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Abstract 

An original experimental method is used to determine drying kinetic at particle scale. The 

particle scale kinetics was obtained by immersion of a small mass of wet PVC particles 

(cake) in a batch dense fluidized bed containing inert hot particles (glass bead). The 

results are summarized here and prove clearly that the PVC drying is controlled by a 

competition between internal and external transfer. The drying kinetic was described by a 

particle scale model taking into account the convective-diffusive (mass transfer) and the 

convective-evaporative (heat transfer) phenomena. To validate this model with the 

experimental data, the experimental fluidized bed dryer is modeled following two 

different approaches: a perfect stirred reactor model and a 3D numerical simulation using 

the multiphase flow code NEPTUNE_CFD. The aim of this 3D simulation is to simulate 

the phenomena occurring, at local scale, in a dense fluidized bed dryer and to show the 

limitations of the perfect stirred reactor model. 
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1. INTRODUCTION. 

This study has been realized in the Chemical Engineering Laboratory of Toulouse in 

partnership with INEOS ChlorVinyls. In PVC powder production line, after the 

polymerization step, a suspension, composed of water and PVC particles, is obtained. 

Most of this suspension water is eliminated during a centrifugation step, leading to a wet 

porous powder, called cake (with a humidity between 0.2 and 0.35 kg of water/kg of dry 

PVC). The cake drying occurs in a pneumatic dryer coupled with a fluidized bed dryer. 

This highly energy consuming operation (between 800 and 1500 kJ / kg dry PVC, in 

accordance to the operating conditions and the PVC grade) represents 30% of the 

production cost. The pneumatic dryer realizes 95 % of the cake drying, while the role of 

the fluidized bed dryer is to standardize the particles heat treatment and to finalize the 

drying, thus the process optimization is focused on the pneumatic dryer operation. 

 

Several pneumatic dryer models can be found in the literature.
[1-5]

 All of them need 

information concerning the hydrodynamic phenomena specific to the dryer, the heat 

transfer and the mass transfer, or more specifically the humidity evaporation rate (or 

drying kinetic) at particle scale. As the powder PVC is a porous material, both external 

and internal transfers have to be considered. The external transfer only depends on the 

dryer hydrodynamic, and an important amount of correlation can be found in the 

literature. On the other hand, the internal transfer depends on the particles nature and 

characteristics (morphology, texture, water affinity …). The aim of the study presented in 

this paper is the experimental determination and the modeling of the PVC drying kinetics 

at particle scale, using the following approach: 



 

 

First, the drying kinetics at particle scale is experimentally determined by immersing a 

small amount (3 g) of PVC particles (mean diameter: 143 µm) in a hot fluidized bed 

filled with 1,5 kg of glass beads (mean diameter: 324 µm). The role of these bigger 

particles is to suppress agglomeration phenomena between PVC particles and to perform 

the drying in isothermal conditions. Then, by measuring the evolution of the outlet air 

humidity, the drying kinetic at particle scale can be obtained. The experimental results 

show that the drying kinetics is strongly dependent on air temperature and velocity. 

 

These findings were represented according to a kinetic law based on heat and mass 

exchanges between PVC and air (external transfers), heat and mass diffusion inside the 

particle (internal transfers) and considering two drying steps (evaporation of surface then 

internal humidity). In order to validate it, this kinetic law is included in models 

simulating our experimental apparatus, and the theoretical results are confronted to the 

experimental findings. Firstly, the experimental fluidized bed dryer is modeled with a 

perfect stirred reactor approach. However, this classical approach is based on strong 

assumptions, its results are in accordance with the experimental findings. In a second 

time, a 3D multiphase flow code (NEPTUNE_CFD) is used to simulate the drying 

operation in the experimental fluidized bed dryer.[6-8] These 3D simulation results show 

the limitations of the perfect stirred reactor approaches. 

 

2. BACKGROUND. 

Porous media drying is a complex problem, still not well-understood despite of the 

numerous studies that can be found in the literature.[9-11] During drying of a porous 



 

 

particle, two periods can be distinguished. The first period consists in the elimination of 

free water located at its surface. In this period the evaporation is controlled by external 

transfers, which can be conductive, convective or radiative, in accordance to the dryer 

technology. In the case of powder PVC drying realized in a pneumatic and/or a fluidized 

bed dryer, these transfers are convective and depend on the local relative velocity 

between air and particles, also called slip velocity.[2],[12] In the second period, the water 

located in the particle pores is eliminated, then the drying is controlled by a combination 

between internal and external transfers. The internal transfers are complex and depend on 

the structure of the solid particle, the water-solid bond, and the water composition. The 

elementary mechanisms which can occur during drying of a porous solid particle (in 

general case) are represented in Figure 1:[3],[13] 

 

 Capillary forces, depending on liquid wetting on the solid surface, temperature and 

particle pore size distribution. 

 Vapor diffusion through the pores under the influence of temperature and water 

vapor partial pressure. 

 Solid diffusion, corresponding to bound water migration on solid surface. This 

mechanism occurs in the case of solid partially dissolved in water and strong liaison 

between water and solid. 

All these elementary mechanisms are influenced by the particles morphology (diameter, 

porosity, affinity with water ...). In cases where the particles have a small diameter and a 

low water affinity, the evaporation zone thickness become really small, and the particles 



 

 

temperature can be considered uniform. As show in the next section, this is probably the 

case of the powder PVC drying. 

 

The modeling of a wet particle drying by hot air has to consider water evaporation at the 

particle surface during constant drying rate period, and the movement of an evaporation 

zone between the wet core and the dry crust of the particle. This zone progresses from the 

particle surface to its core and its thickness is due to the wetting properties of the liquid in 

the pores as indicated in Figure 1. A shrinking-core type model is used by numerous 

authors to represent the evaporation front evolution of particles having a pellet-grain 

structure (Figure 2).[14-17] In this kind of model, the particle is divided into two zones: a 

wet core, which shrinks over time, and a dry crust, through which the evaporated water 

diffuses to the particle surface. In general, a local equilibrium between the solid and the 

gas going through the dry crust is considered. The elementary mechanisms involved here 

are conductive heat transfer (from particle surface to its core) and water vapor diffusion 

through the pores. This model type is well adapted to the particles with a pellet-grain 

structure (that is, particles consisting of primary particles) with a low pore volume in the 

primary particles. Indeed, with such a structure, the drying will mostly occur in the space 

between the primary particles. Thus, the drying will be controlled by the water vapor 

diffusion through the particles. 

 

3. PVC PARTICLES PROPERTIES 

In order to determine the physical properties of a PVC particle, different characterization 

analysis have been realized in our laboratory. Indeed, the SEM picture of a PVC particle 



 

 

(Figure 3) shows a typical pellet-grain structure,[14] as each particle is a primary particle 

(of about 10 nm diameter) stack. This structure is close to the structure proposed by Saeki 

and Emura[18], represented in Figure 4, predicted by the PVC particle formation 

mechanism. 

 

The particle size distribution of PVC particle has been evaluated by laser granulometry 

(Malvern Mastersizer 2000 Sirocco 2000 ±0.1 μm). The results are summarized in Table 

1. 

Figure 5 presents the pore size distribution of a PVC particle, measured by mercury 

porosimeter (Micrometrics Autopore IV). As indicated by the particle structure observed 

on the SEM picture (Figure 3) two pores families can be distinguished: 

 

 The space between the primary particles, for a pore size higher than 250 nm 

(macropores), which represent 93% of the pores volume. 

 The primary particles own porosity, for a pore size lower than 250 nm (mesopores), 

which represents 7% of the pores volume. 

 

In order to control the PVC particle size, some surfactant is introduced during the 

polymerization reaction step. The surfactant presence in the liquid within the pores of the 

particles tends to lower its liquid superficial tension. Moreover, the contact angle between 

PVC and water ( ) is around 85.6°.[19] This leads to the assumption that the drying zone 

could be modeled by a surface of discontinuity, as PVC is a material with a low 

wettability. This is confirmed by the determination of the adsorption equilibrium of PVC 



 

 

presented in Figure 6. This result shows that PVC has a small affinity with water. Indeed, 

even with high value of air relative humidity (80 to 85%), the PVC equilibrium humidity 

does not exceed 1.7 g of water / kg of dry PVC. Hence the liquid and solid diffusions can 

be neglected in this study, and the only internal transfer remaining is the vapor diffusion. 

 

Concerning the capillarity effect, the pore size distribution of a PVC particle, presented in 

Figure 5, shows that the minimal pore size is about 30 nm. The Kelvin law (see equation 

(1)) expresses water activity as a function of pore radius and shows that, for pore radius 

higher than 10 nm, the water activity is equal to 1. Hence capillary effect does not 

influence the liquid/water equilibrium in this study. 
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with r the pore radius, LV the liquid surface tension, Mw and w, the water molar mass 

and density, R the ideal gas constant, and T the temperature. 

 

In conclusion, all these morphological, physical, and chemical parameters show that the 

PVC particles have a pellet-grain structure with a low pore volume in the primary 

particles (thus most of the PVC particles humidity is located in the macropores). This 

structure, coupled with the low wettability of the PVC, leads to neglect some elementary 

phenomena (as the capillarity transfer or the liquid diffusion) and to model the PVC 

particles drying with a shrinking-core type model as described above (Figure 2). 

Moreover, the dry crust can be considered without any residual humidity. 

 

4. DETERMINATION OF THE DRYING KINETICS. 



 

 

4.1 Description Of The Experimental Apparatus And Operating Conditions. 

In order to minimize the external effects, the kinetic study was performed by immersion 

of a fixed mass of wet PVC particles (cake) in a batch dense fluidized bed (Figure 7) 

containing inert hot particles (glass bead, see physical properties in Table 1). The dryer is 

composed of a 10 cm diameter and 40 cm height glass column. The presence of an 

extended section on the top prevents the fine particles to be elutriated. The fluidization air 

is pre-heated in an electrical heater, and when it is necessary, mixed up with water vapor 

produces by an evaporator. 

 

The dryer is equipped with several temperature (±0.1 °C) and pressure (±0.1 mbar) 

sensors and two capacitive hygrometers (temperature and humidity sensors). As shown in 

Figure 8, a vacuum pump brings a fraction of moist air coming from the dryer to the 

humidity measurement system. This system, whose role is to ensure that the humidity 

measurements are realized at constant conditions (air flowrate and temperature), is 

equipped with a filter to prevent particles to damage the sensor, a thermostatic bath to 

maintain a constant temperature and prevent condensation phenomena, the hygrometer, 

and a rotameter to maintain a constant flowrate. This hygrometer measures the air dew 

point with an accuracy of 0.1 °C. This hygrometer measurement is controlled according 

to a second hygrometer (which measures the relative humidity with an accuracy of 0.1%) 

located at the cyclone outlet. To avoid condensation near this second sensor, the pipe is 

heated with heater cables. Both hygrometers are coupled with a data acquisition system, 

which permits to record the temporal evolution of air humidity. Concerning the 

hygrometers, it is important to note that their response times are close to the 



 

 

experimentations duration (about 40 seconds). A transfer function has been determined 

and included in the different simulations in order to take into account this response time 

and to compare the simulation results with the experimental results. 

 

The fluidization gas flowrates (velocities) are chosen in agreement with the characteristic 

velocities (minimal fluidization and terminal settling velocity) of PVC particles and glass 

beads. These values determined at ambient temperatures are presented in Table 1. The air 

velocity range goes from 25 to 40 cm/s, which corresponds to 3 and 4.5 times the 

minimal fluidization velocity of the glass beads at ambient temperature. The temperature 

range goes from 30 to 60 °C. Indeed, if the bed temperature is higher than 70 °C the PVC 

surface becomes sticky and can cause agglomeration in the bed. Finally, the influence of 

surrounding air relative humidity is studied from 0.2 to 25.2 g of water / kg of dry air. 

 

The injected wet PVC mass is chosen to ensure that drying operation stays isothermal. 

Indeed a preliminary study, realized with wetted glass beads, show that the mass of water 

injected with the sample should not exceed 1.5 g to prevent a temperature fall higher than 

1°C. Hence, the injected wet PVC mass is fixed to 2.9 g, while the fluidized bed is filled 

with 1.5 kg of inert glass beads. This allows us to expect that the wet PVC sample is 

quickly dispersed in the fluidized bed and that the PVC particles are isolated from each 

other. 

 

4.2 Exploitation Method And Result Example. 



 

 

With this experimental set up, the PVC particles drying kinetic is obtained by indirect 

measurement.[20] Indeed, as the drying time is short, the weighing methods are difficult to 

realize, so the outlet air humidity evolution (Y(t)) is recorded, as shown in the Figure 9. 

The evolution of the fluidized bed temperature is also presented in this Figure, and shows 

that, in our experimental conditions, the drying operation is isothermal. 

 

The instantaneous drying rate, Wdr(t), can be obtained from the outlet instantaneous air 

humidity, Y(t), as indicated on equation (2): 

 0. 0 ,dr gW t F Y t Y0. 0 ,dr gF 0..dr gdr g  (2) 

with, Y(0) the initial air humidity and Fg
0
 the dry air mass flowrate. 

 

Then, the mass of evaporated water during the time t, wm t , and the total mass of 

evaporated water during the experiment, wm , can be calculated by integration of the 

drying flowrate: 
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with tend, the time at the end of the experiment, i.e. the time when Y(tend)=Y(0). 

Finally the mean solid humidity, X(t), is evaluated by the following expression: 
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With msample the mass of the wet sample injected. 

 

The evolution of the drying rate and the mean solid humidity are represented in the 

Figure 10. 

 

The solid initial humidity calculated with this method has been compared with the direct 

measurement (the mass loss of sample placed in a ventilated oven at 50°C during 24 

hours). The results show a measurement relative error inferior to 5%. 

 

4.3 Experimental Results: Influence Of The Operating Parameters 

The different experiments realized with this fluidized bed dryer showed that the PVC 

drying kinetics is strongly dependent on the bed temperature, the dry air flowrate, and the 

inlet air humidity. Indeed, all theses operating parameters directly influence the mass 

and/or heat driving forces, and consequently the transfers. 

 

For example, Figures 11 and 12 show respectively the influence of bed temperatures and 

dry air mass flowrate on the drying kinetics. The results presented in Figure 11 show that 

a rise from 34 to 55 °C strongly decreases the drying time from 50 to 30 s. Indeed, a 

temperature rise will improve the heat transfer between the fluidized bed and the particles 

but also the mass transfer driving force, as the air humidity at equilibrium (Y*) is directly 

related to the particle temperature. Concerning the dry air flowrate effect, the 

experimental results (Figure 12) show that a rise of the air flowrate from 7.5 to 12.4 kg/h 

decreases the drying time from 70 to 45 s. The higher the air velocity is, the higher the 



 

 

relative velocity between air and particles is. Hence, the mass and heat transfers are 

increased and the drying time is shorter. 

 

These results show that, even in a strongly stirred dryer such as the fluidized bed dryer, 

the external resistances are not negligible. These resistances, controlled by the 

hydrodynamic parameters of the system, determine the energy and mass flow exchanges 

between the dryer atmosphere and the PVC particles. Moreover, the inherent drying 

parameters (temperature or initial air humidity) have also a strong effect on the drying 

kinetics.  

 

5. MODELING OF PVC DRYING AT PARTICLE SCALE 

5.1 Model Description 

During the drying of a porous particle, two periods can be distinguished (Figure 2). The 

first period consists in the elimination of the free water located at its surface. In this case 

external transfers depending on the local relative velocity between the air and the 

particles control the evaporation. In the second period, the water located in the particles 

pores, is eliminated: the drying is controlled by a combination between internal and 

external transfers and modeled by a “shrinking core” type model (Figure 13). This model 

is widely used in the literature for particles with a pellet-grain structure,[14] as shown in 

Figures 3 and 4. In that kind of model, humidity of the particle is concentrated in a moist 

core which will shrink during the drying and so form a dry crust at the surface of the 

particle.[21],[22] 



 

 

The evaporation takes place at the water/air interface (moist core surface), and the water 

vapor diffuses through the dry crust. The model hypotheses are the following: 

 

 The particles are considered perfectly spherical and uniform. 

 The particle initial humidity ( 0X ) is the sum of the surface humidity ( 0

surfX ) and 

the humidity located in the pores ( 0

poreX ). 

 The evaporation occurs on the evaporation front. 

 The wet core humidity and the dry crust humidity are respectively considered equal 

to the particle initial humidity located in the pores ( 0

poreX ) and null. 

 The mass transfer is directed by the water vapor diffusion through the dry crust and 

the convection at the particle surface. 

 The heat is transferred from the air to the particle by convection. 

 The particle temperature is considered uniform. This assumption can be justified by 

the low value of the thermal Biot number (BiT < 10-2). In addition, this assumption has 

been justified with an analog model considering the heat conduction the dry crust. 

 The instantaneous profile of the air humidity in the dry crust is obtained with the 

quasi-stationary state hypothesis. 

 Reference states: liquid for the water, solid for the PVC, and gas for the air. Tref = 

0°C. Pref = 1 atm. 

 

5.2 Model Equations 



 

 

To determine the drying kinetics, the coupled mass and heat balances are realized on a 

single particle placed in an atmosphere with temperature (T∞) and humidity (Y∞) 

controlled. The balances are written for both drying phases: 

 

Surface Drying (For  0 0

poreX X X0 0

poreX X X0 00 0
) 

The surface humidity elimination is modeled by considering a continuous liquid film 

around the particle. During the drying, the liquid film thickness (( w) is reduced. The mass 

and heat balances are respectively shown in equations (6) and (7). The mass balance is 

obtained by equalizing the particle mass loss to the convective mass flux, while the heat 

balance is obtained by equalizing the particle heat variation to the convective heat flux. 
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Internal Humidity Drying (For  
0

poreX X 0

poreX X 0
) 

During the second drying phase, the mass balance takes into account the water vapor 

diffusion through the crust and water vapor exchange at the surface of the particles. The 

particle temperature is considered uniform, the heat balance takes only into account the 

convective exchange with the gas. The wet core thickness is directly related to the 

particle humidity as shown in equation (8): 
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The mass and heat balances are respectively shown in equations (9) and (10). 
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Equation (9) is obtained from the equalization of the convective flux exchange between 

the particle and the surrounding air and the diffusion flux inside the pores. As the heat 

conduction inside the particle is neglected, equation (10) is equivalent to equation (7): the 

only change is the expression of the particle surface. Both equations origins are presented 

in Appendix 1. 

 

In equations (6) and (9), Y* is the equilibrium humidity, Y∞ the humidity of the air 

surrounding the particle, and ky is the convective mass transfer coefficient. 

 

In the second drying period, the competition between external and internal transfers is 

represented by the presence of the dimensionless number called Biot number relative to 

mass transfer, BiM : 
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where, g is the gas density, and Dapp the diffusion coefficient of water vapor in the air 

within a pore. 

As the temperature range used in this study is low (20 to 60°C), the calorific capacities 



 

 

used in equations (7) and (10) are considered constants. In both equations, T∞ represents 

the temperature of the surrounding air, and Tref represents the reference temperature. 

 

5.3 Model Parameters 

The model parameters can be divided in two categories. The first regroups the parameters 

of solid particles (diameter, porosity, tortuosity, and density) and the water affinity of 

PVC powder. The second regroups the parameters of the dryer (heat and mass transfer 

coefficients between the surface of the particles and the surrounding gas, water vapor 

diffusion coefficient, and the dryer geometry). All the parameters of the first category are 

experimentally determined, while the second ones are calculated using literature 

correlations. So this model does not include adjustable parameters. 

 

Water Vapor – Air Apparent Diffusion Coefficient 

This coefficient is obtained from the effective diffusion coefficient, Deff, corrected by the 

particle porosity and tortuosity:[23] 

 . ,app effD D .effDeff ,  (12) 

The effective diffusion coefficient is equal to the molecular diffusion coefficient, the 

Knudsen diffusion coefficient, or a combination of both coefficients, following the 

diffusion regime. The diffusion regime is directly related to the pore radius. These 

coefficients are evaluated thanks to the literature correlations.[24][25] 

 

Heat And Mass Convective Transfer Coefficients 



 

 

The convective heat and mass transfer occurring in a fluidized bed, depending on the 

drying technology, have been widely studied, and the literature provides a lot of 

correlations, sometimes contradictory, for its estimation. [26][27] 

 

In the case of very turbulent environment (such as a fluidized bed), the heat transfer 

coefficient can be related to the mass transfer coefficient with the Chilton & Colburn 

analogy:[28] 
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where, Cpg and Cpw
g are respectively the mass specific heat of air and water vapor, and 

Le, the Lewis number, equal to 1 in case of air – water mixture. 

 

As, in our case, these coefficients are related, only the convective mass transfer 

coefficient, ky, has been experimentally determined by injecting wet glass beads in the 

dense fluidized bed (initially the glass beads are at the room temperature). This method 

has been used by several authors.
[29-31]

 

 

The convective mass transfer coefficient has been experimentally determined by injecting 

a small mass of wet glass beads in our fluidized bed and by measuring the outlet air 

humidity. The experimental procedure and method are described in a previous work.[32] 

These results show that the mass transfer coefficient is affected by the air velocities, 

while the bed temperature does not influence it, in the studied temperature range. 

 

The obtained results are represented in Figure 14, and compared with the literature 



 

 

results.[33] This Figure shows that our results are close to the mass transfer coefficient 

determined by Resnick & White, and then their correlation was used in this model.[34] 

 

6. IMMERSION FLUIDIZED BED DRYER MODELING 

6.1 Perfect Stirred Reactor Model 

The particle scale model previously presented has been integrated in a macroscopic 

model considering the fluidized bed as an isothermal perfect stirred reactor. So the 

equations (6) to (10) have been coupled with the following equation: 
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In order to compare the model results with the experimental results, the hygrometer 

transfer function has been included in this model.[1] An example of model results is 

presented on Figure 15 and compared to three experimental results obtained in the same 

operating conditions. This Figure shows that the model results are in good accordance 

with the experimental results. Still a small deviation can be observed at the end of the 

drying operation. This deviation can be caused by the lack of precision of the hygrometer 

at low humidity, by some imprecision during the determination of the physical 

parameters of the PVC particles, or by the hygrometer transfer function. 

 

Moreover, in a previous study we shown that this model is able to correctly simulate the 

operating parameters influence on the drying kinetics at particle scale obtained in a 

fluidized bed.[1] This study showed that the resistance of internal transfers is about 1.5 

times bigger than the external resistance (BiM  1.5), and showed the strong effect of 

external exchanges on the drying kinetic. 



 

 

6.2 3D Numerical Simulation 

The perfect stirred reactor model simulating the batch dense fluidized bed predicts 

properly the behavior of the experimental set up. But this model does not take into 

account the specific hydrodynamic of the fluidized bed or the geometric parameters. 

Hence, a 3D numerical simulation of the experimental set up has been realized with a 

multiphase, non-structured, parallel,[35] CFD code with an n-fluid eulerian approach 

(NEPTUNE_CFD). This code is developed as part of the NEPTUNE project, where the 

participants are presented in Appendix 2.  

 

These simulations give a better understanding of the phenomena occurring in a dense 

fluidized bed, where wet particles are injected in a fluidized bed composed of dry 

particles having the same nature. The equation of the Eulerian n-fluid hybrid approach 

are derived by phase ensemble averaging for the continuous phases and by using kinetic 

theory of granular flows supplemented by fluid and turbulence effects for the dispersed 

phase. 

 

Transport Equations. 

In the proposed modeling approach, transport equations (mass, momentum, and 

fluctuating kinetic energy) are solved for each phase and coupled through interphase 

transport terms. 

 

The transport equations have been written for each “k” phase,[36],[37] which can be the gas 



 

 

phase (k = g), or both particle phases (PVC: k = p or glass beads: k = b), and are 

summarized in Table 2. 

 

The experimental method used to determine the mass transfer coefficient is not suitable 

for this CFD model. Indeed this method calculates a mass transfer coefficient at the 

fluidized bed scale, while the numerical calculations are solved at local scale. Hence, 

Bayens correlation was used:[38] 

 0.15. pSh RepRe0.15.  (25) 

This correlation was established during drying of PVC particles in a pneumatic dryer. In 

this kind of dryer, the particles presence rate is low ( p < 0.01), so this correlation is well 

adapted to characterize the local transfers between a particle and the surrounding gas. 

 

The transfer terms definitions and the closing equations of the momentum balance are 

presented in Appendix 2. The heat transfers between particles during contact time are 

neglected ( 0b p p bb p pb p p b 00b p p 00b p p bb ). Indeed, the temperatures of the phases are low (between 

20 and 60°C), so we can neglect the particle-particle radiation, and as the contact time is 

short, the heat transfer by collision between particles can also be neglected. In the scalar 

transport equations the first term of the right-hand side member represents the scalar 

diffusion in their carrier phase. We consider that the liquid humidity does not diffuse in 

the PVC particles (Dp = 0), whereas the water vapor can diffuse in the gas phase, and in 

particular within the pores of the particles (Dg = Dapp). 

 



 

 

Simulation Case Parameters: Mesh, Phases Properties, Boundary And Initial 

Conditions. 

 Mesh: 

A 3D mesh of the fluidized bed presented in the Figure 7 is realized, based on the O-grid 

technique, as shown in the Figure 16. The geometry height is 55 cm. It is composed of a 

40 cm high cylinder (diameter 10 cm) and a 15 cm high truncated cone section 

(disengagement zone) of which the maximum diameter is 20 cm. The O-Grid mesh of 

each column section is composed of 45 cells per diameter ( r = 0.22 cm), and the height 

between two sections is z = 0.4 cm. The PVC inlet is represented by extruding a part of 

the superior face, whereas the outlet is represented by extruding a part of the truncated 

cone section lateral face. This mesh has 140 781 hexahedrons. A coarser mesh has been 

tested ( r = 0.666 cm and z = 0.975 cm), but with such a mesh the results show a lift off 

of the PVC particles due to a low resolution of the small-scale structures.[39] 

 

 Phases properties: 

The physical properties of the particle phases are summarized in Table 1, while the gas 

phase properties are calculated with correlations found in the Perry's chemical engineer's 

handbook.[25] 

 

The density of the gas and PVC are expressed as functions of the dry matter density and 

the humidity: 
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Boundary conditions: 

The gas inlet is located on the inferior face of the mesh, and represents the gas distributor. 

The air flowrate imposed during this simulation is 10.8 kg/h, with a humidity of 0.005 kg 

of water / kg of dry air. This face is a wall for both particle phases, and each phase 

temperature is set up to 42°C. 

 

The wet PVC inlet is located on the top of the mesh, and is realized by a swift opening of 

a valve. This inlet is non continuous, the PVC flowrate is initially set up to zero, and 

between ti = 0.2 and tf = 0.3 s, the flowrate is imposed to 0.029 kg/s, which corresponds 

to a sample mass of 2.9 grams. In addition to the PVC, a small amount of gas is 

introduced through this valve. The gas flowrate is calculated in order to set the same 

velocity as the PVC’s with a volume fraction of 0.5. The temperature is set up to 20°C, 

the PVC humidity to 0.205 kg of water / kg of dry PVC, and the gas humidity to 0.005 kg 

of water / kg of dry air. 

 

Concerning the momentum transfer, the wall type boundary conditions are friction for the 

gas, no slip for the particle, (zero for the mean tangential particle velocity, and zero flux 

for the mean particle agitation). Concerning the heat transfer, the walls are considered 

adiabatic for all the phases. The outlet section is modeled as a free outlet for both phases. 

 

 Initial conditions: 



 

 

Initially, the column is filled with 1.6 kg of glass beads. The initial temperatures of both 

gas and glass beads phases are set up to 42°C, whereas the initial temperature of PVC 

phase is set up to 20°C. 

 

6.3 Results And Discussion: Comparison Of Both Modeling Approaches. 

The numerical simulations occur in two steps: first the calculations are realized in 

transient state during 22 seconds, and then the time averages are calculated during 50 

seconds. The transient state results are used to determine the instantaneous profiles of 

mixing index, phase temperature, or air outlet humidity, while the time averages 

calculation are needed to present the pressure profile versus bed height or the radial 

phases velocities profiles. 

 

Evolution Of Outlet Air Humidity: 

In order to compare the simulation results to the experimental measurements, the outlet 

air humidity evolution is obtained by volume integration on the meshes constituting the 

dryer outlet. Indeed, experimentally, the humidity measurement system is located near 

this outlet. 

 

Figure 17 presents the evolutions of outlet humidity obtained by both 3D simulations and 

perfect stirred reactor without the hygrometer correction, whereas Figure 18 presents 

those with the hygrometer correction, and compares them with the experimental results. 

 

These Figures show that the results of both modeling approaches are close, so the 



 

 

hypotheses formulated in the isothermal perfect stirred reactor model do not have 

considerable impact on the simulation results. Moreover, the simulation results are in 

agreement with the experimental results. Thus, these simulations can predict with 

accuracy the behavior of our experimental fluidized bed dryer. 

 

Temperatures Evolution: 

Concerning the 3D simulation; the mean temperatures are calculated by volume 

integration on the entire fluidized bed. 

 

Figure 19 presents the evolution of the PVC mean, maximal, and minimal temperatures, 

and the glass beads mean temperature during the drying operation, compared to the 

results of the perfect stirred reactor model. This Figure shows that the results of both 

modeling approaches are similar. But the 3D numerical simulations can be used to obtain 

additional information, as indicated below. 

 

The glass beads temperature remains merely constant during the drying. Its maximum 

variation is about 0.3°C, as observed experimentally. So the drying operation can be 

considered as isothermal. 

 

Concerning the PVC temperature evolution, four different steps can be distinguished: 

 

- the warming step, where the PVC temperature rises quickly (until 2.2 seconds), 



 

 

- the constant drying rate period, where the PVC temperature presents a pseudo-

threshold (from 2.2 to 8.2 seconds), 

- the falling drying rate period, where the PVC temperature rises slowly (from 8.2 

to 12 seconds), 

- the thermal equilibrium establishment between the PVC particles and the glass 

beads (from 12 seconds). 

 

In this Figure, it can also be observed that the temperature gap between different PVC 

particles never exceeds 10°C, and that it gets tighter when drying ends. 

 

6.4 Additional Results Given By The 3D Simulation 

Hydrodynamic Study: 

Figure 20 describes the wall pressure profile versus the bed height. This Figure shows 

that the fluidized bed is 14.9 cm height. This result is in agreement with the experimental 

observations. 

 

The aim of this study is to evaluate the fluidized bed ability to disperse the wet PVC 

sample. Indeed, the cake is injected during a short time (1/10th seconds), but the particles 

dispersion can be longer. This is illustrated by the Figure 21, which shows the PVC (left-

hand images) and glass beads (right-hand images) presence rate fields at different times 

(0.6, 1.2, 2.2, and 3.8 seconds). In this Figure, the PVC sample falls in the fluidized bed 

appears clearly, and they show that the PVC is spread in the entire bed in less than 2 

seconds. However, the PVC presence rate seems to be homogeneous in the fluidized bed 



 

 

only after 3.8 seconds. 

 

To confirm these observations, the bed global mixing index is calculated. The fluidized 

bed is divided into n horizontal sections, and the local mixing indexes (defined below) 

are calculated in each of them. 
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with xi, the PVC mass fraction in the ith section, and xG, the PVC mass fraction in the 

entire bed. The PVC and glass beads masses are evaluated by integrating the product of 

their presence rates and their densities on a volume. 

 

The global mixing index (defined below) gives information about the PVC dispersion in 

the entire bed. A perfect mixing conducts to a global mixing index equal to 1.[40] 
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Figure 22 presents the evolution of the global mixing index versus time. This Figure 

shows a fall (at about 0.3 seconds) of the mixing index due to the cake injection, followed 

by a progressive rise (until 3 seconds). Then, the mixing index varies around an average 

value of 0.997.  

 

This study shows that the PVC sample dispersion in the bed is fast, so the fluidized bed 

can be considered as a perfect stirred dryer. However, it is important to precise that the 

bounds between wet particles (pendular or funicular bounds) are not taken into account in 

both approaches. 



 

 

Influence Of The Inert Fluidized Media: 

In the industrial dryer, the wet PVC is continuously injected in a fluidized bed filled with 

dry PVC. In order to have a better understanding of the fluidized media influence, a 

simulation has been run by replacing the glass beads by dry PVC particles as inert 

fluidized media. The mass of inert media was kept constant, and since the PVC particles 

had smaller diameter and density than the glass beads, the fluidized bed expansion was 

higher (HBed = 40.5 cm), as shown on the wall pressure profile (Figure 23), and so the 

presence rates of both particle phases are lower. 

 

Figures 24 and 25 present respectively the evolution of outlet air humidity and wet PVC 

mean temperatures, obtained with both glass beads and dry PVC as inert fluidized media. 

These Figures show that drying is longer when the fluidized bed is filled with dry PVC. 

Indeed, the simulations results show that the mass and heat transfer coefficient calculated 

in this case are about twice lower than in the case of glass beads. This is directly related 

to the relative velocities between the gas and wet PVC phases. 

 

Figure 26 presents the radial profile at z = HBed/2 of the relative velocity between gas and 

wet PVC for both simulation cases. This Figure shows that the relative velocity between 

gas and wet PVC particles is lower when the bed is filled with dry PVC. This is due to 

the difference of bed expansion, which leads to lower particles presence rates in that case. 

Concerning the particles velocity, the hydrodynamic behavior of the wet PVC particles is 

controlled by the hydrodynamic behavior of the fluidized media, and, since the dry PVC 

particles have smaller diameter and density, their velocities are higher than the ones of 



 

 

the glass beads. This leads to higher wet PVC velocities, and so a smaller relative 

velocity, in the case where the fluidized bed is filled with dry PVC than in the case with 

glass beads as fluidized media. 

 

These observations are corroborated by a macroscopic analysis. Indeed, a fluidized bed 

can be considered as two phases: 

 

 An emulsion (or dense) phase, constituted of solid particles at the minimum 

fluidization state. The exchanges between particles and the gas occur in this phase. 

 And a bubble phase, constituted of nearly solid-free cavities in ascendant 

movement. The excess gas goes through the bed in the form of bubbles. 

 

The relative velocity in the emulsion phase is assumed to be equal to the minimum 

fluidization velocity of the particle phase (Umf// mf). As the minimum fluidization velocity 

of the PVC and the glass beads are respectively 1.2 and 8.8 cm/s (see Table 1), the gas 

velocity in the emulsion phase is lower when the fluidized bed is filled with dry PVC 

particles than when it is filled with glass beads. This leads to less intense mass and heat 

transfer, and so to a longer drying time. 

 

In conclusion, these results show that the nature of the fluidized media has a strong 

influence on the hydrodynamic behavior of the wet PVC sample, and so on the drying 

kinetics. Moreover they show that our 1D model is valid only when the fluidized media 

has a strong hydrodynamic inertia. 



 

 

In perspective to this work, simulation of the industrial dryer can be realized, by 

modifying the mesh to have a solid withdrawal, and so a continuous dryer. 

 

CONCLUSION 

The drying kinetics at the particle scale of PVC powder has been experimentally studied 

by injecting wet PVC particles in an immersion fluidized bed filled with inert media 

(glass beads). The experimental results show that the drying kinetics is strongly 

influenced by the operating parameters (Bed temperature, dry air mass flowrate, and 

initial air humidity). Hence, the experimental study show that PVC powder drying is 

controlled by both external and internal transfers. 

 

A particle scale kinetic model has been established based on the particles morphological, 

physical, and chemical properties. Then as the PVC particles have a pellet-grain structure 

and a majority of macropores, the PVC particle drying is modeled following a shrinking 

core type model. 

 

In order to validate this kinetic model, it is integrated on a model simulating the 

experimental fluidized bed dryer following two approaches. The first is based on strong 

assumptions concerning the fluidized bed hydrodynamic (isothermal perfect stirred 

reactor), yet its results are close to the experimental results. 

 

In order to take into account the fluidized bed hydrodynamics, this model has been 

integrated in a 3D numerical simulation code (NEPTUNE_CFD). This code allows to 



 

 

simulate the behavior of a polydisperse fluidized bed coupling hydrodynamics, heat 

transfer, and mass transfer phenomena occurring during PVC particles drying in transient 

state. The simulation results are compared to those of the perfect stirred reactor model 

and are validated by the experimental results. These results show that the assumptions 

formulated to establish the perfect stirred reactor model do not affect significantly the 

kinetic results, on the conditions that the fluidized media has a strong hydrodynamic 

inertia. 

 

This code, thus adapted to the drying issues, can correctly represent the experimental 

results. Hence, it can easily be transposed to industrial scale in order to simulate the 

behavior of a dense fluidized bed operating continuously or discontinuously. 
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NOMENCLATURE 

Roman symbols 

BiM mass Biot number - 

BiT thermal Biot number - 

Cd drag coefficient - 

Cp specific heat J.kg-1.K-1 

dh wet core diameter m 

dp particle diameter m 

Dapp water vapor – air apparent diffusion m2.s-1 coefficient 

Dbin water vapor – air binary diffusion m2.s-1 coefficient 



 

 

Dk scalar diffusion coefficient m2.s-1 

Fg
0 Dry air mass flowrate kg/s 

gi ith component of gravitational constant m.s-2 

h heat transfer coefficient W.m-2.K-1 

HBed Fluidized bed height m 

Hk k-phase enthalpy J.kg-1 

Ik,i ith component of the momentum kg.m-2.s-2 transfer term 

Ii local mixing index - 

IG global mixing index - 

ky mass transfer coefficient kg.m-2.s-1 

Ky global mass transfer coefficient kg.m-2.s-1 

Kk k-phase thermal diffusivity m.s-1 

Le Lewis number - 

wNN  mass transfer rate kg.m-2.s-1 

m0 dry mass of cake sample kg 

Mk k-phase  molar mass kg.mol-1 

P absolute pressure Pa

R ideal gas constant J.mol-1.K-1 

Rep particle Reynolds number - 

t experimental time s 

tend time when the experiment ends s 

Tk k-phase temperature K 

u’k,i ith component of the k-phase m.s-1 fluctuating velocity 

Umf minimum fluidisation velocity m.s-1 

Uk,i ith component of the k-phase velocity m.s-1 

Ut settling velocity m.s-1 

UU ,i ith component of the exchanged mass m.s-1 velocity 

VBed fluidized bed volume m3 

Vr,i ith component of the mean relative m.s-1 velocity 

r
p

v



 

 

Wdr Drying rate  kg/s 

xi local PVC mass fraction - 

xG global PVC mass fraction 

X solid humidity kgwater/kgdryPVC 

0

poreX  initial pore humidity kgwater/kgdryPVC 

0

surfX  initial surface humidity  kgwater/kgdryPVC 

Y air absolute humidity kgwater/kgdryAir 

Y* saturated air humidity kgwater/kgdryAir 

Greek symbol 

k k-phase volume fraction - 

k volumic mass transfer rate kg.m-3.s-1 

mf bed porosity (or gas presence rate) at  -minimum fluidization state

Hv water vaporization enthalpy J.kg-1 

i,j laminar viscous stress tensor kg.m-1.s-2

k k-phase viscosity Pa.s 

k mk mk mk m enthalpy transfer term J.m-3.s-1

k k-phase density  kg.m-3 

k,i,j

,j

effective stress tensor kg.m-1.s-2

 pores tortuosity - 

F

gp

F

gp mean gas-particle relaxation time 

 particle porosity - 

Subscripts 

b glass beads phase 

e  inlet 

g gas phase 

p PVC phase 

s outlet 

w water 



 

 

Superscripts 

g gas state 

l liquid state 

0 dry 
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APPENDIX 1: DESCRIPTION OF THE MASS AND HEAT TRANSFER AT 

PARTICLE SCALE EQUATIONS DURING THE INTERNAL HUMIDITY 

DRYING. 

A PVC particle is considered during the internal humidity drying, then the particle can be 

divided into two zones, limited by the evaporation front: the wet core and the dry crust, as 

presented on Figure 27. The particle is considered uniform, so the problem can be 

reduced on a particle radius. 

 

R and rh are respectively the particle and the wet core radius. Y*, Ys and Y∞ are 

respectively the saturated air humidity (i.e. the air absolute humidity at the evaporation 

front), the air absolute humidity at the surface of the particle, and the humidity of the air 

surrounding the particle. Tp and T∞ are respectively the temperature of the particle 

(considered uniform) and the temperature of the air surrounding the particle. 

 

Mass Balance Development:  

Water vapor diffusion through the particle pores is the only internal mass transfer 

mechanism taking into account. Then the evaporation flux density at a point of the dry 

crust,   wN rN r , can be obtained with the Fick law, as: 
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with Dapp the apparent water vapor diffusion coefficient and g
0 the dry air density. 

 

In the quasi-steady state, the mass balance on a volume element of the dry crust can be 

expressed as: 
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By combining the equations (29) and (30) with the following boundaries conditions, the 

evaporation flux density and the air absolute humidity profile can be obtained:  

 

*  ,   

  ,   

h

s

Atr r Y Y

Atr R Y Y Atr  

*  ,   hAtr r Y Y  ,     ,  h

 ,   sR Y Y ,    ,  s

 

 
*

0

2

1
. . .

1 1
s

w app g

h

Y Y
N r D

r
R r

1

Y 1sYY
.w app g.Dw ap

0.p g 2
.

1 r
r

1
N r D  (31) 

 
*

1 1
.

1 1
s

s

h

Y Y
Y r Y

R r
R r

Y 111

1

Y

1
sY YsY 111

YY
1

YY
111

1
r

.
1

.
1 R rR r

s
R r

ssYY
RRRRR

 (32) 

 

So at the particle surface, the evaporation flux density is expressed as: 
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The equalization of the convective flux exchange between the particle and the 

surrounding air and the diffusion flux inside the pores gives: 
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So at the particle surface, the evaporation flux density becomes: 
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 the global mass transfer coefficient. 

 

The global mass balance on the particle can be expressed as: 

 

0

2

0

. . 6
. . .

.

p p

p w w

p p

d V X dX
d N R N R

dt dt d

0

p p X0 .p p

p w w

p p.d.
p w wp w w0

p pp p.
Rp w wp w wp w wp w wp w wp w wp w wp w wp w wp w w

2. p w wp w wd N2d ..p w wp w wp w w...p w wp w wp w w0
N.

0p w wp w w0
.

0p w wp w w0

66dXdX
R

66dXdX
R N R

6dXdX
N R N.

0
 (38) 

with Vp the particle volume, p
0 its density and dp its diameter. 

 

Then, by combining equations (26) and (27), the following expression is obtained: 
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The wet core thickness is directly related to the particle humidity: 
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Then the mass balance on a particle can be expressed as: 
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Heat Balance Development 

The heat conduction inside the particle is assumed instantaneous and the particle 

temperature is considered uniform. Then, the heat balance on a particle is expressed as: 
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with Hp, the wet particle enthalpy, HV(Tp) the water evaporation enthalpy at the particle 

temperature and h the convective heat transfer coefficient. 

 

The first term of this equation represents the energy accumulation in the particle, the 

second the energy consumed by the evaporation and the third the energy transferred from 

the gas to the particle. 

 

The wet particle enthalpy is expressed as: 
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with Cpp the PVC specific heat and Cpw
L the liquid water specific heat. 

 

In the temperature range studied, the specific heats can be considered constant, and then 

the time derivative of the particle enthalpy is expressed as: 
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Then equation (29) can be simplified as: 
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APPENDIX 2: DESCRIPTION OF THE MOMENTUM TRANSPORT 

EQUATION USED IN CFD SIMULATIONS 

The NEPTUNE_CFD code is developed as part of the NEPTUNE project, financed by 

the consortium “Commissariat à l’Energie Atomique” (CEA), “Electricité De France” 

(EDF), the “Institut de Radioprotection et de Sûreté Nucléaure” (IRSN) and AREVA. 

The modeling of the turbulent polydisperse gas - particles flows with integration of the 

coupled mass and heat transfers is developed by the “Institut de Mécanique des Fluides 

de Toulouse” (IMFT). 

 

The momentum transport equation (18) presented in t section 6.2 is remembered below: 
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The two first terms of the right-handed member of this equation represent, respectively, 

the gas pressure and gravity influence on the k-phase. UU ,i represents the i
th

 velocity 

component of the matter going through the interface between the phases. In other words, 

it represents the velocity of the water vapor evaporated from the particles. So it can be 

assumed equal to the particles velocity. And k,i,j represents the effective stress tensor of 



 

 

phase k. The collisional particle stress tensor is derived in the frame of the kinetic theory 

of granular media.[41] 

 

Ik,i represents the momentum transfer term: 
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with Vr,i the mean relative velocity between the gas phase and the particle phase, and 
F

gp

FF

gp
 

the particle relaxation time, characterizing the particle inertia, given by the following 

equation: 
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with r
p

v  the instantaneous relative velocity. 

 

The drag coefficient CD is expressed by the Wen & Yu correlation, limited by Ergun 

correlation:[42],[43] 
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With Rep, the particulate Reynolds number given by: 
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The interactions between both particles phase in the dense zones are completed with the 

Srivastava & Sundaresan frictional model,[44] and with a polydisperse model.[36] 

 

The modeling of the fluid turbulence is closed with a k-  model, including two equations, 

extended to the particles laden flows, by taking into account the additional source terms 

due to the interactions between phases.[45] For the particles phases, the coupled transport 

equations system is solved thanks to the particle fluctuating kinetic energy and the fluid-

particle fluctuating energy (qp
2
-qfp). 

 

 



 

 

Table 1. Powder PVC and glass beads physical properties (* experimental measurement). 

 PVC Glass beads 

d[3,2] (µm) 142 314 

d10 (µm) 106 233 

d50 (µm) 147 324 

d90 (µm) 203 451 

3
) 990 2500 

Toruosity (-) 3,7 - 

Global porosity  (%) 29.2 - 

Macroporosity (%) 27.1 - 

Mean macropore diameter (nm) 3336 - 

Mesoporosity (%) 2.09 - 

Mean mesopore diameter (nm) 82 - 

Cp (J/(kg.K)) 1670 - 

Umf* (cm/s) at ambient temperature 1,2 8,8 

Ut (cm/s) at ambient temperature 65,3 242,5 

 85.6 43.8 



 

 

Table 2. Transport equations. 

Phases’ volume fractions 

 1g p bg p b 1g p b  (15) 

Mass balance.  
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Momentum balance.  
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Enthalpy balance.  
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Scalars transport equations  
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Figure 1. Internal transfer in a porous particle.[3] 

 



 

 

Figure 2. The two phases of particles drying.[14] 

 



 

 

Figure 3. SEM picture of a PVC particle. 

 



 

 

Figure 4. Theoretical structure of a PVC particle. 

 



 

 

Figure 5. Pore size distribution of a PVC particle. 

 



 

 

Figure 6. Adsorption equilibrium of PVC particles. 

 



 

 

Figure 7. Experimental set up. 

 



 

 

Figure 8. Humidity measurement system. 

 



 

 

Figure 9. Results example: air absolute humidity (Y(t)-Y0) and bed temperature 

evolutions. 

 



 

 

Figure 10. Results example: drying rate and mean solid humidity evolutions. 

 



 

 

Figure 11. Experimental results: influence of the bed temperature on drying kinetic 

(Operating conditions: Fg
0 = 10.8 kg/h ; Y0 = 0.2 g of water / kg of dry air). 

 



 

 

Figure 12. Experimental results: influence of the dry air mass flowrate on drying kinetic 

(Operating conditions: TBed = 42°C ; Y0 = 0.2 g of water / kg of dry air). 

 



 

 

Figure 13. Shrinking core model. 

 



 

 

Figure 14. Comparison of mass transfer coefficient experimentally determined with the 

literature results.[33][34] 

 



 

 

Figure 15. Perfect stirred reactor model: example of results, evolution of normalized 

solid humidity versus time. 

 



 

 

Figure 16. 3D mesh of the fluidized bed and view of a horizontal section. 

 



 

 

Figure 17. Comparison of both modeling approaches: evolution of the outlet humidity. 

 



 

 

Figure 18. Evolution of the outlet humidity corrected with the sensor transfer function: 

comparison with the experimental results. 

 



 

 

Figure 19. Evolution of PVC and glass beads temperature during drying: comparison of 

both modeling approaches. 

 

 



 

 

Figure 20. Wall pressure profile during the hydrodynamic 3D simulation of the fluidized 

bed. 

 



 

 

Figure 21. PVC (left images) and glass beads (right images) presence rate fields at 

different drying times (0.6; 1.2; 2.2; and 3.8 seconds). 



 

 

Figure 22. Global mixing index versus time. 

 



 

 

Figure 23. Wall pressure profile with dry PVC particles as inert fluidized media. 

 



 

 

Figure 24. Influence on the fluidized media nature on the drying kinetics: Evolution of 

outlet air humidity. 

 



 

 

Figure 25. Influence on the fluidized media nature on the drying kinetics: Evolution of 

mean wet PVC temperature. 

 



 

 

Figure 26. Relative velocity between gas and wet PVC radial profiles at z = HBed/2 for 

both simulation cases. 

 

 




