publication data (HPRL) to researchers and the public in an
accessible and compelling manner.

4. Develop community-approved multi-omics technology
guidelines: Explore DIA-MS, Ab and aptamer-based multi-
plexed assays, top-down MS and other not yet invented
multi-omics technologies.

5. Champion collaborative multi-omics health/disease
approaches: In addition to extensions in HPP KB partner-
ships, the HPP will collaborate with international and
regional initiatives (including Human Variome, Human
Cell Atlas, hPOP/iPOP, MoTrPAC, HuBMAP, Cancer
Moonshot, HTAN, EDRN, CPTAC, ICPC and upcoming
international initiatives) around multi-omics approaches to
human disease processes, biomarker discovery and ther-
apeutic development.

6. Apply and improve single-cell proteomic technology:
Develop technologies that allow detection and quantifica-
tion of proteomes in single cells to further understand
cellular/tissue heterogeneity, differentiation, diseases and
the intrinsic biological noise in health and disease173,174.
Many single-cell proteomics advances will be explored to
analyse cellular heterogeneity175–178. Sensitivity increases
(analogous to PCR) and trade-offs maximizing coverage per
cell with throughput/accuracy will be studied179.

7. Champion dual Ab-capture with MS identification:
Enhance the accuracy of Ab-based epitope/antigen detec-
tion by confirmation using high-accuracy, high-stringency
MS identifications across real-life spatio-temporal biological
settings. Collectively, there is recognition within the HPP
that future stringent co-registration of MS with Ab data are
required to achieve the ultimate spatio-temporal human
proteome expression atlas180.

8. Exploit massively parallel MS174 to increase throughput:
For rapid, sensitive and higher-throughput MS analysis.

9. Capitalize on human disease biobanks: The HPP will work
with biobanking consortia to improve access for proteomics
researchers to highly curated and accurately annotated
clinical samples collected in a standardized manner.

10. Encourage higher levels of community engagement: The
HPP will continue to reach out to the community,
supporting findable, accessible, interoperable and reusable
(FAIR) data principles17, while encouraging and appro-
priately recognizing all contributions to the re-analysis of
proteomics data.

The post SARS-CoV-2 pandemic world will be different. It is
likely that new paradigms to accelerate precision medicine will
emerge. These will undoubtedly involve global collaboration
(even between competing entities) using multidisciplinary
approaches that enable the fast-tracking of novel diagnostic tests
and precision therapeutics. Almost certainly these outcomes will

require knowledge involving the human proteome—celebrated
here in the inaugural HPP High-Stringency Blueprint.
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