
Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2441

Improving Model-Driven Software Testing by using Formal Languages

Melhorando o teste de software controlado por modelo usando idiomas formais

Recebimento dos originais: 12/01/2019
Aceitação para publicação: 13/02/2019

Ilan Rosenfeld
Facultad de Informática, Universidad Nacional de La Plata

Endereço: Calle 50 &, Av. 120, La Plata, Buenos Aires, Argentina
E-mail: Ilan.Rosenfeld@gmail.com

Claudia Pons

Comision de Investigaciones Científicas CIC
Endereço: La Plata, Buenos Aires, Argentina

Universidad Abierta Interamericana, UAI
Endereço: Ciudad de Buenos Aires, Argentina. .

E-mail: cpons@info.unlp.edu.ar

Gabriel Baum
Facultad de Informática, Universidad Nacional de La Plata

Endereço: Calle 50 &, Av. 120, La Plata, Buenos Aires, Argentina
E-mail: gbaum@info.unlp.edu.ar

ABSTRACT

Model-Driven Testing or MDT is a new and promising approach for software testing automation
that can significantly reduce the efforts in the testing cycle of a software development. It consists in
a black box test that uses structural and behavioral models to automate the tests generation process.
In this paper, we describe a tool that allows developers to translate a software model written in
UML with OCL formal constraints to its corresponding Java code, automating the generation of
strong test-cases codes and specifying them not only in Java language but also in two formal
languages, which are OCL and Alloy. This tool provides more reliable support by amalgamating
different techniques, which strengthens the testing process.

Keywords: model driven testing, UML, OCL, Java, testing, formal languages.

RESUMO

O Model-DrivenTesting ou MDT é uma nova e promissora abordagem para automação de testes de
software que pode reduzir significativamente os esforços no ciclo de testes de um desenvolvimento
de software. Consiste em um teste de caixa preta que utiliza modelos estruturais e comportamentais
para automatizar o processo de geração de testes. Neste artigo, descrevemos uma ferramenta que
permite aos desenvolvedores traduzir um modelo de software escrito em UML com restrições
formais OCL para seu código Java correspondente, automatizando a geração de códigos de casos de
teste e especificando-os não apenas na linguagem Java, mas também em dois linguagens formais,
que são OCL e Alloy. Esta ferramenta fornece suporte mais confiável, combinando diferentes
técnicas, o que fortalece o processo de teste.

mailto:Ilan.Rosenfeld@gmail.com
mailto:cpons@info.unlp.edu.ar
mailto:gbaum@info.unlp.edu.ar

Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2442

Palavras-chave: teste orientado por modelo, UML, OCL, Java, teste, linguagens formais.

1 INTRODUCTION

 The Model-Driven Software Development Process (MDD) [Brambilla et al 2012] [Stahl and

Voelter 2006] is a discipline that is generating a lot of expectations as an alternative to conventional

methods of software production. MDD set out a new way of understanding development and

maintenance of software systems by using models as main artifacts in the development process. In

MDD, the models are used to direct tasks related to comprehension, design, construction, tests,

deployment, operation, management, maintenance and modification of systems. A great number of

theoretical and practical studies are involved in this approach. Moreover, experiences surveyed

by´[Di Ruscio, et al 2014] and by the Object Management Group [OMG 2015] reported on existing

tools that make this approach real at a commercial level, with several examples of successful

introduction of MDD in different organizations

The success of any MDD project heavily depends on the quality of the source models that

should be accurate, consistent and complete. The Unified Modeling Language [UML 2017] is a

general-purpose modeling language that is intended to provide a standard way to visualize the

design of a system. The creation of UML was motivated by the desire to standardize the

heterogeneous notational systems and approaches to software design. The UML was adopted as a

standard by the Object Management Group (OMG). On the other hand, the Object Constraint

Language [OCL2017] is a textual language with formal foundation, based on Set Theory and First -

order Logic, but with an object-oriented nature that facilitates its understanding. OCL is the

standard language to define integrity constraints on UML models. In this way, the combination

UML/OCL is considered a formal modeling language.

The ultimate goal of MDD is to generate software automatically from the models, so that the

target software is correct by construction. However, this dream has not been achieved yet since the

generated code must usually be completed by hand, which introduces errors. Thus the testing cycle

cannot be ignored as a substantial part of the software development process.

In this regard, one of the branches of MDD is the Model-Driven Testing (MDT) [Uttingand

Legeard 2007], a new approach for software testing automation, which can significantly reduce the

efforts in the tedious testing cycle of software development. It consists in a black box testing

technique that uses structural and behavioral models to automate the generation of test-cases code

and test-cases data sets.

There exist a significant number of tools that generate code from software models, but few of

them take full advantage of what formal modeling languages offer forautomation of the testing

Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2443

cycle. For this reason, the construction of a new software tool to automate the generation of test -

cases codewasdevelopedusing the formal foundation of the modeling notations, in order to obtain

better benefits.

This tool, named MDT+, allows developers to automatically generate Java code from

UML/OCL models, including both the system classes and their test-cases code. The generated test-

cases code is written in Java and it is executable. Additionally, test code is enhanced with formal

specifications which allow the application of model checking techniques as a complement to

testing. In this way MDT+ combines static and dynamic formal analysis of the system, improving

the efficacy of the analysis process.

The rest of the paper is organized as follows. Section 2 explains the technological

background. Section 3 describes the basic features of MDT+. Section 4 presents an extension of the

tool which improves the tests through the application of a richer formalism. Section 5 discusses a

set of related works. Finally, conclusions are presented in section 6.

2 ECLIPSE MODELING TOOLS

MDT+ was developed taking advantage of a number of existing tools, in particular the

Eclipse Modeling Project [EMP 2017] that focuses on the evolution and promotion of model-based

development technologies within the Eclipse community by providing a unified set of modeling

frameworks, tooling, and standards implementations. In this section, the main Eclipse elements that

were included in the development are briefly described.

3 ECLIPSE MODELING FRAMEWORK (EMF).

The Eclipse Modeling Framework [EMF 2017] includes a set of plugins that can be used to

specify a data model and generate code or other kind of output based on that model.

4 PAPYRUS

Papyrus (2017) is a subproject component that aims to provide an integrated and usable

environment to edit any type of EMF model. Papyrus provides diagrams editors for EMF-based

modeling languages such as UML2 and offers the chance of integrating these editors with other

tools. It also offers an advanced support for profiles, allowing the user to define standard UML2-

based Domain Specific Language (DSL) editors and their extension mechanisms.

5 ECLIPSE ACCELEO

Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2444

Eclipse Acceleo (2017) is an open source code generator implementing the OMG's MOF

Model to Text Language (MTL) standard that uses any EMF-based models (e.g., UML, SysML,

domain specific models, etc.) to generate any kind of code (e.g.,Java, C, PHP, etc.).

7 MDT+. A TOOL FOR TEST-CASES CODE GENERATION

In this section, we describe the characteristics of MDT+, the software tool that was built to

automate the generation of test-cases code. Starting from an OCL/UML system model, the Java

code is automatically generated, creating the classes with their corresponding test-cases code and an

OCL file which contain all the formal constraints in a centralized form. The process is carried out in

three steps, as described below following a running example.

8 CREATING THE DATA MODEL WITH PAPYRUS

When creating a Papyrus project with the Eclipse IDE, a default UML class diagram will be

created in three formats: traditional model view (.di), XML annotations (.notation) and Directories

tree (.uml). The focus of the tool is on the .di file, which allows the visualization of a traditional

class diagram, such as the one displayed in figure 1. The model in the figure represents a university

institution, containing Students, Teachers, Subjects, Careers and Careers Plans, among others.

Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2445

Fig.1. Class diagram.

The diagram also includes a set of OCL restrictions (the palette Constraint elements)

representing invariants associated with specific classes. For example, students are not allowed to be

Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2446

enrolled in more than one career, and in order to teach a subject, teachers must be experts on their

area, which is reflected in the following OCL invariants,

Context Student

inv: self.careers -> size() ≤ 1

Context Subject

inv:

self.teachers->forAll(o| o.specialties->includes(self.area))

Additionally, the operation pre and post conditions can be specified using OCL. For example,

the following OCL expressions state that in order to enroll in a subject a student must have already

passed all its correlatives and the subject inscription is enabled,

Context Student::enrolSubject(subject)

pre:self.passedSubjects->includesAll(subject.correlatives)

pre:subject.inscriptionAllowed=true

Besides, a set of post conditions for the operation can be specified. The first one checks that

the specified subject has been actually added to the collection and the second one specifies that the

collection size is incremented in one after executing the method,

Context Student::enrolSubject(subject)

post: self.subjectsIsEnrolledIn-> includes(subject)

post: self.subjectsIsEnrolledIn->size() = self.subjectsIsEnrolledIn@pre->size()+1

A correct implementation code should hold all the invariants, pre and post conditions defined

in the model. Consequently, the test cases will check that those constraints hold when executing the

methods.

MDT+ also allows developers to define the body of each class method in a different range of

languages and formats. In the case study of this paper methods specifications are defined in OCL,

since this format is quite similar to the Java syntax, its later translation (from the model class into

the Java file) is straightforward.

Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2447

9 TRANSLATING THE UML MODEL TO JAVA CODE WITH TESTS

MDT+ includes the following components in order to translate the UML/OCL model to

executable Java code equipped with tests:

 Two java classes, Activator.java and Generate.java, which are configuration

files, specifying the included libraries among other things.

 An Acceleo module called generate.mtl which contains the translation

algorithm (from UML model to java code), written in the Acceleolanguage.

First of all the MDT+ user chooses the UML model from which generate the corresponding

classes, for example, the UML model displayed in figure 1 can be used as the source model in the

Acceleo configuration.

Then, the Acceleo algorithm loops over every class of the UML source model, and for each

one it creates two artifacts: a regular .java class and a checker class for testing purposes. Also, the

algorithm creates the integration test, which runs every individual generated test in a single step.

In parallel, the file University.ocl is created, containing every modeled OCL constraint

associated to its context, in a centralized way.

Each internal checker class consists of two methods, respectInvariants(classInstance) and

respectCondition(condition), to chek invariants, pre and post conditions respectively.

The class constructor checks through the checker that any new instance respects its invariants.

Then, the checker is invoked any time the instance is updated.

Generated getters are regular getters, returning the desired attribute.

On the other hand, setters follow this process:

1) Save the current instance state through the saveState generated method;

2) Set the attribute value to the input value;

3) Check if the instance still respects its invariants. If not, return the instance with its

previous status, using the returnState generated method.

When defining each class method, a copy of the object is generated with the nickname

“previous”. Then, the method pre conditions are checked. If they fail, the method execution

terminates without modifying the instance. If they succeed, the method is executed and then the

Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2448

instance invariants are checked; then if invariants do not hold, the instance is returned to its

previous status using the created copy, having the method no effect on the instance.

Additionally, the tests generated by MDT+ extend from the special class TestCase in order to

apply the JUnit library [JUnit 2017]. MDT+ associates a simulated object (i.e., a mock object) using

the Mockito library [Mockito 2017]. This tool attachesa specific behavior to the class instances in

order to verify for each method that, if the pre conditions and invariants hold, the post conditions

hold as well.

10 ANALYZING THE RESULTS

After executing the generate.mtl file, the corresponding .java classes and the .ocl file are

generated (see figure 2 and figure 3 respectively)). Method bodiesspecifications written in OCL are

translated to its corresponding Java code.

Integration test can be run in order to check in a single step that every generated test is

satisfied, as shown in figure 4. Regarding the generated code for each class, a part of the Student

class code is displayed in figures 5 and 6.

Fig. 2.Files generated by the Acceleo code running.

Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2449

Fig. 3. Generated OCL Centralized Code.

Fig. 4. Integration Test code and its execution result in JUnit.

Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2450

Fig. 5.Student class and its internal checker.

Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2451

Fig. 6.Student class generated methods.

Then, figure 7 illustrates a Test that performs the validation of invariants, pre conditions, and

post conditions.

11 IMPROVING TESTS WITH A RICHER FORMALISM

The process described above allows developers to automatically obtain the code of the test

cases from the UML models. These tests are executed dynamically while the program is running or

during the testing phase using testing inputs, which should be obtained applying appropriate

techniques that are out of the scope of MDT+.

Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2452

Fig. 7. Example test: Student class method.

At the same time, MDT+ offers another level of analysis, enabling the static checking of

model consistency, prior to execution. Static checking is achieved by integrating the formal

language Alloy [Jackson 2006]. Alloy is a modeling language, with formal syntax and semantics,

based on first-order relational logic. Its main target is the formal specification of object-oriented

models. At a glance, Alloy is similar to UML class diagrams and OCL, but having simpler and

cleaner semantics, and being also supported by a rich analysis tool named Alloy Analyzer [Alloy

2017]. The Alloy Analyzer applies a bounded verification, limiting the number of objects that

populate each class and checking assertions over the specification within that bound. It uses a SAT -

solver to answer verification queries, converting them to Boolean formulas.

MDT+ uses the AlloyMDA tool [Cunha et al 2015] to translate the generated OCL code to its

correspondent Alloy code, from which the Alloy Analyzer isused to check consistency. Figure 8

shows the Alloy code obtained from the UML/OCL model in figure 1.

When the Alloy Analyzer is executed, the constraints to be checked within a scope (setting

boundaries) are specifiedusing the special command run. The potential errors will occur within this

scope, being possible to have more/other errors outside. That is to say, if an example is found, the

constraintsare satisfied. On the other hand, if no example is found, the constraintsare invalid (false

for every possible example), or maybe valid but outside the specified scope. The following

command raisesthechecking for the .als file:

Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2453

runenrolSubject for 4 but exactly 1 Student, exactly 1 Time

In this case, the constraintenrolSubjectis tested with a scope that limitthe search to those

instances that have at most 4 instances of each signature, except for Student, which has just one

object. Also, for the sake of simplicity just one time instance is considered.

Figure 8 displays the messages returned by the tool console after running the Alloy analyzer.

Messages include some irrelevant warnings, the analyzer configuration data, if some instances were

found or not, the time it took to execute the analysis and its verdict. In this example the analyzer

reported that the model is consistent and let us visualize the generated instance. Figure 9 shows the

example that was found.

Fig. 8. Alloy Analyzer results.

12 RELATED WORK

Several tools provide support for automatic test code generation from software models. The

ones most closely related to MDT+ aresummarize here.

TestEra[Khalek et al 2011] is a Java testing framework based on formal specifications. To test

a method, it uses the methods pre conditions specification to generate tests inputs and the post

conditions to check the output correctness. TestEra supports specifications written in Alloy and uses

the SAT-based back-end of the Alloy tool-set for systematic generation of test suites. Each test case

is a JUnit test method, which performs three key steps: (1) initialization of pre-state, i.e., creation of

inputs to the method under test; (2) invocation of the method; and (3) checking the correctness of

post-state.

Modeling languages UML and OCL offer a huge set of constructs. In [Hilkenet al 2014] an

approach is proposed, using model transformations to unify different description means within a so-

called base model. Along the transformation, complex language constructs are expressed with a

small subset of so-called core elements. This simplification allows interacting with a wide range of

verification engines with different advantages and weaknesses.

Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2454

In [Kuhlmannal 2011] a method for efficiently searching for model instances is provided. The

existence or non-existence of model instances with certain properties allows significant conclusions

about model properties. The approach is based on the translation of UML and OCL constraints into

relational logic and its analysis with SAT solvers. The proposal is realized by integrating a model

validator as a plugin into the UML and OCL tool USE.

Fig. 9.Model instance found by the analyzer.

In [Nabuco 2014] a tool to filter/setup test cases from models is introduced. Models are

written in a DSL called PARADIGM and consist in UI test patterns (UITP), describing the test

objectives. To generate test cases code, the tester must provide test input data to each UITP in the

model. The tool offers a filtering mechanism in order to generate a reasonable number of test cases,

reducing complexity.

In [Bucchiarone 2014] model-checking techniques are used to validate the software

architecture model conformance with respect to selected properties, while testing techniques are

used to validate the implementation conformance to the software architecture model. The

Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2455

specification, consisting of a topology definition and state diagrams, is translated to the Promela

formalism where the SPIN model checker is applied.

The Fokus!MBT tool [Wendland et al 2013] is a multi-paradigm test modeling environment

which gives users the freedom to choose among programmatic and diagrammatic notations, as well

as state-based and scenario-based styles, reflecting the different concerns in the process. The

diverse model styles can be combined by model composition in order to achieve an integrated and

collaborative model-based testing process. The approach is realized in the successor of Microsoft

MBT tool Spec Explorer, and has a formal foundation in the framework of action machines.

13 CONCLUSION AND FUTURE WORKS

The MDT+tool allows software developers to translate a data model with formal constraints

to its corresponding Java code, automating the generation of strong test cases codes and specifying

them not only in the Java language but also in two formal languages, which are OCL and Alloy. In

a few steps, a regular UML and Java user with some OCL knowledge can define a data model and

count with the needed tools to verify whether that model is consistent and to automatically generate

the system code with associated test-cases code. This tool provides more reliable support by

amalgamating different analysis techniques, which strengthens the software validation process.

While model-checking finds bugs in high-level system designs, testing identifies bugs in

implementation level code. Considering the strong complementarity between those two worlds, an

integration of them offers promising advantages.

In comparison to the related works described before, the following advantages are

emphasized:

-Dual analysis: MDT+ achieves both static and dynamic analysis.

-UML-Alloy connection: generally, the proposed tools associate UML/OCL with MDT or

OCL with Alloy. In this case, MDT+ consistently integrates the three of them.

-Better Tools: MDT+ is built on top of stronger and newer tools (i.e., Acceleo, Papyrus and

Mockito),in contrast to the tools used in the previous works (i.e., MOFScript and EasyMock).

-Complete process: generally, only one part of the software development process is

automated. In this case, MDT+ provides a code ready for production which is verifiable, adaptable

and usable for a wide range of users.

MDT+ was initiated in Ilan Rosenfeld´s thesis [Rosenfeld 2016] and to extend the proposed

solution the following lines are being considered:

Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2456

-The re-generation of automatically generated codepreserving possible updates made for the

developerwill be provided. This is achieved by using special markers in the code text.

-Less abstract tests will be generated without using mocks.

- When finding an inconsistence in the source model, counterexamples in the natural/Java

language will be generated, to improve the understandability for users with little knowledge in

formal verification.

-The developer will be able to select other programming language for the generated code

(additionally to Java).

REFERENCES

M. Brambilla, J. Cabot and M. Wimmer (2012). “Model-Driven Software Engineering in

Practice”.Morgan&ClaypoolPublishers ISBN: 9781608458820.

T. Stahl and M. Voelter (2006). “Model-Driven Software Development”.Technology, Engineering,

Management.1st edition. Wiley..

D. Di Ruscio, R.F. Paige and A. PierantonioEditors (2014).Science of Computer

Programming.Special issue on Success Stories in Model Driven Engineering. Vol. 89, pp. 69 -222.

Elsevier.

OMG (2015).OMG success stories.[Online]. Available:

http://www.omg.org/mda/products_success.htm, last access.

UML (2017).Unified Modeling LanguageTM (UML) [Online]. Available:

http://www.omg.org/spec/UML/

OCL (2017).The Object Constraint Language [Online]. Available:

https://www.omg.org/spec/OCL/2.4/

M. Utting and B. Legeard (2007). Practical Model Based Testing: A tools approach. Morgan

Kaufmann Publishers Inc. USA ©.

EMP (2017).Eclipse Modeling Project. [Online]. Available: https://eclipse.org/modeling

EMF (2017).Eclipse Modeling Framework EMF: [Online]. Available:

http://eclipse.org/modeling/emf/

Papyrus: (2017). Papyrus: [Online]. Available: http://eclipse.org/papyrus

Acceleo (2017).Acceleo: [Online]. Available: https://projects.eclipse.org/projects/modeling.Acceleo

JUnit (2017).JUnit: [Online]. Available: http://junit.org/junit4/

Mockito (2017). Mockito: [Online]. Available: http://site.mockito.org/

Jackson, D. (2006): Software Abstractions: Logic, Language, and Analysis. MIT Press.

Brazilian Journal of Development

Braz. J. of Develop., Curitiba, v. 5, n. 3, p. 2441-2457, mar. 2019. ISSN 2525-8761

2457

Alloy (2017). Alloy tool: [Online]. Available: http://alloytools.org/ "

A. Cunha, A. Garis, D.Riesco (2015):Translating between Alloy specifications and UML class

diagrams annotated with OCL.Software and System Modeling 14(1): 5-25 AlloyMDA: [Online].

Available: http://sourceforge.net/p/alloymda/wiki/Home/

S.Khalek, G. Yank, L. Zhang, D.Marinovt, S. Khurshid(2011). TestEra: A tool for testing

JavaPrograms using Alloy specifications. 26th IEEE/ACM International Conference on Automated

Software Engineering (ASE).

Hilken, F., Niemann, P., Wille, R., Gogolla, M (2014): Towards a base model for UML and OCL

verification. In: Boulanger, F., Famelis, M., Ratiu, D. (eds.) MoDeVVa@MODELS. pp. 59–68.

Kuhlmann, M., Hamann, L., Gogolla, M. (2011): Extensive validation of OCL models by

integrating SAT solving into USE. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011. LNCS, vol.

6705, pp. 290–306. Springer, Heidelberg.

M. Nabuco, Ana C.R. Paiva (2014). Model-based test case generation for Web Applications.In

Proceeding of the 14th Int. Conf. on Computational Science and Its Applications — ICCSA 2014 –

Vol. 8584.Springer-Verlag. New York, NY, USA.

A. Bucchiarone, H. Muccini, P. Pelliccione, and P. Pierini (2014). Model-Checking plus Testing:

from Software Architecture Analysis to Code Testing. In Proc. Int.Workshop on Integration of

Testing Methodologies,ITM ’04. LNCS n.3236.

M. Wendland, Andreas Homann, Ina Schieferdecker (2013). Fokus!MBT – A multi-paradigmatic

test modeling environment. in: ACME '13 Proceedings of the workshop on ACadeMics Tooling

with Eclipse, Montpellier, France. ACM New York, NY, USA.

Ilan Rosenfeld.(2016). “Lenguajesformales y derivaciónautomática de código de pruebas a partir de

modelos de software con restricciones OCL”. Informatics thesis, UNLP. Argentina.

https://dblp.uni-trier.de/pers/hd/g/Garis:Ana_Gabriela
https://dblp.uni-trier.de/db/journals/sosym/sosym14.html#CunhaGR15
http://www.lirmm.fr/ecoop13/
https://www.acm.org/publications

	2 ECLIPSE MODELING TOOLS
	7 MDT+. A TOOL FOR TEST-CASES CODE GENERATION
	8 CREATING THE DATA MODEL WITH PAPYRUS
	9 TRANSLATING THE UML MODEL TO JAVA CODE WITH TESTS
	10 ANALYZING THE RESULTS

	11 IMPROVING TESTS WITH A RICHER FORMALISM
	12 RELATED WORK
	13 CONCLUSION AND FUTURE WORKS
	REFERENCES

