

1

 A Modelling Approach to Generating User Acceptance Tests

Leandro Antonelli1, Guy Camilleri2, Julián Grigera1,3, Mariángeles Hozikian1, Cécile
Sauvage4 and Pascale Zarate5

1LIFIA, Facultad de Informática, UNLP, Argentina

2SMAC group, IRIT, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
3Also at CIC, Buenos Aires, Argentina

4FEDACOVA, C/ Isabel la Católica 6. Pta9-10, 46004 Valencia, Spain
5ADRIA group, IRIT, Université de Toulouse, 2 rue du Doyen Gabriel Marty, 31042

Toulouse Cedex 9, France
{camiller,zarate}@irit.fr, {leandro.antonelli, julian.grigera,

marian.hozikian}@lifia.info.unlp.edu.ar, internacional@fedacova.org

ABSTRACT

Software testing, in particular acceptance testing, is a very important step in the
development process of any application since it represents a way of matching the users’
expectations with the finished product´s capabilities. Typically considered as a
cumbersome activity, many efforts have been made to alleviate the burden of writing tests
by, for instance, trying to generate them automatically. However, testing still remains a
largely neglected step.

In this paper we propose taking advantage of existing requirement artifacts to semi-
automatically generate acceptance tests. In particular, we use Scenarios, a requirement
artifact used to describe business processes and requirements, and Task/Method models, a
modelling approach taken from the Artificial Intelligence field. In order to generate
acceptance tests, we propose a set of rules that allow transforming Scenarios (typically
expressed in natural language), into Task/Methods that can in turn be used to generate the
tests.

Using the proposed ideas, we show how the semi-automated generation of acceptance tests
can be implemented by describing an ongoing development of a proof of concept web
application designed to support the full process.

Keywords: User Acceptance Tests, Scenarios, Task/Method model, Agriculture
Production Systems

ICDSST – PROMETHEE DAYS 2018 PROCEEDINGS – THE EWG-DSS 2018 INTERNATIONAL CONFERENCE ON

DECISION SUPPORT SYSTEM TECHNOLOGY & PROMETHEE DAYS 2018:
Jason Papathanasiou, ???

(editors)
Heraklion, Greece, 22-25 May 2018

2

INTRODUCTION

Developing software still remains a very complex process involving several actors and
consisting of different steps. The testing step remains as one of the biggest problems, and it
is frequently avoided. As a consequence, the resulting system can fail to meet users’
expectations, rendering it useless. Our objective is to develop a strategy to make the testing
step easier, generating User Acceptance Tests (UATs) in a semi-automatic way from
requirements artifacts. To do this, we combine two modelling approaches: Scenarios, from the
requirement engineering field and Task/Method models, from the Artificial Intelligence field,
particularly knowledge-based systems [1]. We provide rules to automatically translate
scenarios to task/method models from which UATs can be generated.

This work is applied to the RUC-APS project. RUC-APS is a H2020 RISE-2015 project,
aiming at Enhancing and implementing Knowledge based ICT solutions within high Risk and
Uncertain Conditions for Agriculture Production Systems. In this context we will use a scenario
based on agriculture production. The rest of the paper is organized as follows: we first introduce
related work, then present the background introducing scenarios and the Task/method
paradigm. In the third part we define our approach and in the fourth part we demonstrate a first
proof of concept. Finally, we show our conclusions and future work.

RELATED WORK

Test cases may be generated from requirements, designs and source code. In particular,
the use of abstract artifacts like UML diagrams, helps defining User Acceptance Tests, and
much research has been done in this direction. Two approaches can be distinguished in this
area: those that consider the relationships between elements (inter-scenario dependency),
and those that consider the variations within each element (intra-scenario).

Inter-scenario dependency approaches provide a high-level organization of the artifact
to cover different dependencies between them. Boucher et al. [2] transform workflow
models (Use Case Maps) into Acceptance Test Cases that can be automated with the JUnit
framework. Nomura et al. [3] model the business context in a matrix representing the
dependency between business process, from which they design test scenarios from the
perspective of Personas to cover the different situations. Sarmiento et al. [4] propose a
similar approach using scenarios.

Intra-scenario approaches focus on the detail of some artifact and analyze its steps or
elements to design tests. Pandit et al. [5] automatically design UATs from acceptance
criteria written in the Given-When-Then template. These criteria are divided in steps, and
dependencies amongst steps are arranged in a dependency graph. Lipka et al. [6] derive test
scenarios from use cases stated in natural language, enriched with annotations to connect
the specification with the source code of the application.

BACKGROUND

Scenarios
Scenarios can be used in different stages of software development, from clarifying business

process and describing requirements, to providing the basis of acceptance tests [7]. There is a
distinction between application domain (the real world) and the application software (the
machine)[8]: during business process modelling and requirements elicitation, Scenarios
describe events in the world, while in system specification, they describe events in the machine.
Scenarios are stories about people and the activities they perform to reach certain goals, parting

3

from a setting and counting with some resources. Their description ranges from visual
(storyboards) to narrative (structured text) [9]. Leite et al. [10] propose a template with six
attributes to describe Scenarios in a textual way:

• Title, it is the name of the scenario to identify it.
• Goal, conditions and restrictions to be reached after the execution of the Scenario.
• Context, conditions and restrictions that are satisfied and constitute the starting point

of the Scenario execution.
• Actors and agents that perform actions during the Scenario to traverse the path from the

context to reach the goal.
• Resources, products and elements used by the actors to perform action.
• Episodes: steps executed by the actors using the resources beginning at the context to

reach the goal.
The text descriptions in Scenarios follow a fixed structure. In particular, episodes must be

written with full sentences describing the subject, the action they perform, and if necessary the
resource used. The following example describes a Scenario for farmer packing products. The
example also includes the cases to consider for testing the scenario. These test cases do not
belong to the original structure of the scenario:

Scenario: Packing the products
Goal: Put the products in boxes in order to distribute them
Context: The products have recently been harvested
Resources: Products, Box
Actors: Farmer
Episodes:

The farmer washes the products
The farmer brushes the products
The farmer determines the destination of the products
The farmer determines the quality levels of the products according to the destination
The farmer determines the appropriate box according to the destination
The farmer chooses the products that satisfy the quality levels
The farmer packs the chosen products in the box

Test cases:
Temperature forecast obtained / not obtained
Sun radiation forecast obtained / not obtained
Rain forecast obtained / not obtained
There is no best date to plant

Task/Method Paradigm
The task/method paradigm is a knowledge modelling paradigm (mainly from the artificial

intelligence field [11], [12]) that sees reasoning as a task. Knowledge is expressed in a
declarative way, making it easy to process by execution engines or planners [1]. A task/method
model is composed by a domain model and a reasoning model. The former describes the
objects of the world being used (directly or indirectly) by the latter, similarly to an application
ontology. It is often described in UML language and implemented with OO languages. The
reasoning model describes how a task can be performed. It uses two modelling primitives:

1. Task: it is a transition between two world state families (an action) and is defined by
the following fields: Name, Par, Objective and Methods.

2. Method: it describes one way of performing a task. A method is characterized by the
following fields: Heading, Prec, Effects, Control and Subtask.

The task’s field Name specifies the name of the task. The field Par contains the list of
parameters, that is, all objects handled by the task. For example, in a task Pack, the parameter

4

list could be (farmer, products) which are domain objects (from domain model) used by the
task Pack. We will write Pack(farmer, products). The list of methods which can be applied to
perform a task is described in the field Methods. A terminal task is a directly executable task.
The method’s field Prec contains conditions that must be satisfied to apply the method. The
execution order of subtasks is described in the Control field, and sub-tasks are recorded in the
Subtask field. Note that, by essence, Task/Method models are hierarchical. Here we explained
only the fields used in this work, see [1] for a full reference.

APPROACH

The proposed approach consists in representing scenarios in the form of Task/Method
models. Being a modelling paradigm, the building of Task/Method models requires modelling
effort. On one hand, the integration of this modelling activity during the definition of scenarios
facilitates an early identification of misunderstandings between stakeholders. Moreover, as
Task/Method models are operational models, they can be executed to generate test cases. On
the other hand, building a task/method model at early stages shouldn’t take much effort. To
reduce this effort, we propose a semi-automatic translation of scenarios to task/method models.
We use scenarios expressed in natural language, since it’s the natural way to describe them.

In the packing example presented previously, the translation process would produce the
following Task/Method model for the general scenario and the first subscenario, respectively:

Method: M1
Task: Packing(products)
Control:
 wash(farmer, products);
 brush(farmer, products);
 determines(farmer, destination, products);
 determines(farmer,quality_levels,products,destination);
 determine(farmer, appropriate_box, destination);
 choose(farmer, products, quality_level);
 pack(farmer,products,box);

Method: M21
Task: brush(farmer,products) (IR2b)
Precondition:
 not Product_correctly_washed
Control:
 message(“not correctly washed, stop”);

stop;

In the next subsection, we present the translation rules, and a proof of concept.

Translation Rules
The translation of scenarios to task/method is performed thanks to the following rules:

Rule 1. Tasks Identification: each verb in the Scenario’s episodes is translated into a task
in Task/Method model. Each Scenario title is also a task in Task/Method model. Examples:

Episode: The farmer washes the products → Task: Wash
Episode: The farmer brushes the products → Task: Brush
Episode title: Packing the products → Task: Pack

Rule 2. Task’s Parameters Identification: each actor and resource used in the episodes of
a Scenario is translated by a parameter in Task / Method model. Examples:

Episode: The farmer wash the products → Task: Wash(farmer, product)
Episode: The farmer brush the products → Task: Brush(farmer, product)

Rule 3. Episode’s method: the episodes part of a scenario is translated by a method in
Task / Method model. Examples:

Episodes: The farmer wash the products
 … → Method: M1

Rule 4. Sequence of tasks: the sequence of different lines in the episodes part of a Scenario
determines the sequence of tasks in the control part of a method in the Task / Method model.

5

The use of expressions like "then", "after", etc... in the episodes of a Scenario determines
also a sequence of tasks in the method’s control part. Examples:

Episodes:
The farmer washes the products
The farmer brushes the products

or The farmer washes the products, then brushes the products

Method: M1
Control: wash(farmer, product); brush(farmer, product)

Rule 5. Test Case Method: In this work, we assume that each test case (Test cases part of
scenario) corresponds to the achievement status (succeed or fail) of a task. In a failure
situation, the scenario will stop. This stop case will be represented by a method for the next
task in which the precondition field correspond to the test case failure. For example:

Test case: Temperature forecast obtained / not obtained →
Method: M21
Task: bush(farmer,products) # next task
precondition: not Product_correctly_washed
Control: message(“not correctly washed, stop”); stop;

The natural language used in the expression of scenarios is limited, we also assume that
episodes part only contains a “nominal” way to achieve a scenario, i.e. we consider that
execution of every task succeeds. In the test cases part, only failures of task achievement are
considered. With these assumptions and a few translation rules, it is possible to automatically
translate scenarios such as the packing scenario. Of course, this automatic translation has to be
used as a preliminary design and it should be analyzed and enriched by a test case designer.

PROOF OF CONCEPT

We are developing a web application where users can describe Scenarios and obtain the
Task/Method model that implements the UATs. Figure 1 depicts the client/server architecture:
a client module allows describing the Scenarios and see the Task/Method model obtained from
them. The server module derives the Task/Method from the Scenarios. Derivation relies on a
Natural Language Processor and a set of rules. Rules determine scenarios’ processing, elements
to be identified, and how they must be interrelated to produce the Task/Method. The NLP
processes Scenarios, obtaining the elements determined by the rules.

Figure 1. Architecture of the application

The system is being implemented with Node.js (https://nodejs.org) for the backend, and
Angular 2 (https://angular.io) for the client. This will allow the user to define the scenarios and
trigger the mechanism to obtain the Task/Method executing the rules specified in the server
side through the Stanford Natural Language Processing Framework (https://nlp.stanford.edu).
After that, the final translation will be shown to the client.

CONCLUSION
In this paper we have shown a new way of generating acceptance tests from well-known

requirements artifacts, by presenting a set of rules to guide the implementation of semi-
automated solutions and shown the first steps towards a supporting tool. We are now working

6

in completing the ruleset, by adding the rules required to translate iterative episodes into tasks.
For example, each verb used in the episode of a Scenario that describes iteration should be
written as a while expression in in Task/Method model: while <condition> <block>. This
would help to support other scenarios that require iterative tasks, e.g. “For each order,
determine the time needed to take the products to the destination”. We also plan to publish the
web application in order to experiment with the presented ideas in real development settings,
so we can assess the benefits of semi-automatically generated UATs.

ACKNOWLEDGEMENTS
Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS:

Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain
Conditions for Agriculture Production Systems (www.ruc-aps.eu), funded by the European
Union under their funding scheme H2020-MSCA-RISE-2015

REFERENCES
[1] G. Camilleri, J.-L. Soubie, and J. Zalaket, “TMMT: Tool Supporting Knowledge

Modelling,” in Knowledge-Based Intelligent Information and Engineering Systems, vol.
2773, 2003, pp. 45–52.

[2] M. Boucher and G. Mussbacher, “Transforming Workflow Models into Automated End-
to-End Acceptance Test Cases,” in Proceedings - 2017 IEEE/ACM 9th International
Workshop on Modelling in Software Engineering, MiSE 2017, 2017, pp. 68–74.

[3] N. Nomura, Y. Kikushima, and M. Aoyama, “A Test Scenario Design Methodology
Based on Business Context Modeling and Its Evaluation,” 2014 21st Asia-Pacific Softw.
Eng. Conf., vol. 1, pp. 3–10, 2014.

[4] E. Sarmiento, J. C. S. P. Leite, E. Almentero, and G. Sotomayor Alzamora, “Test
Scenario Generation from Natural Language Requirements Descriptions based on Petri-
Nets,” Electron. Notes Theor. Comput. Sci., vol. 329, pp. 123–148, 2016.

[5] P. Pandit, S. Tahiliani, and M. Sharma, “Distributed agile: Component-based user
acceptance testing,” in 2016 Symposium on Colossal Data Analysis and Networking
(CDAN), 2016, pp. 1–9.

[6] R. Lipka, T. Potuak, P. Brada, P. Hnetynka, and J. Vinarek, “A Method for Semi-
Automated Generation of Test Scenarios Based on Use Cases,” in Proceedings - 41st
Euromicro Conference on Software Engineering and Advanced Applications, SEAA
2015, 2015, pp. 241–244.

[7] I. Alexander and N. Maiden, “Scenarios, Stories, and Use Cases: The Modern Basis for
System Development,” IEEE Comput. Control Eng., vol. 15, no. 5, pp. 24–29, 2004.

[8] M. Jackson, “The world and the machine,” in Proceedings of the 17th international
conference on Software engineering - ICSE ’95, 1995, pp. 283–292.

[9] R. Young, The requirements engineering handbook. 2004.
[10] A. Hussain et al., “Review on formalizing use cases and scenarios: Scenario based

testing,” 2015 Int. Conf. Emerg. Technol., vol. 3, no. 3, p. 1, 2015.
[11] F. Trichet and P. Tchounikine, “DSTM: A framework to operationalise and refine a

problem solving method modeled in terms of tasks and methods,” Expert Syst. Appl., vol.
16, no. 2, pp. 105–120, 1999.

[12] G. Schreiber, H. Akkermans, A. Anjewierden, R. De Hoog, N. R. Shadbolt, and B.
Wielinga, Knowledge Engineering and Management: The CommonKADS Methodology,
vol. 99. 2000.

