
1

 Tool support for Generating User Acceptance Tests

Guy Camilleri1, Leandro Antonelli2, Pascale Zarate3, Juan Cruz Gardey2, Jonathan
Martin2, Amir Sakka2,4, Diego Torres2,5,6 and Alejandro Fernandez2,6

1SMAC group, IRIT, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
2LIFIA, Facultad de Informática, UNLP, Argentina

3ADRIA group, IRIT, Université de Toulouse, 2 rue du Doyen Gabriel Marty, 31042
Toulouse Cedex 9, France

4IRSTEA Clermont-Ferrand 9 Avenue Blaise Pascal, 63178 Aubiere France
5Departamento de Ciencia y Tecnologia, UNQ, Argentina

6CICPBA, Buenos Aires, Argentina
{camiller,zarate}@irit.fr,

{lanto, jcgardey, jcgardey, dtorres, casco}@lifia.info.unlp.edu.ar,
amir.sakka@irstea.fr

ABSTRACT

Software testing, in particular acceptance testing, is a very important step in the development
process of any application since it represents a way of matching the users’ expectations with
the finished product´s capabilities. Typically considered as a cumbersome activity, many
efforts have been made to alleviate the burden of writing tests by, for instance, trying to
generate them automatically. However, testing still remains a largely neglected step. In this
paper we propose taking advantage of existing requirement artifacts to semi-automatically
generate acceptance tests. This paper extends a previous paper in which we use Scenarios, a
requirement artifact used to describe business processes and requirements, and Task/Method
models, a modelling approach taken from the Artificial Intelligence field. The proposed
approach derives a Task/Method model from Scenario (through rules) and from the
Task/Method model specification, all alternatives in the flow of execution are provided.
Using the proposed ideas, we show how the semi-automated generation of acceptance tests
can be implemented by describing an ongoing development of a proof of concept web
application designed to support the full process.

Keywords: User Acceptance Tests, Scenarios, Task/Method model, Agriculture
Production

INTRODUCTION

Developing software still remains a very complex process involving several actors and
consisting of different steps. The testing step remains as one of the biggest problems, and it is
frequently avoided. As a consequence, the resulting system can fail to meet users’
expectations, rendering it useless. Our objective is to develop a strategy to make the testing
step easier, generating User Acceptance Tests (UAT) in a semi-automatic way from
requirements artifacts. Many software development methods use, in the early stages, steps to
clarify business processes and specify requirements. These processes are often used to define
the UAT. A semi-automatic generation of UAT can with few efforts support the software

ICDSST 2020 PROCEEDINGS – ONLINE VERSION
THE EWG-DSS 2020 INTERNATIONAL CONFERENCE ON DECISION SUPPORT SYSTEM TECHNOLOGY

I. Linden, A. Turón, F. Dargam, U. Jayawickrama (editors)
Zaragoza, Spain, 27-29 May 2020

41

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/429677013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

engineers to elicit, to clarify and to discuss the business processes and the requirements by
showing some implications of their analysis/modeling. Theses analysis can result in new
modifications and developments of the model of business processes and requirements.
Therefore, a semi-automatic generation of UAT constitutes a decision support for the
modelling of business processes and requirements. To do this semi-automatic generation, we
combine two modelling approaches: Scenarios, from the requirement engineering field and
Task/Method models, from the Artificial Intelligence field, particularly knowledge-based
systems [3]. A first work has been done (see [1] and [2]) which proposes to use a wiki
website for describing Scenarios, and to translate these Scenarios in Task/Method model in a
semi-automatic way.

Figure 1 depicts the overall proposed process. First, the users describe scenarios thanks to
a website application after, the translation rules are applied to generate the corresponding
task/method model. These steps were already proposed in a previous work [1]. The obtained
task/method model is then executed by an execution engine which produces an Execution
Tree (ET). A ET is a data structure representing all possible executions of the task/method
model (hence, all possible flows of actions and tests). Test cases can be extracted from this
ET. In this paper, we will focus on the last two steps: execution engine and the test cases
generation.

Figure 1: Test cases generation process
This work is applied to the RUC-APS project. RUC-APS is a H2020 RISE-2015 project,

aiming at Enhancing and implementing Knowledge based ICT solutions within high Risk and
Uncertain Conditions for Agriculture Production Systems. In this context we will use a
scenario based on agriculture production. The rest of the paper is organized as follows: we
first introduce related work, then present the background introducing scenarios and the
Task/method paradigm. In the third part, we describe the two last steps of our approach (see
Figure 1) which will be illustrated by a Task/Method model generated from a scenario based
on agriculture production. Finally, we show our conclusions and future work.

RELATED WORK
Garousi et al. [4] describe six steps in test cases automations: (i) test-case design, (ii) test

scripting, (iii) test execution, (iv) test evaluation, (v) test results reporting and (vi) test
management and other test engineering activities. Our approach has the aim of designing test-
cases. So, we provide a technique to cope with the first step (test-case design). Takagi et al.
[5] describe a strategy to develop a graph that model the histories of test case execution.
Although the authors deal with low level histories related to hardware testing, their proposal
is similar to our proposal, since we generate a tree with all the different scenarios that need to
be tested. Monpratarnchai et al. [6] propose a tool to automatically generate test cases for
Java applications. They analyze the source code and derive a script using a symbolic
language. After that, Junit code is generated. Our strategy is similar, since we analyze
Scenarios, the source description of the requirements and Task / Method model language is
used to specify criteria that allow to obtain test cases. Stoyanova et al. [7] propose a

42

3

framework for testing web app. The framework has two main parts: (i) test case generation
and (ii) test case execution. Although we have to execute Task / Method model script, it is
needed to obtain the test cases. That is, the tree that we obtain is the final test cases that is
needed to test the application. Chatterjee et al. [8] propose an approach to automatically
generate test cases from Use Cases. Bouquet et al. [9] propose a similar although they use
class diagram and state machine to derive the tests. They explore all the alternatives in the
flow of the dialog as well as the preconditions and they generate all the tests needed. The
difference with our approach is that they rely on state while we rely on actions. We consider
that every action can be success or fail, why they rely on every state of the different elements
included in the situation.

BACKGROUND

Scenarios
Scenarios can be used in different stages of software development, from clarifying

business process and describing requirements, to providing the basis of acceptance tests [10].
There is a distinction between application domain (the real world) and the application
software (the machine) [11]: during business process modelling and requirements elicitation,
Scenarios describe events in the world, while in system specification, they describe events in
the machine. Scenarios are stories about people and the activities they perform to reach
certain goals, parting from a setting and counting with some resources. Their description
ranges from visual (storyboards) to narrative (structured text) [12]. Leite et al. [13] propose a
template with six attributes to describe Scenarios in a textual way: (i) Title, it is the name of
the scenario to identify it, (ii) Goal, conditions and restrictions to be reached after the
execution of the Scenario, (iii) Context, conditions and restrictions that are satisfied and
constitute the starting point of the Scenario execution, (iv) Actors are agents that perform
actions during the Scenario to traverse the path from the context to reach the goal, (v)
Resources, products and elements used by the actors to perform action, and (vi) Episodes:
steps executed by the actors using the resources beginning at the context to reach the goal.

The text descriptions in Scenarios follow a fixed structure. In particular, episodes must be
written with full sentences describing the subject, the action they perform, and if necessary
the resource used. The following example describes partially some Scenario for farmer
packing products. The example also includes the cases to consider for testing the scenario.
These test cases do not belong to the original structure of the scenario:
Scenario: detect stress in crops of tomatoes and
peppers
Resources: Sensors
Actors: System
Episodes:

The sensor reads the temperature
The sensor reads the level of humidity
The sensor reads the intensity of the light
The system determines if it is a stressful condition

Test cases:
If some sensor can not read the data the system
do not have the input necessary to infer a
prediction.
All the sensors can read the data, but the system
does not have historical information to infer a
prediction

Scenario: collect information
Resources: Sensors
Actors: System
Episodes:

Several sensors collects information about the
temperature

The system calculates the average to
determine the temperature
Test cases:

There is a problem collecting the information
There is a problem summarizing the date

43

4

Task/Method Paradigm
The task/method paradigm is a knowledge modelling paradigm (mainly from the artificial

intelligence field [14], [15]) that sees reasoning as a task. Knowledge is expressed in a
declarative way, making it easy to process by execution engines or planners [1]. A
task/method model is composed by a domain model and a reasoning model. The former
describes the objects of the world being used (directly or indirectly) by the latter, similarly to
an application ontology. It is often described in UML language and implemented with OO
languages. The reasoning model describes how a task can be performed. It uses two
modelling primitives: a task: is a transition between two world state families (an action) and
is defined by the following fields: Name, Par, Objective and Methods. A method describes
one way of performing a task. A method is characterized by the following fields: Heading,
Prec, Effects, Control and Subtask.

The task’s field Name specifies the name of the task. The field Par contains the list of
parameters, that is, all objects handled by the task. For example, in a task Read, the parameter
list could be (sensor, temperature) which are domain objects (from domain model) used by
the task Read. We will write Read(sensor, temperature). The list of methods which can be
applied to perform a task is described in the field Methods. A terminal task is a directly
executable task (without described methods). The method’s field Prec contains conditions
that must be satisfied to apply the method. The execution order of subtasks is described in the
Control field, and sub-tasks are recorded in the Subtask field. Note that, by essence,
Task/Method models are hierarchical. Here we explained only the fields used in this work,
see [2] for a full reference.

User Test Cases Generation
In this work, we make the following assumption. We consider that we dispose of a

Task/Method model obtained in the two first steps of our approach (Figure 1, see for more
details [1]). The execution of tasks in the task/method model can only succeed or fail.
Specifically, only the terminal tasks succeed or fail directly, the execution status (success or
failure) of the other tasks results only from the status of the terminal tasks. Under this
assumption, all possible executions of a task/method model will correspond to the
propagation of two possible execution status (success or failure) of terminal tasks. In the
previous example (see also Figure 2), the "Read(sensor,temperature)" task has one method
with two terminal tasks: “Collect information (system, sensors, temperature, data)” and
“Summarize data (system, data)”. These terminal tasks can succeed or fail. So if both
succeed, the “Read(sensor,temperature)” task succeeds and if one of them fails, then the
“Read(sensor,temperature)” task fails. In our approach, we consider that each user test case
corresponds to an execution path. In the "Read(sensor,temperature)" example, two user test
cases can be extracted from the following execution paths: "Collect information (system,
sensors, temperature, data)" fails therefore "Read(sensor,temperature)" fails and, "Summarize
data (system, data)" fails therefore "Read(sensor,temperature)" fails.

To generate user test cases, it is possible to generate user test cases directly from the
task/method model, or to generate all execution paths and extract user test cases from these
execution paths. We have chosen the latter option which is more flexible and separates the
execution process from the extraction process. Thus, the execution engine produces all
execution paths in the form of Execution Tree (ET). User test cases are extracted from the ET
and possibly with some natural language processing tools. An ET contains all possible
executions of one task. It is composed of two types of node: the etask nodes which represent
the executed tasks and the emethod nodes the executed method. In the figure 2, an ET is

44

5

drawn for the task “Detect stress”. Boxes correspond to etasks, ovals to emethods and arrows
link etasks to emethods. One task can be executed by several methods, and one method can
have several emethods according to the execution status (success or failure) of subtasks. In
the figure 2, the etasks and the emethods with gray background are etasks and emethods that
failed.

The following algorithm describes the execution engine that produces an ET for one etask.
Each etask and each emethod have a boolean attribute “failure” (true for failure and false for
success). etasks and emethod are instantiated from Tasks and Methods of the task/method
model. By default, the failure status is false for all etasks and all emethods. If an etask et is
terminal, one new emethod is added with a copy of et in which the failure status is true. In
this way, for each terminal etask, there exist two versions of this etask, one with the failure
status to false and the other with the failure status to true. If an etask is not terminal, all
applicable methods are instantiated and executed. A method is executed by launching the
code in its control field which will rerun the Execution_engine function on some etasks in the
subtasks field.

Execution_engine(et:ETask)
 if et is a terminal then

set false to failure status of et;
et_failure=Duplicate et with failure status to true;
em_failure=Duplicate the emethod of et with failure status to true;
link et_failure and em_failure to the parent task of the emethod of et;

else
methods= all methods of et;
for all m in methods do

em= instantiate m;
link em to et;
if em is applicable then

execute control field of em
end if

done
end if
return et;

As an ET contains all ways of executing an etask, user test cases can be extracted by
traversing the ET from the failed terminal etasks (leaves of ET) to the initial etask (root of
ET). The proposed process has been applied to the “detect stress in crops of tomatoes and
peppers” scenario described previously. The figure 2 presents the ET obtained by the
execution engine tool. For generating UAT, we simply traverse the ET from the leaves which
fail to the root. Each extracted branch corresponds to one UAT. In the current
implementation, UAT are generated by a direct translation from these ET branches. We
obtained the following UAT.

45

6

Figure 2. Execution tree for Detect stress task (success white background and failure gray
background)

● Detect stress(system, sensors, crops of tomatoes and peppers) fail because Read(sensor, temperature)
fail because Collect information(system, sensors, temperature, data) fail.
● Detect stress(system, sensor, crops of tomatoes and peppers) fail because Read(sensor, temperature)
fail because Collect information(system, sensors, temperature, data) succeed, but Summarize data(system, data)
fail.
● Detect stress(system, sensor, crops of tomatoes and peppers) fail because Read(sensor, temperature)
succeed, but Read(sensor, level of humidity) fail.
● Detect stress(system, sensor, crops of tomatoes and peppers) fail because Read(sensor, level of
humidity) succeed, Read(sensor, temperature) succeed, but Read(sensor, intensity of the light) fail.
● Detect stress(system, sensor, crops of tomatoes and peppers) fail because Read(sensor, intensity of the
light) succeed, Read(sensor, level of humidity) succeed, Read(sensor, temperature) succeed, but Determine
stressful conditions(system) fail.

CONCLUSION

In this paper we presented a way to generate UATs from a Task/method model. This work
follows previous work ([1] [2]), where users describe scenarios through a web application
and from this description, translation rules are applied to generate the corresponding
task/method model. Our approach is to use an execution engine that generates an execution
tree representing the trace of all possible executions. From this execution tree, UATs can be
extracted using graph traversing and natural language processes. In the current version of the
execution engine, only textual descriptions of tasks are processed. In future work, we want to
study how to use a domain model in the form of object-oriented model in order to integrate
UATs related to the domain model in the execution engine.

Acknowledgements
Authors of this publication acknowledge the contribution of the Project 691249, RUC-

APS: Enhancing and implementing Knowledge based ICT solutions within high Risk and
Uncertain Conditions for Agriculture Production Systems (www.ruc-aps.eu), funded by the
European Union under their funding scheme H2020-MSCA-RISE-2015

46

7

REFERENCES

1. Leandro Antonelli, Guy Camilleri, Julian Grigera, Mariangeles Hozikian, Cécile
Sauvage, “A Modelling Approach to Generating User Acceptance Tests”. 4th
International Conference on Decision Support Systems Technologies (ICDSST 2018),
May 2018, Heraklion, Greece. ⟨hal-02289948⟩

2. L. Antonelli et al “Wiki Support for Software Use Cases” Special Issue on Promoting
Sustainable Decision-making, Kybernetes Journal, ISSN: 0368-492X, Emerald
Publishing, Bingley, Reino Unido, accepted March 27, 2019.

3. G. Camilleri, J.-L. Soubie, and J. Zalaket, “TMMT: Tool Supporting Knowledge
Modelling,” in Knowledge-Based Intelligent Information and Engineering Systems, vol.
2773, 2003, pp. 45–52.

4. V. Garousi and F. Elberzhager, "Test Automation: Not Just for Test Execution," in IEEE
Software, vol. 34, no. 2, pp. 90-96, Mar.-Apr. 2017. doi: 10.1109/MS.2017.34

5. T. Takagi and K. Noda, "Partially developed coverability graphs for modeling test case
execution histories," 2016 IEEE/ACIS 15th International Conference on Computer and
Information Science (ICIS), Okayama, 2016, pp. 1-2. doi: 10.1109/ICIS.2016.7550886

6. S. Monpratarnchai, S. Fujiwara, A. Katayama and T. Uehara, "An Automated Testing
Tool for Java Application Using Symbolic Execution Based Test Case Generation," 2013
20th Asia-Pacific Software Engineering Conference (APSEC), Bangkok, 2013, pp. 93-
98. doi: 10.1109/APSEC.2013.121

7. V. Stoyanova, D. Petrova-Antonova and S. Ilieva, "Automation of Test Case Generation
and Execution for Testing Web Service Orchestrations," 2013 IEEE Seventh
International Symposium on Service-Oriented System Engineering, Redwood City,
2013, pp. 274-279. doi: 10.1109/SOSE.2013.9

8. R. Chatterjee, K. Johari. “A prolific approach for automated generation of test cases from
informal requirements”. SIGSOFT Softw. Eng. Notes 35, 5, October 2010, pp 1–11. doi:
https://doi.org/10.1145/1838687.1838702

9. F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux. “A test generation solution to
automate software testing”. In Proceedings of the 3rd international workshop on
Automation of software test (AST ’08). Association for Computing Machinery, New
York, NY, USA, 2008, pp 45–48. doi: https://doi.org/10.1145/1370042.1370052

10. I. Alexander and N. Maiden, “Scenarios, Stories, and Use Cases: The Modern Basis for
System Development,” IEEE Comput. Control Eng., vol. 15, no. 5, pp. 24–29, 2004.

11. M. Jackson, “The world and the machine,” in Proceedings of the 17th international
conference on Software engineering - ICSE ’95, 1995, pp. 283–292.

12. R. Young, The requirements engineering handbook. 2004.
13. J. Leite and A.P.M. Franco “A strategy for conceptual model acquisition”, In

Requirements Engineering conference. IEEE. doi:10.1109/ISRE.1993.324851, pp 243–
246.

14. F. Trichet and P. Tchounikine, “DSTM: A framework to operationalise and refine a
problem solving method modeled in terms of tasks and methods,” Expert Syst. Appl., vol.
16, no. 2, pp. 105–120, 1999.

15. G. Schreiber, H. Akkermans, A. Anjewierden, R. De Hoog, N. R. Shadbolt, and B.
Wielinga, Knowledge Engineering and Management: The CommonKADS Methodology,
vol. 99. 2000.

47

