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ABSTRACT 
 

Model-Driven Testing or MDT is a new and promising approach for software testing automation 
that can significantly reduce the efforts in the testing cycle of a software development. It consists in 
a black box test that uses structural and behavioral models to automate the tests generation process. 
In this paper, we describe a tool that allows developers to translate a software model written in 
UML with OCL formal constraints to its corresponding Java code, automating the generation of 
strong test-cases codes and specifying them not only in Java language but also in two formal 
languages, which are OCL and Alloy. This tool provides more reliable support by amalgamating 
different techniques, which strengthens the testing process. 
 

Keywords: model driven testing, UML, OCL, Java, testing, formal languages. 
 
RESUMO 
 
O Model-DrivenTesting ou MDT é uma nova e promissora abordagem para automação de testes de 
software que pode reduzir significativamente os esforços no ciclo de testes de um desenvolvimento 
de software. Consiste em um teste de caixa preta que utiliza modelos estruturais e comportamentais 
para automatizar o processo de geração de testes. Neste artigo, descrevemos uma ferramenta que 
permite aos desenvolvedores traduzir um modelo de software escrito em UML com restrições 
formais OCL para seu código Java correspondente, automatizando a geração de códigos de casos de 
teste e especificando-os não apenas na linguagem Java, mas também em dois linguagens formais, 
que são OCL e Alloy. Esta ferramenta fornece suporte mais confiável, combinando diferentes 
técnicas, o que fortalece o processo de teste. 
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1   INTRODUCTION 

 The Model-Driven Software Development Process (MDD) [Brambilla et al 2012] [Stahl and 

Voelter 2006] is a discipline that is generating a lot of expectations as an alternative to conventional 

methods of software production. MDD set out a new way of understanding development and 

maintenance of software systems by using models as main artifacts in the development process. In 

MDD, the models are used to direct tasks related to comprehension, design, construction, tests, 

deployment, operation, management, maintenance and modification of systems. A great number of 

theoretical and practical studies are involved in this approach. Moreover, experiences   surveyed 

by´[Di Ruscio, et al 2014] and by the Object Management Group [OMG 2015] reported on  existing 

tools that make this approach real at a commercial level, with several examples of successful 

introduction of MDD in different organizations  

The success of any MDD project heavily depends on the quality of the source models that 

should be accurate, consistent and complete. The Unified Modeling Language [UML 2017] is a 

general-purpose modeling language that is intended to provide a standard way to visualize the 

design of a system. The creation of UML was motivated by the desire to standardize the 

heterogeneous notational systems and approaches to software design. The UML was adopted as a 

standard by the Object Management Group (OMG). On the other hand, the Object Constraint 

Language [OCL2017] is a textual language with formal foundation, based on Set Theory and First -

order Logic, but with an object-oriented nature that facilitates its understanding. OCL is the 

standard language to define integrity constraints on UML models. In this way, the combination 

UML/OCL is considered a formal modeling language.  

The ultimate goal of MDD is to generate software automatically from the models, so that the 

target software is correct by construction. However, this dream has not been achieved yet since the 

generated code must usually be completed by hand, which introduces errors. Thus the testing cycle 

cannot be ignored as a substantial part of the software development process. 

In this regard, one of the branches of MDD is the Model-Driven Testing (MDT) [Uttingand  

Legeard 2007], a new approach for software testing automation, which can significantly reduce the 

efforts in the tedious testing cycle of software development. It consists in a black box testing 

technique that uses structural and behavioral models to automate the generation of test-cases code 

and test-cases data sets. 

There exist a significant number of tools that generate code from software models, but few of 

them take full advantage of what formal modeling languages offer forautomation of the testing 
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cycle. For this reason, the construction of a new software tool to automate the generation of test -

cases codewasdevelopedusing the formal foundation of the modeling notations, in order to obtain 

better benefits.  

This tool, named MDT+, allows developers to automatically generate Java code from 

UML/OCL models, including both the system classes and their test-cases code. The generated test-

cases code is written in Java and it is executable. Additionally, test code is enhanced with formal 

specifications which allow the application of model checking techniques as a complement to 

testing. In this way MDT+ combines static and dynamic formal analysis of the system, improving 

the efficacy of the analysis process.  

The rest of the paper is organized as follows. Section 2 explains the technological 

background. Section 3 describes the basic features of MDT+. Section 4 presents an extension of the 

tool which improves the tests through the application of a richer formalism. Section 5 discusses a 

set of related works.  Finally, conclusions are presented in section 6. 

 

2   ECLIPSE MODELING TOOLS 

MDT+ was developed taking advantage of a number of existing tools, in particular the 

Eclipse Modeling Project [EMP 2017] that focuses on the evolution and promotion of model-based 

development technologies within the Eclipse community by providing a unified set of modeling 

frameworks, tooling, and standards implementations. In this section, the main Eclipse elements that 

were included in the development are briefly described. 

 

3   ECLIPSE MODELING FRAMEWORK (EMF).  

The Eclipse Modeling Framework [EMF 2017] includes a set of plugins that can be used to 

specify a data model and generate code or other kind of output based on that model.  

 

4   PAPYRUS 

Papyrus (2017) is a subproject component that aims to provide an integrated and usable 

environment to edit any type of EMF model. Papyrus provides diagrams editors for EMF-based 

modeling languages such as UML2 and offers the chance of integrating these editors with other 

tools. It also offers an advanced support for profiles, allowing the user to define standard UML2-

based Domain Specific Language (DSL) editors and their extension mechanisms.  

 

5   ECLIPSE ACCELEO 
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Eclipse Acceleo (2017) is an open source code generator implementing the OMG's MOF 

Model to Text Language (MTL) standard that uses any EMF-based models (e.g., UML, SysML, 

domain specific models, etc.) to generate any kind of code (e.g.,Java, C, PHP, etc.).  

 

7    MDT+. A TOOL FOR TEST-CASES CODE GENERATION 

In this section, we describe the characteristics of MDT+, the software tool that was built to 

automate the generation of test-cases code. Starting from an OCL/UML system model, the Java 

code is automatically generated, creating the classes with their corresponding test-cases code and an 

OCL file which contain all the formal constraints in a centralized form. The process is carried out in 

three steps, as described below following a running example. 

 

8   CREATING THE DATA MODEL WITH PAPYRUS  

When creating a Papyrus project with the Eclipse IDE, a default UML class diagram will be 

created in three formats: traditional model view (.di), XML annotations (.notation) and Directories 

tree (.uml). The focus of the tool is on the .di file, which allows the visualization of a traditional 

class diagram, such as the one displayed in figure 1. The model in the figure represents a university 

institution, containing Students, Teachers, Subjects, Careers and Careers Plans, among others.  
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Fig.1. Class diagram. 

 

The diagram also includes a set of OCL restrictions (the palette Constraint elements) 

representing invariants associated with specific classes. For example, students are not allowed to be 
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enrolled in more than one career, and in order to teach a subject, teachers must be experts on their 

area, which is  reflected in the following OCL invariants, 

 

Context Student  

inv: self.careers -> size() ≤ 1 

 

Context Subject 

inv: 

self.teachers->forAll(o| o.specialties->includes(self.area)) 

 

Additionally, the operation pre and post conditions can be specified using OCL. For example, 

the  following OCL expressions state that in order to enroll in a subject a student must have already 

passed all its correlatives and the subject inscription is enabled,  

 

Context Student::enrolSubject(subject) 

pre:self.passedSubjects->includesAll(subject.correlatives) 

pre:subject.inscriptionAllowed=true 

 

Besides, a set of post conditions for the operation can be specified. The first one checks that 

the specified subject has been actually added to the collection and the second one specifies that the 

collection size is incremented in one after executing the method, 

 

Context Student::enrolSubject(subject) 

post: self.subjectsIsEnrolledIn-> includes(subject) 

post: self.subjectsIsEnrolledIn->size() = self.subjectsIsEnrolledIn@pre->size()+1 

 

A correct implementation code should hold all the invariants, pre and post conditions defined 

in the model. Consequently, the test cases will check that those constraints hold when executing the 

methods.  

MDT+ also allows developers to define the body of each class method in a different range of 

languages and formats. In the case study of this paper methods specifications are defined in OCL, 

since this format is quite similar to the Java syntax, its later translation (from the model class into 

the Java file) is straightforward. 
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9    TRANSLATING THE UML MODEL TO JAVA CODE WITH TESTS 

MDT+ includes the following components in order to translate the UML/OCL model to 

executable Java code equipped with tests: 

 

 Two java classes, Activator.java and Generate.java, which are configuration 

files, specifying the included libraries among other things.  

 

 An Acceleo module called generate.mtl which contains the translation 

algorithm (from UML model to java code), written in the Acceleolanguage.  

 

 

First of all the MDT+ user chooses the UML model from which generate the corresponding 

classes, for example, the UML model displayed in figure 1 can be used as the source model in the 

Acceleo configuration. 

Then, the Acceleo algorithm loops over every class of the UML source model, and for each 

one it creates two artifacts: a regular .java class and a checker class for testing purposes. Also, the 

algorithm creates the integration test, which runs every individual generated test in a single step.  

In parallel, the file University.ocl is created, containing every modeled OCL constraint 

associated to its context, in a centralized way. 

Each internal checker class consists of two methods, respectInvariants(classInstance) and 

respectCondition(condition), to chek invariants, pre and post conditions respectively.  

The class constructor checks through the checker that any new instance respects its invariants. 

Then, the checker is invoked any time the instance is updated.  

Generated getters are regular getters, returning the desired attribute.  

On the other hand, setters follow this process:  

1) Save the current instance state through the saveState generated method;  

2) Set the attribute value to the input value;  

3) Check if the instance still respects its invariants. If not, return the instance with its 

previous status, using the returnState generated method. 

 

When defining each class method, a copy of the object is generated with the nickname 

“previous”. Then, the method pre conditions are checked. If they fail, the method execution 

terminates without modifying the instance. If they succeed, the method is executed and then the 
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instance invariants are checked; then if invariants do not hold, the instance is returned to its 

previous status using the created copy, having the method no effect on the instance.  

Additionally, the tests generated by MDT+ extend from the special class TestCase in order to 

apply the JUnit library [JUnit 2017]. MDT+ associates a simulated object (i.e., a mock object) using 

the Mockito library [Mockito 2017]. This tool attachesa specific behavior to the class instances in 

order to verify for each method that, if the pre conditions and invariants hold, the post conditions 

hold as well. 

 

10   ANALYZING THE RESULTS  

After executing the generate.mtl file, the corresponding .java classes and the .ocl file are 

generated (see figure 2 and figure 3 respectively)). Method bodiesspecifications written in OCL are 

translated to its corresponding Java code.  

Integration test can be run in order to check in a single step that every generated test is 

satisfied, as shown in figure 4. Regarding the generated code for each class, a part of the Student 

class code is displayed in figures 5 and 6.  

 

 
Fig. 2.Files generated by the Acceleo code running. 
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Fig. 3.  Generated OCL Centralized Code. 

 

 

 
Fig. 4. Integration Test code and its execution result in JUnit. 
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Fig. 5.Student class and its internal checker. 
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Fig. 6.Student class generated methods. 

 

Then, figure 7 illustrates a Test that performs the validation of invariants, pre conditions, and 

post conditions. 

 

11   IMPROVING TESTS WITH A RICHER FORMALISM  

The process described above allows developers to automatically obtain the code of the test 

cases from the UML models. These tests are executed dynamically while the program is running or 

during the testing phase using testing inputs, which should be obtained applying appropriate 

techniques that are out of the scope of MDT+.  



Brazilian Journal of Development 
 

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761 

2452  

 
Fig. 7. Example test: Student class method. 

 

At the same time, MDT+ offers another level of analysis, enabling the static checking of 

model consistency, prior to execution. Static checking is achieved by integrating the formal 

language Alloy [Jackson 2006]. Alloy is a modeling language, with formal syntax and semantics, 

based on first-order relational logic. Its main target is the formal specification of object-oriented 

models. At a glance, Alloy is similar to UML class diagrams and OCL, but having simpler and 

cleaner semantics, and being also supported by a rich analysis tool named Alloy Analyzer [Alloy 

2017].  The Alloy Analyzer applies a bounded verification, limiting the number of objects that 

populate each class and checking assertions over the specification within that bound. It uses a SAT -

solver to answer verification queries, converting them to Boolean formulas. 

MDT+ uses the AlloyMDA tool [Cunha et al 2015] to translate the generated OCL code to its 

correspondent Alloy code, from which the Alloy Analyzer isused to check consistency. Figure 8 

shows the Alloy code obtained from the UML/OCL model in figure 1. 

When the Alloy Analyzer is executed, the constraints to be checked within a scope (setting 

boundaries) are specifiedusing the special command run. The potential errors will occur within this 

scope, being possible to have more/other errors outside.  That is to say, if an example is found, the 

constraintsare satisfied. On the other hand, if no example is found, the constraintsare invalid (false 

for every possible example), or maybe valid but outside the specified scope. The following 

command raisesthechecking for the .als file:  
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runenrolSubject for 4 but exactly 1 Student, exactly 1 Time 

 

In this case, the constraintenrolSubjectis tested with a scope that limitthe search to those 

instances that have at most 4 instances of each signature, except for Student, which has just one 

object. Also, for the sake of simplicity just one time instance is considered. 

Figure 8 displays the messages returned by the tool console after running the Alloy analyzer. 

Messages include some irrelevant warnings, the analyzer configuration data, if some instances were 

found or not, the time it took to execute the analysis and its verdict. In this example the analyzer 

reported that the model is consistent and let us visualize the generated instance. Figure 9 shows the 

example that was found.  

 

 

 
Fig. 8. Alloy Analyzer results. 

 

12    RELATED WORK 

Several tools provide support for automatic test code generation from software models. The 

ones most closely related to MDT+ aresummarize here. 

TestEra[Khalek et al 2011] is a Java testing framework based on formal specifications. To test 

a method, it uses the methods pre conditions specification to generate tests inputs and the post 

conditions to check the output correctness. TestEra supports specifications written in Alloy and uses 

the SAT-based back-end of the Alloy tool-set for systematic generation of test suites. Each test case 

is a JUnit test method, which performs three key steps: (1) initialization of pre-state, i.e., creation of 

inputs to the method under test; (2) invocation of the method; and (3) checking the correctness of 

post-state.  

Modeling languages UML and OCL offer a huge set of constructs. In [Hilkenet al 2014] an 

approach is proposed, using model transformations to unify different description means within a so-

called base model. Along the transformation, complex language constructs are expressed with a 

small subset of so-called core elements. This simplification allows interacting with a wide range of 

verification engines with different advantages and weaknesses. 



Brazilian Journal of Development 
 

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761 

2454  

In [Kuhlmannal 2011] a method for efficiently searching for model instances is provided. The 

existence or non-existence of model instances with certain properties allows significant conclusions 

about model properties. The approach is based on the translation of UML and OCL constraints into 

relational logic and its analysis with SAT solvers. The proposal is realized by integrating a model 

validator as a plugin into the UML and OCL tool USE. 

 

 
Fig. 9.Model instance found by the analyzer. 

 

In [Nabuco 2014] a tool to filter/setup test cases from models is introduced. Models are 

written in a DSL called PARADIGM and consist in UI test patterns (UITP), describing the test 

objectives. To generate test cases code, the tester must provide test input data to each UITP in the 

model. The tool offers a filtering mechanism in order to generate a reasonable number of test cases, 

reducing complexity. 

In [Bucchiarone 2014] model-checking techniques are used to validate the software 

architecture model conformance with respect to selected properties, while testing techniques are 

used to validate the implementation conformance to the software architecture model. The 
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specification, consisting of a topology definition and state diagrams, is translated to the Promela 

formalism where the SPIN model checker is applied. 

The Fokus!MBT tool [Wendland et al 2013] is a multi-paradigm test modeling environment 

which gives users the freedom to choose among programmatic and diagrammatic notations, as well 

as state-based and scenario-based styles, reflecting the different concerns in the process. The 

diverse model styles can be combined by model composition in order to achieve an integrated and 

collaborative model-based testing process. The approach is realized in the successor of Microsoft 

MBT tool Spec Explorer, and has a formal foundation in the framework of action machines. 

 

13    CONCLUSION AND FUTURE WORKS 

The MDT+tool allows software developers to translate a data model with formal constraints 

to its corresponding Java code, automating the generation of strong test cases codes and specifying 

them not only in the Java language but also in two formal languages, which are OCL and Alloy. In 

a few steps, a regular UML and Java user with some OCL knowledge can define a data model and 

count with the needed tools to verify whether that model is consistent and to automatically generate 

the system code with associated test-cases code. This tool provides more reliable support by 

amalgamating different analysis techniques, which strengthens the software validation process. 

While model-checking finds bugs in high-level system designs, testing identifies bugs in 

implementation level code. Considering the strong complementarity between those two worlds, an 

integration of them offers promising advantages. 

In comparison to the related works described before, the following advantages are 

emphasized:  

-Dual analysis: MDT+ achieves both static and dynamic analysis. 

-UML-Alloy connection: generally, the proposed tools associate UML/OCL with MDT or 

OCL with Alloy. In this case, MDT+ consistently integrates the three of them.  

-Better Tools: MDT+ is built on top of stronger and newer tools (i.e., Acceleo, Papyrus and 

Mockito),in contrast to the tools used in the previous works (i.e., MOFScript and EasyMock).  

-Complete process: generally, only one part of the software development process is 

automated. In this case, MDT+ provides a code ready for production which is verifiable, adaptable 

and usable for a wide range of users.  

 

MDT+ was initiated in Ilan Rosenfeld´s thesis [Rosenfeld 2016] and to extend the proposed 

solution the following lines are being considered: 
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-The re-generation of automatically generated codepreserving possible updates made for the 

developerwill be provided. This is achieved by using special markers in the code text. 

-Less abstract tests will be generated without using mocks. 

- When finding an inconsistence in the source model, counterexamples in the natural/Java 

language will be generated, to improve the understandability for users with little knowledge in 

formal verification.  

-The developer will be able to select other programming language for the generated code 

(additionally to Java). 
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