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1 Introduction

Kaluza-Klein reductions of supergravity and its higher derivatives give rise to lower di-
mensional field theories with continuous global symmetries. When certain interactions in
the higher dimensional theory are unknown, they could be constrained by demanding the
emergence of such global symmetries after compactification. Alternatively, one may try to
formulate the parent theory in the framework of Double (or Exceptional) Field Theory [1-5]
(for reviews see [6-9]), in which the duality symmetries are manifest prior to compactifying.

The last years have witnessed progress in constraining higher-derivative interactions
through dualities. There are methods based on explicit reductions, such as cosmological [10,
11], circle [12-17] and intermediate [18-20] compactifications. There is also a duality
covariant sigma-model approach to higher derivatives [21]. Here we will focus on higher
derivatives in DFT, for which originally there were two alternatives.

In one approach the corrections were accounted for through enlarging the duality group
structure by adding higher-derivative interactions in the extra directions of the generalized
tangent space [22, 23] (see also [24, 25]). The local symmetries and the action remain
unchanged, but the duality structure is deformed. This method was only worked out for
the heterotic string to first order in o/, and has the disadvantage that the deformations are
not manifestly duality covariant, so duality covariance has to be checked explicitly.



There is a second approach in which the duality structure remains unmodified (namely
the duality group is still the continuous O(D, D)), and higher-derivatives enter through de-
formations of the local symmetries. In some cases it is generalized diffeomorphisms that are
deformed [26-31], and in others the double Lorentz symmetries [32, 33]. The distinction be-
tween both cases is discussed in [34, 35]. Two parameters a and b control the deformations,
and depending on how they are chosen the framework accounts for the first order corrections
to the heterotic string (one of the parameters vanishes), the bosonic string (a = b) or other
duality symmetric theories such as a Lorentz deformed version of HSZ theory (a = —b).

More recently, a general framework was proposed [36] in which the two approaches
described above were shown to be equivalent in the heterotic case. The idea is to start
with an extended duality group O(D+p, D+¢q) as in the heterotic formulation of DFT [37],
and then perform an O(D, D) decomposition along the lines of [38]. We will discuss this
extensively later, but for the moment let us state that p and ¢ count the number of negative
and positive eigenvalues of the Killing metric of the gauge group, respectively.

Extended Double
Duality group | O(D + p, D + q) O(D, D)
Lorentz group | O(D —1,1) x O(1+p,D+q—1) | O(D —1,1) x O(1,D — 1)
Fields Generalized frame Ep? Generalized frame Ej4 |
Dilaton d Vectors 5’2 , Dilaton d
Other symm. | Extended gen. diffeos. Double gen. diffeos. x K

The result is a DFT coupled to & = p 4+ g extra vectors 5’1& that transform under a cer-
tain gauge group K as generalized connections. One then has a generalized connection in
the double picture with respect to the gauge group K (which in turn descends from the
generalized diffeomorphism in the extended picture). On the other hand there is a gen-
eralized spin connection F g5 in the exrtended picture with respect to the Lorentz factor

O(1+p,D+q—1). The idea in [36] was then to identify these two independent symme-
tries

K < O0+pDtq-1), (1.1)

and match the independent degrees of freedom £#, with the composite degrees of freedom
F . zc through the generators of the resulting group (tz)zz

98 (t))ge = Fome- (1.2)

After this identification, when the formalism is seen from an O(D + p, D + q) perspective
the first approach described above is recovered, and when scrutinized after its O(D, D)
decomposition it reproduces the second approach, thus proving their equivalence. This
procedure is the duality covariant version of that in [39, 40] and was then referred to as
the Generalized Bergshoeff-de Roo identification in [36]. The advantage of this generalized
identification is that it is exact, and generates an infinite tower of higher derivatives in the
heterotic string. The reason for this is that the identification requires the symmetry group
to be infinite dimensional, as will be reviewed soon.



As mentioned, the approach in which the double Lorentz symmetry is deformed admits
a two-parameter (a, b) extension, the heterotic string being a particular choice in parameter
space. The first original result in this paper is an extension of the generalized Bergshoeft-
de Roo identification that captures this bi-parametric freedom. Let us briefly anticipate
the result by showing how the discussion above is modified. Here we further extend the
extended duality group in a more symmetric fashion to O(D + k, D + k) with k = p + ¢,
and again realize an O(D, D) decomposition.

Extended Double

Duality group O(D+k,D+k) O(D,D)

Lorentz group OD+q-111p) O(D-1,1)x0(1,D—1)
xO(14+p,D+q—1) -

Fields Generalized frame 2, | Generalized frame Ej4, Dilaton d
Dilaton d Vectors E#,, Vectors &L, Scalars Qay

Other symmetries | Extended gen. diffeos. Double gen. diffeos. x K

The result is a DFT coupled to 2k extra vectors and k? scalars, that jointly populate the
following components of the extended generalized frame £F 4 and X, which transform
under the gauge group K as generalized connections. On the other hand there are two
generalized spin connections F,, and F ;55 in the extended picture with respect to the
Lorentz factors O(D + g — 1,1+ p) and O(1 + p, D + g — 1), respectively. The idea here is
to identify the symmetries

K < OD+q—-1,1+p)x01+p,D+q—1), (1.3)

by matching the independent degrees of freedom Suj and £~ A with the composite degrees
of freedom ‘F]@ and F ABC through the generators of each factor of the resulting group

(ta)ge and (tg)&
— 91885 (tw)se = Fzpc » (1.4)
— 928" 4 (tp)pe = F amc -

The couplings g1 and g, are related to the parameters a and b. We will explain in detail
how to extract perturbative results in powers of a and b from (1.4). It is amazing that
these can be obtained systematically from the standard two-derivative action, equations
of motion, gauge transformations, etc. in the extended setup. Schematically, the resulting
perturbative action in the double space is the sum of terms of the form R("™) where the
supra-label indicates that each term scales like ab™.

The term R0 is the standard two-derivative generalized Ricci scalar of DET [1-5].
It is invariant under generalized diffeomorphisms, and double Lorentz transformations to
lowest order. However, the double Lorentz symmetry receives higher derivative corrections.
To first order they take the form of a generalized Green-Schwarz transformation, under
which R0 is not invariant, and then first order corrections aR(Y 4+ bR are induced
in the action. This is pictured in the blue box, the results were introduced in [32] and cast in



Figure 1. Structure of the bi-parametric higher derivative corrections. The interactions R("™)
are weighted by a™b™ in the action.

a Gauged DFT form in [33]. It turns out that the algebra of the bi-parametric generalized
Green-Schwarz transformation only closes to first order, and then higher corrections are

(2.0) contained here in the

required. For the heterotic case the second order corrections R
red box, are completely determined by the symmetry transformations introduced in [36].
The second original result in this paper is the computation of the full symmetries and action
of DF'T to second order in the bi-parametric case, which corresponds to the green box. This
includes the second order corrections to the generalized Green-Schwarz transformation.
The third original result is to show that to second order this extension accounts for the
bi-parametric Green-Schwarz transformation of the Kalb-Ramond field (a two parameter
generalization of the original deformation [41])
8[uAab@(+)

v]ab’

Obuy = %a[#Aab@z(j};)b - g
when the field redefinitions required to connect with the supergravity fields in the
Bergshoeff-de Roo scheme are implemented. The spin connections include the three-form
field strength as torsion, which in turn is sourced by Lorentz Chern-Simons three-forms. As
expected, to second order (and presumably to all orders) the Lorentz transformation on the
frame field and dilaton in supergravity remain uncorrected. This confirms the expectations
that the deformations due to the parameters a and b induce the full tower of corrections
contained in the Chern-Simons terms that source the three-form curvature, plus all the
corrections connected to these by T-duality.

The paper is organized as follows. Section 2 is devoted to set the notation by re-
viewing the mono-parametric identification for the heterotic case introduced in [36]. In
section 3 we present the bi-parametric generalized Bergshoeff-de Roo identification, work
it perturbatively to second order, extract from it the second order corrections to the gener-
alized Green-Schwarz transformation, analyze its closure and present the invariant action.
Finally in section 4 we perform the minimal field redefinitions that trivialize the Lorentz
transformation of the vielbein and dilaton to second order, and show that the resulting
transformation for the Kalb-Ramond field is the expected bi-parametric Lorentz Green-
Schwarz transformation in the Bergshoeff-de Roo scheme.



2 The heterotic generalized BdR identification

2.1 The extended space

Our starting point is the gauged extension of DFT [37, 42] in the frame formulation [1, 2, 43—
46]. We begin with a brief review of some basics that will be useful in the forthcoming
sections, and will serve in addition to set the notation and conventions followed here.

The idea is to start with an extended tangent space, acted on by the rigid action of
some split orthogonal group G, that includes G = O(D, D) as a subgroup. The dof are
a generalized dilaton d and a generalized frame &y, constrained by demanding that the
G-invariant metric n is preserved by the generalized frame

= Em? nas ENP. (2.1)

The local symmetries include generalized diffeomorphisms and gauge symmetries in a
duality covariant way generated by a G-vector £, in addition to the extended local Lorentz
transformations with respect to a group H, parameterized by I' in the adjoint of H. In-
finitesimally they take the form

1
5d = Noyd - 53N5N7
sEn? = VonEn + (Om€" — Vewm) En + Fan TV et + EMFTE L (22)

The consistency of these transformations requires the imposition of linear and quadratic
constraints on the gaugings f 4 NP,

fave = foavers fun™ frc” =0. (2.3)
Together with the strong constraint

P Nou@on =0,  fun"op =0, (2.4)
they guaranty the closure of the algebra

w160)s0r,6)] = =0r12.612) - (2.5)

defining the following brackets
s = 2elonel! + oM e + IV el (2.6)
1248 = 260 ONTo a5 + T14Toc - (2.7)

In the frame or flux formulation [1, 2, 43, 44], the main characters are the generalized

fluxes

Fa=2Dad—QpA°, (2.8)
Fase = 3 Qase) + FanpEMasN ¢,

defined in terms of 2 45¢ which is named the generalized Weitzenbdck connection

Quse = DaENBEF e nvp (2.10)



and we have introduced the flat derivative Dy = EM 400 . The generalized fluxes be-
have as scalars under generalized diffeomorphisms but transform non covariantly under the
extended Lorentz transformations

6F A = EMOMTFA+TB 4 Fg—Dpl'B 4, (2.11)

8Fapc = EMOMmFase +3 (FD[A Feip — D[APBC}) : (2.12)

The strong constraint (2.4) together with the quadratic constraints (2.3) imply the following
generalized Bianchi identities

1
DiaDp) = §fABch ; (2.13)

3
DiaFpep) = Z]:[AB“:FCD]S ; (2.14)
DC./TCAB = ./?C.FCAB — 2D Fp) - (2.15)

It is also useful to rewrite some other conditions that follow from the strong constraint in
terms of flat derivatives

Duaf DA =0, (2.16)
DADAf — FADAf =0, (2.17)
FABCD 4 f Dgg Deh = 0, (2.18)

for any function f, g, h.

2.2 The double space and the identification

We have just considered a generic scenario in which the double space is extended in order
to introduce gaugings in a duality covariant way. We will now discuss a concrete realization
of this extension. We begin with the following extended duality group G and the extended
double Lorentz symmetry group H

G=0D+p,D+q) , H=0D-1,1)xO01+p,D+qg—1) . (2.19)
The extension is characterized by the quantity
k=p+q, (2.20)

which is the dimension of the gauge group produced by the gaugings. In table 1 we clarify
the notation adopted for the groups and indices in this section. The same notation extends
to other sections, though some of the groups will get enhanced later.

The idea is to perform a G and H decomposition of G and H, respectively. Every
G-vector, such as derivatives or parameters, splits in G-vectors and internal components,
Om = (0ur,0z) and EM = (€M ¢R). Only the internal components fﬂﬁﬁ
non vanishing, and then from the double space point of view the parameters ¢M generate

of the gaugings are

double generalized diffeomorphisms, and the parameters ¢# generate gauge transformations



Name Group Indices Metric
G O(D, D) M NMN
g O(p, q) f K
_ nun 0
g O(D +p, D +q) M = (M, f1) NMN =
0 I{ﬂ,;
H=H |O(D-11) A=a Pas = Pay
H O(1,D —1) a P
h O(p, q) a Kap
_ _ _ P—- 0
H O1+p,D+q—1)| A= (a, a) LB = ab
0 H@
_ _ P 0
H HxH A=A A)=(aaa) | ns=| 2"
0 Pug
_ Py 0
H HxH A= (g, a) mp=| %
0 Py

Table 1. Groups, metrics and index structure for the extended space relevant to heterotic DFT. For
those familiar with [36], let us note two differences with the table shown there. First note a small
change in the notation: we find it more convenient to use fi instead of « for the curved internal index,
as it has a more natural extension to the bi-parametric case. Second, we are now writing explicitly
the split signature (p, ¢) of the internal metric £z, which by abuse of notation was omitted in [36].

with respect to some group K of dimension k with structure constants f awp- Lhis requires
that no fields or parameters in the theory depend on the internal coordinates, while the

dependence on the double space is strong constrained as usual
=0, ™MNoy @y =0, (2.21)

The extended G-valued generalized frame £y admits a G and H covariant parame-
terization in terms of the double generalized frame Ey 4, k vectors Ay and k(k — 1)/2
scalars eﬁa

En® = —Ap*ep”, (2.22)



where

xun =nun — Av” Avg, Do = ks — Avp AY 5 (2.23)

and all indices are implicitly raised and lowered with the double invariant metrics nap or
NMN = EyA NAB EnB and the Killing metric of the gauge group Kap OF Ky = eﬂa Kah e,;ﬁ.

The extended generalized frame £ parameterizes the coset G/H and so carries D(D+k)
physical degrees of freedom (dof). They are contained in the double generalized frame E
which parameterizes the coset G/H and so carries D? dof. The remaining Dk dof are
captured by &7 o- The rest of the components are gauge dof and can be eliminated by the
action of H, which can be used to implement the following gauge fixing

EP=FEM; A7 =0, eﬂa = constant . (2.24)

The reason why we can freeze the scalars is that they are pure gauge dof because the coset
g/h is trivial. This gauge fixing breaks the group H down to H. In fact, freezing the
components (2.24) implies locking their gauge transformations 6€”z = dez® = 0, which
fixes the following components of the parameters of H

Taa = el'g (072);” Oyéy EM
Tap = e’y @72)7 (60

(2.25)

m\»-‘ I

)i — AM 5 0m&s — g o6 €0 (D%);g) ;

where we have explicitly introduced the gauge coupling constant g and the dimensionless
structure constants f;z P = g_1f~~p

Let us now discuss the so-called generalized BdR identification in this heterotic sce-
nario. For more details see [36]. There are two gauge groups in the theory, and both have
generalized connections. One is the group K, the connection being the projected field £5, =
EM , Aprz. When the generalized Lie derivative (2.2) is reduced to its components, it yields

0&ra = Le€nia — Dabin + 9.f75" € Epa + Epal %a - (2.26)

The other is the Lorentz group #, the connection being a certain projection of the
generalized fluxes F z5, which according to (2.12) transform as

~ d
0F, 5 = LeF. 5o — Dal'ge + 2F, D[CFDB] + F el (2.27)

al a

The former are independent physical dof, while the later are composite dof, yet as different
as they are, they both transform in the same way with respect to different groups. Then,
if we choose these groups to coincide

K=H, (2.28)

we can express the connection &, and the parameters £; in terms of the adjoint indices
of H through its generators (t*)zz

Eme =9 Mge: &g =9 )ge (2.29)



in which case (2.26) takes the form

0€ e = Le€me — Dalipe + 2, gDE] +E&me re,. (2.30)

a

Now, the comparison between (2.27) and (2.30) establishes a way to lock the gauge vectors

in terms of the generalized fluxes

&5 =96 (") = Tzz, (2.31)
Eape = —9 8 (M)ge = Fome-

This is the generalized Bergshoeff-de Roo identification. It has the appearance of being
impossible because the dimensions dim(K) = k and dim(H) = (D + k)(D + k — 1)/2 are
different for any finite k. The only way out is that these are connections of an infinite
dimensional orthogonal group. This is somehow expected, because this identification is
exact (by this we mean that the transformations (2.27) and (2.30) are identical) and then
we expect it to generate an infinite tower of higher derivatives, as opposed to the original

identification in [39, 40] which only held to first order.

2.3 The perturbative expansion

After the identification the expected remaining dof are the standard G-valued generalized
frame Ejp;” and the dilaton d. They inherit their transformation properties from those
of the extended space (2.2) after insertion of the parameterization (2.22) and the identifi-
cation (2.31). The vectorial components induce gauge transformations to the generalized
frame with respect to K, which after the identification become higher-derivative corrections
to the Lorentz transformations. These corrections can be extracted perturbatively in pow-
ers of o/ order by order. To first order they were shown in [36] to reproduce the first order
generalized Green-Schwarz transformation introduced in [32]. The perturbative expansion
proceeds as follows. The identification relates ji with AB = (ab, af, ab, a3) through the
generators (tﬂ)A—B. The indices @ can then be curved back to fi through e;® in (2.22). This
triggers a never ending iteration that permits to compute every order in the derivative
expansion.

The exact transformation of the generalized frame after the identification is given by

SEMT = LeEy®™ + Ex® A" — o, P (X"2)e Fygps DTCP (2.32)
~ 1 -
0B = LeBy® + En® Ay + ZXn 05TP (X 2)% Foop,

where we introduced the Dynkin index Xpg and redefined the Lorentz parameters of the
double space

Agp = Ty — B BNy (" 2)ar” (5(X%)PN - 5P§"‘«4Na) ; (2.33)

AE == FE.

To trigger the perturbative expansion we first split coordinates A — (@, @) in the
CD contraction between the extended fluxes and Lorentz parameters, then replace by the



different components of the fluxes

Fue = (X2)a* Fz (2.34)

Fopy = — {(X%)f (EﬁiF@ + DyEne ) — Dp(07)7 5,;2} e, (2.35)

Fiar = 9 i &4 (O2)5(02)75 e/5¢75 (2.36)
+(x)al £ (5 €75 | Foeali® + (2 Do — Doie)|

- ~ 1.~
"‘e'u[aeVB] DQ(D?)/’[L [(Xg)g (I:l§ l7ﬁ+5p~g (C/'DQ} ’

and the extended Lorentz components, through (2.25) and (2.33). Here we introduced
double generalized fluxes and flat derivatives

Fapo =3DuEMEN cynun,  Da=EM 400 (2.37)

All the replacements above are exact. They depend on &z, though, but at a higher

! expansion, except for (2.36) whose only effect is to renormalize the leading

order in a g~
contribution (responsible for the b parameter), as we will discuss later. Hence, repeating
recursively this procedure leads to a derivative expansion of the Lorentz transformation.
Up to second order one finds [36]

Ao @, baa b
SEM"=LeEr+Ev® A" — - EMdF 5 DA (2.38)

liop hd e pyay_d
S0*Bu [DGDCAef (B Fg+ DeFyg ) — FypFg? (FDTAGE — P DTAGY)

+ Feg DA% (FyeaF T — DyFST +2 DFT) + By D7 (DAE T )|

and
SEn®= LeEar®+ Exft Ay® + gaMAEF“—bC (2.39)
+%b2E 7[ D-D°A (E ( 2P+ DeF ) aF it (FCth AS° FQEDEAEE)
+ F& D% (FeeqF D7 — DUFIT 12 DFT ) + FoDy (DENTFT )|
where 5
b= X (2.40)

Let us briefly point out how this parameter forms. Consider the contractions in (2.32),
which are schematically of the form

U dAP = U0 U @aﬁ I e @aﬁ (2.41)
ngher order

The off-diagonal part is of higher order because its leading order already contains vector
fields, which are identified with the generalized fluxes that carry derivatives. The last term,
corresponding to the purely internal part, happens to obey the following relations due to
the identification

ag_ 1 AB | 1
P ~— VY5®"" + Higher order. (2.42)

\IIE X

~10 -



This tells us on the one hand that the purely internal sector (where h acts) starts at the
same order than the purely external sector (where H acts). On the other hand, interestingly
the internal h contraction can be re-expressed up to higher orders in terms of the full H
contraction, by use of the identification. Then, combining (2.41) with (2.42) permits to
eliminate the internal contraction

1

b
e —~— V75 <I>AB = \I/ <I>ab + Higher order, (2.43)
Xr

generating at the same time the parameter b defined in (2.40). Proceeding forward towards
more derivatives requires keeping track of the higher order terms, which interestingly can
again undergo this procedure. The only non-straightforward step for higher orders is that,
in general, the structures that obey these cyclic relations are not single contractions as
n (2.41), but consist of sums of terms with more that two indices contracted. It then
happens that the identities above fail to apply to independent terms in the sum, but hold
for the full summation. To clarify this point it is instructive to discuss a concrete example.
When implementing this procedure for the last term in (2.32), we get

1

b o
e (x (x ) b 2Fen DareD _ Fca DPA° + Higher order, (2.44)
9 AR -

which is simply a concrete realization of (2.43), and explains the O(b) contribution to the
generalized Green-Schwarz transformation in (2.38). Keeping track of the higher order
contributions, one can identify among them the following combination

2

SEyv® D
M 95 Xr(—1+ Xg)

Ex® FigzFeg” (FEODTE — FEDTLI) . (2.45)

Note that the difference now is that there are two terms with a four-index H-contraction
on CEFG (while in (2.41) we started with one term with a two-index contraction). We now
perform the h x H splitting as in (2.41) for these terms

FozrFeg” FLODTGE = FpF gl FPDINE + Fys FsP PO DA™ + . (2.46)

FogrFeg” FEEDTY = F e Fu S Fehepapnd 4 Féa—ﬂF@ﬁFg‘aDaAg+..., (2.47)

where the dots stand for higher orders. The subtlety arises when studying the realization
of (2.42) in this case. We find that

1 — —_— _ = —

FyF FE DA = < FierFeg’ FEODTE + AT (2.48)
R

FigFe FLUDTNTT = S FigrFeg’ FEEDTET + A (2.49)

where the anomalous factor is given by

AT = <2 FygpFog’ FEODTGE 2 FugpFeg” FEODTEE + Fogzr o™ FE9D g
FoggFeogrFe DT — FogzFegnFM DT — Fygp FogrFe” D“FgH
+ FugrFegr o9 D'T7 + Higher order . (2.50)

- 11 -



It is quite remarkable that exactly the same anomaly appears in (2.48) and (2.49), and
that it cancels for the particular combination (2.45), leading to

2 — — = — =
Ext FogzFog (FLODT — FLEDTTY) =
g% XR(_1+XR) M bEF cGg ( C C )
b2 —_ - I
= 5 B’ FipFe (F2D 15" — FEEDT5?) + Higher order
b2 —_ - I
= 5 Eu® Figple! (F2'D"A5" — FE°D7A5") + Higher order.  (2.51)

These are the last pair of terms in the second line in the generalized Green-Schwarz trans-
formation (2.38). All the other O(b?) terms and higher can be treated analogously.

Although it certainly looks like this is the case, let us remark that we do not have a
proof that the parameter b will form to all orders, nor that the recursive relations required to
completely remove the gauge dof will converge at all orders. However, if we assume that the
steps leading to the formation of the b parameter can be repeated over and over, it is then
possible to implement a systematic procedure to compute order by order in the perturbative
expansion, that can be built into a computer program. It should follow a precise route in
order to succeed. The first step requires switching all the g-fundamental indices i at a
given order into H-adjoint indices AB. This is readily implemented by replacing

&t = );R gt &= );RFAB (M S = —i(tﬁ)zB (to)5" ()™,
(2.52)
and then by eliminating the generators through (3.3). The next step consists in splitting
indices A into @, @ in the previous expression. The terms with generalized fluxes or
Lorentz parameters containing mixed H and h contractions must be separated as they
are higher order. Those with pure h contractions should be replaced and expanded by
their expressions in the appendix and the gauge fixing conditions (2.25). Once this is
done, the leading terms of such an expansion will combine with the pure H contraction to
form the parameter b, the rest must be separated as it is higher order. Finally, one is left
with generalized fluxes and Lorentz transformations in the extended space with pure H
contractions (now properly weighted with the parameter b), which should now be replaced
by the expressions in the appendix and the redefinitions of the Lorentz parameter (2.33), in
terms of the fluxes and parameters in the double space, plus higher orders. This isolates the
relevant contribution to a given order, which is now properly weighted with the parameter
b, and separates the higher order contributions, which further admit an identical treatment.

The same algorithm could be adapted to the full bi-parametric deformation of DFT
to be discussed below. Omne can also adapt this algorithm to find higher orders in the
invariant action. The main issue here is the optimization of the algorithm as the number
of couplings grows exponentially as we move to higher orders. Of course, since the whole
algorithm is based on an assumption, in the end one should check if the result is correct
and consistent. This is typically a difficult task as Bianchi identities can be responsible for
the equality between seemingly different terms.
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Name | Group Indices Metric

G O(D, D) M NMN
/ / ~ ~ —Ruy 0
g O(k,k) =0 +d,q+p) =, i) | Kpp = -
0 /iﬁg
O(D+k,D+k) . nvun 0
g , | M=) | =
:O(D—i—p—i-q,D—i-q—i-p) 0 Kpp
H O —-1,1) a Pap
H O(1,D —1) a P
— . Py O
H HxH A= (a,a) nap=1| — _
0 Py
T ., — ~ _ —Kag 0
h hxh=0(,p") xO(p,q) b= (a, @) | k= —

P, 0
H OD+q -1,1+7p) A=(a, a) PB—(b )
T 0 —Kag
_ _ _ P+ 0
H O1+p,D+q—1) A= (a,a) PB:(‘”’ )
0 HE
- _ P 0
H HxH A=A A) |nas=| 28 _
0 P

Table 2. Groups, metrics and index structure for the extended space relevant to the bi-parametric
case. In the bi-parametric case the relevant choice is ¢ = ¢, p’ = p and k = p + ¢. If the prime
quantities were independent and set to zero, this table then reproduces table 1.

3 The bi-parametric generalized BdR identification

We now move to the bi-parametric case, where both a and b can be turned on simulta-
neously. This requires a further extension of the mono-parametric setup, consisting in a
double extended space with a duality group G = O(D + k, D + k), which is now a more
symmetric scenario, as expected. We show in table 2 the implications of this extension for
the relevant symmetries, and the notation that we will adopt from now on.

The counting of dof is now a little different than before. The extended frame &y
parameterizes the coset G/H, now containing (D + k)? physical dof. We obviously accom-
modate D? of them into a double generalized frame Ej;* parameterizing the coset G JH.
There are other k2 physical dof that are captured by a scalar frame eﬂd, parameterizing
the coset g/h, which is now non-trivial as opposed to the mono-parametric case. Also there
is now a pair of projected vectors £A, and E¥5, each containing Dk dof. Compared to the
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heterotic case, there are then extra vector fields and scalars, that will have to be identified.

Because now the duality group is enhanced, the generalized diffeomorphisms can acco-
modate a gauge group K of dimension 2k. We then take it to be a direct product K = K x K,
where K and K are two independent k-dimensional gauge groups. The only non vanishing
components of the extended gaugings are then fuyf and fﬂgﬁ and the consistency of the
deformation then requires that each pair of gaugiﬁgs must satisfy the linear and quadratic
constraints independently. The strong constraint further requires 0, =0 = 9; .

The source of the two parameters (a,b) are the two gauge Coﬁplings g1 and go of IC
and K respectively, whose (dimensionless) structure constants are given by fw?f =91 ! f#yf)
and f;”;f’ =gy ! fﬂ,;ﬁ, respectively. Inspired by the heterotic case we now plan to identify
the groups

K=H, K=H, (3.1)

with generators (t,) a5 and (t;)4gz, which satisfy the following algebraic relations

(t4) 45 (t) 2 = X, 05, ()5 (o)™ = X, 67, (3.2)
CD i CcD CD
(t) a5 (82 = X, 055, ()5 (ta)°” = Xr, 053, (3.3)

XR, being the Dynkin index of each representation. Here we used the killing metrics &,
and kjp to rise and lower indices in the algebra, e.g. t* = k¥t,, fup = Kpo fu? and
similarly for tilded indices. This should be contrasted with the frarﬁefompbneﬁts, e.g.
c‘ng = UHNENA = —Kuy E¥ 4.

As before, by use of the generators, we can cast certain components of the extended
generalized frame in the same structure as the generalized fluxes in the extended space

Eape = — 91 7 (ty)se, €sc = — g1 & (tu)se s
Eqpe =~ 92 "4 (ti)ge » Sge=— 926" (ta)ge - (3.4)

On the right we have done the same thing with the gauge components of the parameters
that generate generalized diffeomorphisms. Written in this form, their transformation with
respect to local symmetries reads

Written as such, they happen to transform in exactly the same way as the extended gen-
eralized fluxes (2.12)

r D
r D

ASIRRS]

which readily suggests
éas =T us, Ej&:]—'ﬁ&.
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This is the generalized Bergshoeff-de Roo identification in the full bi-parametric case. Again,
it is exact in the sense that both transformations match identically under this identification.

The extended frame admits a parameterization identical in structure to that of the
mono-parametric case (2.22)

1
Evt = (@) uN Ex?,
En® = —Apfes®, (3.8)
gﬂA — AM[L EMA,

£5 = (0%) e,

where we now redefined the quantities
XmN =1munN — AvP Ang, DOpo = 1 — Anp AM 5 (3.9)
that satisfy the useful identity
An F(@)i” = FOOM™ AN", (3.10)

for any function f. As opposed to the mono-parametric situation, ;% is now g = O(k, k)-

valued, so it is convenient to further parameterize it as

v
ep® = —Qp¥ e, *, (3.11)
eya _ Qﬂy &7
eyg = (H%)gygga
where ;% and e,* are independent O(p,q) and O(¢, p') matrices respectively and

Hﬁ[, = 77[“7 — Qﬂf’ QDB’ Hyy = ’I’]yy - Qﬁg Qf,y . (312)

Note that in this parameterization the counting of dof exhausts the dim(g) = 2k? — k, of
which k? — k are contained in € and e, and the other k2 in Q.

Due to the original ‘H symmetry, there are many non-physical gauge dof. It will then
turn out to be convenient to perform a gauge fixing to remove some of them

EME.AM[L =0, EMQAM’f =0, ;" = constant, gug = constant . (3.13)

Demanding that these constraints are gauge invariant 6&;% = 66,2 = de* = de,* =0

freezes the following components of the H parameters

Pag = ﬁgg(z_%);f 5PgaP§ua

Tag = el (872);" EP5 0pts, (3.14)
1 1 1 4 oy

F@ = Qy[ggy ] (2_2)//0 (5( 2)pl/ - (HQ)L/~ AMgaMfg — g1 fggg\ &? (22)3\11) )

Iog = é“[aé’;g] (X72),7 (5( )50 — (02)57 AM500E5 — g2 f557 &7 (E§>5\D) ;
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3.1 The perturbative expansion

The generalized transformations in the extended setup (2.2), the proposed parameterization
in terms of G-covariant components (3.8) and the generalized BdR identification (3.7) lead
to an exact, yet implicit, double Lorentz H-transformation for the double generalized frame

z 1, = 1 ) 1
SEM® = ExPAy+ By’ (X2 ) Feep DTE + TP () e, (315
© g1 Xp w2 Feen 9 Xr, M 2P, (315
_ T 1 1 _ e 1 1.z -5
SEM" = EnA"— En(x 2)eF,z5DTCP — TR (x " 2) 5 e
b 93 XRr, 2 «Lh G XRr, =

where we have redefined

The transformation (3.15) hides an infinite expansion in terms of G-covariant fields and
parameters, named the generalized Green-Schwarz transformation. To compute this trans-
formation perturbatively in integer powers of g; 2 and 9o 2 requires taking into account the
following four actions:

1. First one should perform an h x H decomposition of H by splitting indices A = (a, a),
and an h x H decomposition of H by splitting indices A = (a, @).

2. Identify the following components of the extended Lorentz parameters I‘ﬁ, F@, Lys,
I'w, and replace them by the gauge fixing conditions (3.14).

3. Redefine the H x H components of the Lorentz parameters I'y, — Agp and ' — A,
through (3.16).

4. Rewrite the components of fluxes in the extended space F (2.9), in terms of the fluxes
in the double space F' (2.37) and the internal components of the extended generalized
frame. We write these expressions explicitly in the appendix (A.1)—(A.6) in order to
lighten the notation here.
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Up to four derivatives one gets the following transformation for the H projection of the

double generalized frame
ot
2 ( 1+ X R1)
cCG nap_E cCE na_ G
wt | ForrFeg” (FLOD™TS — FLEDTL)

_ - 1 1 _
SEM™ = EnPA;" — . Fyog DA — OMALF oy (3.17)
92

1+ XRQ)
2
g% XR2(*1 + XR2)
— (D1%9) (FueaFsz Fig™ + DoF sz Feg” — 2 DeFogzFeg” )
— FygrD" (DT F 57) — DD (Fea Flez + DeFizr )|
1 1 11 [
93 (=1+ Xg,) gi Xr,

+

Fyz7 D" (DT2 Flep)

hCD CD T Ae
+ (FMJ}' P Frop — O P .7-“?@) D Aﬂ
1 1 1 1 e _
+— = Oy (DT Flog) F°,
g% (_1+XR1) g% XR2 [ M< CD) od

+ OuA“ (P FP F i — D" FEP F s )|

1 2

_+_7
gil XRl(_l + XR1)
+ (0uTE) (2 PR FopZ Fogip + P Flep F2s + Fiep D2

+2DFep FPe ) + Oy (DT Fege) Fép |+ 0 (4°) -

|0a (D<IR) (F,;"Fep + DeFep)

The factors (—1 + X;)~! are a consequence of the cyclic relations (explained at the end of
section 2.3) necessary to cast the h-covariant contractions in terms of H-covariant ones.
Note that there are no h-covariant indices a and @ in this expression. The two derivative
part of the Lorentz transformations in the first line above is fully expressed in terms of
the H-covariant indices of the double space. The higher derivative terms of order g;” 4 are
written in terms of the extended fields and parameters. We must then repeat these steps
once again for these terms in order to get the complete four derivative transformations (we
drop here all contributions of order g, 6 and higher)

e . Bz . b
6" = En"Ag = SO0 A oy — 5 F) g DA (3.18)

b’ hd he rya A _d
5 Bu |DPDPAY (Fa 4+ Dekyp ) = Fyp Figd (FM DA = PR DAY

+ Fep DN (Foea P! — DyF o +2 Doy ) + By D7 (DA T )|
ab

-5 Bx [D“Aef (Fyr F™ 4 Py g — Dy P2 )+ Fyp DT ( DPAL T )

_ DQAQ (Fafththchd _ DaFechde> _ FEjDQ (DgAaFia) :|

+4 EM [DyDEN (F g p 4 DeF™ g ) = F7 oy Fag (FAD A e~ FDyALY)

+ Fop DyAey (F ! — DTFSL 42 DoF™F) 1+ F7 Dy ( D°A“LF, )]
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We see once again that g; and Xg, arrange themselves into the combination

2 2

1 1
a=—5— b=
g% (_1+XR1) g% (_1+XR2)

(3.19)

Repeating the computations analogously for the transformation of the H projection of the
double generalized frame leads to

b J—
SEn®= En2Ap*+ *%ACdFaHWL 5 e DeAs (3.20)

2
—%E {D“DCAef (F s +D.F;

3 f> — By, Fegl (FAD2A 2~ FR2D2A9)

bef

—i—FCefDaAe ( dengf D- FJf+2D Fgf)+F€f'Da(DcAachdf>:|

ab hed o =
~g bm {D e (F FROF = Dl Ffw)JereJcD“(DeAc FLg)

— DA (Pl Py~ DUFFy ) — P Dy (DTAFY ) |

P I d F(pchdp n 7 pehen x d
+ 5 Ex® | DgD°AN (Fog* P pt DeF* ) — F2 7 F g (FEM Dy — 9 Dy )

+ F<; DpA (Feoa P97 — DR 42 D ool ) pe D (DenlF T )]

It can be checked that these transformations preserve the G-valuedness of the double
generalized frame, and also close together with the generalized diffeomorphisms into trans-
formations produced by the following corrected brackets

a . b .z
&3 = 26f{opey! +0M €6 p+ 5 ATOM Agjea— A[daMA2] (3.21)

—ab 8MA[1—foA2] dF —|—6MA[1efD AQ]CdF

[\

+a [8MA[ DCAQ]echdf + 8M (DCA[l >DCA2]ef}

1

AR = 26 OnAY —2AT Ay’ —a DT A[TDbAz]cﬁbD A DP Ay

e c d cpe ]
+b° 8MA[1fD Ay Fgr + 6M<DAf>D Aajzz|

tab [FLg DAL FY oy Dy Ay AL — DEAy ¢ DY (FegDLAy™ )
—D[aA[17Db] (FengAQ}g)}

apcd mb A&l @ e acd b a cred b
[D A DPAG F2 Fyop— D DEAE DV D, Mgy —2 DI (D°AE! Fog ) D 1A2]6f]

2 arcd b aef @ e b a c b
+b {D AR DPAY PO P D7D A DPDeAgy—2 D0 (D A E, )D }A%f},

AfS = 2¢]f aNA“—” 2AFE A aD“A[l

+ab | F7ey DAY P DgAy AT — DAy DY (FPu DT Ay )

D®Agj—+b DEAF DEAy—;
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_D[QA[lef DY (FLDiAQ}a)}

[D“ACd DUASLFI Fyep— DEDEACY

S DEAS ! DEDAyya— 2 DI (D°ATY Frg? )D1A2]ef]

[l

+1? {D“A‘debAe]f F73 Pos— DDA DEDg Ay 5~ 2 D1 (DEAFT F T ) DlﬂAQ}ef}

The transformations (3.18), (3.20) are the second order corrections to the generalized
Green-Schwarz transformation. The first order reproduces the results in [32] and the second
order in the mono-parametric case reproduces (2.38), (2.39) originally found in [36].

3.2 The bi-parametric action to second order

In the previous sections we introduced an exact generalized BdR identification (3.7), and
used it to obtain second-order four-derivative corrections to the generalized Green-Schwarz
transformations (3.18)—(3.20). We now exploit this identification further to get the full
invariant four and six-derivative couplings in the action of DFT.

The starting point is the standard two-derivative G-covariant action in the extended
space

S = / dX e R . (3.22)
It is useful to decompose it as a sum
R=Rog+Ri+Ro, (3.23)

where Ry is a constant, R contains vectorial generalized fluxes and therefore the general-
ized dilaton dependence

Ri =2 (DA Fg - DAFL) — (FAFz - FAFL) (3.24)

and R includes the three-form fluxes

1 ABC ABC
RQ:Q("TABC"T —Fape ” )+

1

o (Fape F° — Fasc FABC) (3.25)

The action written in this form is democratic with respect to overline and underline pro-
jections. Using Bianchi identities it can be taken to a simpler and equivalent form in which
this symmetry is broken [43, 44]. When the action is gauged either explicitly [37] or through
a generalized Scherk-Schwarz reductions [42, 47, 48], in certain cases the Bianchi Identities
that connect the two ways of writing the action fail con coincide, and the one that prop-
erly connects with gauged supergravities is one in which the overline-underline symmetry
is broken [49]. Here we use the symmetric version because since we are interested in the
bi-parametric case, where parameters a and b interpolate between the two projections, it
is useful to preserve the symmetry between them.

The perturbative expansion follows from the same procedure discussed in section 3.1,
the relevant steps here being 1 and 4. One first has to perform an A x H decomposition
of H by splitting indices A = (a, ), and an h x H decomposition of H by splitting indices
A = (@,@). Then rewrite the components of the fluxes in the extended space F (2.9),
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in terms of the fluxes in the double space F' (2.37) and the internal components of the
extended generalized frame. The exact expressions for these can be found in (A.1)—(A.12)
in the appendix. The outcome of such a procedure is a lengthy action, and so Cadabra
software has been of great help [50].

We found the following action

S = / dX 72 (RED 4+ RO 4 RM 4 RA) (3.26)
where .
ROV =Ro+ 2 (- 42). (3.27)

is an arbitrary constant because Ry is not fixed by duality, so we choose it to vanish. The
two-derivative part is obviously the standard DFT generalized Ricci scalar

_ _ 1 — 1 — _
R = 2D"F; — FFy + 5 F g F° + gFme P = ({@.be..} © {abe..}) . (328)

The first order decomposes as
RU =g RO £ p RO = ¢ RO (

with

ROV = —FpF R, 1 2D FF R, + 2D b FyFY y + 2D PP FyF 7y
—1/2DgDygF*®F®y, — 3/2D" DyF*® Faoy — D" Fg® D Fy ), + 1/2D*F* Dy Fa
—1/2D°F"DgFy  — 3/2D*F CF’ y Fry — ADTF™ g, Fy

+1/2D F RS F o 4 4/3F % Fo by ™ — Fiep ARt bR

+Fe b AR bRy + FOCFC, F R

(3.30)

It obviously coincides with the four-derivative action found in [32], and later rewritten
in [33] in terms of generalized fluxes and flat derivatives.

The previous actions were known, and now we present a new result: the six-derivative
action. It decomposes as follows

R® — 2R02) 4 R | p2R((20) (3.31)

= a?ROY 4 apRMY — _ aerb .
{a,b,¢,...} < {a,b,c ...}

In the last identity we cast the Lagrangian in a form that exhibits the symmetry with
respect to the exchange of a and b. It is convenient to split the contributions between

those coming from R; and R2, namely those with dilaton dependence and without. We

then write R(02) = R((IS’Q) + ng), where

RE? = —2DLFL DDy Fryy Fy— 2D F L DDy FY, oy — 2DV F™L Dy F, ;D F; (3.32)
~AD DR FUF; L Py g +2D" Dy FUF, L Py + 2DP DLFA FPF? ), Frgy
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~ADFC DRy L Py — ADTFCDE e P L P + 2D FE D PP B L
+2D4F Dy FPee N DYFPeL Dy, FoF 4+ 2D o9 Do FPF® y Py

f pade 3 d e f dce f e d - fce f
+2DLF™E D F* g F Py —AD DIF CF Fel Fy,  +2D°D Ff—FEFgngE 5

ef
+2D°DLiFtep pf aeFp— 2DLFde P Py Fro i+ 4D°F-eeDf FEQiFgF?e ;
_ontpcentRf fmp dpece nfr fpp  _opepdeenfm fmm
2D F D ! LFeFy,  + 8D F DIy LFeFy 2D F D' Fy LI Fy

—2D" Fee Do LRy — 2D F e B By L Foy + ADTF Fr Oy L P
+2DL Fe DE R P 4 Firg 4+ 2D PP DP Bf g Po P+ 2D D F¥T yFe s

ef fef
+2DL e DERS y FoF - — 2D F e R LR, 15% —2DT FP R o J:FEEL
+ADTF? o S F° Py Pt ADFFP P8 Fy B gy Fre 4+ DUFPEE Pt By P
—2DF FI LF9 Py Fg — 2D B TP R g Lo — 2DV L PO P F 9 Py
+HADFT Fe R L F9 g — 8D PP FO Ry O 1Py + ADTF2 FEFEEEFEEQF@;
HAD e FoFe L P 2 Fogp + DT PP F® Fopg " Fogh + AD FPLF FL Py Fog,
—ADY RS FERSLF®  Foyy, + DUFL PRt Py oy + DY FE PR PP, Fegh
—2D7 FIL Py P Py - QD?FE@FEFggF%iFﬁ S HAD PPt LT
—2D Fe PR LF9  Fo 4 2F OB Fe LY Py —2FT PO PP Py F 9
H2F RO Py Bl 1 /2T Y Rl R Py Fpsh e FRRYERART F%wa ;
—2p/ e FgFf\cnggiFﬁg —2DIFTL PR Fhy, ﬁﬁ ;—2DT PP pT Lph Fﬁ{

dpecep o 9pf b _ypfpeceppe 9p hp epccdp pf  pghp
+AD e Py OFT APy | —ADT PP PP S Fe Py + D F P g Fo Fy
and the contribution of the three-form fluxes is given by

1 3 - 3 1 5 bd
Ry = —ZDEDLF'D Dy, + D DEFELD D Fy 4+ 5 D' DEPULDeDyFy (3.33)
3

L b pbef b racf a L enens pde of
+5 DM LD Dy Dy Fy ; + S DMF L DaD Dy Fy  — - D"D*DIFAF o g

3 e ns mde f I enen_pfeerm £ e f peern f
fiD D*DLF=F @ngifiD D°D:F FgngEiJrD DD FE Fgng?gi

+3D° D DI P LR~ gDEDEDEF?EFEELF— +DEDLFYE D R Py

fef gh
+DEDEFID Fy F + g DEDEF*9D, Py, Foy

cndef pdp f
—2D°D*FL D F5 aF5.,

—D'DAFLDyF Fr, 2D DLFAD Y 4 F 2 — D' DIF™DiFY
3 e F pece Fr @ e rfce fm .3
+5D° DI FPDe e L Py, — D" D T DeFe Ly + 2

R _ - _ — 1 = - =
dnfpecepen fm _epidpepcepnlin fr “pipcpcep_pf
+4D“D Fd D FEQ*ngf 5D“D Fd D Fengf§£+2D D Fd DzF Qfngf

~-D' D Fp. R F

Fg,
crndmeen_pf fm
D' D'EEDF L,

~3D°D'FD B P+ D' DT F DR F,

1 7 e rrece f b pfee yerm f b pece iy f
+5D D DeFe L Py 2D DyF D R Ly, 2D DiF DT e Ly,

b ¢ de h b ~d ce h 1 4, befd ¥
+D=DF *gDQFEQ*FEgﬁf2D7D F ngQFEE*FEQEf §D*F =LD DgFE ing 7

3 pdpael p_plp T L ot pbde pe p_pf 3 nf pade p_pE gl
—5 DAF™LDaD Fy’ a5, ; = 5 DLF™D" Dy ae Fgy = 5 DLF™DaD F ez,
—2DLF" D FY 4. DyF 7 +2DLF™ e DgF 4 D Fog , —3D° F*“ Dz F; Dy FY L

1 — _ — - _ — - _ — _

-5 DYFLDPDyF P o4 2D2FL DD, By —2DIF™L D D FY,  Fy

def dgh dgh
+4D9F522DdDyPE;FEgﬁ - 4D9F592D5D9Fd£FEgﬁ +2DIF LD, , DaFyy,
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+TDEF LD, P Dy, + DgD AFLF B Fapy 4 DD BT R R
+3DfD Jo S S her s LD DRI e, F ghf+3D9D FLF dthdeF,ﬁf
cd oh 3 hed c ce h
+§D R O s Fpy+5D° R i s ﬁi+§D DRI L
3
_ e 2
f cene g cndrmcernn grf h _ ce g f h
+D D AP R Py, — DD FfF 2F MFy | — 3D D RS F, 2F APy
f ce e g h 73 cd f gh 71 fcd gh
+3D! D P e AP Fy 16D D F#F g2 Py, 16D DR Py Py,
e fed h cd f h h edf f
71—6D DF Py, P2 nghf—GD DFEAF! a P Py | —3DED F L2 F 5 Frgy

+ g DD R B0 T s — 5 Df DLpepd, ot

D' D°F<F7 LF" Py

I = £
dnf ce f mh f dce f
—-3D°D Fg*Ff =F efF*Eg—*D DF *FES—F efFfff—l— T

2

gh

iF h+2DCD FengcthfngeE

~2D DLFLI T g B, 4D DRy gy P +ADT DR P 0P Fy

1. -
— 5 DUFTADVES o P Py, — DY bpbes py T thqh—fp FeLephpdt Far Fen
3

ef dfh Zef s 7 3 Zef e o Fh

—DYFHD,F gy Fepy = 5DLF IDFC  Fs Fefh—foF LD FE s B Fg,
—2DIFU L DLFE  FY o — 6D F ™2 Dy FF 2 FY gy oo+ DIFSL DU, P L F
—ZDQFdEfoFCEfFngF—..+D2Fb5inFf jad iF—..+4D2FCﬂD7Fd L Fagn Py

dz]

—4DIFEDh Jngh +136

~6DEFI D, FC AR Ry 4 5DEFT S DY F SRR

D FcebeFdefF“F -+ DEFPS D F AR LR
iD—F@D R, P
gh dij

+5D9F@D FEhJ;FEghFd” —5DLFED, Ffﬁngghqu +D P DT L,

+5 Lprpeap. P F 7L, +2D°F; <D By L Fy,  —ADTFDI R F; LF

+4D9F@D foy RN D b pice po it g L f+2D pede DI th@Fgﬁf

g dde f h g hde ff gde. fhf _
—2DIF DR F,iFtherZDF D BT P+ D P D M Py P

€ pofed [d poh f ecd g hf CEfgfh
+D°F'=D’F CF thf—l— DF =DyF7 qF¢ thf+4DF D' F? LF", quh

—DIFTeE I iF*Le et Fro— 5D F/eDTF" Ly P it 1p7 Fiepip LFM P
€e § € -y
+5 L pTpeee piph oL Fypy Fyp+2D" FT Dy F7, thefF o+ 8D F=DT FFIF, SFr

—4D B A 02D D R OFT MR Fon+8D Frepi R SR R

dee 1y f h dee f h ece f h
—8D°F%ep FéggFég F[@*D F DEFEEEF e F? —3DF =D;F gF ngh

b~ fce € h Crcd e f h ded ~f h
+2D" FIDpFT P MFy  — DOt D F g ot ngh—fp FYD! By F2 Py,
5 ecd h Cr1e erffh e h
—1—6D FD T g B9t F | ADP R D FTIR Py o +2D°F; <o pd pfh Ffefngh

— 8D F*e pl R Py Py gh+8D€ Fspl p Loy P gh+D FdegD you f"Ffefngh

ee, ffh ef nf pegh ef h o f
+D F gDEF = Fgﬁfngth AL D) Fed Fgefngh D F=LD ng F efngh

_ pdpfef pEpghm 1 e der N F b 3 def gh of
DIFTL DR R Py, — S DL DT Rt ey, 16D FULDeF Pl Py

1 =
—iDingngFEhiFgefngh+4D F4 DLt aFeFr —4DLF s DT aFeFs

— — - — 1 - - =
_onerpcshnen ffn Al e magh r_peff _ = pfpfde ng pd
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On the other hand we also split the mixed ab terms in those with dilaton dependence and
without R = Rg’l) + Rg’l), finding on the one hand

(1,1) _ b C. e d d e de d 7a e de
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and on the other
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Every term in the action is separately invariant under generalized diffeomorphisms
and rigid O(D, D) transformations. What fixes the couplings is the double Lorentz sym-
metry. Since this symmetry mixes different orders through the generalized Green-Schwarz

transformation, invariance is achieved as follows

SAR = ZZ& MRK — (3.37)

1=0 k=0

Here we know the Lorentz transformation and the action to second order, and then invari-
ance holds here to order O(a’?) only. Higher corrections require pursuing the perturbative
expansion further.

4 Supergravity, gauge fixing and field redefinitions

It is well known how to reduce the two-derivative DFT action to that of supergravity. This
requires a GL(D) decomposition of O(D, D), a parameterization of the generalized fields,
a gauge fixing of the double Lorentz transformations to its diagonal subgroup, and picking
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up a certain solution to the strong constraint. When higher derivatives are considered,
these steps must be complemented with field redefintions. The reason is that the compo-
nents of the generalized fields inherit the non-standard Lorentz symmetry coming from the
generalized Green-Schwarz transformation. In particular, one should seek a redefinition
that renders the metric and dilaton Lorentz invariant. The two-form is different as it is
expected to carry a Green-Schwarz transformation. When the two-parameters a and b
are turned on, the minimal field redefinitions that meet these requirements are those that
connect the DFT components (noted here with an overline) to those of supergravity in the
so-called generalized Bergshoeff-de Roo scheme. In such a scheme, the dilaton, vielbein
and two-form transform as [32]

0¢ = Leo,
dep® = Lee,™ + e, "Ny, (4.1)
Oby = Lebyu + 20,0 + S0, A"D0), - 90[ ARG,
Let us now introduce the protagonists in the Green-Schwarz transformation of the two-
form. First we define the spin connection
wuab = aueubdja - FZuepbeya» Ffw - %gpa (Ougvo + Ovguo — Ooguv) (4.2)
that transforms as
(5wwb = nglmb + QLAab + wuacAcb — Aacwﬂcb . (4.3)
We then add torsion to it in two different ways

(%) 1

wubc = Wube + 5 Huupeybepc s (4.4)

with the torsion given by

Hypp = Hyp — aQ,gV;, + bgm, Hyuvp = 300,b,,) (4.5)
where the Chern-Simons three-forms are defined as
G _ 5By sBa 4 255 Hes(Ha
waz, Dl 0, Wop * F 2000 Dy Wy (4.6)
Under diffeomorphisms and Lorentz the Chern-Simons transform as
O bA(i)a
00 = L:OE) — 9, (a Wi ) , (4.7)

which, combined with the Green-Schwarz transformation of the two-form (4.1) renders
H wvp Lorentz invariant. This is then the right three-form curvature tensor to appear in
the action. It hiddenly contains an infinite tower of higher derivatives, because it depends
on the Chern-Simons terms, which in turn depend on it. So this establishes an infinite
recursive relation that allows to expand the corrections order by order.
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We discussed above the minimal and natural all-order completion of what was found
in [32] to first order in o/, which reproduces exactly the heterotic Green-Schwarz [39, 40]
extending it to the bi-parametric case. Interestingly, because this fits into a duality covari-
ant picture, T-duality enforces the generalized Green-Schwarz transformation to generate
not only the Chern-Simons terms, but also notably the quadratic Riemann interactions
present both in bosonic and heterotic supergravity corrections. We will now show in this
section that this structure (4.1) is preserved by the a/? corrections discussed in this paper,
with no further deformations arising.

The starting point is to perform a GL(D) decomposition of O(D, D), by parameterizing
all the duality covariant tensors in terms of fields that will later be linked to supergravity.
At the moment it is not necessary to impose the strong constraint. The flat and curved
O(D, D) invariant metrics are decomposed as follows

nAB = “ comun =1\ |, (4.8)
Yab 0y,
where g are Minkowski metrics, that carry different indices because they are acted on
separately by the different factors of the double Lorentz group. The generalized fields are
parameterized as

_ GH  Ca GH_ 4Ca
o fgle®, Byt= | Cf I T R
V2 (bup — Gup) €°c 9 (bup + Gup) € 9*

where it is necessary to include a pair of vielbeins, each satisfying

~a_ - -v__ba v b — = = = ~ b
e,ua = g,ul/eygg “, e#g = guueyggja Guv = €y~ Gab €v™ = €y Gp v - (4'10)

If desired, one can then define the generalized metric by curving its flat version

aHv —gh*b,,
Hap = | 9 o Hun =7 7 : (4.11)

ab bup9™ G — Bupgpgz’av

We have included an overline on the dynamical fields because they will ultimately be
affected by the generalized Green-Schwarz transformations. These non-standard Lorentz
transformations can be removed for the vielbein and the dilaton via field redefinitions, as
we will show soon, and then we reserve the notation without an overline for the set of fields
that transform as usual with respect to Lorentz symmetries. An equivalent decomposition
must apply to generalized coordinates and parameters

o= (", 0,), &= (6, ¢"). (4.12)

Note that the one-form component of the parameter of generalized diffeomorphisms also
carries an overline, this is because it will have to be redefined to second order, as we will
show here.
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We recall the way in which the generalized frame transforms to different orders in o’

(or equivalently in powers of a and b). We separate the orders from (3.18) and (3.20)

OFE e = Z%E']ug + EMQAQQ + A(I)E']M2 + A(Q)EMQ + ..., (4.13)
SEM® = LeEr® + EvPA" + AV ENT + AP BT 4 (4.14)
where to first order we have
a_ 7 b . -
AWEy® = S By Fy DN + S Ea DA™ Fo g, (4.15)
_ _ b _ =
AW EY" = —ZExDyA“F oy — 5 EntFy DA (4.16)

and to second

a? z . - . .
A® By = — 5 By’ | DDA (F g5 F" s+ D Fy, ) = Fy, ol (FAD2AE— FReD2A )

+ oy D2NEy (FygF ™ — DyFtl 42 Dt )+ Fy D= (DAL ) |

ab -\ Flrape hed o a( peped
2B [ DAL (B PR F = DR F g ) 4+ B, D (DA L)

— D;AT (F“ Fhedp. _ pepedp

-
" Fed fc*d) —FeFDg (DeAC*ng)}

b2 b cref ard a a f chd € che d
2 But” | DgDPAT (FegFpt DeFr) —FepF ) (P Dphyt — P Dyag)

+ <7 D% (F2eaF %7 DR 2D, 297 ) 4 P2 Dy (DEATF 5T )

_ b2 — — — — =
AP By = 5 Byt | DDA (Foay P p+ DeFyp ) —Fyp ! (P DA P D7)

+ F DA% (Foea P97 — Dy 42D FyT ) + Fiz D" (DA T ) |
- “Zb By [ DA (B P4 Py — Dy Fe ) + Fyp D" (DEALFT )
— DAL (FEﬂ FRelp o DTFR ﬁ) —F7,; D, (DEAaFia) }
+%2 But | DDA (F g Flop 4 DeFop ) = F oy Feal (FLD A S~ FD)A)9)
+ Fooy DyASy (FPgF ™) — DR 42 DoF™9 ) 4+ F7 s Dy (D°ALF, L) |

Note that the transformations of the two components of the generalized frame look sym-
metric with respect to the exchange of the projections and the parameters a and b. In fact
we can make this symmetry manifest

0ENME = EgEMQ + (EMQALC + EMEAEQ> N, (4.17)
OEM" = LeEn™ + (EnAg; + EntAge) n™, (4.18)

by introducing the following quantity
Ap,=—Dg = EMp(ADEyE + APy 4 ) e (4.19)

The idea is to see how the above transformations impact on the components of the
generalized fields (4.9). There, in order to preserve duality and double Lorentz covariance,
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the generalized frame had to be parameterized in terms of two vielbeins (both related by
a Lorentz transformation). Because we want to establish a connection with supergravity,
we must break this symmetry to a single Lorentz transformation and gauge fix the two
vielbeins to a single one
e’ = €,%0," = €, 05", (4.20)

To this end we have introduced Kronecker deltas to enforce the two Lorentz groups to carry
the same set of indices a,b,c, ..., which will be the Lorentz indices in supergravity. The
connection to supergravity also requires a specific solution to the strong constraint oM = 0,
as is well known.

The generalized Green-Schwarz transformation depends on generalized fluxes and flat
derivatives. We must then specify how these depend on the supergravity variables

Fapc =3DWE"BECcnpg, Fa=2Dad—0uEY A, Da=EM,0y. (4.21)

We must then specify how these depend on the supergravity fields. The three-form fluxes
take the form

Fpe = —753 (w[abc] - éHab0> - 7535550 (20l +wiy) + (422)
Fape = ﬁag(sgag (wa,,c - ;Habc> - 75@51750 wi) (4.23)
Fope = }5352’52 (Wabc + ;Habc> = 75 sLscwly) (4.24)
P = \[5“5”50 (w[abc] T Habc> S \faaabac (m&fz] +w[( )}) . (4.25)

while the vectorial fluxes read
iy = V35, (o~ D8) = 58 (i} 4ot -203) . (a20)
Fz = —v/262 (g — Dad) = —\}553 (wi? + wlod — 2Dad) - (4.27)

Flat derivatives are given by

Dy= 6Dy, Di=—-6Dy., Du=é"s0,, (4.28)

\/7 a \/é a
and we see the appearance of the leading order of the spin connections with torsion

1
W) = e £ 5 Have (4.29)

abc

where curved indices are obviously flattened with the vielbein €. It is important to em-
phasize that all these quantities are defined in terms of the over lined component fields e,
b and ¢.

Because we have gauged fixed the vielbein, the double Lorentz symmetry is now broken
to its diagonal subgroup, and then the two Lorentz parameters are no longer independent.
We must then explore how they are related, and what is the most convenient way to express

~99 —



them in terms of the Lorentz parameter in supergravity. To this end we first write the two
Lorentz invariant metrics in terms of a single one

a ash a ab ash a
gt =6859", 9" = da6p9™" (4.30)

and also express all the Lorentz parameters (including the generalized Green-Schwarz de-
formation A) in terms of the same set of indices

Agy = 620%Aa, Mgy = 036pAny,  Aap = 026pAgs . (4.31)

We then get two different transformations for the vielbein from the transformations of the
two projections on the generalized frame

SEFE ety = Leety — @ (Ape + DNpa) (4.32)
SEHa — oet, = Egé“a + Mt (Kba — Aab) . (4.33)
They must obviously coincide
=~ a A =-a | = ab ab r—-a | = 7 ba ba
06" = Leeu + e (A™ + A™) = Lee,® + e (K + A (4.34)
and this imposes the required relation between the double Lorentz parameters

AoLb = _Kab - 2A[ab} . (435)

From the transformation of the vielbein we can read that of the metric, and from the
generalized frame one can extract in addition the transformation of the two-form

5§;w = nghw + 2épaéubA(ab) ) (4'36)
b = Lebuy — 28,8, Ay - (4.37)

Finally, regarding generalized diffeomorphisms we find
Egéua = Lgeua, Egguy = LEBMV + 28“@_,,} . (4.38)

We now have the transformations of the over-lined vielbein and two-form
in (4.34), (4.37), (4.38). The plan is to find field and parameter redefinitions that triv-
ialize the anomalous Lorentz transformation of the vielbein, and take that of the two-form
to its expected bi-parametric Lorentz Green-Schwarz form. We will name the resulting
fields without over-lines e,* and b, and demand that they transform as in (4.1).

The only explicit derivative expansion in terms of the over-lined fields enters through A

Ay =AY + 2% (4.39)

a a

where the supra-label (n) means that it explicitly contains 2n derivatives. The first order is

ac

b | —e
A = —% Dy i) + 7 Dak™ i) (4.40)
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and the second

N {8 DA Dyl T Wl ) — 8DbDCMe (DewlG) +wifwiy) +wlP 1))

1 1 _ 1 _
cd —)e (=) e, (— ) +)e - (-)
—DpA (8 Daw( ) waedf_ZD “éc)f("‘c(adf_ﬁ("'((z ) f(““z(ac)gc“fdg

+éw<+>eafwgg>gw};>g+éwgg)e ()F J9,) i WO D90

feg
_ é%@ I )+ %wHe LAy )]

b
+3e [ o (DA% WO 1) ol — DA (DD W) 4w D 9 (}))
—{a(—)b,A—>A,(+)H(—)}. (4.41)

So we now propose an expansion for the fields and parameters as follows
T (1) @ 4 (1,1) (1,2) (2,2)
Agp = Agp + Aab + Aab o A[ab] B A[ab] o A[OLb] Tt
_ (1) (2 (1,1) (1,2) (2,2)
ACLb - _Aab - Aab - Aab - - A[ab] A[ab] - A[ab] — ..y,
ela = eub(gba + €(1)ba + €(2)ba T+ ) ) (442)

e’ = euw(9” — el — el +efhew + ),

Z_)W:eﬂael, (bap + b(l)—l—bg)—i—...), buyze#aeybbab,
Eu=e O+ A 20D 1)) A =

The fields e,* and b, are the supergravity fields, expected to transform as in (4.1). The
vielbein defines the metric g, = euagabeyb and the flat derivatives 9, = e*,0, in super-
gravity. The expansions of the Lorentz parameters obey the gauge fixing condition (4.31).
Let us briefly explain the notation. The power in A(™ signals its dependence on a?b? with
p+ q = n when written in terms of A, A and e. Instead, the power in A and €(n) signals
its dependence on aPb? with p + ¢ = n when written in terms of A and e. The n-th power
of A®) when written in terms of A and e will be noted A%,

It is useful to define an operator that measures the Lorentz non-covariance of the fields

VA= (5 — L)V — VO AL, (4.43)
Then, for instance we read from (4.1) that
0%, " = %M, =0, (4.44)

) _ by pabs®)
—78[“/\

(W/bl“/ = %a[#Aab{Dz(/ 1/] ab’

Jab

We can now insert the expansions (4.42) into the transformation of the over-lined viel-
bein (4.33), impose (4.44) and decompose order by order:

)

0(1) = [Fem| AL =-alY, (4.45)
@) c e A (L

0@Q) = [Fea]  —AL = -AG — AR e —ewa Ay — [Femm]
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The L.h.s. of these equations contain the unknowns. Once a given order is solved, then
the r.h.s. of the following equation is known, so this must be solved iteratively. Similar
expressions are obtained from the transformation of the two-form (4.37)

W1V _op @ (LD _ o red (<), 0o red (+)
o) —» [o1%)] T =2DA —2a0) — 500 A w5 O A g (4.46)

@) . , @)
02) — [5%55)} :2D[GA§]2>—2Ag§>—m[@’?—ze(l)aAf;c]”me() Af ]” [5%( >}

cdy (=) cd (+) (=) cdy(+)
—fa 20 A+ 5 b (O Qb]cd)Jrnga[aA Q).

n)

The corrections to the Lorentz parameter Agb are always chosen so as to cancel the

antisymmetric part of the r.h.s. in (4.45), namely

ALY =0, (4.47)

et Laan .
ab = 58l Bye T 58 €ma

One these are fixed, we can proceed order by order to find the corrections to the fields. To
O(1) in (4.45) and (4.46) we find the following redefinitions up to covariant contributions

a — — cd b Cd
C(1)ab = _ng(zca%wls - 3 paTa (4.48)
1
) =0, AD =0, (4.49)

They correspond to the minimal redefinitions required to connect with supergravity, some-
times dubbed the Bergshoeff-de Roo scheme. Notice that to this order the two-form re-
mains uncorrected and inherits its anomalous Lorentz Green-Schwarz transformation di-
rectly from that in the generalized picture. Also, there is no need to redefine the one-form
parameter to this order. These expression reproduce exactly the results found in [32].

The solution to O(2) in (4.45) and (4.46), up to covariant contributions, is quite
involved but still accessible to an educated guess

3 (- 3
o = ) 0o

1

+a? —3—28 >deacwbd€ —ﬁﬁaw(_kdewéc”w}dﬁ- Daw(~ Cdewbd)f Eef)
R W)~ T U )+ D
_%w(—)cdwé;)ew(—)fdgw};;+%w((l—)cdw£*)Efw(—)g )
+16w( )cdw(*)ef (—)g wgdf) %w(_)de(_)ebfwéc_)gW;;;
—w W L Ay eyl ) Fo, >+51;w(+) (S ef (e 9,

1 1
bl e ey fayd L a0 efa (e Ly q b
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C € C € 3 C €
t+ab| 35 0 Hael Hadewbpfju—a W Gaedwhes + = 55g o U eqwp MIwe gy (4.50)
1 1 cd e 3 cd e
_732 Hy“ Heg®wp M9wieg + —16 H, U H, % wpe 90 ga — —512 Hy “ Hy w9 cqwge

_%H CdHengJbefwgcd—EHCdeH fgwade(Ubfg
1

E Wq dwb ef("}cd gwgef - E

3 ed ef, g
+128 W Wy "W

64 HCdeH fgwadfwbeg

d
Wq ¢ Wy eche gwdfg
cdWgef +(a > b)

1 1
+0% | —— (’)Cw((f) e Do t) — 32 DpwH)ede 1) fwfc;) +— 8aw(+)0de wih) fwij}

1 -
ac +)dew}();l0-)fw£;"} Eacw‘ng) wﬁj)fw}der 9w d wf(,cf)w(*)fde

1 c + e + 3 c +)e +
,Ewé )ed,, ( Je,,(Hf gw( >+256 w(H) dwl(, ) fW(Jr)gcdwge}

1
+16 Wit ed, (Hefw(*)gcew;?—gwé )cdw(+)ebfwéj)gw%zJ
¢ d (e (H g (B L () (Byer, (e d
—3—2w(+) 0 Wep Wa fgwengrgwbch((f) Twthe 90
_ 1
+Ew§0d)w(+)caewgﬂfgw(ﬂdfg—@wgc)d ()Hefay(e 4 (a e b)

Ly e yrr ) £ 0u e T

bﬁ) = a® { aaw(f)(:de 3cw£(;e) 4 deWpef Whe Wfde

1 _ _ 1 _ _
+4mwe»ww;w@ﬁg+4@wkwmw;w@;ﬂ

1. 1.
+ab [—8 o H*f wacdwbef—kZ(?‘wdef Hge fwbcd—EH “UH.T Hye9wppq

1 1
—g HCdewacdwb fgwfeg - Z HCdewaC fwbd ngveg (451)

1 1
T H, “wy T wd qwesy — 4 Ha " Fee gwfdg}

1 1 _ 1
—b? {4 Do (H)ede (T = 8aw(+)cdew<+)f dewécf) +3 Do HIede (o) fw}zg

L cde , (+ cde , (+ +
+76aw(+)d gb)f ;de—l- D dwl(,d)fwée}],

Ci b C
PSS -3 < g 1P, + abA 1, (4.52)

We see to this order that the structure of the expected transformations (4.1) can be main-
tained, but now at the expense of redefining the one-form parameter.
Let us finally comment on the dilaton field. It can be read from this expression

-1 _ 1
d=¢— ;loglg| =&~ ; loglg. (4.53)

The field d transforms as usual, so ¢ receives corrections in the Lorentz transformations
but transforms as usual under Buscher rules (together with the T-duality covariant fields
g and l_)). On the other hand, ¢ is Lorentz invariant, but its Buscher rules receive higher
derivative corrections.
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5 Summary and outlook

We extended the results in [36] to the bi-parametric family of T-duality deformations of
DFT introduced in [32]. The strategy relies on an duality covariant generalization of the
Bergshoeff-de Roo (BdR) identification between gauge (independent) and gravity (com-
posite) dof, originally designed to implement higher order supersymmetry in heterotic
supergravity [39, 40]. On the one hand this identification relates interactions with different
amount of derivatives, and on the other, due to its duality covariance it also relates same or-
der interactions beyond those obtained from the original identification [39, 40]. As an exam-
ple, it not only enforces the expected Lorentz Chern-Simons terms, but also the quadratic
Riemann interactions [32], and presumably the full tower of higher derivatives implicitly
contained in them. From the Point of view of DFT, the identification deforms the double
Lorentz symmetry. This deformation was dubbed the generalized Green-Schwarz trans-
formation, computed in [32] to first order, in [36] to second order in the mono-parametric
case, and here to second order in the bi-parametric case. We also introduced the second
order invariant bi-parametric action.
Let us briefly provide a guide to the main original results in the paper:

e The bi-parametric identification was established in (3.4)—(3.7). It is exact, and gen-
erates the generalized Green-Schwarz transformation (3.15) in DFT.

e We develop the perturbative expansion in powers of o’ to second order. That of
the generalized Green-Schwarz transformation can be found in (3.18)—(3.20) and the
invariant action in section 3.2.

e We show in section 4 that this deformation reproduces the Green-Schwarz transforma-
tion of the two-form (4.1) in the so-called Bergshoeff-de Roo scheme of supergravity.
For this it is necessary to realize the non-covariant field redefintions (4.50)—(4.51).

There are a number of questions that arise, and many open problems that remain:

e The generalized Green-Schwarz transformation is infinitesimal, as it depends linearly
on the Lorentz parameters. From the point of view of the identification, it arises
from infinitesimal generalized diffeomorphisms in the extended space. It is then
natural to ask what the finite version of these transformations is. For generalized
diffeomorphisms, these issues were extensively discussed in [51-56]. To first order
in o/ the finite form of the generalized Green-Schwarz transformation was originally
derived in [57]. The computation strongly relies on the imposition of the strong
constraint. The same result was reproduced in a double language and very nicely
related to Born geometry in [58].

e Recently, the first order generalized Green-Schwarz transformation of [32] was ex-
ploited in [58-60] to study how higher derivatives deform the action of generalized
T-dualities. These include the standard Abelian ones, and also non-Abelian and
Poisson-Lie, possibly among further generalizations. The idea is that within DFT
there are two important Lorentz gauges, one that allows an immediate contact with
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supergravity, and another one in which generalized dualities act linearly on the back-
grounds. Studying the effect of generalized dualities on supergravity backgrounds
then requires the composition of Lorentz and O(D, D) transformations. In this pa-
per we provide all the necessary tools to pursue this line of research to second order.
For this to be possible, the first step should be to find the corresponding finite form
of the Green-Schwarz transformation presented here. It should be noted that the ac-
tion and the equations of motion can be written only in terms of flat derivatives and
generalized fluxes, a fact that is important to guarantee that the action of generalized
dualities works like a solution generating technique.

The first order corrections that emerge from the bi-parametric deformation were
shown in [32] to contain Lorentz Chern-Simons corrections to the three-form curva-
ture [41] and quadratic Riemann interactions [61]. We expect that the results here
yield cubic Riemann plus Gauss-Bonnet terms both for the bosonic [62] and HSZ
cases [26-30], but no cubic Riemann interaction for the heterotic string [39, 40]. To
higher orders, we expect that the quartic Riemann interactions fall in two categories.
Those that are captured by this setup (the ones present in [39, 40]) and those pro-
portional to ¢(3) [63], which presumably require new deformations or the existence
of a new invariant in DFT with eight derivatives. All these speculations remain to
be confirmed.

Our results can presumably be used to extract non-perturbative aspects for this
tower of corrections. At the moment how to do this, and what sort of information
one should aim at, remains unclear to us. An interesting aspect of this construction
is that it allows a systematic procedure to extract order by order corrections in a
perturbative expansion. The counterpoint is that the expressions that emerge from
such an expansion get harder to deal with as the orders increase. An example of this
is the second order action, which we showed here as a existence proof, but whose
length makes it hard to work with. A smarter embedding of the double space into
the extended space could simplify the outcome. It is known for instance that the first
order action found in [32] and later rewritten in terms of generalized fluxes in [33]
can be drastically simplified using Bianchi Identities, as shown in [64]. Another
source of simplification is to truncate the theory before implementing the iterative
approach, e.g. we could directly use this method with a time-dependent cosmological
background as the starting point, in the line of [65, 66].

Regarding the identification, we insist that at the moment it lacks a precise mathe-
matical structure. The rules that make it work are clear to us, but the underlying
infinite dimensional group structure calls for a better understanding.

Our results can contribute to many recent works that study the role of T-duality

for higher derivatives in the context of black-holes [67—71] and other solutions of
cosmological relevance [65, 66, 72-78].
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A O(D, D) decomposition of the extended generalized fluxes

We display here the exact decomposition of the extended generalized fluxes in terms of
those in the double setup
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The remaining projections are simply obtained by switching everywhere

(@, b,c,...5pmv,p,. .5 g1) < (@,0,C ... 1,0, p,...5 g2) .

where Qw) = _QDH .

B The identification in the scalar sector

A naive counting of dof in the heterotic case seems to be in agreement with the expecta-
tions. The generalized frame in the extended space has D(D + k) independent dof and
the generalized BdR identification (2.31) consist of Dk relations, whose effect is to leave
as unique physical D? dof those of the double generalized vielbein. Although this simple
counting works, one has to bear in mind that the identifications are far from linear in the
sense that we are not directly linking gauge with gravity dof (by this we mean the full NSNS
sector). Instead, we are identifying gauge with gravity + gauge dof, and it is only after
working out explicitly the derivative expansion through the iterative process described in
previous sections, that the iteration converges in such a way that the gauge dof are finally
replaced by the gravitational ones in the double space. The explicit computation at O(a/?)
confirms an agreement with the naive counting analysis.

The situation is more involved in the bi-parametric case. The generalized frame in the
extended space starts now with (D +k)? independent dof, which means that the generalized
BdR identification needs to fix 2Dk (vectorial) + k? (scalar) dof this time, in order to leave
only the D? dof captured by the double generalized frame. An apparent inconsistency
emerges after counting the 2Dk (from &2, £,%) + 2k* (from £;%, £,%) generalized BdR
identifications (3.7). A potential conflict then arises in the scalar sector, which is absent
in the mono-parametric generalized BdR identification.

We now show how this tension is resolved to second order in o/, but first let us show ex-
plicitly where the apparent over-constraints appear. We have parameterized the scalar sec-
tor in (3.8) and (3.11) in such a way that £ = —(02)7Q;" ¢,2 and £,7 = (02),£07 , &,
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There are then two possible ways to read (2
OF, = — (072 e, (B.1)
OF, = (07°2),2 &,° e (B.2)

This rises no conflict from the point of view of the extended space because the extended
generalized frame is a constrained field, so its component are related. It is precisely the
fact that it is G-valued that relates its components in this form. What turns on the
alarms is the generalized BdR identification (3.7), as it identifies the two scalar directions
in different ways £;% <+ F%gz and &,% <+ Fpc. Implementing the identification (3.7)
into (B.1)~(B.2), leads on the one hand to

1
- 1 —0 — —3 = -
o, = 9o Xn <5é42193 T 2 Xz Ferb ]:eC'D> Fo'P e, (") 75, (B.3)
2 2 2 -
and on the other to
1
~ 1 CD 1 — -2 — =
o, = 0 Xn (‘5%\15’Jr @ Xp fe%few> Fep &g (t,)75. (B.4)
1 1 1

The first identity depends on F ,zz while the second on F74,, and there is no evident
reason why these two expressions should agree.

Let us now explain how this is resolved. The generalized BdR identification truncates
the extended setup, rising new relations on the extended fluxes. As an example, in the ex-
tended setup the vectorial components of the generalized frame ;% and £,* are generic, but
after the identification they become related with generalized fluxes, which satisfy Bianchi
Identities. Hence, the question is whether the truncated (B.3) coincides with the trun-
cated (B.4). This is very ambitious, as it requires an explicit realization of the generators
(ta) 4B, which is beyond the scope of this paper. Instead, we will only explore this at lead-
ing order in a derivative expansion, which turns out to be enough to compute second order
corrections to the action. The reason is that neither the generalized Green Schwarz trans-
formation nor the DFT deformed action contain free internal (gauge) indices. This means
that scalars are always contracted with vectors (~ g~!) or with other scalars (~ g=2),
which implies on the one hand that the leading contribution of terms with Q is O(a/?) and
on the other hand that only the leading (i.e. O(a/)) part of  contributes at this order.

Let us multiply both expressions (B.1) and (B.2) with the generators (tﬁ)ﬁ and (t¥)cp,
and name them X and Y respectively

P & (ta)*® (#)ep (B.5)
YABop = (072),2 &, &g (t5) ()ep . (B.6)

The plan is to explore the equality of these after the generalized BdR identification is
imposed, to leading order. A rapid treatment first leads to

I 1 — I 1 — ~ I
Xep = _97]_@,43 o (ty)ep +0(?), Y Pep = g*}—a@ e (tp)* + 0(a").
2 1
(B.7)
Let us analyze each component individually
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. X“‘TB@ - YE@ and Xﬁcip - Yﬁcip vanish at O(g~2).

That is automatically satisfied as pairs of indices with mixed h and H components are
always of higher order: X“b@, X“ﬁﬂ, Y“bi, Y“ﬁg ~ O(g_3) and X‘w@, X“B@, Y“/BQ,
Yl ~ O(g™Y).

. XE@ — Yﬁg = O(g~*) holds due to Bianchi Identities.
Indeed, after (A.4) and the generalized BdR identification one readily finds

i 1 — o _ —
V= (PP Frea — 2 F7 Fiel = 2D, Fy™) + O(g7") . (BS)

Repeating the same for X E@, one easily verifies that

4 3 3 »
Xiet = Vita = 5o (D[an o~ P Fede — T Fia’ cdk) +0(g Y, (B9

vanishes at leading order because of the Bianchi identities for generalized fluxes in
the double space.

° way(; - Yﬁvé = 0 does not impose a condition on {2, but a condition on the
generators.

Indeed, from the flux decomposition in appendix A, one obtains

X5y = Oy ()" () + Olg™").
Yaﬂ&y = Qﬂy(Tﬂ)aﬂ(ty)(sl_{_ 0(9_4) ) (B]-O)

where 7 denote the generators in the Adjoint representation

(Tu)gé = - f!fyg ng%g ) (Tﬂ)ﬁﬂ = - fﬁ?ﬁ éﬁaéﬁﬁ . (B.11)

Hence, the validity of X@W; — Yﬁw = O(g~*) is simply a consequence of requiring
that the internal compone;ts of the generators (upon contraction) agree at lead-
ing order with the adjoint representation. This can be alternatively verified from
comparison of the generalized BAR decomposition and the leading terms of the flux
decomposition (A.3), (A.6)

Fast = 91 fu’ e %}é g+ ..., (B.12)
and the analogous expression for F ABT
o X @@ — Y@@ = 0 is a true constraint that implicitly fixes some 2 dof
X = Oy (7)™ (#)ea + Og7) (B.13)
while

1 _ o p— —_—
Y= = (F Py —2 FJ T Fis = 2D Fy ™) + 07" . (B.14)
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o X Eﬂﬂ; - YEM; = 0 also fixes some (2 dof through

Y5 = QF, (t2)™ (1¥)45 +O(g™") | (B.15)

while
J— 1 - _ — . —
X5 = “oii (fg s F =2 F% g, F% g — 2D[afb}ﬁ) +0(g™ . (B.16)
So we find once again two different relations for €). Since we do not have an explicit
realization of the generators, at this stage it is unclear if these are equivalent up to
generalized Bianchi Identities or if they are constraints on different components of 2.

Let us emphasize that the issues raised above are a consequence of trying to analyze
Q) uncontracted. As mentioned, the scalar matrix always appears with its indices totally
contracted, some examples being: Q% Q7 O™ gy fi57 g2 fuen » EF2QY (DQP,) g2 furp
L EMTEVE T Q27 @R fupy [ugd , QFy EYF EPL 7€ gy fros | M2 E,9QP,. The process to
replace scalar dof in term of the 2D dof of DFT follows similar steps like those we already
took for the vector dof at the end of section 2.3. It requires the use of cyclic relations whose
effect is a renormalization of the coefficients leading to a and b parameters.

Two remarks are in order:

e The first is that, even if we do not have an all-order proof of the validity for the
mechanism responsible for the elimination of the gauge dof and the subsequent for-
mation of a and b parameters, this mechanism empirically works for hundred of terms
independently, strongly suggesting that it plausibly holds at higher orders.

e Despite the success in to getting rid of the vector and scalar dof, there is a subtle
point in the latter because in principle there are two way to do this depending on
the choice (B.1) or (B.2). All the terms containing scalar fields were shown to be
equivalent independently of that choice.

It is worth illustrating how conclusive identities can be obtained when € appears

contracted. For concreteness we consider the contraction ¢ E;% 07 b

= A 1 1 . oh
g/;w gﬂd QI/“ — ( ) ( ).ch]-‘ (tg)gi ’ngﬁ ]:ggh e a

- Xpr91/) \Xr,93 &
1 1 ~ =
+( ( )fcgf tEE FL_ F, P e, + O
XRI 91 XRQQ% ( ) B'y o lj ( )

1 ) ( 1 ) d ( Gef 1@ ah
= pd_ ( — peef pe gy
(gf(XRl —1)) \Xg,93/) " " e

+2 By B, L Foop + 2(DIFML) Foyy >

1 =
+E‘€HC &1, + 0(?). (B.17)
2
Then we conclude
_ = b _ _ — _ — _ -
Ere &1 7, = % P Fo ( — F% ppoh 4 g poca pil, 4 2 DI ) + O(a’®).
(B.18)
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In the first line of (B.17) we used the ansatz (3.4), (3.7) and (B.1). In the third line we
used the parameterization of the appendix A. On the other hand one can repeat the same
procedure but using (B.2) instead. One arrives at
EX O = “Ib Fly Feop (Faef F" — 2 9% pllg — 2 Deplot ) + 0(a”),
(B.19)
and we conclude that both alternative expressions agree up to Bianchi Identities. Notice
that this term depends on both parameters a and b. This is a general property of all terms
whose origin can be traced back to the scalar dof. The reason is obvious, all these terms
should disappear if we turn off one of the parameters as in the mono-parametric case there
are no scalars dof.
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