
  

 

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ 
Eprints ID : 15929 

To link to this article : DOI:10.1103/PhysRevE.67.036610 
URL : http://dx.doi.org/10.1103/PhysRevE.67.036610 

To cite this version :  
Louisnard, Olivier and Gomez, Francisco Growth by rectified 
diffusion of strongly acoustically-forced gas bubbles in nearly 
saturated liquids. (2003) Physical Review E, vol. 67 (n° 3). pp. 
036610. ISSN 1539-3755 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/42967727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Growth by rectified diffusion of strongly acoustically-forced gas bubbles in nearly

saturated liquids.
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The growth or dissolution of small gas bubbles (R0 < 15 µm) by rectified diffusion in nearly satu-
rated liquids, subject to low frequencies (20 kHz < f < 100 kHz), high driving acoustic fields (1 bar
< p < 5 bar) is investigated theoretically. It is shown that, in such conditions, the rectified diffusion
threshold radius merges with the Blake threshold radius, which means that a growing bubble is also
an inertially-oscillating bubble. On the assumption that such a bubble keeps its integrity up to the
shape instability threshold predicted by single-bubble theory, a numerical estimation, and a fully
analytical approximation of its growth-rate are derived. From one hand, the merging of the two
thresholds raises the problem of the construction and self-sustainment of acoustic cavitation fields.
From the other hand, the lifetime of the growing inertial bubbles calculated within the present the-
ory is found to be much shorter than the time necessary to rectify argon. This allows an alternative
interpretation of the absence of single-bubble sonoluminescence (SBSL) emission in multi-bubble
fields, without resorting to the conventional picture of shape instabilities caused by the presence of
other bubbles.

PACS numbers: 47.55.Bx, 43.35.+d, 78.60.Mq

I. INTRODUCTION

The characteristics of the radial oscillations of a gas
bubble in a sound field are mainly governed by three
parameters: the pressure amplitude of the acoustic field,
its frequency, and the bubble ambient radius, related to
the mass of gas contained in the bubble.
Two distinct dynamic bubble behaviors may be en-

countered: stable cavitation depicts possibly nonlinear,
smooth oscillations, whereas inertial cavitation is char-
acterized by an explosive growth of the bubble during
the wave rarefaction phase, followed by a violent col-
lapse. For sufficiently low frequency and small bubbles
(more precisely for bubbles much smaller than the res-
onant radius), a quasi-static argument may be used to
derive the frontier between the two behaviors in the pa-
rameter space, the so-called Blake threshold [1, 2]. The
relevance of this threshold to distinguish two different
dynamic behaviors has been proved numerically [3, 4].
The oscillatory convective-diffusive gas transfer be-

tween the bubble and the liquid may reverse in some
cases the natural tendency of a gas bubble to dissolve
under surface tension. This process known as rectified
diffusion originates from the non-zero average gas trans-
fer between the bubble and the liquid over the expansion
and contraction phases of the bubbles [1, 5–8]. As surface
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tension still contributes to the bubble dissolution, bubble
growth occurs when the acoustic pressure exceeds some
threshold value. This rectified diffusion threshold (re-
ferred hereafter as RD threshold) also cuts the parameter
space in two parts: dissolving and growing bubbles.
Each threshold is generally defined as a critical value of

the acoustic pressure for a fixed bubble radius. However,
since the latter is not a free parameter in a cavitation
experiment, it is more convenient to define a threshold
radius for a fixed acoustic pressure. Such thresholds may
serve to describe the history of a bubble in the sound field
[9], referred to as the cavitation cycle (see Ref. 10 for an
extensive discussion). In nearly saturated liquids and suf-
ficiently high pressure drives, a commonly accepted sce-
nario is that a small, smoothly-oscillating bubble, grows
by rectified diffusion up to the Blake threshold, where it
starts oscillating inertially. In fact, as will be shown in
the first part of this paper, for near saturation conditions
and low frequencies, the RD and Blake thresholds merge
for decreasing bubble radii, or conversely for increasing
driving pressures. This means that, in order to grow, a
bubble should be driven above the Blake threshold, and
therefore oscillate inertially.
The next question arising is the lifetime of such an

inertial-growing bubble, and this raises the issue of the
shape stability of inertial bubbles. Up to the first single
bubble sonoluminescence (SBSL) experiments [11], it was
generally accepted that an inertial bubble could only sur-
vive a few collapses before bursting by shape instabilities.
However, the lifetime of a SBSL bubble is in itself an ex-
perimental proof of the existence of shape-stable inertial



bubbles. This has been confirmed by recent theoretical
work dedicated to shape instabilities [12–15] based on
earlier studies [16, 17], and confronted to experimental
data in SBSL experiments [18, 19]. For example, when
submitted to an acoustic pressure of 1.5 bar, and a fre-
quency of 32.8 kHz [15, 19], any single bubble smaller
than about 5 µm should be shape stable. Since the Blake
threshold is about 1 µm in this case, a relatively large
range of sizes for shape-stable inertial bubbles is allowed.

There subsists some doubt on the existence of iner-
tial, shape-stable bubbles, in the context of multi-bubble
fields, for which the single bubble shape-stability theory
may not be relevant, owing to perturbations caused by
neighboring bubbles [20]. However, several experimental
results in 20 kHz cavitation fields report distributions of
bubble ambient radii ranging from 1 µm to 10 µm [21, 22],
which is in rough agreement with the above estimation.
Therefore, as a general hypothesis, we will assume that
the instability thresholds calculated in the SBSL context
keep their validity in multi-bubble fields. Although not
mentioned explicitly, the hypothesis of the survival of in-
ertial bubbles to many collapses has been used by other
investigators dealing with multi-bubble fields [21, 23].

In a nearly saturated liquid, the lifetime of the iner-
tial growing bubbles would therefore correspond to their
growth-time by rectified diffusion between the common
RD-Blake threshold (1 µm in the above example) and the
shape instability threshold (5 µm in the above example).
The estimation of this lifetime requires the knowledge
of the growth-rate of an inertial bubble and the second
part of this paper is dedicated to this topic. By using the
results of Fyrillas and Szeri [8], the growth-rate will be
calculated numerically by scanning the parameter space
and a fully explicit analytical formula will also be pro-
posed for practical applications.

To illustrate the theory on a practical example, we will
consider in this paper air-bubbles in nearly saturated wa-
ter. The following region of the parameter space will
be studied: low frequencies (say lower than 100 kHz),
and high driving pressures (from 1 to 5 bar), which are
commonly used conditions in sonochemistry and cavita-
tion experiments. In view of the order of magnitude of
the shape-instability threshold and of the experimentally
measured size distributions [21, 22], our calculations will
be performed for bubble radii ranging between the Blake
threshold and 15 µm.

II. THEORY

A. Bubble model

The radial oscillations of a gas bubble in a liquid may
be described by the Rayleigh-Plesset (RP) equation:

RR̈+
3

2
Ṙ2 =

1

ρ

(

pg +
R

cl

dpg
dt

− 4µ
Ṙ

R
− 2σ

R
− pext(t)

)

.

(1)
In this equation pext(t) = p0(1 − p cosωt) is the oscil-

lating sound pressure in the liquid, with ω angular fre-
quency, p dimensionless acoustic pressure and p0 hydro-
static pressure; ρ, µ and cl are the density, viscosity and
sound speed of the liquid; σ is the surface tension. The
gas pressure pg(t) may be reasonably assumed uniform
[24] and to obey a van der Waals state equation:

pg =

(

p0 +
2σ

R0

)(

R3
0 − h3

R3 − h3

)κ

, (2)

where R0 is the ambient radius of the bubble and h the
van der Waals hard-core radius. We will also assume that
the bubble follows isothermal evolutions (κ = 1). This
approximation may be considered as drastic in view of
more complete theories [25, 26], but has been used suc-
cessfully by Hilgenfeldt and co-authors [4, 12] to derive
the phase diagram of SBSL. In what follows we will make
use of the dimensionless time and dimensionless bubble
radius:

x = ωt, R∗ = R/R0, (3)

and we define the dimensionless Laplace tension:

αS =
2σ

p0R0

. (4)

B. Blake threshold

The expression of the the Blake threshold, separating
smooth oscillating bubbles from inertial ones, may be
obtained by calculating the minimal pressure pext that
the bubble can withstand without fluid motion [1, 2].
Expressing the result as a critical dimensionless acoustic
pressure yields:

pB = 1 +

(

4

27

α3
S

1 + αS

)1/2

. (5)

Conversely, for a given acoustic pressure p, a Blake
threshold radius can be obtained by solving equation (5),
which is cubic for αS . The detailed calculation may be
found in Ref. 4. Suffice here to note that the parameter
αS becomes O(1) for pB as low as 1.2. This means that
Laplace tension becomes important for a bubble near the
Blake threshold radius, for any acoustic pressure greater
than 1.2 bar. We will make use of this result in sec-
tion III B.



C. Rectified diffusion

The asymptotic time-averaged variation of the bubble
gas-content can be calculated by use of the results of
Fyrillas and Szeri [8]. In order to solve the convection-
diffusion PDE describing the movement of the dissolved
gas, they split the problem into a smooth one, describing
the rectified mass variation of the bubble, and an os-
cillatory one, describing the zero-average mass exchange
occurring over one bubble oscillation. On the assumption
that the time-scales of the two process are well separated,
they obtained:

dmg

dτ
= 4πDR0C0

C∗
∞ − 〈pg/p0〉4

I
, (6)

where τ is the slow mass-variation time-scale (≫ 2π/ω),
D is the gas-diffusivity in the liquid, C0 the saturation
concentration in the liquid separated from gas at pressure
p0 by a plane boundary, and C∗

∞ = C∞/C0 with C∞ gas
concentration in the liquid far from the bubble. The
quantity I, whose evaluation will be detailed in section
III C, denotes the spatial integral

I =

∫ +∞

0

ds
〈

(

3s+R∗3
)4/3

〉

1

. (7)

The weighted averages 〈〉i occurring in the above ex-
pressions are defined by:

〈f〉i =
∫ 2π

0
f(x)Ri(x)dx
∫ 2π

0
f(x)dx

, (8)

and can be calculated from the solution R∗(x) of the RP
equation (1).
The fraction in expression (6) is the dimensionless

nonlinear-averaged gas concentration gradient between
an infinitely far point and the bubble wall.
The locus of diffusive equilibrium in the parameter

space (R0, p) is defined by:

C∗
∞ − 〈pg/p0〉4 = 0. (9)

For sufficient degassing, this equilibrium may turn to
be stable. This is the case of a SBSL bubble, which
adjusts its ambient radius to the driving level [12]. When
it is unstable, it defines the rectified diffusion threshold:
any bubble larger than this threshold will grow, and any
bubble smaller will dissolve. A successful comparison of
Eq. (9) with experimental data for saturated or near-
saturated conditions may be found in Ref. [8] for bubble
radii down to 20 µm. Besides, in degassed conditions, the
good agreement between the theoretical phase diagrams
and SBSL data [12, 14] support the validity of Eq. (9)
also for inertial oscillations.
It should be added that the rigorous approach of Fyril-

las and Szeri [8] allows to obtain an uniformly valid ex-
pression of the growth-rate, even far from the threshold,

contrary to earlier results [5, 6] whose derivation relied
either on linear oscillations, or on near-threshold condi-
tions. We refer the interested reader to Ref. 8 for an
extensive discussion of this topic.

III. RESULTS

A. Merging of RD and Blake threshold

We consider through this paper air bubbles in ambient
water (p0 = 1 bar, ρ = 1000 kg.m−3, c = 1481 m.s−1,
µ = 10−3 Pa.s, σ = 0.073 kg.s−2, h = R0/8.76). The
RD threshold was computed by tracking the locus of the
points fulfilling condition (9) in the (R0, p) plane. For
each (R0, p) point, the average 〈pg/p0〉4 was calculated
from Eq. (2) using the steady-state numerical results of
the RP equation.
Figure 1 shows the RD threshold, computed from

the RP equation (thick solid line) for saturated water
(C∗

∞ = 1) in a 26.5 kHz acoustic field. Also shown is
the threshold calculated from the linear theory of Crum
and Hansen [7] (thick dot-dashed): it is readily seen that
for bubbles of small ambient radii, the linear theory fails
predicting the pressure threshold value, but for larger
bubbles the exact threshold merges with the linear one,
at least in the range of radii considered here. More sur-
prising is the comparison of the RD threshold with the
Blake threshold, also displayed in Fig. 1 (thick dashed
line): it is seen that the two thresholds merges for acous-
tic pressure greater than, say 1.4 bar, for saturated water.
Performing the same calculations for slightly degassed
water (C∗

∞ = 0.8) yields the same conclusion, as attested
by Fig. 1 (the numerical RD threshold is represented
by a thin solid line and the linear one by thin dot-dashed
line). The computation was also repeated for 50 kHz and
100 kHz frequencies, leading to the same conclusion (not
shown).
This singular result can be interpreted more easily in

view of the average bubble pressure 〈pg/p0〉4 curves rep-
resented in Fig. 2: the equilibrium points defined by Eq.
(9) for a given gas concentration C∗

∞ are the intersection
of these curves and the horizontal line 〈pg/p0〉4 = C∗

∞.
For degassed water (C∗

∞ ≪ 1, dot-dashed line), a sta-
ble equilibria may be obtained (right intersection point),
a result largely mentioned in the SBSL literature [3, 4].
For C∗

∞ = 1 (thin solid line), it can be seen that the
intersection points almost merges with the Blake radius
(represented by vertical dashed line for each driving pres-
sure).
More physically, this behavior should be understood as

an effect of surface tension which is important for bubbles
of small radii [αS = O(1)]. Bubbles lower than the Blake
threshold radius are prevented to expand, and stay in a
quasi-linear oscillation state. In this case the average gas
pressure 〈pg/p0〉4 is dominated by surface tension and the
bubble dissolves. Thus, the only way for a such a small
bubble to gain some gas on average over an acoustic cycle



is to oscillate inertially, which of course is possible if the
acoustic forcing is sufficiently high.
Conversely, bubbles much larger than the Blake radius,

so that surface tension plays a negligible role (αS ≪ 1),
will be allowed to grow freely for moderate driving pres-
sures, thus rendering the linear theory valid. This is why
the exact rectified diffusion threshold merges with the
linear one in the right part of Fig. 1.

B. Analytical justification

The merging between the RD and Blake threshold may
be explained by the following analytic arguments. Let’s
first reformulate the threshold condition to make clear
the role of surface tension:

C∗
∞ − (1 + αS) 〈pg/pg0〉4 = 0, (10)

where pg0 = p0 + 2σ/R0 is the ambient gas pressure in
the bubble.
We first consider the case of smooth quasi-linear oscil-

lations: in this case, the bubble radius R(t) departs only
slightly from its ambient radius R0, and so does the bub-
ble pressure. Therefore, pg(t) ≃ pg0 and we may write
〈pg/pg0〉4 = 1 + ǫ, where ǫ is a small parameter. The
threshold condition Eq. (10) reads in this case:

C∗
∞ − (1 + αS)(1 + ǫ) = 0, (11)

which can only be fulfilled if C∗
∞ = O(1) and αS = O(ǫ).

This brings the conclusion that a weakly oscillating bub-
ble can grow only in near-saturated water, and for small
Laplace tension.
Now, in the case of an inertial bubble, the average gas

pressure 〈pg/pg0〉4 may be shown to scale as [4, 27]:
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FIG. 1: Exact RD threshold for saturated water (C∗
∞ = 1)

calculated from RP equation and Eq. (9) (thick solid line);
Blake threshold from Eq. (5) (thick dashed line); linear the-
ory RD threshold calculated from Ref. 7 (thick dot-dashed
line). The thin lines represent respectively the exact (solid)
and linear (dot-dashed) RD thresholds calculated for slightly
degassed water (C∗

∞ = 0.8).

〈pg/pg0〉4 = ξ(R0/Rmax)
3, (12)

where Rmax is the maximum radius of the bubble over
the acoustic cycle and ξ = 105/64. Since Rmax is several
times greater than R0 for inertial cavitation, 〈pg/pg0〉4
is therefore a small parameter ǫ so that the threshold
condition now reads

C∗
∞ − (1 + αS)ǫ = 0, (13)

and can only be fulfilled if C∗
∞ = O(ǫ): this is the SBSL

case and shows why degassing is necessary to get diffu-
sive equilibrium (which turns to be stable in some cases).
Conversely, if C∗

∞ = O(1), the quantity C∗
∞ − (1 + αS)ǫ

is always positive, so that the inertial bubble grows.

From the above discussion, the diffusive behavior of a
bubble near the Blake threshold for C∗

∞ = O(1) may now
be inferred: from section II B, αS = O(1) for a bubble
near the Blake threshold radius. Therefore, the above
analysis tells us that i) a weakly oscillating bubble dis-
solves ii) an inertial bubble grows. The RD threshold
is thus the limit between smooth and inertial oscillation,
and this is precisely the definition of the Blake threshold.

The occurrence of crossing between the RD and Blake
thresholds has been mentioned in the literature [28], but
to our knowledge, the merging of the two curves for sat-
urated water in the present parameter range has never
been reported.

Having shown that a growing bubble in near saturation
water should also be an inertial bubble, we now turn to
calculate its growth-rate.
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FIG. 2: Time-average pressure 〈pg/p0〉4 vs. ambient radius
for driving pressures p = 1.2, 1.3, 1.5, and 2 from top to
bottom. The horizontal lines represent gas concentrations in
the liquid; thin solid: C∗

∞ = 1; dot-dashed: C∗
∞ = 0.001.

The vertical dashed lines represent the Blake threshold for
the different driving pressures: p = 1.2, 1.3, 1.5, and 2 from
right to left. The arrows on the lower curve (p=2) indicate
bubble growth or dissolution regions.



C. Growth-rate

1. Approximation for integral I

The calculation of the growth-rate involves the evalu-
ation of the definite integral I. To our knowledge, only
two references report results involving the computation of
this quantity: Fyrillas and Szeri [8] reports growth-rates
without indicating the method of calculation; Hilgenfeldt
et al. [12] mention its slow convergence and propose an
empirical formula involving adjustable parameters with
few computational details. We present below both ap-
proximate analytical and numerical calculations of this
integral for a large parameter set.
The derivation of the analytical approximation follows

the spirit of Ref. 4: we propose a scaling law for integral I
in terms of the maximum radius attained by the bubble.
The underlying idea of our derivation is made clear in
Fig. (3) which displays, for a typical inertial cavitation
bubble, the bubble radius, R∗(x), and the bubble volume,
R∗3(x), which is the quantity involved in expression (7).
It is seen that the global pulse-like shape of the bub-
ble volume is dominated by the expansion and collapse
phases, and that the afterbounces are of minor impor-
tance. Thus, it may be expected that the time-average
involved in expression (7) will be controlled mainly by
R∗

max, but also by the half-width ∆x of the “pulse”. We
therefore approximate the bubble volume by a parabola
of maximum R∗

max
3 and half-width ∆x, and introduce

this approximate bubble dynamics in Eq. (7). The de-
tailed calculation is shifted in appendix A and it is shown
that integral I writes approximately:

I ≃ 1

3R∗
max

A

(xm − αx+)e
, (14)

where R∗
max = Rmax/R0 is the dimensionless maxi-

mum bubble radius, xm is the time of maximum expan-
sion of the bubble, x+ = arccos(1/p) is the zero-crossing
of the acoustic pressure (see Fig. 3c), and α is a cor-
recting factor to take into account the non parabolic
shape of R∗3(x). Both parameters A and e originate from
the power-law fit of an integral involving hypergeometric
functions [see Eq. (A11)] .

In order to obtain a full analytical expression for
I, which can be evaluated in terms of the parameters
(R0, p, ω), we further make use of approximate expres-
sions of R∗

max and xm obtained by Hilgenfeldt and co-
authors [4]. The method used by these authors and the
refined formulae we use in this paper are reported in ap-
pendix C. We simply recall below the general form of
these approximate expressions:

R∗
max =

[

f(p) +

(

1− 4

9
√
3

αS

p− 1

)

g(p)

(

Rres

R0

)2
]1/2

,(15a)

xm = h(p), (15b)

where Rres = (3p0/ρω
2)1/2 is the isothermal resonant

radius, and f, g and h are given by Eqs. (C3a), (C3b)
and (C6) respectively.
Besides, the numerical calculation of I is obtained by

scanning the parameter space and solving the RP differ-
ential equation up to a steady state. The bubble dynamic
R∗(x) thus obtained is then used to calculate integral (7),
using a Gauss quadrature method described in appendix
B.
It is shown in appendix A that the set of approxima-

tions (14)-(15) shows excellent agreement with the exact
numerical value of integral I (Figs 7 and 8).

2. Approximation for the growth-rate

With the above analytical formula for I, the growth-
rate itself may now be calculated easily. From Eq. (6),
the slow time-variation of the bubble radius reads [7]:

dR0

dτ
=

DRGTC0

p0

1

R0 (1 + 2/3αS)

C∗
∞ − 〈pg/p0〉4

I
. (16)

Using Eq. (14) for integral I and Eq. (12) to approxi-
mate the average gas pressure, we get

dR0

dτ
=

3

A

DRGTC0

p0
[C∗

∞ − (1 + αS)ξR
∗
max

−3]

× R∗
max

R0 (1 + 2/3αS)
F1(p), (17)
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FIG. 3: (a) Bubble radius R∗; (b) Bubble volume R∗3; (c) Di-
mensionless driving pressure pext(x)/p0 = (1 − p cosx). The
case considered is a 5 µm air bubble in water and p = 1.3. The
times x+ and xm are respectively the instant of zero-crossing
of the driving pressure and the time of maximum expansion
of the bubble. The dashed curve in (b) is the parabolic ap-
proximation Eq. (A5) with ∆x defined by Eq. (A13).



where R∗
max is calculated from Eq. (15a), and

F1(p) = [h(p)− α arccos (1/p)]
e
. (18)

.
Figure 4 displays a comparison between the exact nu-

merical result, calculated by injecting the RP solution
in Eq. (16) (thick solid line), and the approximation
(17) (thin solid line). It is seen that our approximation
yields very good results for acoustic pressures up to 5
bars and ambient radii up to 20 µm, apart for the wig-
gles appearing on the R0 = 10 µm and R0 = 20 µm
numerical curves. These wiggles find their origin in the
mode-locking of the bubble afterbounces [4] and are not
accounted for by approximation (15a) of R∗

max.
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FIG. 4: Calculated value of the bubble growth-rate for dif-
ferent bubble sizes from exact result (16) (thick solid line);
from (17) (thin solid line); from (19) (dashed line); from (21)
(dot-dashed line). From top to bottom: R0 =3, 5, 10, and 20
µm. The left figure is a magnification of the right one.

In the specific case of cavitation field experiments,
where generally the liquid is gas saturated [C∗

∞ = O(1))],
the above formula may be further simplified: as men-
tioned above, for inertial cavitation, R∗

max ≫ 1 so that it
may be neglected in the bracket of Eq. (17). It is inter-
esting to note that this approximation should hold only
far from the RD threshold, but as seen in the first sec-
tion, the RD and Blake thresholds are the same. Since
the average gas pressure curves near the threshold are
very steep (see Fig. 2), any bubble driven just above this
threshold may be considered far from it, in the sense that
〈pg/p0〉4 ≫ C∗

∞.
Moreover, for sufficiently low frequency, the Blake ra-

dius is much smaller than the resonant radius so that
R0 ≪ Rres and f(p) may be safely neglected in Eq.
(15a). Replacing the obtained value for Rmax, we get
the approximation:

dR0

dτ
=

3

A

DRGTC∞

p0

√

(

1− 4

9
√
3

αS

p− 1

)

(1 + 2/3αS)

Rres

R2
0

F2(p),

(19)

where

F2(p) =
√

g(p) [h(p)− α arccos (1/p)]
e
. (20)

For sufficiently large p and large R0, the square-root
may be further replaced by 1, yielding the simpler ex-
pression:

dR0

dτ
=

3

A

DRGTC∞

p0

1

(1 + 2/3αS)

Rres

R2
0

F2(p). (21)

Figure 4 also shows the growth-rates given by Eqs. (19)
(dashed line) and (21) (dot-dashed line). Both approxi-
mations yield acceptable results for sufficiently high drive
levels and small bubble radii, as expected by neglecting
terms of order R0/Rres.

3. Frequency dependence

Equation (21) suggests that the growth-rate is propor-
tional to the resonant radius and therefore scales as 1/ω.
This owes to the decrease of the bubble expansion ra-
tio for increasing frequencies. To check this scaling and
explore the validity range of our approximation, both
numerical and analytical computations were repeated for
frequencies of 50 kHz and 100 kHz. The results are dis-
played in Fig. 5 and confirm this frequency dependence.
Clearly, both approximations (19) and (21) (dashed line
and dot-dashed line respectively) become worse, since the
resonant radius decreases with frequency, so that the ap-
proximation R0/Rres ≪ 1 becomes unjustified. However,
we emphasize that our full analytical formula (17) (thin
solid line in Fig. 5) still yields an excellent approximation
for the bubble growth-rate at these high frequencies. The
noisy features of the numerical curves were found to ori-
gin from period-doubling bifurcations of the bubble dy-
namic [29–31]. In this case, rigorously, the time-averages
used in the calculation of the growth-rate should be cal-
culated on the smallest period of the system. We did
not pursue further such a refinement, since it can be seen
that even in this case, Eq. (17) still yields acceptable
results.

4. Estimation of the growth-time

Finally, in view of practical applications, it is interest-
ing to calculate the time necessary for an inertial bubble
to grow between two ambient radii R1 and R2. To that
aim, the approximate expression of the growth-rate (21)
may be integrated analytically, which yields:

∆τ(R1, R2) =
A

9

p0
DRGTC∞

1

F2(p)Rres

×
[

R3
2

(

1 +
2σ

p0R2

)

−R3
1

(

1 +
2σ

p0R1

)]

.(22)



Thus we get the surprisingly simple result that, apart
from a surface tension correction, the growth-time of an
inertial bubble between two sizes is directly proportional
to the difference between the final and initial volume. To
take a practical example, we calculate the time necessary
for a bubble to grow from 1 µm to 5 µm, the former being
roughly of the order of the Blake threshold (and therefore
of the RD threshold) and the latter corresponding to an
approximate value of the shape instability threshold for
drive levels of the order of 1.5 bar [15]. The results are
presented in Fig. 6 which represents the growth-time in
numbers of acoustic cycles for the three frequencies 26.5
kHz, 50 kHz and 100 kHz.
Although the value of the fragmentation threshold is

probably lower than 5 µm for pressures higher than 1.5
bar, the present calculation yields an order of magnitude
of the lifetime of a growing inertial bubble: for a 26.5 kHz
frequency and an acoustic pressure ranging between 1.2
and 5 bar, the growth-time ranges approximately from
20 to 150 acoustic cycles.

IV. DISCUSSION

The above results bring several immediate conse-
quences for multi-bubble fields in saturated water. First,
since the rectified diffusion threshold radius merges with
the Blake threshold radius (for acoustic pressures greater
than 1.4 bar, see Fig. 1), the existence of growing
smoothly oscillating bubbles is unlikely. This result casts
some doubts on the role of rectified diffusion to initi-
ate the cavitation cycle at high drive levels. Indeed,
a small gas nucleus escaping from a solid crevice or a
fragmentation debris falling below the common threshold
would dissolve and never become inertial. Coalescence of
such dissolving micro-bubbles driven under the Blake-RD
threshold may constitute an alternative scenario of the
construction and sustainment of the bubble field. This
raises the issue of the dynamical competition between
dissolution, which tends to kill the bubble population,
and coalescence, which would restore bubbles above the
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FIG. 5: Calculated value of the bubble growth-rate for differ-
ent frequencies. (a) f = 26.5 kHz (same as Fig. 4) (b) f =
50 kHz (c) f = 100 kHz. The line-style conventions are the
same as Fig. 4.

unique Blake-RD threshold.

In addition, the authors suggest that the above results
shed a new light on the absence of SBSL emissions in
multi-bubble fields. Rectification of argon in air bubbles
have been proved essential to obtain SBSL [32, 33] and, as
proposed by Matula and Crum [32], “multi-bubble sono-
luminescence bubbles (MBSL) probably do not survive
for more than a few cycles” so that argon rectification
cannot occur in saturated multi-bubble fields. The point
we would like to discuss is the reason for such a short life-
time of cavitation field bubbles. It is generally attributed,
without clear theoretical ground, to early asymmetrical
collapses caused by perturbations of neighboring bubbles
[20], which would burst the bubble after a few collapses.
Now, our calculation of the growth-time from the Blake
threshold to the shape instability threshold yields an or-
der of magnitude of tens or acoustic cycles for 26.5 kHz
acoustic fields. This is still much lower than the time
necessary to rectify argon (several thousands of acoustic
cycles following Ref. 32), and may also explain why SBSL
cannot be observed in multi-bubble fields: we propose
that the locus of shape instability of a cavitation field
bubble could be the same as for a SBSL bubble (of course
in the same conditions of amplitude and frequency), but
that a cavitation field bubble, owing to the high gas-
concentration, grows up to this locus too rapidly to rec-
tify argon. Therefore, our interpretation differs from the
conventional picture in that the shape instabilities de-
stroying the cavitation bubbles need not be ascribed to
the presence of other bubbles.

It might be argued that the case of a diffusively-
unstable SBSL bubble [12, 34] is apparented to cavitation
field bubbles, as it also undergo cycles of growth phases
followed by a fragmentation. However, unstable SBSL
appears in degassed water and the growth-time in such
conditions is much larger. Following figure 11 of Ref.
[12], this time ranges between 2500 and 16000 cycles, de-
pending on the degassing level, which is of the order of
magnitude of the argon rectification time [32]. Therefore

1 2 3 4 5
10

100

1000

 

 !"#

FIG. 6: Growth-time between 1 µm and 5 µm of an air-bubble
in water expressed in numbers of acoustic cycles, calculated
from Eq. (22). From bottom to top: f = 26.5 kHz, f = 50
kHz, and f = 100 kHz.



argon rectification can still take place for unstable SBSL.

Besides, it has been mentioned that the background
emission spectrum of MBSL bubbles shares some similar-
ities with the SBSL spectrum, which would indicate the
presence of a few SBSL-like bubbles in cavitation fields
[35, 36]. If, as suggested in this paper, such SBSL emis-
sion would be limited by the short lifetime of growing
inertial air-bubbles, the use of higher frequencies would
allow larger lifetimes, as attested by Eq. (22), and may
allow a greater number of growing inertial bubbles to rec-
tify argon before they hit the shape instability threshold.
The author also share Matula and co-worker’s suggestion
[35] of MBSL experiments in sufficiently degassed liquids
in order to enlarge the lifetime of the bubble.

It should be mentioned that the above results rely on
the assumption of a unique pressure amplitude p, which
is unrealistic in the case of multi-bubble fields, owing to
standing wave effects. In fact, bubbles feel different drive
levels as they travel in the acoustic field. A typical phe-
nomenon related to this issue is the formation of filamen-
tary streamer structures investigated by Lauterborn and
co-workers [23, 37, 38]. If, as suggested by these authors,
the bubbles constituting these filaments are inertial bub-
bles, which should be the case in view of the drive levels
reported, the above theory predicts that these bubbles
should be growing. Furthermore their growth might be
further accelerated as they approach pressure antinodes
under the influence of Bjerknes forces. From the above
estimation, their lifetime would amount to several tens
of cycles until they hit the shape stability threshold and
burst. This raises the question of whether the bubbles
constituting the filaments keep their spherical shape. It
should be added that bubble collisions may also restrict
the bubble lifetime. Indeed, from Luther et al.’s results
[37], it can be conjectured that the time between colli-
sions in a multi-bubble field configuration is of the order
of hundreds of periods, so that this process may compete
with the above-described one. In view of the time res-
olution of their experiment, the authors neither exclude
that, on their way to the pressure antinode, bubbles may
split off micro-bubbles. Numerical simulation may help
to obtain a clear picture, and taking into account recti-
fied diffusion in theoretical models of this phenomenon
[23] may be a simpler matter by using the analytical for-
mulae proposed in the present paper.

Besides, it is known that cavitation itself produces
some level of degassing of the liquid, so that the quantity
C∗

∞ in the above expressions may decrease slowly during
an experiment. Taking a generic value of 80 % satura-
tion at the end of the experiment, Eq. (22) shows that
the growth-time would increase by a factor 5/4, which
does not change significantly the above conclusions.

Concerning the estimation of the surface instability
threshold, one might argue that the choice of 5 µm is
rather rough, in view of the wide parameter range con-
sidered here. Following Lin et al. [15] (see their Fig. 2,
dot-dashed curve), direct numerical simulation at 32.8
kHz yields this order of magnitude for drive levels rang-

ing between 1.2 and 1.6 atm, in agreement with experi-
mental results [19]. For higher pressure levels, the surface
instability threshold radius is probably lower, so that our
estimation of the bubble lifetime for 20 kHz frequencies
is probably overestimated, which reinforce our conclu-
sion. Conversely, for higher frequencies, the authors are
not aware of reported calculated or measured data, apart
from the SBSL phase diagrams calculated by Prosperetti
and Hao [14]. Their Fig. 19 suggest in indirect form that
the surface instability threshold increases with frequency.
This would mean that our estimation of the bubble life-
time for 50 and 100 kHz may be underestimated, at least
for moderate drive levels, and further supports our sug-
gestion of possible higher SBSL-like emission for higher
drive frequencies. Real calculations of the surface insta-
bility threshold at such frequencies would allow a firmer
conclusion.
Finally, we would like to discuss the validity of the

bubble model used throughout this paper. Concerning
the isothermal assumption, we recall that the growth-
rate is mainly dominated by the expansion phase of the
bubble. During this expansion, the liquid inertia predom-
inates and the gas pressure is very low (and is indeed ne-
glected in the analytical approach of the expansion phase
in Ref. 4), so that it should be quasi-insensitive to ther-
mal effects inside the bubble. There exists of course a
frequency limit to this assumption since the linear and
nonlinear resonance radii approach the Blake radius for
increasing frequency. This may be put on more quan-
titative ground by repeating the above calculations by
switching from isothermal to adiabatic behavior when
the heat-diffusion time-scale becomes small [39].
Vapor exchange was also neglected in the present cal-

culations. Recent calculations show that water may be
trapped in the bubble during the collapse, mainly ow-
ing to finite diffusion between the center and the wall
of the bubble, and also to non-equilibrium phase-change
[26]. This water-trapping process may influence the bub-
ble growth-rate, which in our approach is only due to gas
accumulation, but its correct representation would also
require the modeling of the chemical reactions occurring
in the bubble and the diffusion of the reaction products
out of the bubble.

V. CONCLUSION

The rectified diffusion threshold has been computed by
numerical simulations of the Rayleigh-Plesset equation,
for small bubbles (R0 < 15 µm), low-frequency (20 kHz
< f < 100 kHz) in a strong acoustic field (1 bar < p < 5
bar). It appears that for near-saturated water, a growing
bubble is necessarily oscillating inertially.
The growth-rate for such growing inertial bubbles has

also been calculated, assuming that such bubbles may
keep their integrity up to the shape instability thresh-
old inferred from single-bubble theory. We also derived
a fully explicit analytical formula for the growth-rate,



showing excellent agreement with the exact numerical
solution in a wide parameter range.
The merging of the two thresholds in near-saturation

bubble-field experiments raises the question of how
micro-bubbles driven under this single threshold can con-
tribute to the construction of the cavitation field. Coa-
lescence was proposed as a competing process to drive
small nuclei above the common threshold.
An order of magnitude of the lifetime of growing in-

ertial bubbles, from their inception at the Blake thresh-
old, up to the instability threshold, has been calculated.
It has been found to be much shorter than the time
necessary to rectify argon. It was therefore suggested
that the non occurrence of single-bubble sonolumines-
cence emission in multi-bubble fields may be due to this
rapid growth-phase, without invoking any shape insta-
bility process caused by the presence of neighboring bub-
bles, as generally stated in the literature. The difference
between single-bubble and multi-bubble has thus been in-
terpreted in an alternative framework, based on the most
immediate difference between the two situations: the gas
saturation.
Finally, our analytical expression of the growth-rate is

ready to use to account for the rectified diffusion in the-
oretical studies of cavitation clouds, based on population
balance models [38, 40], or particle models [23]. It is
interesting to note that the initial rather crude approxi-
mation of the bubble volume yields such a good approx-
imation. This is due to the fact that the bubble dynam-
ics only occurs as time-averages in the expression of the
growth-rate. The method of approximation used in this
paper is therefore promising for deriving analytical for-
mulae of other quantities involving time-averages, such
as primary and secondary Bjerknes forces for example.
This may be the matter of a future work.

Acknowledgments

One of the authors (OL) would like to acknowledge Pr.
Luis Gaete for hosting a pleasant stay in the University
of Santiago de Chile. The authors would like to thank
the anonymous referees for interesting comments.

APPENDIX A: APPROXIMATE FORMULA FOR

INTEGRAL I

First, for simplicity, we will denote by R∗
max the ex-

pansion ratio:

R∗
max =

Rmax

R0

. (A1)

In order to extract the main dependency of the integral
on R∗

max, we first make the following variable-change in
integral (7):

3s = R∗
max

3u, (A2)

to obtain

I =
1

3R∗
max

∫ +∞

0

du

G(u)
, (A3)

where

G(u) =
1

2π

∫ 2π

0

(

u+

(

R∗(x)

R∗
max

)3
)4/3

dx. (A4)

We first focus on finding an approximation of the time-
average G(u). It only involves the quantity R∗(x)/R∗

max

which by construction is bound in [0, 1]. Figure 3b sug-
gests that we could approximate R∗3(x) by a parabola of
maximum R∗

max
3 between xm − ∆x and xm + ∆x, and

by 0 anywhere else, so that we set:

R∗3(x) ≃











R∗
max

3

[

1−
(

x− xm

∆x

)2
]

if x− xm ∈ [−∆x,∆x]

0 elsewhere

.

(A5)
The time-interval ∆x should be chosen of the order

of the characteristic time for the bubble expansion. We
report further below the appropriate choice for this quan-
tity.
We now calculate the time-average (A4) using this

approximation. Cutting the acoustic cycle [0, 2π] in
three subintervals [0, xm −∆x], [xm −∆x, xm +∆x] and
[xm +∆x, 2π] we obtain:

G(u) ≃ (1−∆x/π)u4/3

+
1

2π

∫ xm+∆x

xm−∆x

[

u+ 1−
(

x− xm

∆x

)2
]4/3

dx.(A6)

Then, by the variable change

v =

(

x− xm

∆x

)2

, (A7)

the second integral in Eq. (A6) becomes:

∆x

π
(u+ 1)4/3

∫ 1

0

(

1− v

u+ 1

)4/3
dv√
v
, (A8)

which may be recognized as the integral form of a hyper-
geometric function:

1F2(a, b; c; z) =
Γ(c)

Γ(b)Γ(b− c)

∫ 1

0

vb−1(1− v)c−b−1

(1− vz)a
dv.

(A9)



We finally obtain, as an approximation of the time-
average quantity (A4):

G(u) ≃
(

1− ∆x

π

)

u4/3 +
∆x

π
(u+ 1)4/3

×1F2

(

−4

3
,
1

2
;
3

2
;

1

u+ 1

)

, (A10)

and integral I may be written as:

I ≃ 1

3R∗
max

∫ +∞

0

du

(1− ∆x
π )u4/3 + ∆x

π (u+ 1)4/31F2

(

− 4

3
, 1

2
; 3

2
; 1

u+1

) . (A11)

Any further progress may look difficult, but it’s worth
recalling that ∆x is of the order of magnitude of the ex-
pansion time of the bubble, so that it belongs anyway to
the interval [0, π] (except for very high pressure drives).
We thus calculated the integral (A11) for values of the
parameter ∆x in this interval. The numerical method
used is presented in appendix B . Fitting the result by a
power-law we finally obtain

I ≃ 1

3R∗
max

A

∆xe
, (A12)

with e = 0.37 and A = 0.90. We emphasize that this
fit is not linked to any specific choice of parameters R0

or p and that the approximate expression (A12) is accu-
rate provided the expansion phase dominates the bubble
dynamics, that is to say for any inertial bubble.
The last step is to choose the interval ∆x so that Eq.

(A12) yields a good approximation of I. It should be
said first that the dependence of the integral I on the
bubble dynamics is mainly caught by the scaling law I =
O(R∗

max
−1), and that the dependence on ∆x is weaker, as

attested by Eq. (A12). As mentioned above, the length
of this interval is of the order of the expansion phase of
the bubble, which was studied analytically in Ref. 4 (see
also appendix C). We choose:

∆x = xm − αx+, (A13)

where xm is the time of maximum expansion of the bub-
ble, x+ = arccos(1/p) is the zero-crossing of the acoustic
pressure (see Fig. 3c), and α is a correcting factor to take
into account the non parabolic shape of R∗3(x). The fi-
nal approximation of I was found weakly sensitive to the
precise value of α. A value of α = 0.6 yielded an excel-
lent uniform agreement over the parameter range stud-
ied. Combining Eqs. (A12)-(A13) yields the final result
Eq. (14).
Figure 7 shows the evolution of the integral I vs. R0,

calculated directly from the RP equation (thick solid
line), and from the approximate expression (14), for
which the parameters R∗

max and xm were extracted from

the numerical solution of the RP equation (thin solid
line). It is seen that the two curves are in excellent agree-
ment in most of the parameter range above the Blake
threshold (represented by the dashed vertical lines for
each p value in Fig. 4). Figure 8 displays the same quan-
tities with p in abscissa for fixed R0.
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FIG. 7: Comparison of the exact value of I calculated numer-
ically (thick solid line) with approximate expressions of I for
p = 1.2 (upper set of curves), p = 1.5 (middle), and p = 2
(lower). Thin solid line: Eq. (14) with R∗

max and xm calcu-
lated from the RP equation; dot-dashed line: Eq. (14) with
xm calculated from Eq. (15b); dashed line: Eq. (14) with
R∗

max and xm calculated from Eqs. (15a) and (15b). The
three vertical thin dashed curves represent the Blake radii
corresponding to p = 2, 1.5, and 1.2 (from left to right).

Figures 7 and 8 also show the values of I calculated
from: i) (14)-(15b), the expansion ratio R∗

max being de-
duced from the numerical RP solution (dot-dashed line);
ii) from the fully analytical set of equations (14)-(15a,b)
(dotted line). It appears that the latter choice yields an
excellent, fully analytic approximation for I, except be-
low the Blake threshold, where the approximation (15a)
of the expansion ratio becomes less accurate.



APPENDIX B: NUMERICAL METHOD

The numerical method was designed to calculate both
the exact integral I given by Eq. (7) and the approximate
one (A11). In both cases, we are to compute integrals of
the form:

J =

∫ +∞

0

du

H(u)
, (B1)

where H(u) is either given by Eq. (A4) or by Eq. (A10).
The integral (B1) is first transformed to an integral from
-1 to 1 by the variable change:

x = 2e−u − 1, (B2)

to obtain

J =

∫ 1

−1

dx

(1 + x)H

(

− log

(

1 + x

2

)) . (B3)

Then the integral was recast to fit to a Gauss-Jacobi
quadrature formula:

∫ 1

−1

(1− x)α(1 + x)βg(x)dx =
N
∑

n=1

wng(xn), (B4)

where wn are the weights and xn the evaluation points,
and g reads

g(x) =
1

(1− x)α(1 + x)β+1H

(

− log

(

1 + x

2

)) . (B5)

The choice of α and β is free (provided they are greater
than -1) but good convergence of Gauss formulae strongly
depends on the polynomial character of function g. We

2 3 4 5
10

−2

10
−1

1.9 2.3
0.07

0.11

 

!

FIG. 8: Same as Fig. 7 with driving pressure in abscissa for
fixed R0. From bottom to top: R0 =3, 5, and 10 µm.

adjust the α and β exponents by testing the polynomial
character of g for H given by (A10). Figure 9 shows
the evolution of g with α = 0 and β = −0.8 for ∆x =
0.1, 0.3, and 0.5. It is seen that with this values, the
function is very smooth, which ensures the quality of the
Gauss-Jacobi formula.
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FIG. 9: Evolution of function g in the interval [−1, 1] for
∆x = 0.2π, 0.6π, and π (from top to bottom).

Equation (B4) was therefore used with such values of
α and β for the evaluation of both integrals (A3) and
(A11). A convergence study showed that eleven terms in
the sum (B4) were sufficient in all cases.

APPENDIX C: APPROXIMATE FORMULAE

FOR xm AND R∗
max

Hilgenfeldt et al. [4] showed that during the expan-
sion phase, the gas-pressure, radiation and viscous term
could be neglected in the RP equation, so that it could
be reduced to the simpler form:

RR̈+
3

2
Ṙ2 =

p0
ρ

[

p cosωt−
(

1 +
αS

K(p)

)]

, (C1)

where the last term accounts for surface tension effects,
with αS = 2σ/p0/R0. They observed numerically that

RR̈ ≪ Ṙ for ωt ∈ [−x+, x+], while RR̈ ≫ Ṙ for ωt ∈
[x+, xm], where x+ = arccos (1/p) and xm is the time of
maximum expansion of the bubble (see Fig. 3). Further

observing that RR̈ + Ṙ2 = d2(R2/2)/dt2, the simplified
ODE (C1) could be integrated in these intervals. By
matching the boundary conditions at −x+, x+, and xm,
they obtained the following expressions for the maximum
radius and the time of maximum expansion [41]:

R∗
max = f(p, xm) + g(p, xm)

×
[

1− 4

9
√
3

αS

p− 1

]

R2
res

R2
0

, (C2a)

p sinxm − xm +
1

3
(p sinx+ − x+)

+3ζ2
(

R0

Rres

)2

= 0, (C2b)

where ζ = 1.6 is an adjustable parameter, Rres =
(3p0/ρω

2)1/2 is the isothermal resonant radius and func-
tions f and g read:



f(p, xm) = ζ2 [1 + 2(xm + x+)] , (C3a)

g(p, xm) =
2

3

[

1− p cosxm − 1

2
(x2

m − x2
+)

+
1

3
(p sinx+ − x+)(xm + 3x+)

]

.(C3b)

Equation (C2b) in implicit in xm and Hilgenfeldt et al.
[4] deduced several particular cases for either small or
large values of p. Here, we seek an explicit approximation
uniformly valid at least in the interval p ∈ [1, 5]. We
follow the method of Ref. 4 by expanding xm around
π/2 but here, we use an expansion up to second order,
and obtain for xm:

xm =
π

2
+

√

1 + p(Q(p)− π + 6ζ2R2
0/R

2
res)− 1

p
, (C4)

where

Q(p) = 2p+
2

3
(p sinx+ − x+) . (C5)
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FIG. 10: Expansion ratio R∗
max calculated from numerical so-

lution of the RP equation (solid line), and from approximation
(C2a)-(C6) (dashed line) for R0 = 3 µm, 5 µm, and 10 µm
(from top to bottom). The dot dashed curves are calculated
from (C2a) with xm = p (see Ref. 4).

In order to eliminate the dependence of xm in R0, we
further neglect the R2

0/R
2
res term in the square root of Eq.

(C4), since for low frequencies bubbles near the Blake
threshold are much smaller than the resonant radius and
we finally get:

xm = h(p) =
π

2
+

√

1 + p (Q(p)− π)− 1

p
. (C6)

Replacing xm by Eq. (C6) in Eqs. (C3a,b), equation
(C2a) becomes an analytical expression for R∗

max, which
is used throughout this paper. The result (dashed line)
is compared to numerical exact solution (solid line) in
Fig. 10: the two curves are indistinguishable. Also shown
is the approximation obtained by taking xm = p in Eq.
(C2a) (dot-dashed line) [4]. It is seen that expanding
xm around π/2 up to the second order as we did here,
improves drastically the approximation for larger p.
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