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Abstract
Aim: To examine the hypothesis that, based on their glucose curves during a seven-
point oral glucose tolerance test, people at elevated type 2 diabetes risk can be divided 
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1  |   INTRODUCTION

Impaired glucose regulation is typically defined as having 
higher than normal blood glucose levels that do not meet 
the thresholds for diabetes1 and therefore at increased risk 
for developing diabetes. However, only approximately 50% 
of those with impaired glucose regulation will progress to 
diabetes.2 This suggests that it is a heterogeneous condition 
explained by different pathophysiological mechanisms,3 
which may have a long lead time before the diagnosis of 
diabetes.4 Hence, information on these pathophysiologies 
is essential for personalized diabetes prevention and under-
lines the need for stratification in individuals with impaired 
glucose regulation.

Recent studies reported variation in the glucose response 
curves following an oral glucose tolerance test (OGTT).5–7 
One cross-sectional study identified five heterogeneous glu-
cose response curves, using latent class trajectory analysis.6 
However, to date, only two prospective studies associated 
such curves with incident type 2 diabetes,5,7 and they only 
used three-point OGTTs, which could lead to insufficient in-
formation on the curves’ heterogeneity. We therefore aimed to 
test the hypothesis that, based on their glucose curves during 
a seven-point OGTT, people at elevated type 2 diabetes risk 

can be divided into subgroups with different clinical pro-
files at baseline and different rates of subsequent glycaemic 
deterioration.
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Medicines Initiative Joint Undertaking 
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are composed of financial contribution 
from the European Union's Seventh 
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2013) and EFPIA companies’ in kind 
contribution. M.O. was funded by the 
Amsterdam Public Health Research 
Institute for a PhD fellowship.

into subgroups with different clinical profiles at baseline and different degrees of sub-
sequent glycaemic deterioration.
Methods: We included 2126 participants at elevated type 2 diabetes risk from the 
Diabetes Research on Patient Stratification (IMI-DIRECT) study. Latent class trajec-
tory analysis was used to identify subgroups from a seven-point oral glucose tolerance 
test at baseline and follow-up. Linear models quantified the associations between the 
subgroups with glycaemic traits at baseline and 18 months.
Results: At baseline, we identified four glucose curve subgroups, labelled in order of 
increasing peak levels as 1–4. Participants in Subgroups 2–4, were more likely to have 
higher insulin resistance (homeostatic model assessment) and a lower Matsuda index, 
than those in Subgroup 1. Overall, participants in Subgroups 3 and 4, had higher 
glycaemic trait values, with the exception of the Matsuda and insulinogenic indices. 
At 18  months, change in homeostatic model assessment of insulin resistance was 
higher in Subgroup 4 (β = 0.36, 95% CI 0.13–0.58), Subgroup 3 (β = 0.30; 95% CI 
0.10–0.50) and Subgroup 2 (β = 0.18; 95% CI 0.04–0.32), compared to Subgroup 1. 
The same was observed for C-peptide and insulin. Five subgroups were identified at 
follow-up, and the majority of participants remained in the same subgroup or pro-
gressed to higher peak subgroups after 18 months.
Conclusions: Using data from a frequently sampled oral glucose tolerance test, glu-
cose curve patterns associated with different clinical characteristics and different rates 
of subsequent glycaemic deterioration can be identified.

What's new?
•	 There is marked variation in the glucose curves 

following an oral glucose tolerance test (OGTT).
•	 It is possible to stratify individuals at elevated risk 

of type 2 diabetes into subgroups with different 
glycaemic traits and rates of subsequent glycae-
mic deterioration based on their glucose curves 
during a seven-point OGTT.

•	 The number of OGTT time points influences the 
number of identified subgroups.

•	 The glucose subgroups had good discriminative 
ability for incident type 2 diabetes (area under the 
curve 0.70).

•	 These subgroups with potentially different patho-
physiology could be crucial for personalized dia-
betes prevention strategies.
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2  |   MATERIALS AND METHODS

2.1  |  Study population

We used data from the Innovative Medicines Initiative - 
Diabetes Research on Patient Stratification (IMI-DIRECT) 
study, which has been described in detail elsewhere.8 In brief, 
the IMI-DIRECT study is a European study initiated in 2012 
that consisted of individuals at elevated risk of glycaemic de-
terioration from several European prospective cohort studies. 
The study included 2247 participants, but we excluded 121 
individuals, leaving us with 2126 participants at baseline and 
with 1988 at 18 months after excluding those lost to follow-
up (n = 138; Figure S1).

2.2  |  Oral glucose tolerance test assessment

A 75-g OGTT was performed at baseline and 18  months. 
Blood was sampled at 0, 15, 30, 45, 60, 90 and 120 min after 
a 10-h overnight fast. Plasma glucose (mmol/l), C-peptide 
(nmol/l), insulin (pmol/l) and HbA1c (mmol/mol) were also 
determined.8 More detail is provided in the Supporting 
information.

The Matsuda index was calculated as 10 000/[fasting glu-
cose * fasting insulin]/[mean glucose *mean insulin during 
OGTT]0.5 and insulin resistance was estimated using homeo-
static model assessment of insulin resistance (HOMA-IR), 
calculated as fasting insulin (mU/ml) × fasting glucose 
(mmol/l)/22.5. From the OGTT, a mathematical model that 
describes the association between glucose concentration 
and insulin secretion was used to estimate insulin secre-
tion rates and total insulin secretion rate (nmol/m2).9 The 
insulinogenic index was calculated as (Insulin30-Insulin0)/
(Glucose30-Glucose0).

10

2.3  |  Assessment of covariates

Questionnaires were used to collect data on parental history 
of diabetes, smoking and alcohol status. Waist circumfer-
ence (cm), weight (kg) and height (m) were also measured. 
Body mass index (BMI) was calculated as weight (kg)/
height (m)2. Blood pressure (mmHg) was also measured. 
ActiGraph triaxial accelerometers were used to assess 
physical activity.

2.4  |  Data analysis

Latent class trajectory analysis with cubic polynomials 
for the specification of time was used to identify glucose 

curve subgroups from OGTTs at baseline and follow-
up. The best-fitting classification model was determined 
based on the Bayesian Information Criterion (BIC) and 
the Akaike Information Criterion (AIC). The lowest BIC 
and AIC suggesting the best fit, and a difference of at 
least 10 points regarded as sufficient improvement. 
Additionally, groups were selected if mean membership 
probabilities, i.e. the probability of an individual belong-
ing to a particular group, were >0.8 (Table S1). More 
details of the latent class trajectory analysis are described 
elsewhere.11–13 The lcmm function in the lcmm package 
in R (version 3.2.1) was used to conduct the latent class 
trajectory analysis.

Baseline clinical characteristics were compared be-
tween subgroups using univariate analysis. We used lin-
ear models to calculate coefficients (β) and 95% CIs to 
estimate if any of the identified subgroups were associ-
ated with glycaemic traits at baseline and with change in 
glycaemic traits at 18 months, i.e. using actual trait at fol-
low-up as the outcome while conditioning on the baseline 
value. The lowest glucose peak subgroup (Subgroup 1) 
was used as the reference. We adjusted for multiple test-
ing using the Bonferroni method and thereafter a pairwise 
comparison of subgroup means using Tukey's honestly 
significant difference test14 for continuous traits that re-
mained significant after Bonferroni correction. For pro-
spective analysis, two multivariable linear models were 
formulated. Model 1 adjusted for age, sex, follow-up time, 
study centre and respective baseline glycaemic traits. 
Model 2 additionally adjusted for smoking and physical 
activity. Moreover, we produced plots of serum insulin 
levels corresponding to each glucose response curve at 
baseline and follow-up. Finally, by using areas under the 
curve (AUCs), we compared the subgroups’ discrimina-
tive ability to predict incident diabetes with the clinical 
model proposed by Wilson et al. from the Framingham 
offspring study.15 Missing values were below 5% for all 
variables except for physical activity (19%). Therefore, 
missing values for physical activity were imputed using 
a predictive mean matching method in the MICE (multi-
variate imputation by chained equations) package in R.16

For sensitivity analyses, we identified the baseline glu-
cose subgroups stratified by centre and sex. We also identi-
fied the curves using less but commonly used five time points 
(0, 30, 60, 90 and 120 min) of the OGTT and we fitted cubic 
polynomials to specify time for these analyses.

All curves were smoothed using locally estimated 
scatterplot smoothing estimates and all statistical analy-
ses were conducted using R software (version 3.0.1). All 
statistical tests were two-sided, with significance ascer-
tained at 5% (see Supporting information for more details 
on Methods).
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2.5  |  Ethics

All participants signed informed consents and each centre's 
ethics review boards separately approved this study. The study 
also conformed to the Declaration of Helsinki standards.

3  |   RESULTS

3.1  |  Population characteristics

At baseline, we included 2126 participants (76% men) with a 
mean ±sd age of 61.6 ± 6.3 years. The mean ± SD BMI was 
27.9  ±  3.9  kg/m2, HbA1c was 37  ±  2.9  mmol/mol (5.5%), 
fasting glucose was 5.6 ± 0.5 mmol/l and 2-h glucose was 
5.9 ± 1.6 mmol/l (Table 1).

3.2  |  Baseline clinical profiles

We identified four subgroups with different glucose pat-
terns, labelled in order of increasing 1-h glucose peak levels 
as Subgroup 1 to Subgroup 4 (Table 1 and Figure 1). We had 
577 participants (27%) in Subgroup 1, 1012 (48%) in Subgroup 
2, 327 (15%) in Subgroup 3 and 210 (10%) in Subgroup 4. 
Membership probabilities were all >0.80, ranging from 0.86 
to 0.89. Subgroup 1 had the earliest and lowest glucose peak 
(7.3 mmol/l), while Subgroup 3 took the longest (1-h) to reach 
peak and had the highest 2-h level (8.3 mmol/l). Subgroup 4 
had the highest peak (14.5 mmol/l) and 1-h level (12.4 mmol/l). 
Similar glucose subgroups, i.e. four subgroups, were observed 
when we stratified the models by sex and centre. Three sub-
groups were identified as optimum when using five OGTT time 
points, with all membership probabilities >80% (Figure S2).

Although the insulin curves between 0 to 45 min were more 
tightly clustered compared to the glucose curves, there was 
marked variation between 1 h and 2 h. Subgroups 1 and 2 had 
the earliest and lowest insulin peaks, while Subgroups 3 and 4 
had the latest and highest insulin peaks, respectively (Figure S3).

Participants in higher glucose peak subgroups, i.e. 
Subgroups 2–4, were more likely to be men and to have a 
significantly higher BMI, insulin resistance, systolic blood 
pressure, total insulin secretion rate and glucose values, com-
pared to individuals in Subgroup 1 (Table 1). In general, with 
the exception of the Matsuda and insulinogenic indices, indi-
viduals in higher glucose peak subgroups had higher glycae-
mic trait values and hence a less favourable glycaemic trait 
profile, compared to participants in Subgroup 1. Subgroups 
2 and 4 had similar fasting and 2-h glucose levels and took 
the same time to peak (45  min). However, participants in 
Subgroup 4 had a worse glycaemic trait profile, with a sig-
nificantly higher glucose peak value, total insulin secretion 
rate, BMI, HbA1c and a lower Matsuda and insulinogenic 

indices, compared to participants in Subgroup 2 (Table 1). 
Furthermore, Subgroup 3 with the highest 2-h value, had 
a significantly higher 1-h glucose level, BMI, total insulin 
secretion rate and HOMA-IR than Subgroup 2, with similar 
fasting, but lower 2-h glucose level (Table 1).

3.3  |  Prospective analyses

After a median follow-up of 18 months, 57 participants (2.8%) 
developed type 2 diabetes. No differences in characteristics 
were observed between those lost to follow-up and those in the 
study, with the exception of sex and centre (Table S2).

Change in HOMA-IR was significantly higher in 
Subgroups 2–4, compared to Subgroup 1 (Table 2). The same 
was observed for change in C-peptide, plasma glucose and 
insulin levels. Change in total insulin secretion rate, Matsuda 
and insulinogenic indices was lower in Subgroups 2–4, indi-
cating reduced insulin sensitivity and insulin secretion, com-
pared to Subgroup 1.

When comparing Subgroups 2 and 4, with similar fasting 
and 2-h glucose levels, relative to the reference (Subgroup 1), 
individuals in Subgroup 4 had significantly higher values in 
the change in HOMA-IR, plasma glucose and plasma insulin 
levels and lower values in the change in Matsuda and insulino-
genic indices. The same was generally observed when compar-
ing subgroups with the same fasting but different 2-h glucose 
levels, i.e. Subgroups 3 and 2, with Subgroup 3 participants 
progressing faster than participants in Subgroup 2 (Table 2).

The subgroups had a moderate discriminative ability for in-
cident type 2 diabetes [AUC 0.70 (95% CI 0.64–0.76)], which 
was comparable to the clinical model from the Framingham 
offspring study [AUC 0.75 (95% CI 0.69–0.80)].

Five subgroups were identified at 18 months and labelled 
in order of increasing 1-h glucose peak levels as Subgroups 
1–5 (Figure 2).

With respect to change in trajectory, the majority of par-
ticipants remained in the same subgroup, or progressed to 
higher peak subgroups at follow-up (Figure 3 and Table S4). 
The insulin response curves had similar patterns, with corre-
sponding glucose response curves at follow-up (Figure S4).

Using binary logistic regression, we investigated the as-
sociation between baseline subgroups with incident type 2 
diabetes. Higher peak subgroups, i.e. Subgroups 3 and 4, had 
higher odds ratios compared to Subgroup 1 (Table S3).

4  |   DISCUSSION

Using seven-point OGTT data from 2126 participants at 
elevated risk of type 2 diabetes, combined with the la-
tent class trajectory analysis approach, four glucose curve 
subgroups with different clinical profiles were identified. 
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These differences were evident even in subgroups with 
similar fasting and 2-h glucose levels. In short, partici-
pants in subgroups with the highest glucose peaks and the 
highest 1-h glucose levels (Subgroups 2–4) had the worst 
glycaemic traits profile compared to participants in the sub-
group with the lowest and earliest glucose peak. Similarly, 

participants in the subgroup with the highest 2-h glucose 
level had a worse glycaemic traits profile compared to par-
ticipants in the subgroup with similar fasting glucose but 
lower 2-h glucose level. This is consistent with previous lit-
erature showing that, among people with impaired glucose 
regulation, the 2-h concentration was a stronger predictor of 

T A B L E  1   Baseline characteristics of 2126 participants at elevated glycaemic deterioration risk stratified by glucose curve subgroups. 
[Correction added on 2 December 2020, after first online publication:The position of values in column `Subgroup 4’ and row with text  `Fasting 
plasma glucose, mmol/l’ to row with text `Insulinogenic index’ are corrected.]

Characteristic

Subgroups

Total Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4

Number of participants, n (%) 2126 (100) 577 (27) 1012 (48) 327 (15) 210 (10)
Age, years 61.6 (6.3) 62.1 (6.4)bd 61.2 (6.3)ac 62.4 (6.3)bd 60.5 (5.9)ac

Men, n (%) 1608 (76) 349 (60) 804 (79) 263 (80) 192 (91)
BMI, kg/m2 27.9 (3.9) 27.0 (3.9)bcd 27.9 (3.8)ac 29.1 (4.1)ab 28.5 (3.7)a

Waist circumference, cm 100.0 (11.1) 95.9 (11.2)bcd 100.2 (10.6)acd 104.0 (10.4)ab 103.5 (10.5)ab

Smoking status: current, n (%) 312 (15) 80 (14) 159 (16) 36 (11) 37 (18)
Alcohol status: never, n (%) 263 (12) 72 (12) 124 (12) 45 (14) 22 (10)
Average physical activity 

intensity, mgs
37.1 (9.6) 37.4 (9.4) 37.6 (9.9)c 34.3 (8.7)b 38.4 (9.3)

Systolic blood pressure, mmHg 131 (16) 127 (16)bcd 131 (15)acd 135 (16)abd 132 (14)abc

Family history: parents, yes, n (%) 606 (29) 146 (25) 285 (28) 99 (30) 76 (36)
Glucose/insulin measures

Glucose peak values†, mmol/l 9.4 7.3bcd 9.4acd 11.5abd 12.6abc

Time to peak, min 45 30bcd 45acd 60abd 45ac

HbA1c, mmol/mol 37.0 (2.9) 36.2 (2.7)cd 37.0 (2.8)cd 37.9 (3.2)ab 38.2 (3.0)abc

HbA1c, % 5.5 5.5cd 5.5cd 5.6ab 5.6ab

Blood glucose, mmol/l 5.5 (0.6) 5.4 (0.6)cd 5.5 (0.6)cd 5.7 (0.7)abd 5.8 (0.6)ab

C-peptide, nmol/l 0.8 (0.3) 0.7 (0.3)bcd 0.8 (0.3)acd 1.0 (0.4)abd 0.9 (0.4)ab

Fasting insulin, mmol/l* 7.8 (4.7–11.5) 6.1 (4.2–9.6)c 7.8 (4.8–11.2)c 10.4 (6.3–15.0)ab 9.1 (5.5–12.5)ab

2-h postprandial insulin, pmol/l* 33.5 (19.0–59.4) 22.5 (14.1–36.2)cd 32.4 (18.9–53.2)cd 76.1 (49.3–120.0)abd 36.7 (22.0–61.6)abc

Fasting plasma glucose, mmol/l 5.6 (0.5) 5.3 (0.4)bcd 5.7 (0.4)ad 5.8 (0.5)ad 6.0 (0.4)abc

1-h postprandial glucose, mmol/l 8.9 (2.3) 6.2 (1.0)bcd 8.8 (1.1)acd 11.5 (1.2)abd 12.4 (1.3)abc

2-h postprandial glucose, mmol/l 5.9 (1.6) 5.1 (1.1)bcd 5.6 (1.3)ac 8.3 (1.3)abd 5.8 (1.4)ac

Impaired fasting glucose, n (%) 553 (25) 49 (8) 250 (25) 128 (39) 108 (51)
Impaired glucose tolerance, n (%) 285 (13) 5 (1) 48 (4) 206 (63) 20 (10)
Matsuda index 5.0 (2.9) 6.6 (3.3)bcd 4.8 (2.6)acd 3.6 (2.3)abd 3.7 (2.0)abc

HOMA-IR 2.3 (1.6) 1.8 (1.3)bcd 2.2 (1.3)cd 3.1 (2.1)abd 2.8 (2.1)abc

Total insulin secretion rate, 
nmol/m2

51.9 (17.4) 42.5 (12.8)bcd 51.8 (15.5)acd 62.7 (19.1)ab 61.3 (19.3)ab

Insulinogenic index 119.7 (90.4) 192.5 (67.1)bcd 101.4 (67.8)acd 86.1 (57.8)abd 67.6 (51.2)abc

Centre, n (row %)
Copenhagen 322 (14) 45 (16) 136 (49) 64 (23) 30 (11)
Kuopio 1274 (57) 236 (19) 633 (51) 205 (17) 165 (13)
Lund 147 (7) 71 (51) 42 (30) 24 (17) 2 (1)
Hoorn 490 (22) 225 (48) 201 (42) 34 (7) 13 (3)

Abbreviation: HOMA-IR, homeostatic model assessment of insulin resistance.
Data are mean ± SD for continuous data and all such values, unless stated otherwise.*Values are median (interquartile range).†We assessed the highest glucose value 
in each subgroup as the peak and the corresponding time point as time to peak. All P values <0.001 except for smoking (0.26). For all other traits, P values remained 
robust after Bonferroni correction for multiple testing. Superscript letters a to d denote the subgroups that are statistically significantly different using Tukey post hoc 
test. Superscript letters a, b, c and d represent Subgroups 1, 2, 3 and 4, respectively.
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type 2 diabetes risk than fasting glucose.17,18 Nevertheless, 
some data suggest that fasting glucose and 2-h glucose are 
similarly associated with risk of diabetes.19 The subgroups 
with the worst glycaemic profiles also had the highest 1-h 
glucose levels, which is consistent with recent studies sug-
gesting that 1-h plasma glucose is a stronger predictor of 
incident type 2 diabetes risk compared to other standard 
measures, i.e. fasting and 2-h glucose.20–24 Based on con-
ventional measures, such as the current WHO criteria for 
the diagnosis of impaired glucose regulation, only 39% and 
63% of the participants in subgroup 3, and 51% and 10% 
in subgroup 4, would be considered as having impaired 
fasting glucose (IFG) or impaired glucose tolerance (IGT), 
respectively. Consequently, it is plausible that there are in-
dividuals at high risk for type 2 diabetes and its associated 
complications, who would be missed if only one or two 
time points of the OGTT were used. This is supported by 
our sensitivity analyses, with a loss of one subgroup when 
using fewer time points to identify subgroups. Therefore, 
our results underscore the necessity of including charac-
teristics of intermediate time points in the identification of 
individuals at high risk of type 2 diabetes.

Our findings are in line with previous studies that used a 
similar latent class trajectory analysis approach and identified 
four similar subgroups.5,7,25 This highlights the robustness 
of the latent class trajectory analysis approach. Two of the 
studies, one conducted in an Indian5 and one in a European 

population,7 reported that the subgroup with the highest 
plasma glucose peak had the least favourable cardiometa-
bolic risk profile at baseline and was associated with a higher 
risk of incident type 2 diabetes, compared to the subgroup 
with the lowest glucose response. In contrast to the present 
study, the identified subgroups in these studies were based 
on three-point OGTT measurements and were missing 1-h 
glucose. This may lead to an underestimation of type 2 di-
abetes risk in these studies. One study25 additionally looked 
at the stability of glucose curves after 3 years of follow-up 
and identified similar glucose curve patterns at follow-up and 
baseline. This is somewhat similar to our study because we 
found similar patterns at follow-up, with the exception that 
we found an additional subgroup, making it five subgroups in 
total. This study also showed that the latent class trajectory 
analysis approach can be used to classify new individuals not 
part of the development data.

Another study using the latent class trajectory analysis 
approach identified five glucose curve subgroups with dis-
tinct cardiometabolic profiles.6 That study included partic-
ipants from the general population, while we selected those 
at elevated type 2 diabetes risk. Consequently, our popula-
tion was more homogenous at baseline, which may explain 
the lower number of subgroups in the present study. Higher 
heterogeneity might have increased the number of subgroups 
at follow-up because participants progressed in different de-
grees. Moreover, the fifth group probably includes those who 

F I G U R E  1   Four glucose curve 
subgroups following an oral glucose 
tolerance test depicting estimated mean 
trajectories with 95% CIs identified by the 
latent class trajectory analysis



      |  7 of 10OBURA et al.

progressed to diabetes and we excluded those with diabetes at 
baseline, possibly explaining why we had four subgroups at 
baseline instead of five. Another study,26 like the present study, 
showed that heterogeneous glucose response curve patterns 
can be estimated with fewer time points during the OGTT.

Several plausible mechanisms that could explain the het-
erogeneity in subgroups, include insulin secretion and insu-
lin resistance. In the present study, participants in Subgroups 
3 and 4 were the most insulin-resistant and had the highest 
1-h glucose level. This suggests they had the lowest ear-
ly-phase insulin secretion, compared to other subgroups. 
Early-phase glucose increase during an OGTT may be indic-
ative of impaired β-cell function, and in particular, defects in 
early-phase insulin secretion and reduced insulin sensitivity 
could also help explain the variation in the subgroups.8 Those 
with IGT have elevated 2-h levels and previous literature has 
shown that, although both IGT and IFG are associated with 
reduced early-phase insulin secretion, individuals with IGT 

additionally have an impaired late-phase insulin secretion 
and a lower insulin sensitivity compared to those with nor-
mal glucose tolerance or with IFG.27–29 These differences 
may help to explain why the subgroup with high 2-h glucose 
had a worse glycaemic traits profile compared to subgroups 
with similar fasting glucose but lower 2-h levels. These find-
ings suggest that more emphasis should be put on identifying 
individuals at risk using the frequently sampled OGTT curve 
patterns and IGT, compared to using IFG only. Moreover, the 
glucose curve subgroups had a moderately good discrimi-
natory ability for type 2 diabetes. In addition, the Diabetes 
Prevention Program study, indicates that those with IGT 
benefit from lifestyle interventions.30 So, those high-risk 
individuals with elevated 1-h and 2-h glucose levels would 
benefit from lifestyle interventions similar to those offered to 
people with IGT, thus preventing and delaying the develop-
ment of diabetes and associated complications. Nevertheless, 
no clear differences in physical activity between subgroups 

T A B L E  2   Association between glucose curve subgroups and glycaemic traits measured at 18 months in 1988 participants.

Characteristic

Subgroups

Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 4 P

Number of subjects, n (%) 532 (26.5) 954 (47.5) 303 (15.1) 199 (9.9)

Mean (sd) follow-up, months 17.7 (1.5) 18.2 (1.3) 18.3 (1.4) 18.4 (1.3)

HOMA-IR

Model 1 1.7bc 0.2 (0.0–0.3) 0.3 (0.1–0.5)a 0.3 (0.1–0.5)a <0.001

Model 2 3.6abc 0.2 (0.0–0.3)a 0.3 (0.1–0.5)a 0.4 (0.1–0.6)a <0.001

Plasma C-peptide (nmol/l)

Model 1 0.2ab 0.0 (0.0–0.1)a 0.1 (0.0–0.1)a 0.0 (0.0–0.1) <0.001

Model 2 0.6abc 0.0 (0.0–0.1)a 0.1 (0.0–0.1)a 0.0 (0.0–0.1)a <0.001

Plasma insulin (pmol/l)

Model 1 5.7abc 0.7 (0.2–1.2)ad 1.2 (0.5–1.9)a 1.3 (0.5–2.1)ab <0.001

Model 2 13.2abc 0.7 (0.2–1.2)ad 1.2 (0.5–1.9)a 1.4 (0.7–2.1)ab <0.001

Plasma glucose (mmol/l)

Model 1 3.3abc 0.1 (0.1–0.2)ad 0.2 (0.1–0.3)a 0.2 (0.2–0.3)ab <0.001

Model 2 3.3abc 0.1 (0.09–0.2)ad 0.2 (0.1–0.3)a 0.2 (0.2–0.3)ab <0.001

Matsuda index

Model 1 –4.2abc –1.4 (–1.7 to –1.0)acd –2.4 (–2.8 to –2.0)ab –2.4 (–2.9,–1.9)ab <0.001

Model 2 –2.8abc –1.2 (–1.6 to –0.9)acd –2.2 (–2.4 to –1.5)ab –2.2 (–2.7,–1.7)ab <0.001

Total insulin secretion (nmol/m2)

Model 1 17.3abc –1.2 (–3.4 to –0.6)ac –3.0 (−4.5 to –1.0)ab –2.0 (–3.9,–0.1)a <0.001

Model 2 19.4abc –1.8 (–3.3 to –0.4)ac –2.9 (–4.8 to –0.9)ab –2.3 (–4.4,–0.5)a <0.001

Insulinogenic index

Model 1 196.2abc –41.5 (–61.2 to –21.9)a –46.6 (–72.4 to –20.7)a –62.1 (–91.8,–32.4)ab <0.001

Model 2 228.7abc –41.3 (–61.0 to –21.7)a –49.5 (–75.5 to –23.5)a –61.3 (–91.1,–31.5)ab <0.001

Abbreviation: HOMA-IR, homeostatic model of insulin resistance.
Values are β coefficients (95% CIs), unless otherwise indicated, with intercept values in Subgroup 1 (reference category). For all traits, P values remained robust after 
Bonferroni correction for multiple testing. Superscript letters a to d denote the subgroups’ adjusted means that are statistically significantly different using Tukey post hoc 
test. Superscript letters a, b, c and d represent Subgroups 1, 2, 3 and 4, respectively. Model 1 was adjusted for age in years, sex (men or women), follow-up time in months, 
study centre (categories) and respective baseline glycaemic traits. Model 2 was additionally adjusted for smoking status (categories) and physical activity (in mgs).
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was observed in the present study. However, other modifiable 
factors such as BMI, waist circumference and blood pressure, 
which are correlates of physical activity, increased with in-
creasing subgroups, hence lifestyle modification could still 
help to prevent and/or improve glycaemic control of those at 
diabetes risk.

The present study has some limitations. First, the inclusion 
of only white European adults may limit the generalizability 
of the results. Second, we only had a short follow-up time of 

18 months; hence, it was not possible to investigate associations 
with incident type 2 diabetes (due to low numbers, i.e. 57) and 
cardiovascular outcomes. Longer follow-up time is needed to as-
sess these associations to draw strong conclusions. Nevertheless, 
we attempted the analysis with incident type 2 diabetes (Table 
S3), and higher peak subgroups had higher odds ratios compared 
to Subgroup 1. Lastly, more men were lost to follow-up than 
women and more participants from two study centres were lost 
to follow-up, which could have led to selection bias.

F I G U R E  2   Five glucose curve 
subgroups following an oral glucose 
tolerance test depicting estimated mean 
trajectories with 95% CIs identified by the 
latent class trajectory analysis at 18-month 
follow-up

F I G U R E  3   Percentages of 2126 
participants from the four glucose curve 
subgroups at baseline contained in the 
five glucose curve subgroups identified at 
follow-up: the IMI-DIRECT study
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The present study also has several strengths. First, the use of 
a large sample of participants at an elevated risk of type 2 dia-
betes enabled us to perform a mixed-model analysis and achieve 
a detailed characterization of the identified subgroups. Second, 
instead of using predefined groups to identify the different glu-
cose curve subgroups, we used the data-driven latent class tra-
jectory analysis approach. Using predefined characteristics to 
categorize glucose curves might spuriously introduce hetero-
geneous patterns. Although the latent class trajectory analysis 
method can provide insight into the heterogeneity among those 
at risk of diabetes, which might be significant in creating more 
personalized prevention strategies, it should be noted that one 
cannot predict the subgroup of a specific individual based on 
their single glucose profile, hence limiting the direct clinical 
utility of the latent class trajectory analysis method. Finally, we 
included participants at an elevated type 2 diabetes risk, which 
made it possible to identify glucose subgroups that may other-
wise be indiscernible in an unselected population.

In conclusion, using data from a frequently sampled OGTT, 
glucose curve subgroups with different clinical characteris-
tics and different rates of subsequent glycaemic deterioration 
can be identified using latent class trajectory analysis. The 
heterogeneity in glucose response curves and glycaemic trait 
profiles may reflect different underlying pathophysiologies, 
which cannot be determined using only fasting and 2-h levels. 
Furthermore, the number of time points in the OGTT influ-
enced the number of subgroups identified, with a seven-point 
OGTT having more subgroups than a five-point OGTT.
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