
Applying MDA and OMG Robotic Specification for 
Developing Robotic Systems  

Claudia Pons1,2,3, Gabriela Pérez1, Roxana Giandini1 and Gabriel Baum1 

1 LIFIA, Facultad de Informática, Universidad Nacional de La Plata, Argentina. 
2 CIC, Comisión de Investigaciones Científicas PBA, Argentina. 

3 UAI, Universidad Abierta Interamericana, Argentina. 

cpons, gperez, giandini, gbaum@info.unlp.edu.ar  

Abstract— Robotics systems have special needs often related with their real-
time nature and environmental properties. Often, control and communication 
paths within the system are tightly coupled to the actual physical configuration 
of the robot. As a consequence, these robots can only be assembled, configured, 
and programmed by robot experts. Traditional approaches, based on mainly 
writing the code without using software engineering techniques, are still used in 
the development process of these systems. Even when these robotic systems are 
successfully used, several problems can be identified and it is widely accepted 
that new approaches should be explored. The contribution of this research con-
sists in delineating guidelines for the construction of robotic software systems, 
taking advantage of the application of the OMG standard robotic specifications 
which adhere to the model-driven approach MDA. Thereby the expert 
knowledge is captured in standard abstract models that can then be reused by 
other less experienced developers. In addition part of the code is automatically 
generated, reducing costs and improving quality. 

Keywords— robotic software system, model driven software development, 
OMG standard. 

1 Introduction  

Robotics systems are essentially real-time, distributed embedded systems. They have 
special needs often related with their real-time nature and environmental properties; 
they have to be able to cope with the uncertain and dynamic physical environment 
where they are immersed. Furthermore, robotic systems consist of different hardware 
components. There are a wide variety of controllers, sensors and actuators which 
results in very complex and highly variable architectures. Often, control and commu-
nication paths within the system are tightly coupled to the actual physical configura-
tion of the robot. As a consequence, these robots can only be assembled, configured, 
and programmed by experts.  
Traditional approaches, based on mainly coding the applications without using model-
ing techniques, are still used in the development process of these software systems. 
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Even when the applications are running and being used in the different robotic sys-
tems, several problems can be identified. On the one hand, there is no clear documen-
tation of design decisions taken during the coding phase, making the evolution and 
the maintenance of the systems difficult. On the other hand, when using specific pro-
gramming languages, such as C in Microsoft RDS [27], the possibility of generalizing 
concepts - that could be extracted, reused and applied in different systems - is wasted 
and the code is written from scratch over and over again.  
Thus, currently used methodologies and toolsets are not enough, and it is widely ac-
cepted that new approaches should be explored. The goal of our work is to investigate 
on the current use of modern software engineering techniques for developing robotic 
systems and their actual automation level. Especially, we have explored the OMG 
standards in this domain [32] and as a consequence we have delineated a methodolo-
gy for the construction of robotic software systems, taking advantage of the applica-
tion of the model-driven approach MDA and the OMG robotic specifications, in par-
ticular the RTC proposal.   
The rest of the paper is organized as follows. Section 2 summarizes the most relevant 
software engineering techniques for developing robots. Section 3 presents our guide-
lines for the construction of robotic systems, applying the MDA approach together 
with the OMG robotic specifications, through a simple case study. Section 4 discusses 
a set of related works.  Finally, conclusions are presented in section 5. 

2 Software engineering techniques for developing robots 

Although the complexity of robotic software is high, in most cases reuse is still re-
stricted to the level of libraries. At the lowest level, a multitude of libraries have been 
created for robot systems to perform tasks like mathematical computations for kine-
matics, dynamics and machine vision [14]. Instead of composing systems out of 
building blocks with assured services, the overall software integration process for 
another robotic system often is still re-implementation of the glue logic to bring to-
gether the various libraries. Often, the kind of overall integration is completely driven 
by a certain middleware system and its capabilities. This is not only expensive and 
wastes tremendous resources of highly skilled roboticists, but this also does not take 
advantage from a maturing process to enhance overall robustness.   
From this perspective, it is widely accepted that new approaches should be established 
to meet the needs of the development process of today‘s complex robotic systems. 

Component-based development (CBD) [45], Service Oriented Architecture (SOA) 
[10], as well as Model Driven Architecture (MDA) [31] are among the key promising 
technologies in the robotic systems domain. These technologies have been adopted by 
the Robotics Domain Task Force (RTF) [32], which promotes the integration of mod-
ular robotic systems components through the use of OMG standards. 
In first place, the CBD paradigm states that application development should be 
achieved by linking independent parts, the components. Strict component interfaces 
based on predefined interaction patterns decouple the sphere of influence and thus 
diminishing the overall complexity. This results in loosely coupled components that 
interact via services with contracts. Components such as architectural units allow 
specifying very precisely, using the concept of port, both the services provided and 



the services required by a given component and defining a composition theory based 
on the notion of connector.  Component technology offer high rates of reusability, but 
little flexibility with regard to the implementation platform: most existing components 
are linked to C/ C++ and Linux , e.g. Microsoft robotics developer studio [27], 
EasyLab [7] , Player/Stage project [20] . On the other hand, some proposals achieve 
more independence, thanks to the use of some middleware, e.g. Smart Software Com-
ponent model [43], Orocos[14], Orca [12] and CLARAty [29].  
In second place, SOA is a flexible set of design principles used during the phases of 
systems development and integration. SOA separates functions into distinct units, or 
services which developers make accessible over a network in order to allow designers 
to combine and reuse them in the production of applications. These services and their 
corresponding consumers communicate with each other by passing data in a well-
defined, shared format. 
Finally, the MDE [44] approach has emerged as a paradigm shift from code-centric 
software development to model-based development. Such approach promotes the 
systematization and automation of the construction of software artifacts. Models are 
considered as first-class constructs in software development, and developers‘ 

knowledge is encapsulated by means of model transformations. Models are imple-
mentation-independent and they are automatically transformed to executable code. 
The MDA is the OMG realization of the MDE. The MDA process can be divided into 
three phases: the first phase builds a PIM, which is a high-level technology-
independent model; then, the previous model is transformed into one or more PSMs; 
these models are lower level and describe the system in accordance with a given de-
ployment technology; finally, the source code is generated from each PSM.  

3 OMG standards for robotic components 

The Object Management Group (OMG) is an international, open membership, not-
for-profit technology standards consortium. OMG Task Forces develop enterprise 
integration standards for a wide range of technologies and industries. OMG modeling 
standards enable visual design, execution and maintenance of software and other pro-
cesses. Originally aimed at standardizing distributed object-oriented systems, the 
company now focuses on modeling (programs, systems and business processes) and 
model-based standards. OMG evolved towards modeling standards by creating the 
standard for the Unified Modeling Language (UML) followed by related standards for 
Model Driven Architecture (MDA).  
Specifically in the area of Robotics, in 2005 the OMG launched the Robotics Domain 
Task Force (RTF) with the purpose of fostering the integration of robotics systems 
from modular components through the adoption of OMG standards. To realize this 
purpose, the RTF has been promoting important actions and in the last years has re-
leased a set of specifications: Robotic Technology Component (RTC) [35], Robotic 
Interaction Service (ROIs) [36], Dynamic Deployment and Configuration for Robotic 
Technology Component (DDC4RTC), Unified Component Model for Distributed, 
Real-time and Embedded Systems (UCM), Finite State Machine Component for RTC 
(FSM4RTC) [33], Hardware Abstraction Layer for Robots (HAL4RT) [34], among 
others.  
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Let‘s slightly describe some of these standards:  
The RTC proposal specifies a component model that meets the requirements of robot-
ic systems.  A component in RTC is a logical representation of a hardware and/or 
software entity that provides well-known functionality and services. So, the develop-
ers can combine RTCs from multiple vendors into a single application, allowing them 
to create more flexible designs more quickly than before. It includes a Platform-
Independent Model (PIM) expressed in UML and three Platform-Specific Models 
(PSMs) expressed in OMG IDL: Local, Lightweight CMM and CORBA. In the Local 
PSM, the components reside on the same network node and communicate over direct 
object references without the mediation of a network or network-centric middleware 
such as CORBA. In the Lightweight CMM, most components are assumed to be dis-
tributed relative to one another and they communicate using a CMM-based middle-
ware. And in CORBA, components are also assumed to be distributed and they com-
municate using a CORBA-based middleware. 
The RoIS Framework abstracts the hardware in the service robot (sensors and actua-
tors) and the Human-Robot Interaction (HRI) functions provided by the robot. It pro-
vides a uniform interface between the service robot and the application. Using the 
RoIS Framework as an intermediary, a service application selects and uses only nec-
essary functions and leaves hardware-related matters, such as which sensor to use, to 
the HRI engine. 
The DDC4RTC specification defines data models and service interfaces of deploy-
ment and configuration for RTC based dynamic applications as an extension to DEPL 
(OMG Deployment and Configuration of Component-based Distributed Applications 
Specification) specification. Generally speaking, since system structure and configu-
ration are frequently affected by robot movement and application or scenario state, it 
is important to be able to represent and realize dynamic component deployment and 
run-time re-configuration requirements. 
The HAL4RT specification defines the Platform-Independent Model (PIM) of a 
Hardware Abstraction Layer for robotic systems that is capable to support at least the 
following devices:  Sensors (sensor kind and unit of measure should be provided) and  
Actuators (commands to perform motions, and motion feedback information should 
be provided). In addition this specification defines the Platform specific Model (PSM) 
in language C based on the HAL PIM. This specification aims to enable engineers 
such as device makers, device users, and software users to build robotic software 
without any concern about the differences among the targeted devices, by standardiz-
ing the API of these devices.  
All these standards interact with each other to provide a higher level of abstraction 
that facilitates the task of programming robots. 

4 A case study: applying MDA with the OMG robotic 
standards 

In this section we describe the development of a robotic system applying the MDA 
approach. The code is automatically derived from models compliant with the OMG 
robotic standards. For implementing this case study we use the modeling tool Papyrus 
[37], an Eclipse graphical editing tool for UML2. In accordance with its primary goal 



of implementing the complete UML2 standard specification, Papyrus provides an 
extensive support for UML profiles. It includes facilities for defining and applying 
UML profiles in a very rich and efficient manner. But, it also provides powerful tool 
customization capabilities similar to DSML-like meta-tools. In this way, Papyrus is a 
tool that brings together the advantages of using a general purpose language such as 
UML2, and those of DSML-based approaches. In particular, the SOA and RTC pro-
files are smoothly incorporated to Papyrus. On the other hand, for implementing the 
transformations we use Acceleo [19], an open source code generator implementing 
the OMG's MOF Model to Text Language (MTL) standard that uses any EMF based 
models (e.g., UML, SysML) to generate any kind of code (e.g., Java, C, PHP) while 
keeping the traceability of the generated text. 

4.1 Using the  RTC standard  

The purpose of the RTC specification is to manage the lifecycle of all components in 
a uniform way. This specification does not attempt to replace the existing UML com-
ponent models, but focuses on structural and behavioral characteristics required by 
robotic applications that are not covered by other UML models. It also separates func-
tional specification and execution control. By extending the general-purpose compo-
nent functionality of UML with direct support for domain-specific structural and be-
havioral design patterns, RTC elements can serve as powerful building blocks in a 
robotics system.  
The RTC PIM consists of three parts: The Lightweight RTC, the Execution semantics 
and the Introspection, as follows, 
The Lightweight RTC describes a simple model containing definitions of concepts 
such as component, port and similar ones.  
The Execution semantics are extensions to Lightweight RTC to directly support criti-
cal design patterns used in robotics applications such as periodic sampled data pro-
cessing, discrete event/stimulus response processing and modes of operation.  
And finally, the Introspection is an API allowing for the examination of elements at 
runtime. It is useful for dynamic component networks.  
The Lightweight RTC specification (see Fig. 1) defines the stereotype lightweight-
RTComponent extending UML basic component, and describes some interfaces 
which enable communication between components. When the stereotype is applied, 
the component must implement all the methods that were defined in the required in-
terfaces. On the other hand, a RTC component may participate in any number of exe-
cution contexts. These contexts shall be represented to a RTC component as instances 
of ExecutionContext class. The ExecutionContext manages the behavior of each RTC 
component that participates in it.   

 



 
Fig. 1. Simplified LightweightRTC metamodel definition 

4.2 The Robot Firefighter 

To illustrate our approach, we use a small example of a mobile robot to fight fires. 
This robot must move and navigate itself around a platform with random obstacles 
and must find fire sources. Once a flame is detected, the robot begins navigating to-
wards the flame to extinguish it. To improve the efficiency of the robot in the fire 
extinction, the robot interacts with pre-existing systems. These systems are not part of 
the robot, but cooperate with it to fulfill its purpose. On one side there are fire detec-
tors placed physically in the environment at strategic locations. Also a Map Service is 
available. These devices are accessible as external services on the web. All of these 
services work together for determining if there is a fire in progress. If so, the robot 
should navigate towards the flame and extinguish it. Each of these devices covers a 
monitoring zone. When the device indicates the presence of fire, the robot should ask 
the Map Service how to get to that area.  For this, the robot must provide its own posi-
tion - which it knows through its GPS - to the Map Service. The Map Service then 
returns a trajectory that the robot must follow to reach the destination. 
In first place, the PIM models for this robotic system should be created. By applying 
the CBD paradigm, robotic elements, such as actuators and sensors, are modeled as 
components. Thus, the following components were identified: ObstacleDetector, Mo-
tionController, NearByFireDetector, FireExtinguisher, GPS, FireDetector  and MapS-
ervice.  



The first five components are inner components, physically allocated into the robot, 
while the last two are external components that do not form part of the robot, but col-
laborate with it by providing helpful services. All of the components provide ports to 
communicate with each other and they are connected to the robot with their respective 
glue code. Fig. 2 shows the composition of the robot, describing its inner components: 
ObstacleDetector, MotionController, NearByFireDetector, FireExtinguisher and GPS. 
These PIM models are expressed in the UML language enriched with the RTC stereo-
types. Fig. 3 presents the PIM models specifying the external services (i.e., FireDetec-
tor and MapService) as components. In our specific case, the service model is reduced 
to two elements, but in more complex systems, several services can be smoothly 
modeled. 

   
Fig. 2. PIM of the robot firefighter: Inner Component Model. 

 
Fig. 3. PIM of the robot firefighter: Component and Service Model. 
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These PIM models are expressed in UML language enriched with the RTC stereo-
types.  Fig. 4 shows the PSM model that is automatically derived from the PIM model 
in Fig. 2. This PSM describes the design of the system complying with the RTC spec-
ification. The interface LightweightRTObject defines a lifecycle standard, specifying 
the states and transitions through which all RTCs will pass from the time they are 
created until the time they are destroyed. The ComponentAction interface provides 
callbacks corresponding to the execution of the lifecycle operations of Lightweight-
RTObject. A RTC developer may implement these callback operations in order to 
execute application-specific logic pointing response to those transitions.  
 

 
Fig. 4. PSM of the Robot firefighter: Component´s implementation. 



Once the structural models are stable, the behavioral models describing the interaction 
among components are created. Fig. 5 shows a UML state machine describing the 
overall behavior of the robot. The state machine specifies the four states which the 
robot can go through: walkAround, navigatingTowardsTheFirePosition, approach-
ingTheFlame and fireExtinguish. Immediately after starting its workflow the robot 
enters to the state walkAround, and remains in the same state while no fire is detected. 
When the fire detector triggers an alarm the robot switches to the state navigating-
TowardsTheFirePosition. Then, the robot keeps in the same state, moving in the di-
rection of the fire, until the fire is reached.  
Once the robot reaches the fire it enters to the state approachingTheFlame. In such 
state the robot approaches the fire as close as possible. When the fire is very close the 
robot switches to state fireExtinguish where it triggers mechanisms to extinguish the 
fire. Other behavioral models are created for the remaining behaviors of the robot, but 
are not presented in this paper for space limitations. 
 

  
Fig. 5. PIM of the robot firefighter: overall Behavioral Model                                

Then, similarly to what was done with the structural models, PSM behavioral models 
are automatically derived.  For example, Fig. 6 shows a PSM of the robot´s behavior 
that was automatically derived from the State machine in Fig. 5 by applying the state 
pattern as prescribed by the RTC. 
For each state in the state machine, a class is created as subclass of the abstract class 
State.  Each transition trigger in the state machine is mapped to a Boolean operation 
in the main class Robot. A method named execute() is defined in the class Robot; 
according to the State Pattern this method just delegates its behavior to the execute() 
method in the corresponding State. 
The next step of the development process consists in the transformation of structural 
as well as behavioral PSM models to a specific programming language. The following 
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listing shows the transformation program written in Acceleo that takes as input the 
robot structural models and produces Java code as output.  

[module generateRTCCustomComponents 

('http://www.eclipse.org/uml2/5.0.0/UML')] 

 

[template public generateElement(aComponent : Component)] 

[comment @main/] 

[file ('myRTC/' +aComponent.name+'.java',false, 'UTF-8')] 

 

package myRTC; 

import java.util.List; 

import java.util.ArrayList; 

import lightweightRTC.ExecutionContext; 

import lightweightRTC.ExecutionContextHandle_t; 

import lightweightRTC.ExecutionContextOperations; 

import lightweightRTC.LightweightRTObject;   

import lightweightRTC.ReturnCode_t; 

 

public class [aComponent.name/] implements LightweightRTObject { 

  

private List<ExecutionContext> contexts= new ArrayList(); 

 /* 

 * @generated  

 */ 

 public ReturnCode_t finalize_() { 

  return this.on_finalize(); 

 } 

The acceleo program above generates the following Java code as output, 

package myRTC; 

 

import java.util.List; 

import java.util.ArrayList; 

import lightweightRTC.ExecutionContext; 

import lightweightRTC.ExecutionContextHandle_t; 

import lightweightRTC.ExecutionContextOperations; 

import lightweightRTC.LifeCycleState; 

import lightweightRTC.LightweightRTObject;   

import lightweightRTC.ReturnCode_t; 

 

public class Robot implements LightweightRTObject { 

 private List<ExecutionContext> contexts = new ArrayList(); 

 /* 

 * @generated  



 */ 

 public ReturnCode_t finalize_() { 

  return this.on_finalize(); 

 } 

The rationale for building this Java program was the following, for each component in 
the PIM, a Java class was created as an implementation of the LightweightRTObject 
standard interface. Additionally all the Lightweight RTC resources were imported in 
the program. 
 

 
Fig. 6. PIM of the Robot firefighter: Behavior´s implementation.   

4.3 Lessons learned from the case study 

In this case study we have identified the different models that can be created to speci-
fy both the structure and the behavior of the robot. These models were represented 
using the OMG robotic standard, which is basically the well-known UML language 
enriched with appropriate stereotypes to describe structural and behavioral character-
istics required by robotic applications that are not covered by other UML models. 
This standard specification manages the lifecycle of all robotic components in a uni-
form way. Additionally, the case study shows how the models are gradually defined at 
different abstraction levels, starting with the more abstract models, completely inde-
pendent of the platform, from which other less abstract models could be automatically 
derived, to finally get to the executable code. 
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5 Related work 

It is broadly recognized that there is a need to incorporate software engineering prin-
ciples within the development of future robot platforms. This has lead in the last years 
to the conception of a set of activities with the objective of assembling researchers 
from both fields, Model-Driven Software Development on one hand and Robotics on 
the other hand. Examples of these activities are the International Workshop on Do-
main-Specific Languages and Models for Robotic Systems (DSLRob) [42] launched 
in 2009, and the Workshop on Model-Driven Robot Software Engineering(MORSE) 
[3] initiated in 2013, both with the goal of incentivizing the interaction of these areas. 
As a result, in recent years several software frameworks have been developed to pro-
vide simple and intuitive ways of writing software applications for robot platforms. 
This includes academic research as well as industrial products.  
On the industrial side one of the most well known is Lego Mindstorms Evolution 3 
[26], developed especially for the Lego robots which can be built out of the Lego 
model kits. This is an extremely flexible and powerful system which allows anyone to 
build a robot using a few standard parts like motors, color sensors, touch sensors, 
infrared sensors and other Lego elements. Afterwards, the user can graphically im-
plement a program by choosing the desired activities from the pallet of available 
blocks. Because of this target group, the software only has a limited set of functions 
and cannot be extended in any way. Evolution 3 only supports the creation of soft-
ware for Lego robots, and thus cannot be regarded as a general robot modeling 
framework. 
Other industrial tool is Choregraphe [1], an environment developed by Aldebaran 
Robotics, the manufacturer of the NAO humanoid robot, to allow robots to be pro-
grammed by graphical applications. It also supports code reuse and debugging capa-
bilities and makes it possible to monitor and control NAO robots manually. The pro-
gram uses an intuitive drag-and-drop interface in which a program is created using 
boxes that can be combined into a kind of flow diagram. In summary, although it is 
easy to use, Choregraphe allows the creation of complex programs. Like Lego Mind-
storms Evolution 3, Choregraphe can only be used in combination with the NAO 
robot and thus cannot be regarded as a general robot modeling framework.  
Another example of industrial product is Robotino View 2, a visual development 
environment provided by Festo Didactic exclusively for Robotino robots. Robotino 
View 2 shares the same limitation as the two previously mentioned frameworks — it 
is proprietary and can only be used with one kind of robot.  
Finally, Microsoft Robotics Developer Studio 4 (MRDS4) [27] is another program-
ming environment for building robotics applications. It provides a Visual Program-
ming Language with an intuitive drag-and-drop interface for hobbyists and support 
for Microsoft Visual Studio for professional developers. It has several significant 
advantages. First, numerous robots are supported. Second, a high-fidelity simulation 
environment is provided by Visual Simulation Environment (VSE), and the function-
ality of MRDS4 can be extended by providing additional libraries and services. Also, 
extensive documentation, samples and tutorials are available.  
On the academic side, many works [8, 11, 12, 23, 28, 49 and 25] has taken advantage 
of CBD for developing robotic systems whilst other proposals [4, 16, 18 and 49] have 
applied SOA to building robotic systems. Promising proposals were found for apply-
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ing model-driven development to robotics [2, 5, 6, 9, 13, 17, 21, 22, 24, 25, 39, 40, 
41, 46 and  48], while only one work combined all three technologies [47]. Let us 
examine the most representative ones: 
Atkinson and colleagues in [2] introduce a prototype domain-specific modeling 
framework designed to support the quick, simple and reliable creation of control 
software for standard robot platforms. In this paper they have presented a prototype 
framework, known as the Deep Robot Modeling Framework (DRMF). The current 
version of the prototype supports a rudimentary implementation of all of these fea-
tures in the context of the NAO robot platform developed by Alderbaran Robots, 
although the basic framework is platform independent. Applications developed using 
the NAO-specific languages are automatically mapped into C++ code that can be 
loaded onto, and used to drive, individual NAO robots. 
Dhouib and colleagues in [17] define the language RobotML as an extension to the 
Eclipse-based UML modeling tool Papyrus. Papyrus puts strong emphasis on UML‘s 

profile mechanism, which allows domain-specific adaptations. RobotML aims to 
provide model-driven engineering capabilities for the domain of robot programming, 
implementing code generators for different target platforms. 
In [15] a small and declarative domain-specific language for pick and place applica-
tions was elaborated for demonstrating the feasibility of the model driven approach. 
Configurable code generation for C++ is provided 
These related works focus on defining specific modeling languages that enable the 
designer to create abstract models of the robotic system and to automatically generate 
code from them. Although these different languages and platforms are superficially 
very different, at a high enough level of abstraction they all contain the same basic 
constructs – predefined types representing the components and actions from which the 
structure and behavior of individual robots are constructed. In principle, therefore, 
they could all be brought together under the umbrella of a single, unified robot model-
ing framework. We believe that our approach makes a contribution towards the appli-
cation of standard instead of developing new concepts which are then difficult to inte-
grate. 

6 Conclusions 

Programming robots is a complicated and time-consuming task. Often, control and 
communication paths within the system are tightly coupled to the actual physical 
configuration of the robot. Robotic researchers have been mainly concentrated on 
creating hardware/software solutions for specialized tasks, leading to an extensive 
landscape of comparable but isolated solutions which cannot be reused and combined 
easily. Furthermore, these approaches lack comprehensive software engineering 
methodologies and abstractions to handle the increased heterogeneity and complexity 
of robotic software systems.  
The contribution of this research consists in delineating guidelines for the construc-
tion of robotic software systems, taking advantage of the application of the OMG 
standard robotic specifications which adhere to the model-driven approach MDA. 
Model-driven approaches further simplify the reuse of already implemented and test-
ed modules by enabling developers to model their applications on a higher abstraction 



level incorporating existing modules, managing the complexity and facilitating the 
reusability of robot code. 
We observed that the CBD and SOA paradigms provide a starting point for a MDA 
approach in robotics where the differences between various software platforms and 
middleware systems can be completely hidden from the user due to the definition of 
intermediate abstraction level. In particular, the proposed methodology takes ad-
vantages of the standards defined by the Robotics Domain Task Force (RTF) which 
promotes the integration of modular robotic systems components under the umbrella 
of MDA.  
The approach captures the fundamental concepts of the robotic software development 
process, its relationships and properties. This modeling approach includes concepts to 
represent services and components as primary elements in the robotic system in a 
higher abstraction level. 
The proposed methodology has been prototyped using Papyrus and Acceleo that are 
tools provided by the Eclipse Modeling Project that focuses on the evolution of mod-
el-based development technologies within the Eclipse community.  
At the moment, there are few proposals taking advantage of the combined application 
of CBD, SOA and MDA to robotic software system development as reviewed in [38] 
and more recently in [30], and there is a lack of proposals towards the application of 
the OMG robotic standard. 
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