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Novel artificial intelligence techniques are emerging in all fields

of healthcare, including gastroenterology. The aim of this

review is to give an overview of artificial intelligence applica-

tions in the management of pancreatic diseases. We performed

a systematic literature search in PubMed and Medline up to

May 2020 to identify relevant articles. Our results showed that

the development of machine-learning based applications is

rapidly evolving in the management of pancreatic diseases,

guiding precision medicine in clinical, endoscopic and radio-

logic settings. Before implementation into clinical practice,

further research should focus on the external validation of

novel techniques, clarifying the accuracy and robustness of

these models.
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INTRODUCTION

THE ARTIFICIAL INTELLIGENCE (AI) health market
is growing explosively to a market size of $6.6 billion,

with a compound annual growth rate of 40%.1 AI techniques
are emerging, especially in imaging-based specialties like
radiology and gastroenterology. Modern imaging modalities,
including endoscopy and cross-sectional imaging, contain
far more visual information than the human eye can
distinguish. In addition, the digitalization of health records
constituted an almost infinite storage of patient data. Several
AI-based methods have been employed to mine predictive
patterns in this nearly endless source of data. In this review,
we aim to give an overview of the current evidence on AI
applications in pancreatic diseases, comprising clinical,
endoscopic and radiologic applications. We performed a
literature search for relevant articles on PubMed and
Medline from January 2000 through May 2020 using
keywords as pancreas and machine learning (Table S1).

ARTIFICIAL INTELLIGENCE

ARTIFICIAL INTELLIGENCE IS an umbrella term for
forms of human intelligence demonstrated by a

computer, for example learning and problem-solving.2

Machine learning (ML) is defined as the ability of a
computer to learn and recognize patterns by analyzing data
and improve their performance through experience.3 In
traditional ML methods, like support vector machines
(SVM) and random forests (RF), predefined features are
necessary for accurate prediction. These conventional
models are trained to predict the correct outcome based
on predefined extracted features. In contrast, a subset of ML
called deep learning (DL), does not require (manual) feature
extraction. The architecture of DL algorithms is loosely
inspired by interconnected neurons in the human brain and
form a multilayered artificial neural network (ANN). The
most commonly applied DL methods are convolutional
neural networks (CNN), containing deep layers of filtering
operations (convolutions) capable of modeling very com-
plex relationships within data (Fig. 1).4 DL models utilize
and analyze data to learn higher-level features and derive an
outcome based on these features.5 Although some DL
models are outperforming humans in specific tasks, there
are certain limitations that withhold broad application in
clinical practice.6,7 To start, a DL model can be excellent in
predicting an outcome, but they do not explain upon which
features the prediction is based (black-box). Secondly,
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training a DL algorithm requires extensive well-annotated
datasets, which are of limited availability.8 The problem of
data scarcity can be partly solved by two methods, namely
data augmentation and transfer learning.9 Data augmenta-
tion is a technique in which the training dataset is artificially
expanded by slightly altering the available images, such as
flipping and rotating the images. Transfer learning is the
process of pre-training a model with a general image
database like ImageNet, before training and fine-tuning the
model on a specific task.10 For example, an algorithm can
be pre-trained to recognize simple edges and shapes based
on common objects which may later be transfer learned to
the actual task. However, the true benefit of transfer
learning for the analysis of medical images is under debate
and needs to be further elucidated.11

Artificial intelligence in the management of
pancreatic diseases

In this review, we will focus on novel AI applications in the
clinical, endoscopic and radiologic management of pancre-
atitis, pancreatic cystic lesions, pancreatic ductal adenocar-
cinoma (PDAC) and pancreatic neuro-endocrine tumors

(pNET). An overview of the included studies is displayed in
Table 1.

PANCREATITIS

THE ACCURACY OF models that are used in clinical
practice to predict the clinical course of acute pancre-

atitis (AP), such as the acute physiology and chronic health
evaluation II score (APACHE-II score), remain modest.
Many studies have investigated the added value of ML
models in predicting the clinical course of AP.

Detection

Two studies compared the accuracy of ML models to the
APACHE-II score in predicting the severity of AP with the
use of clinical and laboratory findings.12,13 The models
reached a significantly higher area under the receiver
operating curve (AUC) (0.92 and 0.82) than the
APACHE-II score (0.63 and 0.74). Zhu et al.14 established
two algorithms to improve the ability to discriminate chronic
pancreatitis (CP) from autoimmune pancreatitis during
endoscopic ultrasound (EUS). One of those algorithms

Figure 1 Neural networks. Neural networks send signals from the input layer through a network of nodes. The network is

trained by the process of adjusting the weights that amplify or damp the transmitted signals, carried by the links between the

nodes. Deep learning networks have dozens of hidden layers and can model complex relationships within data. Reprinted with

permission from M. Mitchell Waldrop. News Feature: What are the limits of deep learning? Proceedings of the National Academy

of Sciences. Jan 2019, 116 (4) 1074–1077. Created by Lucy Reading-Ikkanda.
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Table 1 Overview of the model characteristics in the included studies

First author

(year)

Purpose of the model Type of model Input shape Type of validation

Andersson

et al. (2011)12
Severity prediction of AP Conventional ML Clinical and biochemical

features

Internal

Pearce et al.

(2006)13
Severity prediction of AP Conventional ML Clinical and biochemical

features

Internal

Zhu et al.

(2015)14
Differentiation of autoimmune

pancreatitis and CP

Conventional ML Radiomic features (EUS) Internal

Mashayekhi

et al. (2020)15
Differentiation of functional

abdominal pain, CP and recurrent

AP

Conventional ML Radiomic features (CT) Internal

Fei et al.

(2018)17
Complication prediction in AP Conventional ML Clinical and biochemical

features

Internal

Fei et al.

(2017)18
Complication prediction in AP Conventional ML Clinical and biochemical

features

Internal

Qiu et al.

(2019)19
Complication prediction in AP Conventional ML Clinical and biochemical

features

Internal

Hong et al.

(2013)20
Complication prediction in AP Conventional ML Clinical and biochemical

features

Internal

Qiu et al.

(2019)21
Complication prediction in AP Conventional ML Clinical and biochemical

features

Internal

Mofidi et al.

(2007)22
Identification of severe AP Conventional ML Clinical and biochemical

features

Internal

Halonen et al.

(2003)23
Mortality prediction in AP Conventional ML Clinical and biochemical

features

Internal

Keogan et al.

(2002)24
Outcome prediction in AP Conventional ML Clinical and biochemical

features

Internal

Dmitriev et al.

(2017)27
Classification of pancreatic cysts Two components:

1. ML

2. DL

1. Radiomic features (CT)

2. CT images

Internal

Li et al.

(2018)28
Classification of pancreatic cysts DL CT images Internal

Wei et al.

(2019)30
Diagnosis of serous cystic neoplasm Conventional ML Clinical and radiomic

features (CT)

Internal

Yang et al.

(2019)31
Classification of pancreatic cysts Conventional ML Radiomic features (CT) Internal

Springer et al.

(2019)33
Management of pancreatic cysts Conventional ML Clinical, imaging, genetic

and biochemical features

Internal

Kurita et al.

(2019)34
Differentiation of malignant and

benign pancreatic cysts

DL Clinical, imaging and

biochemical features

Internal

Kuwahara

et al. (2019)35
Identification of malignancy in IPMN DL EUS images Internal

Corral et al.

(2019)36
Classification of IPMN DL MR-images Internal

Chakraborty

et al. (2018)37
Classification of IPMN Conventional ML Clinical and radiomic

features (CT)

Internal

Zhu et al.

(2019)41
Detection of PDAC DL CT images Internal

Liu et al.

(2019)42
Detection of PDAC DL CT images External

Dataset: CT scans from

100 PDAC patients
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Table 1 (Continued)

First author

(year)

Purpose of the model Type of model Input shape Type of validation

Chu et al.

(2019)43
Detection of PDAC Conventional ML Radiomic features (CT) Internal

Li et al.

(2018)44
Detection PDAC Conventional ML Radiomic features (PET–

CT)

Internal

Gao et al.

(2020)45
Differentiation of various pancreatic

lesions/diseases

DL MR-images External

Dataset: MR series from

56 pancreas patients

Zhang et al.

(2010)47
Differentiation of PDAC and normal

tissue

Conventional ML Radiomic features (EUS) Internal

Das et al.

(2008)48
Differentiation of PDAC, CP and

normal tissue

Conventional ML Radiomic features (EUS) Internal

Norton et al.

(2001)49
Differentiation of PDAC and

pancreatitis

Conventional ML EUS images Training phase

Zhu et al.

(2013)50
Differentiation of PDAC and CP Conventional ML Radiomic features (EUS) Internal

S�aftoiu et al.

(2015)51
Differentiation of focal pancreatic

masses

Conventional ML Radiomic features

(contrast-enhanced EUS)

Internal

Ozkan et al.

(2015)52
Detection of PDAC Conventional ML Radiomic features (EUS) Internal

S�aftoiu et al.

(2008)53
Differentiation of PDAC and CP Conventional ML Imaging texture feature Internal

S�aftoiu et al.

(2012)54
Differentiation of focal pancreatic

masses

Conventional ML Imaging texture feature Internal

Zhang et al.

(2020)58
Survival prediction for PDAC DL CT images External

Dataset: CT scans from

30 PDAC patients

Hayward et al.

(2010)59
Prediction of clinical performance in

PDAC patients

Conventional ML Clinical variables Internal validation

Walczak et al.

(2017)60
Survival prediction for PDAC Conventional ML Clinical variables Internal validation

Kaissis et al.

(2019)61
Survival and subtype prediction of

PDAC

Conventional ML Radiomic features (MRI) External

Dataset: MR-scans from

30 PDAC patients

Kaissis et al.

(2019)75
Subtype prediction of PDAC Conventional ML Radiomic features (MRI) Internal

Kaissis et al.

(2020)62
Subtype prediction of PDAC Conventional ML Radiomic features (MRI) Internal

Qiu et al.

(2019)65
Histopathological grade prediction

of PDAC

Conventional ML Radiomic features (CT) Internal

Li et al.

(2019)66
Gene expression profile prediction

of PDAC

Two components:

1. ML

2. DL

1. Radiomic features (CT)

2. CT images

Internal

Luo et al.

(2020)69
Histopathological grade prediction

of pNET

DL CT images External

Dataset: CT scans from

19 pNET patients

Gao et al.

(2019)70
Histopathological grade prediction

of pNET

DL MR-images External

Dataset: MR-scans from

10 pNET patients

AP, acute pancreatitis; CP, chronic pancreatitis; CT, computed tomography; DL, deep learning; EUS, endoscopic ultrasound; IPMN, intraductal

papillary mucinous neoplasm; ML, machine learning; MR, magnetic resonance; MRI, magnetic resonance imaging; PDAC, pancreatic ductal

adenocarcinoma; PET–CT, positron emission tomography – computed tomography; pNET, pancreatic neuroendocrine tumor.
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yielded an accuracy, sensitivity and specificity for diagnos-
ing autoimmune pancreatitis of 89.3%, 84.1% and 92.5%,
respectively.

A recently published paper investigated the radiomic CT
features from patients with recurrent AP, CP and functional
abdominal pain after the painful episode had disappeared.15

Radiomics is the process of extracting “hidden” quantitative
imaging features from radiology images, with the purpose of
providing more detailed information about areas of inter-
est.16 In total, radiomics of 56 CT series were extracted and
used to train a ML model which predicted the correct
diagnosis in 82.1%. The positive predictive value (PPV) for
functional abdominal pain was 100%, indicating that none
of the cases with recurrent AP or CP were misclassified as
functional complaints.

Prediction of disease severity

Several studies report ANNs that predict complications and
mortality in patients with AP with high accuracy, ranging
from 83.0% to 97.5%.17–23 Three studies aimed to predict
complications by using an ANN and compared it to logistic
regression (LR) modeling. The results showed that the ANN
significantly outperformed the LR modeling in predicting
the occurrence of several complications during the course of
the disease in all three studies.17–19 Two studies reported
ANNs that predict multi-organ failure (MOF) in AP patients
based on clinical and laboratory findings. The first ANN was
trained in 263 patients and reached an accuracy comparable
to LR model, SVM, and the APACHE-II score (0.81–
0.84).21 Interestingly, the second ANN was trained on
prospectively collected data of 312 patients and reached a
significantly higher AUC (0.96) than that of LR model
(0.88) and the APACHE-II score (0.83).20

The use of ML models in predicting the severity of AP
was investigated by two studies using both clinical and
laboratory variables. After the first algorithm was trained on
a dataset of 664 patients, it showed a significantly higher
accuracy in severity, MOF and mortality prediction than the
APACHE-II or the Glasgow Severity (GS) scoring system.22

In contrast, the second algorithm was trained on a dataset of
234 patients using 16 variables. Validation of the algorithm
showed no differences in accuracy between the LR model,
the ANN model and the APACHE-II score.23 Lastly,
Keogan et al. explored the ability of a novel ANN to
predict severe illness in patients admitted with AP. Manually
derived CT features, clinical and laboratory findings were
used to train the ANN. The model outperformed the
conventional scoring systems in predicting whether or not
a subject would exceed the mean length of stay and
outperformed the conventional scoring systems.24

The above-mentioned studies show that AI-based appli-
cations might improve the prediction of disease severity,
complications and mortality in patients with AP. However,
some studies show conflicting results and most algorithms
have not yet been validated on an external dataset.

CYSTIC LESIONS OF THE PANCREAS

THE RAPID IMPROVEMENT and broad utilization of
imaging has resulted in an increased detection of

pancreatic cystic neoplasms (PCN). The management of
PCN is challenging, since both the classification as the
assessment of the risk of malignancy are currently subop-
timal.25,26

Differentiation of pancreatic cystic lesions

Two studies developed algorithms to discriminate between
four types of PCN on CT: intraductal papillary mucinous
neoplasm (IPMN), mucinous cystic neoplasm (MCN),
serous cystic neoplasm (SCN) and solid papillary neo-
plasm (SPN).27,28 The first study combined demographic
variables with manually selected and CNN-based imaging
features. The results showed that this model could
differentiate between the types of PCN with an accuracy
of 84%.27 These results are promising, considering the
diagnostic accuracy of experienced abdominal radiologists
is not higher than 70%.29 However, their model required
manual selection of demographic and imaging features,
and precise segmentation of the lesion beforehand.
Important contextual information can be missed using
only the lesion itself for classification. Therefore, Li et al.
aimed to develop a CNN model to classify PCN on whole
pancreas CT images. Additionally, saliency maps were
generated to highlight the important pixels within the
image and to visualize the critical areas that contributed to
the classification output. The DL model achieved an
accuracy of 73%, while the accuracy of the radiologists in
this cohort was 48%.28 Surprisingly, the saliency maps
showed that critical information was derived not only from
the region around the PCN, but also from the boundaries
of the pancreas, indicating that the shape of the pancreas
border contributes to the eventual decision. Wei et al.
developed a ML-based model to differentiate between
SCNs and non-SCNs based on radiomic features from
preoperative CT images.30 In the validation cohort, the
model achieved an AUC of 0.84 and outperformed
clinicians and guideline-based features. Yang et al. pub-
lished a preliminary study on a ML model that distin-
guishes SCN from MCN on CT, reporting a diagnostic
accuracy of 83%.31
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Predicting the risk of malignancy

Even if best clinical practice according to international
guidelines is applied, the differentiation between (pre)ma-
lignant and benign pancreatic cystic lesions remains chal-
lenging.32 Two papers showed that the use of DL models
might be a helpful tool to predict the risk of malignancy in
those lesions.33,34 An international research group devel-
oped the CompCyst, a ML-based guidance for clinical
management of cystic lesions, using clinical features,
imaging characteristics and genetic and biochemical mark-
ers.33 This comprehensive model was trained with data from
436 patients with all types of pancreatic cysts. During
prospective testing on a group of 426 patients, the
CompCyst showed a significantly higher accuracy of 69%
than the current standard of care (56%) in either classifying
patients as requiring surgery, requiring further monitoring or
as not requiring follow-up. The DL algorithm developed by
Kurita et al.34 used clinical and biochemical parameters to
predict the risk of malignancy in PCN. The algorithm was
validated on a single-center retrospective data set of 85
patients and yielded a significantly higher accuracy (92.9%)
for predicting malignancy than CEA or cytology alone.

Three groups developed AI models specifically predicting
the risk of malignancy in IPMN. Kuwahara et al.35

developed a DL model to detect malignant transformed
IPMN on EUS imaging. The algorithm was trained and
validated on 3790 still EUS images, reaching an accuracy of
94.0%. It showed a significantly better accuracy than human
diagnosis (56%) and conventional guidelines (40–68%).
Corral et al. proposed a CNN for the assessment of
dysplasia in IPMN on MR-images. The model had a
sensitivity and specificity of 75% and 78% for recognizing
high grade dysplasia or cancer. These results were compa-
rable to an experienced radiologist following current
guidelines, but the DL model performed the task in only
1.82 seconds.36 Chakraborthy et al.37 developed a ML
model incorporating clinical and imaging features to predict
high- or low-risk branch-duct (BD)-IPMNs and reported a
sensitivity of 80% with a specificity of 59%. Especially for
risk prediction in PCN, it is important to aim for a high
specificity with a low false positive rate to avoid unneces-
sary major surgery. However, the results of the discussed
models are encouraging, in particular considering the
relatively disappointing accuracy with currently applied
international guidelines.38

PANCREATIC DUCTAL ADENOCARCINOMA

PANCREATIC DUCTAL ADENOCARCINOMA
(PDAC) has one of the poorest prognoses among all

cancers.39 The poor survival rate is predominantly caused by
its late diagnosis in advanced stages that disqualifies patients
for curable resection. Subtle lesions can be missed on
imaging, especially in an urgent setting or in the absence of
pancreatic symptoms.40

Early detection

Zhu et al. developed a DL based segmentation-for-classi-
fication model to detect and segment pancreatic cancer
lesions on CT. The results were promising, with a sensitivity
of 94.1% and specificity of 98.5%.41 Similar results were
found by Liu et al., who developed a DL-CNN on 338
annotated CT series of patients with various stages of
PDAC.42 The model was able to point out the tumor lesion
in only 3 seconds with an AUC of 0.96. Another study
reported their results on a ML-based model distinguishing
cancerous from normal pancreatic tissue using segmented
pancreas CT images.43 Interestingly, the model classified all
PDACs as cancer and only one normal case as PDAC in 125
CT series, with an AUC of 99.9%. Comparable results were
found in a ML model that was trained to identify and
classify PDAC on PET–CT images of 80 cases and healthy
controls, reaching a detection accuracy of 96.5%.44 How-
ever, these studies only included images of normal pan-
creases and PDAC, while, in particular, the differentiation
between diverse pancreatic lesions can be challenging. In
light of this, Gao et al.45 recently developed a DL-CNN that
differentiates between various pancreatic lesions on MR-
images. The model was trained with annotated MR series
from 398 patients with benign and malignant confirmed
pancreatic diseases. A generative adversarial network
(GAN) was used to augment and balance the dataset with
synthetic images. In the external validation set, the accuracy
was 76.8% for the DL model as compared to 82.0% by the
radiologist. Cohen’s kappa coefficient between human
reader and DL model was 0.89, indicating “almost perfect
agreement”.
EUS is a sensitive imaging modality to discriminate

between PDAC and benign diseases of the pancreas,
although – especially in the presence of chronic pancreatitis
– the differentiation remains difficult.46 The added value of
AI to discriminate PDAC from benign diseases during EUS
has been investigated in a considerable amount of studies.47–
52 Three study groups developed a ML model that
differentiated normal pancreatic tissue from PDAC on
EUS imaging with an accuracy of >93%.47,48,52 Interest-
ingly, one study reported an increased accuracy of their
algorithm when patient groups were divided by age.52 In
distinguishing PDAC from CP on EUS images, two research
groups developed algorithms that accurately predicted
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PDAC in >80% of cases, similar to the blinded interpreta-
tion of an experienced endosonographist.49,50 A similar
model was validated with recordings from 112 PDAC
patients and 55 CP patients.51 Compared to the sensitivity
and specificity of EUS-FNA (84.8% and 100%) and
contrast-enhancing EUS (87.5% and 92.7%), the algorithm
reached a sensitivity of 94.6% and specificity of 94.4% in
discriminating PDAC from CP.

Endoscopic ultrasound-guided elastography is gaining
interest as a technique that can provide additional
information about pancreatic focal lesions. Interpretation
of real-time EUS elastography results by an ANN was
investigated in a multicenter prospective manner.53 The
ANN – that was trained in discriminating benign from
malignant lesions – yielded an accuracy of 95%. The
same group performed another multicenter prospective
study in 258 patients with CP or PDAC in which the
algorithm yielded a significantly higher sensitivity (87.6%)
and specificity (82.9%) than standard analysis by two
experienced endoscopists (sensitivity 80.0%, specificity
50.0%).54

Survival predictions

Traditional survival analysis tools assume a linear relation-
ship between independent features and outcome, with
respect to time.55 However, especially in diseases with a
poor prognosis like pancreatic cancer, this linear assumption
oversimplifies the association. Recent advances in ANN
made it possible to model non-linear and complex relation-
ships between prognostic features and the risk of a certain
outcome for a specific individual.56,57 Zhang et al.58 created
a CNN architecture to extract disease-specific CT imaging
features associated with survival patterns in PDAC. Inter-
estingly, the model used annotated CT images and survival
data from 422 non-small cell lung cancer patients as pre-
training dataset and images from 68 PDAC patients as fine-
tuning dataset. Results showed that the CNN model
outperformed the traditional model in predicting the survival
of participants.

Two studies investigated the accuracy of ML in survival
prediction using clinical variables.59,60 The first study used
clinical variables from 91 PDAC patients to develop several
models that predict survival rates.59 The model achieved a
significantly better performance (accuracy of 0.60) in
predicting survival than the LR model (accuracy of 0.42).
Another paper reported an algorithm that predicts 7-month
survival in patients with PDAC based on prospectively
acquired clinical data from 219 patients.60 The algorithm
yielded a sensitivity of 91% in predicting 7-month survival,
although specificity only reached 38%.

Phenotyping

A German research group developed multiple ML-algo-
rithms to predict survival rates and molecular subtypes of
PDAC from MR and CT images.61,62 ML analysis of
extracted radiomic features may predict molecular subtypes
of PDAC, which is relevant for targeted treatment strategies
and expected survival. Currently, molecular subtypes are
assessed in a sub-section of the sampled tumor and are
therefore likely under-representing the heterogeneity of
subtypes within a tumor.63,64 The benefit of radiomic
analysis is that the whole-tumor can be assessed before
treatment and that the results can guide treatment strategy.
Another recent study reported the performance of a ML-
based CT texture analysis for preoperative prediction of
differentiation grades in PDAC.65 The model accurately
predicted high grade PDAC in 86%. In addition, Li and
colleagues demonstrated a significant correlation between
textural features on CT, extracted by a CNN, and expression
of oncogenes C-MYC and HMGA2, which play a role in
progression, dedifferentiation and metastasis of cancer
cells.66

Recent innovations in the field of AI and the management
of PDAC may further optimize patient survival by early
identification, risk assessment and patient-specific tumor
classification. Establishing personalized medicine through
ML may be a valuable asset in tailoring future treatment
strategies.

PANCREATIC NEUROENDOCRINE TUMOR
(PNET)

PANCREATIC NEUROENDOCRINE TUMOR (pNET)
is a rare disease with an incidence of <1 per 100,000

individuals.67 The management and prognosis of pNET are
for the greater part guided by the pathological differentiation
grade, which requires biopsy or surgical resection.68 Luo
et al. aimed to develop a non-invasive DL model that
predicts the pathological grading of pNET preoperatively
from CT-imaging. In an external validation set, the DL
model accurately distinguished grade 1/2 from grade 3
pNETs in 82.1% of cases.69 Another study by Gao et al.
trained a DL model that graded pNET using MR-images. In
the test-set, the model reached an accuracy of 81.1% with an
AUC of 0.89.70

SUMMARY

IN THIS REVIEW, we showed that AI applications for
pancreatic diseases are rapidly evolving. Recent studies

demonstrate promising results for both conventional ML
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technologies, such as DL models, that are able to facilitate
clinical prediction and decision making, as well as inter-
pretation of radiological imaging and guidance of endo-
scopic procedures. Although big steps have been taken in
recent years, it is important to address the hurdles that still
need to be overcome before these technologies can be
implemented into our clinical routine.

To start, several studies in this review trained and
validated their algorithm on relatively small, internally
derived datasets. This implicates that the training data is
rather homogeneous and therefore the models may not
generalize well from training data to unseen data and might
be overfitted, especially in DL models. Future efforts
should demonstrate the robustness of these models in large,
externally derived datasets from multiple centers. Secondly,
the majority of the studies investigated algorithms that
discriminate between limited possible outcomes (e.g.
PDAC and CP). However, before clinical implementation,
it is essential that these models are trained on more
outcomes, representing real world outcomes. Furthermore,
DL models can handle high data complexity, yet are
limited in demonstrating the reasoning behind their
prediction. Particularly for health care utilization, it is
crucial to build trust in these models and being able to
understand their prediction, not at least for regulatory
purposes.71 Although considerable efforts have been made
regarding explainable DL, the problem is still not solved at
large.72

Future perspectives

Medical imaging has developed and improved rapidly in
recent years and contains far more visual information than
the human eye can process. The assessment of images by
humans are prone to perceptual and cognitive errors and are
subject to inter- and intra-observer variability.73 A similar
expansion of captured digital information can be seen in
electronic health records and social media, both offering
incredible big data resources. In all likelihood, future AI
technologies will anticipate these resources, e.g. identifying
subjects with an increased risk for PDAC or detecting subtle
lesions on medical images.74

In conclusion, ML methods are emerging and contribut-
ing to precision medicine in the management of pancreatic
diseases. Despite the expanding knowledge and experience,
several limitations need to be addressed before implemen-
tation in clinical practice. Instead of considering AI models
as a substitute for human intelligence, emphasis should be
made on the fact that these methods will aid in avoiding
tedious tasks and inconsistency in diagnosis due to varying
clinical experience and expertise.
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SUPPORTING INFORMATION

ADDITIONAL SUPPORTING INFORMATION may
be found in the online version of this article at the

publisher’s web site.
Table S1 Systematic literature search.
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