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1 Introduction

Kaluza-Klein reductions of supergravity and its higher derivatives give rise to lower di-
mensional field theories with continuous global symmetries. When certain interactions in
the higher dimensional theory are unknown, they could be constrained by demanding the
emergence of such global symmetries after compactification. Alternatively, one may try to
formulate the parent theory in the framework of Double (or Exceptional) Field Theory [1–5]
(for reviews see [6–9]), in which the duality symmetries are manifest prior to compactifying.

The last years have witnessed progress in constraining higher-derivative interactions
through dualities. There are methods based on explicit reductions, such as cosmological [10,
11], circle [12–17] and intermediate [18–20] compactifications. There is also a duality
covariant sigma-model approach to higher derivatives [21]. Here we will focus on higher
derivatives in DFT, for which originally there were two alternatives.

In one approach the corrections were accounted for through enlarging the duality group
structure by adding higher-derivative interactions in the extra directions of the generalized
tangent space [22, 23] (see also [24, 25]). The local symmetries and the action remain
unchanged, but the duality structure is deformed. This method was only worked out for
the heterotic string to first order in α′, and has the disadvantage that the deformations are
not manifestly duality covariant, so duality covariance has to be checked explicitly.
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There is a second approach in which the duality structure remains unmodified (namely
the duality group is still the continuous O(D,D)), and higher-derivatives enter through de-
formations of the local symmetries. In some cases it is generalized diffeomorphisms that are
deformed [26–31], and in others the double Lorentz symmetries [32, 33]. The distinction be-
tween both cases is discussed in [34, 35]. Two parameters a and b control the deformations,
and depending on how they are chosen the framework accounts for the first order corrections
to the heterotic string (one of the parameters vanishes), the bosonic string (a = b) or other
duality symmetric theories such as a Lorentz deformed version of HSZ theory (a = −b).

More recently, a general framework was proposed [36] in which the two approaches
described above were shown to be equivalent in the heterotic case. The idea is to start
with an extended duality group O(D+p,D+q) as in the heterotic formulation of DFT [37],
and then perform an O(D,D) decomposition along the lines of [38]. We will discuss this
extensively later, but for the moment let us state that p and q count the number of negative
and positive eigenvalues of the Killing metric of the gauge group, respectively.

Extended Double
Duality group O(D + p,D + q) O(D,D)
Lorentz group O(D − 1, 1)×O(1 + p,D + q − 1) O(D − 1, 1)×O(1, D − 1)
Fields Generalized frame EMA , Generalized frame EMA ,

Dilaton d Vectors E µ̃a , Dilaton d
Other symm. Extended gen. diffeos. Double gen. diffeos. × K

The result is a DFT coupled to k = p + q extra vectors E µ̃a that transform under a cer-
tain gauge group K as generalized connections. One then has a generalized connection in
the double picture with respect to the gauge group K (which in turn descends from the
generalized diffeomorphism in the extended picture). On the other hand there is a gen-
eralized spin connection FaBC in the extended picture with respect to the Lorentz factor
O(1 + p,D + q − 1). The idea in [36] was then to identify these two independent symme-
tries

K ↔ O(1 + p,D + q − 1) , (1.1)

and match the independent degrees of freedom E µ̃a with the composite degrees of freedom
FaBC through the generators of the resulting group (tµ̃)BC

− g E µ̃a (tµ̃)BC = FaBC . (1.2)

After this identification, when the formalism is seen from an O(D + p,D + q) perspective
the first approach described above is recovered, and when scrutinized after its O(D,D)
decomposition it reproduces the second approach, thus proving their equivalence. This
procedure is the duality covariant version of that in [39, 40] and was then referred to as
the Generalized Bergshoeff-de Roo identification in [36]. The advantage of this generalized
identification is that it is exact, and generates an infinite tower of higher derivatives in the
heterotic string. The reason for this is that the identification requires the symmetry group
to be infinite dimensional, as will be reviewed soon.
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As mentioned, the approach in which the double Lorentz symmetry is deformed admits
a two-parameter (a, b) extension, the heterotic string being a particular choice in parameter
space. The first original result in this paper is an extension of the generalized Bergshoeff-
de Roo identification that captures this bi-parametric freedom. Let us briefly anticipate
the result by showing how the discussion above is modified. Here we further extend the
extended duality group in a more symmetric fashion to O(D + k,D + k) with k = p + q,
and again realize an O(D,D) decomposition.

Extended Double
Duality group O(D+k,D+k) O(D,D)

Lorentz group
O(D+q−1,1+p)
×O(1+p,D+q−1)

O(D−1,1)×O(1,D−1)

Fields Generalized frame EMA, Generalized frame EMA, Dilaton d
Dilaton d Vectors E µ̃a, Vectors E

µ˜a, Scalars Ωµ̃
˜
ν

Other symmetries Extended gen. diffeos. Double gen. diffeos. × K

The result is a DFT coupled to 2k extra vectors and k2 scalars, that jointly populate the
following components of the extended generalized frame E µ̃A and Eµ˜A, which transform
under the gauge group K as generalized connections. On the other hand there are two
generalized spin connections FABC and FABC in the extended picture with respect to the
Lorentz factors O(D + q − 1, 1 + p) and O(1 + p,D + q − 1), respectively. The idea here is
to identify the symmetries

K ↔ O(D + q − 1, 1 + p)×O(1 + p,D + q − 1) , (1.3)

by matching the independent degrees of freedom Eµ˜A and E µ̃A with the composite degrees
of freedom FABC and FABC through the generators of each factor of the resulting group
(tµ̃)BC and (tµ˜)BC

− g1 E˜
µ
A (t

˜
µ)BC = FABC ,

− g2 E µ̃A (tµ̃)BC = FABC .
(1.4)

The couplings g1 and g2 are related to the parameters a and b. We will explain in detail
how to extract perturbative results in powers of a and b from (1.4). It is amazing that
these can be obtained systematically from the standard two-derivative action, equations
of motion, gauge transformations, etc. in the extended setup. Schematically, the resulting
perturbative action in the double space is the sum of terms of the form R(m,n), where the
supra-label indicates that each term scales like anbm.

The term R(0,0) is the standard two-derivative generalized Ricci scalar of DFT [1–5].
It is invariant under generalized diffeomorphisms, and double Lorentz transformations to
lowest order. However, the double Lorentz symmetry receives higher derivative corrections.
To first order they take the form of a generalized Green-Schwarz transformation, under
which R(0,0) is not invariant, and then first order corrections aR(0,1) + bR(1,0) are induced
in the action. This is pictured in the blue box, the results were introduced in [32] and cast in
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Figure 1. Structure of the bi-parametric higher derivative corrections. The interactions R(m,n)

are weighted by anbm in the action.

a Gauged DFT form in [33]. It turns out that the algebra of the bi-parametric generalized
Green-Schwarz transformation only closes to first order, and then higher corrections are
required. For the heterotic case the second order corrections R(2,0), contained here in the
red box, are completely determined by the symmetry transformations introduced in [36].
The second original result in this paper is the computation of the full symmetries and action
of DFT to second order in the bi-parametric case, which corresponds to the green box. This
includes the second order corrections to the generalized Green-Schwarz transformation.

The third original result is to show that to second order this extension accounts for the
bi-parametric Green-Schwarz transformation of the Kalb-Ramond field (a two parameter
generalization of the original deformation [41])

δbµν = a

2∂[µΛabω̂(−)
ν]ab −

b

2∂[µΛabω̂(+)
ν]ab ,

when the field redefinitions required to connect with the supergravity fields in the
Bergshoeff-de Roo scheme are implemented. The spin connections include the three-form
field strength as torsion, which in turn is sourced by Lorentz Chern-Simons three-forms. As
expected, to second order (and presumably to all orders) the Lorentz transformation on the
frame field and dilaton in supergravity remain uncorrected. This confirms the expectations
that the deformations due to the parameters a and b induce the full tower of corrections
contained in the Chern-Simons terms that source the three-form curvature, plus all the
corrections connected to these by T-duality.

The paper is organized as follows. Section 2 is devoted to set the notation by re-
viewing the mono-parametric identification for the heterotic case introduced in [36]. In
section 3 we present the bi-parametric generalized Bergshoeff-de Roo identification, work
it perturbatively to second order, extract from it the second order corrections to the gener-
alized Green-Schwarz transformation, analyze its closure and present the invariant action.
Finally in section 4 we perform the minimal field redefinitions that trivialize the Lorentz
transformation of the vielbein and dilaton to second order, and show that the resulting
transformation for the Kalb-Ramond field is the expected bi-parametric Lorentz Green-
Schwarz transformation in the Bergshoeff-de Roo scheme.
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2 The heterotic generalized BdR identification

2.1 The extended space

Our starting point is the gauged extension of DFT [37, 42] in the frame formulation [1, 2, 43–
46]. We begin with a brief review of some basics that will be useful in the forthcoming
sections, and will serve in addition to set the notation and conventions followed here.

The idea is to start with an extended tangent space, acted on by the rigid action of
some split orthogonal group G, that includes G = O(D,D) as a subgroup. The dof are
a generalized dilaton d and a generalized frame EMA, constrained by demanding that the
G-invariant metric η is preserved by the generalized frame

ηMN = EMA ηAB ENB . (2.1)

The local symmetries include generalized diffeomorphisms and gauge symmetries in a
duality covariant way generated by a G-vector ξ, in addition to the extended local Lorentz
transformations with respect to a group H, parameterized by Γ in the adjoint of H. In-
finitesimally they take the form

δd = ξN∂Nd−
1
2∂N ξ

N ,

δEMA = ξN∂NEMA +
(
∂Mξ

N − ∂N ξM
)
ENA + f̂MN

PξNEPA + EMBΓBA . (2.2)

The consistency of these transformations requires the imposition of linear and quadratic
constraints on the gaugings f̂MNP ,

f̂MNP = f̂[MNP] , f̂[MN
Kf̂P]K

L = 0 . (2.3)

Together with the strong constraint

ηMN∂M ⊗ ∂N = 0 , f̂MN
P∂P = 0 , (2.4)

they guaranty the closure of the algebra

[δ(Γ1,ξ1), δ(Γ2,ξ2)] = −δ(Γ12,ξ12) , (2.5)

defining the following brackets

ξM12 = 2ξN[1 ∂N ξ
M
2] + ∂MξN[1 ξ2]N + f̂NP

MξN1 ξ
P
2 , (2.6)

Γ12AB = 2ξN[1 ∂NΓ2]AB + Γ1A
CΓ2]BC . (2.7)

In the frame or flux formulation [1, 2, 43, 44], the main characters are the generalized
fluxes

FA = 2 DAd− ΩBAB , (2.8)
FABC = 3 Ω[ABC] + f̂MNPEMAENBEPC , (2.9)

defined in terms of ΩABC which is named the generalized Weitzenböck connection

ΩABC = DAENBEPC ηNP , (2.10)
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and we have introduced the flat derivative DA = EMA∂M . The generalized fluxes be-
have as scalars under generalized diffeomorphisms but transform non covariantly under the
extended Lorentz transformations

δFA = ξM∂MFA + ΓBA FB −DBΓBA , (2.11)

δFABC = ξM∂MFABC + 3
(

ΓD [A FBC]D −D[AΓBC]
)
. (2.12)

The strong constraint (2.4) together with the quadratic constraints (2.3) imply the following
generalized Bianchi identities

D[ADB] = 1
2FAB

CDC , (2.13)

D[AFBCD] = 3
4F[AB

EFCD]E , (2.14)

DCFCAB = FCFCAB − 2D[AFB] . (2.15)

It is also useful to rewrite some other conditions that follow from the strong constraint in
terms of flat derivatives

DAf DAg = 0 , (2.16)
DADAf −FADAf = 0 , (2.17)
FABCDAf DB g DCh = 0 , (2.18)

for any function f, g, h.

2.2 The double space and the identification

We have just considered a generic scenario in which the double space is extended in order
to introduce gaugings in a duality covariant way. We will now discuss a concrete realization
of this extension. We begin with the following extended duality group G and the extended
double Lorentz symmetry group H

G = O(D + p,D + q) , H = O(D − 1, 1)×O(1 + p,D + q − 1) . (2.19)

The extension is characterized by the quantity

k = p+ q , (2.20)

which is the dimension of the gauge group produced by the gaugings. In table 1 we clarify
the notation adopted for the groups and indices in this section. The same notation extends
to other sections, though some of the groups will get enhanced later.

The idea is to perform a G and H decomposition of G and H, respectively. Every
G-vector, such as derivatives or parameters, splits in G-vectors and internal components,
∂M = (∂M , ∂µ̃) and ξM = (ξM , ξµ̃). Only the internal components f̂ µ̃ν̃ρ̃ of the gaugings are
non vanishing, and then from the double space point of view the parameters ξM generate
double generalized diffeomorphisms, and the parameters ξµ̃ generate gauge transformations
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Name Group Indices Metric

G O(D,D) M ηMN

g O(p, q) µ̃ κµ̃ν̃

G O(D + p,D + q) M = (M, µ̃) ηMN =

ηMN 0
0 κµ̃ν̃


H = H O(D − 1, 1) A = a PAB = Pab

H O(1, D − 1) a P̄ab

h O(p, q) α καβ

H O(1 + p,D + q − 1) A = (a, α) P̄AB =

P̄ab 0
0 καβ


H H×H A = (A, A) = (a, a, α) ηAB =

PAB 0
0 P̄AB


H H ×H A = (a, a) ηAB =

Pab 0
0 P̄ab


Table 1. Groups, metrics and index structure for the extended space relevant to heterotic DFT. For
those familiar with [36], let us note two differences with the table shown there. First note a small
change in the notation: we find it more convenient to use µ̃ instead of α for the curved internal index,
as it has a more natural extension to the bi-parametric case. Second, we are now writing explicitly
the split signature (p, q) of the internal metric κµ̃ν̃ , which by abuse of notation was omitted in [36].

with respect to some group K of dimension k with structure constants f̂ µ̃ν̃ρ̃. This requires
that no fields or parameters in the theory depend on the internal coordinates, while the
dependence on the double space is strong constrained as usual

∂µ̃ = 0 , ηMN∂M ⊗ ∂N = 0 . (2.21)

The extended G-valued generalized frame EMA admits a G and H covariant parame-
terization in terms of the double generalized frame EMA, k vectors AMν̃ and k(k − 1)/2
scalars eµ̃α

EMA = (χ
1
2 )MN EN

A ,

EMα = −AMµ̃ eµ̃
α , (2.22)

Eµ̃A = AMµ̃EM
A ,

Eµ̃α = (�
1
2 )µ̃ν̃ eν̃α ,

– 7 –
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where
χMN = ηMN −AMµ̃ANµ̃ , �µ̃ν̃ = κµ̃ν̃ −AMµ̃AMν̃ , (2.23)

and all indices are implicitly raised and lowered with the double invariant metrics ηAB or
ηMN = EM

A ηAB EN
B and the Killing metric of the gauge group καβ or κµ̃ν̃ = eµ̃

α καβ eν̃
β .

The extended generalized frame E parameterizes the coset G/H and so carries D(D+k)
physical degrees of freedom (dof). They are contained in the double generalized frame E
which parameterizes the coset G/H and so carries D2 dof. The remaining Dk dof are
captured by E ν̃ a. The rest of the components are gauge dof and can be eliminated by the
action of H, which can be used to implement the following gauge fixing

E ν̃ a = EMaAMν̃ = 0 , eµ̃
α = constant . (2.24)

The reason why we can freeze the scalars is that they are pure gauge dof because the coset
g/h is trivial. This gauge fixing breaks the group H down to H. In fact, freezing the
components (2.24) implies locking their gauge transformations δE ν̃ a = δeµ̃

α = 0, which
fixes the following components of the parameters of H

Γαa = eµ̃α (�−
1
2 )µ̃ν̃ ∂Mξν̃ EMā , (2.25)

Γαβ = eµ̃[α e
ν̃
β] (�−

1
2 )µ̃ρ̃

(
δ(�

1
2 )ρ̃ν̃ −AMν̃ ∂Mξρ̃ − g fρ̃σ̃ τ̃ ξσ̃ (�

1
2 )τ̃ ν̃

)
,

where we have explicitly introduced the gauge coupling constant g and the dimensionless
structure constants fµ̃ν̃ ρ̃ = g−1f̂µ̃ν̃

ρ̃.
Let us now discuss the so-called generalized BdR identification in this heterotic sce-

nario. For more details see [36]. There are two gauge groups in the theory, and both have
generalized connections. One is the group K, the connection being the projected field Eµ̃a =
EMaAMµ̃. When the generalized Lie derivative (2.2) is reduced to its components, it yields

δEµ̃a = L̂ξEµ̃a −Daξµ̃ + gfµ̃ν̃
ρ̃ξν̃Eρ̃a + Eµ̃dΓda . (2.26)

The other is the Lorentz group H, the connection being a certain projection of the
generalized fluxes FaBC , which according to (2.12) transform as

δFaBC = L̂ξFaBC −DaΓBC + 2FaD[CΓ
D
B] + FdBCΓ

d
a . (2.27)

The former are independent physical dof, while the later are composite dof, yet as different
as they are, they both transform in the same way with respect to different groups. Then,
if we choose these groups to coincide

K = H , (2.28)

we can express the connection Eµ̃a and the parameters ξµ̃ in terms of the adjoint indices
of H through its generators (tµ̃)BC

EaBC = −g Eµ̃a (tµ̃)BC , ξBC = −g ξµ̃ (tµ̃)BC , (2.29)

– 8 –
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in which case (2.26) takes the form

δEaBC = L̂ξEaBC −DaξBC + 2EaD[C ξ
D
B] + EdBC Γda . (2.30)

Now, the comparison between (2.27) and (2.30) establishes a way to lock the gauge vectors
in terms of the generalized fluxes

ξAB = −g ξµ̃ (tµ̃)AB = ΓAB ,
EaBC = −g Eµ̃a (tµ̃)BC = FaBC .

(2.31)

This is the generalized Bergshoeff-de Roo identification. It has the appearance of being
impossible because the dimensions dim(K) = k and dim(H) = (D + k)(D + k − 1)/2 are
different for any finite k. The only way out is that these are connections of an infinite
dimensional orthogonal group. This is somehow expected, because this identification is
exact (by this we mean that the transformations (2.27) and (2.30) are identical) and then
we expect it to generate an infinite tower of higher derivatives, as opposed to the original
identification in [39, 40] which only held to first order.

2.3 The perturbative expansion

After the identification the expected remaining dof are the standard G-valued generalized
frame EMA and the dilaton d. They inherit their transformation properties from those
of the extended space (2.2) after insertion of the parameterization (2.22) and the identifi-
cation (2.31). The vectorial components induce gauge transformations to the generalized
frame with respect to K, which after the identification become higher-derivative corrections
to the Lorentz transformations. These corrections can be extracted perturbatively in pow-
ers of α′ order by order. To first order they were shown in [36] to reproduce the first order
generalized Green-Schwarz transformation introduced in [32]. The perturbative expansion
proceeds as follows. The identification relates µ̃ with AB = (ab, aβ, αb, αβ) through the
generators (tµ̃)AB. The indices α can then be curved back to µ̃ through eµ̃α in (2.22). This
triggers a never ending iteration that permits to compute every order in the derivative
expansion.

The exact transformation of the generalized frame after the identification is given by

δEM
a = L̂ξEMa + EM

b Λb
a − 1

g2XR
EM

c (χ−
1
2 )cb FbCD D

aΓCD , (2.32)

δEM
a = L̂ξEMa + EM

b Λba + 1
g2XR

∂MΓCD (χ−
1
2 )ab F bCD ,

where we introduced the Dynkin index XR and redefined the Lorentz parameters of the
double space

Λab = Γab − EM [aE
N
b](χ−

1
2 )MP

(
δ(χ

1
2 )PN − ∂P ξαANα

)
, (2.33)

Λab = Γab .

To trigger the perturbative expansion we first split coordinates A → (a, α) in the
CD contraction between the extended fluxes and Lorentz parameters, then replace by the

– 9 –



J
H
E
P
0
1
(
2
0
2
1
)
1
7
1

different components of the fluxes

Fabc = (χ
1
2 )ae Febc , (2.34)

Fabγ = −
[
(χ

1
2 )ae

(
Eµ̃dFbde +DbEµ̃e

)
−Db(�

1
2 )µ̃ν̃ Eν̃a

]
eµ̃γ̄ , (2.35)

Faαβ = g fµ̃ν̃
λ̃ Eλ̃ a (�

1
2 )µ̃ρ̃(�

1
2 )ν̃ σ̃ eρ̃α eσ̃β (2.36)

+(χ
1
2 )ab Eµ̃c eµ̃[α e

ν̃
β]

[
FbcdEν̃ d + (2DcEν̃ b −DbEν̃ c)

]
+eµ̃[α e

ν̃
β] Db(�

1
2 )ρ̃µ̃

[
(χ

1
2 )ab(�

1
2 )ν̃ρ̃ + Eρ̃a Eν̃ b

]
,

and the extended Lorentz components, through (2.25) and (2.33). Here we introduced
double generalized fluxes and flat derivatives

FABC = 3D[AE
M
BE

N
C] ηMN , DA = EMA∂M . (2.37)

All the replacements above are exact. They depend on Eµ̃a though, but at a higher
order in a g−1 expansion, except for (2.36) whose only effect is to renormalize the leading
contribution (responsible for the b parameter), as we will discuss later. Hence, repeating
recursively this procedure leads to a derivative expansion of the Lorentz transformation.
Up to second order one finds [36]

δEM
a = L̂ξEMa+EM

bΛb
a− b2EM

dFdbcD
aΛbc (2.38)

− 1
2b

2EM
b
[
DaDcΛef

(
FcdbF

d
ef +DcFbef

)
−FbefFcd

f
(
F chdDaΛh

e−F cheDaΛh
d
)

+ F cef D
aΛeg

(
FbcdF

dgf −DbFc
gf +2DcFb

gf
)

+FbefD
a
(
DcΛedFcd

f
)]
,

and

δEM
a = L̂ξEMa+EM

bΛba+ b

2∂MΛbcF abc (2.39)

+ 1
2b

2EM
b
[
DbD

cΛef
(
Fcd

aF def +DcF
a
ef

)
−F aefFcd

f
(
F chdDbΛh

e−F cheDbΛh
d
)

+ F cef DbΛ
e
g

(
F acdF

dgf −DaFc
gf +2DcF

agf
)

+F aefDb

(
DcΛedFcd

f
)]
,

where
b = 2

g2(−1 +XR) . (2.40)

Let us briefly point out how this parameter forms. Consider the contractions in (2.32),
which are schematically of the form

ΨABΦAB = ΨabΦ
ab + ΨaβΦaβ + ΨαbΦ

αb

Higher order

+ ΨαβΦαβ . (2.41)

The off-diagonal part is of higher order because its leading order already contains vector
fields, which are identified with the generalized fluxes that carry derivatives. The last term,
corresponding to the purely internal part, happens to obey the following relations due to
the identification

ΨαβΦαβ = 1
XR

ΨABΦAB + Higher order . (2.42)
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This tells us on the one hand that the purely internal sector (where h acts) starts at the
same order than the purely external sector (where H acts). On the other hand, interestingly
the internal h contraction can be re-expressed up to higher orders in terms of the full H
contraction, by use of the identification. Then, combining (2.41) with (2.42) permits to
eliminate the internal contraction

1
g2XR

ΨABΦAB = b

2 ΨabΦ
ab + Higher order , (2.43)

generating at the same time the parameter b defined in (2.40). Proceeding forward towards
more derivatives requires keeping track of the higher order terms, which interestingly can
again undergo this procedure. The only non-straightforward step for higher orders is that,
in general, the structures that obey these cyclic relations are not single contractions as
in (2.41), but consist of sums of terms with more that two indices contracted. It then
happens that the identities above fail to apply to independent terms in the sum, but hold
for the full summation. To clarify this point it is instructive to discuss a concrete example.

When implementing this procedure for the last term in (2.32), we get

1
g2XR

(χ−
1
2 )cbFbCDD

aΓCD = b

2FccdD
aΛcd + Higher order , (2.44)

which is simply a concrete realization of (2.43), and explains the O(b) contribution to the
generalized Green-Schwarz transformation in (2.38). Keeping track of the higher order
contributions, one can identify among them the following combination

δEM
a ⊃ 2

g4
2 XR(−1 +XR)

EM
b FbEFFcG

F
(
FcCGDaΓC

E −F cCEDaΓC
G
)
. (2.45)

Note that the difference now is that there are two terms with a four-index H-contraction
on CEFG (while in (2.41) we started with one term with a two-index contraction). We now
perform the h×H splitting as in (2.41) for these terms

FbEFFcG
FFcCGDaΓC

E = FbefFcd
fF chdDaΛh

e + FbαβFcγ
βF cδγDaΛδ

α + . . . , (2.46)

FbEFFcG
FFcCEDaΓC

G = FbefFcd
fF cheDaΛh

d + FbαβFcγ
βF cδαDaΛδ

γ + . . . , (2.47)

where the dots stand for higher orders. The subtlety arises when studying the realization
of (2.42) in this case. We find that

FbαβFcγ
βF cδγDaΛδ

α = 1
XR
FbEFFcG

FFcCGDaΓC
E + ∆b

a , (2.48)

FbαβFcγ
βF cδαDaΛδ

γ = 1
XR
FbEFFcG

FFcCEDaΓC
G + ∆b

a , (2.49)

where the anomalous factor is given by

∆b
a = −2 FbEFFcG

FFcCGDaΓC
E − 2 FbGFFcE

FFcCGDaΓC
E + FbEFFc

EFFcCGDaΓCG
FbEFFcGHF

cFHDaΓEG − FbEFFcGHF
cGHDaΓEF − FbEFFcGHF

cEFDaΓGH

+ FbEFFcGHF
cEGDaΓFH + Higher order . (2.50)
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It is quite remarkable that exactly the same anomaly appears in (2.48) and (2.49), and
that it cancels for the particular combination (2.45), leading to

2
g4

2 XR(−1 +XR)
EM

b FbEFFcG
F
(
FcCGDaΓC

E −F cCEDaΓC
G
)

=

= b2

2 EM
b FbefFcd

f
(
FcgdDaΓge −F cgeDaΓgd

)
+ Higher order

= b2

2 EM
b FbefFcd

f
(
F cgdDaΛge − F cgeDaΛgd

)
+ Higher order . (2.51)

These are the last pair of terms in the second line in the generalized Green-Schwarz trans-
formation (2.38). All the other O(b2) terms and higher can be treated analogously.

Although it certainly looks like this is the case, let us remark that we do not have a
proof that the parameter b will form to all orders, nor that the recursive relations required to
completely remove the gauge dof will converge at all orders. However, if we assume that the
steps leading to the formation of the b parameter can be repeated over and over, it is then
possible to implement a systematic procedure to compute order by order in the perturbative
expansion, that can be built into a computer program. It should follow a precise route in
order to succeed. The first step requires switching all the g-fundamental indices µ̃ at a
given order into H-adjoint indices AB. This is readily implemented by replacing

Eµ̃a = 1
XR
FaA

B (tµ̃)B
A , ξµ̃ = 1

XR
ΓA
B (tµ̃)B

A , fµ̃ν̃
ρ̃ = − 2

XR
(tµ̃)A

B (tν̃)B
C (tρ̃)C

A ,

(2.52)
and then by eliminating the generators through (3.3). The next step consists in splitting
indices A into a, α in the previous expression. The terms with generalized fluxes or
Lorentz parameters containing mixed H and h contractions must be separated as they
are higher order. Those with pure h contractions should be replaced and expanded by
their expressions in the appendix and the gauge fixing conditions (2.25). Once this is
done, the leading terms of such an expansion will combine with the pure H contraction to
form the parameter b, the rest must be separated as it is higher order. Finally, one is left
with generalized fluxes and Lorentz transformations in the extended space with pure H
contractions (now properly weighted with the parameter b), which should now be replaced
by the expressions in the appendix and the redefinitions of the Lorentz parameter (2.33), in
terms of the fluxes and parameters in the double space, plus higher orders. This isolates the
relevant contribution to a given order, which is now properly weighted with the parameter
b, and separates the higher order contributions, which further admit an identical treatment.

The same algorithm could be adapted to the full bi-parametric deformation of DFT
to be discussed below. One can also adapt this algorithm to find higher orders in the
invariant action. The main issue here is the optimization of the algorithm as the number
of couplings grows exponentially as we move to higher orders. Of course, since the whole
algorithm is based on an assumption, in the end one should check if the result is correct
and consistent. This is typically a difficult task as Bianchi identities can be responsible for
the equality between seemingly different terms.
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Name Group Indices Metric

G O(D,D) M ηMN

g O(k, k) = O(p+ q′, q + p′) µ̂ = (
˜
µ, µ̃) κµ̂ν̂ =

−κ˜
µ
˜
ν 0

0 κµ̃ν̃


G

O(D + k,D + k)
= O(D + p+ q′, D + q + p′)

M = (M, µ̂) ηMN =

ηMN 0
0 κµ̂ν̂


H O(D − 1, 1) a Pab

H O(1, D − 1) a P̄ab

H H ×H A = (a, a) ηAB =

Pab 0
0 P̄ab


h h× h = O(q′, p′)×O(p, q) α̂ = (α, α) κα̂β̂ =

−καβ 0
0 καβ


H O(D + q′ − 1, 1 + p′) A = (a, α) PAB =

Pab 0
0 −καβ


H O(1 + p,D + q − 1) A = (a, α) P̄AB =

P̄ab 0
0 καβ


H H×H A = (A, A) ηAB =

PAB 0
0 P̄AB


Table 2. Groups, metrics and index structure for the extended space relevant to the bi-parametric
case. In the bi-parametric case the relevant choice is q′ = q, p′ = p and k = p + q. If the prime
quantities were independent and set to zero, this table then reproduces table 1.

3 The bi-parametric generalized BdR identification

We now move to the bi-parametric case, where both a and b can be turned on simulta-
neously. This requires a further extension of the mono-parametric setup, consisting in a
double extended space with a duality group G = O(D + k,D + k), which is now a more
symmetric scenario, as expected. We show in table 2 the implications of this extension for
the relevant symmetries, and the notation that we will adopt from now on.

The counting of dof is now a little different than before. The extended frame EMA

parameterizes the coset G/H, now containing (D+ k)2 physical dof. We obviously accom-
modate D2 of them into a double generalized frame EMA parameterizing the coset G/H.
There are other k2 physical dof that are captured by a scalar frame eµ̂α̂, parameterizing
the coset g/h, which is now non-trivial as opposed to the mono-parametric case. Also there
is now a pair of projected vectors E µ̃a and E˜

µ
a, each containing Dk dof. Compared to the
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heterotic case, there are then extra vector fields and scalars, that will have to be identified.
Because now the duality group is enhanced, the generalized diffeomorphisms can acco-

modate a gauge group K of dimension 2k. We then take it to be a direct product K = K×K,
where K and K are two independent k-dimensional gauge groups. The only non vanishing
components of the extended gaugings are then f̂

˜
µ
˜
ν˜
ρ and f̂µ̃ν̃

ρ̃ and the consistency of the
deformation then requires that each pair of gaugings must satisfy the linear and quadratic
constraints independently. The strong constraint further requires ∂

˜
µ = 0 = ∂µ̃ .

The source of the two parameters (a, b) are the two gauge couplings g1 and g2 of K
and K respectively, whose (dimensionless) structure constants are given by f

˜
µ
˜
ν˜
ρ = g−1

1 f̂
˜
µ
˜
ν˜
ρ

and fµ̃ν̃ ρ̃ = g−1
2 f̂µ̃ν̃

ρ̃, respectively. Inspired by the heterotic case we now plan to identify
the groups

K = H , K = H , (3.1)

with generators (t
˜
µ)AB and (tµ̃)AB, which satisfy the following algebraic relations

(t˜
µ)AB

(
t
˜
ν
)AB = XR1 δ˜

µ

˜
ν ,

(
tµ̃
)
AB

(tν̃)AB = XR2 δ
µ̃
ν̃ , (3.2)

(t˜
µ)AB (t

˜
µ)CD = XR1 δ

CD
AB ,

(
tµ̃
)
AB

(tµ̃)CD = XR2 δ
CD
AB , (3.3)

XRi being the Dynkin index of each representation. Here we used the killing metrics κ
˜
µ
˜
ν

and κµ̃ν̃ to rise and lower indices in the algebra, e.g. t˜
µ = κ˜

µ
˜
νt

˜
ν , f

˜
µ
˜
ν
˜
ρ = κ

˜
ρ
˜
σ f

˜
µ
˜
ν˜
σ and

similarly for tilded indices. This should be contrasted with the frame components, e.g.
E

˜
µA = η

˜
µN ENA = −κ

˜
µ
˜
ν E˜

ν
A.

As before, by use of the generators, we can cast certain components of the extended
generalized frame in the same structure as the generalized fluxes in the extended space

EABC = − g1 E˜
µ
A (t

˜
µ)BC , ξBC = − g1 ξ˜

µ (t
˜
µ)BC ,

EABC = − g2 E µ̃A (tµ̃)BC , ξBC = − g2 ξ
µ̃ (tµ̃)BC . (3.4)

On the right we have done the same thing with the gauge components of the parameters
that generate generalized diffeomorphisms. Written in this form, their transformation with
respect to local symmetries reads

δEABC = L̂ξEABC + EDBC ΓDA −DAξBC + 2 EAD[B ξC]
D ,

δEABC = L̂ξEABC + EDBC ΓDA −DAξBC + 2 EAD[B ξC]
D . (3.5)

Written as such, they happen to transform in exactly the same way as the extended gen-
eralized fluxes (2.12)

δFABC = L̂ξFABC + FDBC ΓDA −DAΓBC + 2 FAD[B ΓC]
D ,

δFABC = L̂ξFABC + FDBC ΓDA −DAΓBC + 2 FAD[B ΓC]D , (3.6)

which readily suggests
ξAB = ΓAB , EABC = FABC ,

ξAB = ΓAB , EABC = FABC .
(3.7)
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This is the generalized Bergshoeff-de Roo identification in the full bi-parametric case. Again,
it is exact in the sense that both transformations match identically under this identification.

The extended frame admits a parameterization identical in structure to that of the
mono-parametric case (2.22)

EMA = (χ
1
2 )MN EN

A ,

EMα̂ = −AMµ̂ eµ̂
α̂ , (3.8)

Eµ̂A = AMµ̂EM
A ,

Eµ̂α̂ = (�
1
2 )µ̂ν̂ eν̂ α̂ ,

where we now redefined the quantities

χMN = ηMN −AMµ̂ANµ̂ , �µ̂ν̂ = ηµ̂ν̂ −AMµ̂AMν̂ , (3.9)

that satisfy the useful identity

AMµ̂ f(�)µ̂ν̂ = f(χ)MN AN ν̂ , (3.10)

for any function f . As opposed to the mono-parametric situation, eµ̂α̂ is now g = O(k, k)-
valued, so it is convenient to further parameterize it as

eµ̃
α = (Π

1
2 )µ̃ν̃ eν̃α ,

eµ̃
α = −Ωµ̃˜

ν e
˜
ν
α , (3.11)

e
˜
µ
α = Ων̃

˜
µ eν̃

α ,

e
˜
µ
α = (Π

1
2 )

˜
µ˜
ν e

˜
ν
α ,

where eµ̃α and e
˜
µ
α are independent O(p, q) and O(q′, p′) matrices respectively and

Πµ̃ν̃ = ηµ̃ν̃ − Ωµ̃˜
ρ Ων̃

˜
ρ , Π

˜
µ
˜
ν = η

˜
µ
˜
ν − Ωρ̃

˜
µ Ωρ̃

˜
ν . (3.12)

Note that in this parameterization the counting of dof exhausts the dim(g) = 2k2 − k, of
which k2 − k are contained in e and e, and the other k2 in Ω.

Due to the original H symmetry, there are many non-physical gauge dof. It will then
turn out to be convenient to perform a gauge fixing to remove some of them

EMaAMµ̃ = 0 , EMaAM ˜
µ = 0 , eµ̃

α = constant , e
˜
µ
α = constant . (3.13)

Demanding that these constraints are gauge invariant δEµ̃a = δE
˜
µ
a = δeµ̃

α = δe
˜
µ
α = 0

freezes the following components of the H parameters

Γαa = e˜
µ
α (Σ−

1
2 )

˜
µ˜
ν EP a ∂P ξ

˜
ν ,

Γαa = eµ̃α (Σ−
1
2 )µ̃ν̃ EP a ∂P ξν̃ , (3.14)

Γαβ = e˜
µ

[α e˜
ν
β] (Σ−

1
2 )

˜
µ˜
ρ
(
δ(Σ

1
2 )

˜
ρ
˜
ν − (Π

1
2 )

˜
ν˜
σAM

˜
σ∂Mξ

˜
ρ − g1 f

˜
ρ
˜
σ˜
λ ξ˜

σ (Σ
1
2 )

˜
λ
˜
ν

)
,

Γαβ = eµ̃[α e
ν̃
β] (Σ−

1
2 )µ̃ρ̃

(
δ(Σ

1
2 )ρ̃ν̃ − (Π

1
2 )ν̃ σ̃AMσ̃∂Mξρ̃ − g2 fρ̃σ̃

λ̃ ξσ̃ (Σ
1
2 )λ̃ν̃

)
,

where we have introduced Σ
1
2 = �

1
2 ·Π

1
2 .
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3.1 The perturbative expansion

The generalized transformations in the extended setup (2.2), the proposed parameterization
in terms of G-covariant components (3.8) and the generalized BdR identification (3.7) lead
to an exact, yet implicit, double Lorentz H-transformation for the double generalized frame

δEM
a = EM

bΛba+ 1
g2

1XR1

EM
b(χ−

1
2 )b

cFcCDDaΓCD+ 1
g2

2XR2

∂MΓCD(χ−
1
2 )abF bCD , (3.15)

δEM
a = EM

bΛb
a− 1

g2
2XR2

EM
b(χ−

1
2 )bcFcCDD

aΓCD− 1
g2

1XR1

∂MΓCD(χ−
1
2 )abF

b
CD ,

where we have redefined

Λab = (χ
1
2 )acΓcd (χ−

1
2 )db+(χ

1
2 )ac δ(χ−

1
2 )cb−Eµ̃aeµ̃γΓγc(χ−

1
2 )cb+Daξ

µ̃Eµ̃c(χ−
1
2 )cb , (3.16)

Λab = (χ
1
2 )acΓcd (χ−

1
2 )db+(χ

1
2 )ac δ(χ−

1
2 )cb−E

˜
µae˜

µγΓγc(χ−
1
2 )cb+Daξ˜

µE
˜
µ
c(χ−

1
2 )cb .

The transformation (3.15) hides an infinite expansion in terms of G-covariant fields and
parameters, named the generalized Green-Schwarz transformation. To compute this trans-
formation perturbatively in integer powers of g−2

1 and g−2
2 requires taking into account the

following four actions:

1. First one should perform an h×H decomposition of H by splitting indices A = (a, α),
and an h×H decomposition of H by splitting indices A = (a, α).

2. Identify the following components of the extended Lorentz parameters Γaβ , Γαβ , Γaβ ,
Γαβ , and replace them by the gauge fixing conditions (3.14).

3. Redefine the H×H components of the Lorentz parameters Γab → Λab and Γab → Λab,
through (3.16).

4. Rewrite the components of fluxes in the extended space F (2.9), in terms of the fluxes
in the double space F (2.37) and the internal components of the extended generalized
frame. We write these expressions explicitly in the appendix (A.1)–(A.6) in order to
lighten the notation here.
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Up to four derivatives one gets the following transformation for the H projection of the
double generalized frame

δEM
a = EM

bΛb
a − 1

g2
2

1
(−1 +XR2) FMcd D

aΛcd − 1
g2

1

1
(−1 +XR1)∂MΛcd F acd (3.17)

+ 2
g4

2 XR2(−1 +XR2)
EM

b
[
FbEFFcG

F
(
FcCGDaΓC

E −F cCEDaΓC
G
)

−
(
DaΓEG

) (
FbcdFcEFF

d
G
F +DbFcEFFcG

F − 2 DcFbEFF
c
G
F
)

− FbEFD
a
(
DcΓEGFcG

F
)
− DaDcΓEF

(
FcdbFdEF +DcFbEF

)]
− 1
g2

2

1
(−1 +XR2)

1
g2

1

1
XR1

[
FMef D

a
(
DeΓCD Ff CD

)
+
(
FMehF

hCD FfCD − ∂MFe
CD FfCD

)
DaΛef

]
+ 1
g2

1

1
(−1 +XR1)

1
g2

2

1
XR2

[
∂M

(
DcΓCD FdCD

)
F acd

+ ∂MΛcd
(
F aceFeCDFdCD −D

aFcCDFdCD
)]

+ 1
g4

1

2
XR1(−1 +XR1)

[
∂M

(
DcΓCD

) (
Fc b

aF bCD +DcFaCD
)

+
(
∂MΓCE

) (
2FcDEFa[D

F FcC]F + F acdF
d
CD FcDE + FcCDDaFcDE

+ 2DcFaCD FcDE
)

+ ∂M
(
DcΓCDFcCE

)
FaED

]
+ O

(
g−6
i

)
.

The factors (−1 +Xi)−1 are a consequence of the cyclic relations (explained at the end of
section 2.3) necessary to cast the h-covariant contractions in terms of H-covariant ones.
Note that there are no h-covariant indices α and α in this expression. The two derivative
part of the Lorentz transformations in the first line above is fully expressed in terms of
the H-covariant indices of the double space. The higher derivative terms of order g−4

i are
written in terms of the extended fields and parameters. We must then repeat these steps
once again for these terms in order to get the complete four derivative transformations (we
drop here all contributions of order g−6

i and higher)

δEM
a=EM

bΛb
a− a2 ∂MΛcdF acd−

b

2FMcdD
aΛcd (3.18)

− b
2

2 EM
b
[
DaDcΛef

(
FcdbF

d
ef+DcFbef

)
−FbefFcd

f
(
F chdDaΛh

e−F cheDaΛh
d
)

+ F cefD
aΛeg

(
FbcdF

dgf−DbFc
gf+2DcFb

gf
)

+FbefD
a
(
DcΛedFcd

f
)]

− ab4 EM
b
[
DaΛef

(
FbehF

hcdFfcd−DbFe
cdFfcd

)
+FbefD

a
(
DeΛcdF f cd

)
−DbΛef

(
F aehF

hcdFfcd−D
aFe

cdFfcd

)
−F aefDb

(
DeΛcdF f cd

)]
+ a2

2 EM
b
[
DbD

cΛef
(
Fcd

aF def+DcF
a
ef

)
−F aefFcdf

(
F chdDbΛhe−F cheDbΛhd

)
+ F cefDbΛeg

(
F acdF

dgf−DaFc
gf+2DcF

agf
)

+F aefDb

(
DcΛedFcdf

)]
.
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We see once again that gi and XRi arrange themselves into the combination

a = 1
g2

1

2
(−1 +XR1) , b = 1

g2
2

2
(−1 +XR2) . (3.19)

Repeating the computations analogously for the transformation of the H projection of the
double generalized frame leads to

δEM
a=EM

bΛba+ b

2 ∂MΛcdF acd+ a

2FMcdD
aΛcd (3.20)

− a
2

2 EM
b
[
DaDcΛef

(
FcdbF

d
ef+DcFbef

)
−FbefFcd

f
(
F chdDaΛhe−F cheDaΛhd

)
+ F cefD

aΛeg
(
FbcdF

dgf−DbFc
gf+2DcFb

gf
)

+FbefD
a
(
DcΛedFcdf

)]
− ab4 EM

b
[
DaΛef

(
FbehF

hcdFfcd−DbFe
cdFfcd

)
+FbefD

a
(
DeΛcdF f cd

)
−DbΛ

ef
(
F aehF

hcdFfcd−D
aFe

cdFfcd

)
−F aefDb

(
DeΛcdF f cd

)]
+ b2

2 EM
b
[
DbD

cΛef
(
Fcd

aF def+DcF
a
ef

)
−F aefFcd

f
(
F chdDbΛh

e−F cheDbΛh
d
)

+F cefDbΛ
e
g

(
F acdF

dgf−DaFc
gf+2DcF

agf
)

+F aefDb

(
DcΛedFcd

f
)]
.

It can be checked that these transformations preserve the G-valuedness of the double
generalized frame, and also close together with the generalized diffeomorphisms into trans-
formations produced by the following corrected brackets

ξM12 = 2ξP[1∂P ξ
M
2] +∂MξP[1ξ2]P + a

2 Λcd[1 ∂
MΛ2]cd−

b

2 Λcd[1 ∂
MΛ2]cd (3.21)

−ab
[
∂MΛ[1

efDfΛ2]cdFe
cd+∂MΛ[1

efDfΛ2]cdFe
cd
]

+a2
[
∂MΛef[1 D

cΛ2]e
dFcdf + 1

2∂
M
(
DcΛef[1

)
DcΛ2]ef

]
+b2

[
∂MΛef[1 D

cΛ2]e
dFcdf + 1

2∂
M
(
DcΛef[1

)
DcΛ2]ef

]
,

Λab12 = 2ξN[1 ∂NΛab2] −2Λac[1 Λ2]c
b−aDaΛcd[1 D

bΛ2]cd+bDaΛcd[1 D
bΛ2]cd

+ab
[
F gcdD

[aΛ[1
cdF b]efDgΛ2]Λef −D[aΛ[1efD

b]
(
F ecdD

fΛ2]
cd
)

−D[aΛ[1efD
b]
(
F ecdD

fΛ2]
cd
)]

+a2
[
DaΛcd[1 D

bΛef2] F
g
cdFgef−D

aDeΛcd[1 D
bDeΛ2]cd−2D[a

(
DcΛed[1 Fcd

f
)
Db]Λ2]ef

]
+b2

[
DaΛcd[1 D

bΛef2] F
g
cdFgef−D

aDeΛcd[1 D
bDeΛ2]cd−2D[a

(
DcΛed[1 Fcd

f
)
Db]Λ2]ef

]
,

Λab12 = 2ξN[1 ∂NΛab2] −2Λac[1 Λ2]c
b−aDaΛcd[1 D

bΛ2]cd+bDaΛcd[1 D
bΛ2]cd

+ab
[
F gcdD

[aΛ[1
cdF b]efDgΛ2]Λef −D[aΛ[1efD

b]
(
F ecdD

fΛ2]
cd
)
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−D[aΛ[1efD
b]
(
F ecdD

fΛ2]
cd
)]

+a2
[
DaΛcd[1 D

bΛef2] F
g
cdFgef−D

aDeΛcd[1 D
bDeΛ2]cd−2D[a

(
DcΛed[1 Fcd

f
)
Db]Λ2]ef

]
+b2

[
DaΛcd[1 D

bΛef2] F
g
cdFgef−D

aDeΛcd[1 D
bDeΛ2]cd−2D[a

(
DcΛed[1 Fcd

f
)
Db]Λ2]ef

]
.

The transformations (3.18), (3.20) are the second order corrections to the generalized
Green-Schwarz transformation. The first order reproduces the results in [32] and the second
order in the mono-parametric case reproduces (2.38), (2.39) originally found in [36].

3.2 The bi-parametric action to second order

In the previous sections we introduced an exact generalized BdR identification (3.7), and
used it to obtain second-order four-derivative corrections to the generalized Green-Schwarz
transformations (3.18)–(3.20). We now exploit this identification further to get the full
invariant four and six-derivative couplings in the action of DFT.

The starting point is the standard two-derivative G-covariant action in the extended
space

S =
∫

dX e−2d R . (3.22)

It is useful to decompose it as a sum

R = R0 +R1 +R2 , (3.23)

where R0 is a constant, R1 contains vectorial generalized fluxes and therefore the general-
ized dilaton dependence

R1 = 2
(
DAFA −D

AFA
)
−
(
FAFA −F

AFA
)
, (3.24)

and R2 includes the three-form fluxes

R2 = 1
2
(
FABC F

ABC −FABC F
ABC

)
+ 1

6
(
FABC F

ABC −FABC FABC
)
. (3.25)

The action written in this form is democratic with respect to overline and underline pro-
jections. Using Bianchi identities it can be taken to a simpler and equivalent form in which
this symmetry is broken [43, 44]. When the action is gauged either explicitly [37] or through
a generalized Scherk-Schwarz reductions [42, 47, 48], in certain cases the Bianchi Identities
that connect the two ways of writing the action fail con coincide, and the one that prop-
erly connects with gauged supergravities is one in which the overline-underline symmetry
is broken [49]. Here we use the symmetric version because since we are interested in the
bi-parametric case, where parameters a and b interpolate between the two projections, it
is useful to preserve the symmetry between them.

The perturbative expansion follows from the same procedure discussed in section 3.1,
the relevant steps here being 1 and 4. One first has to perform an h × H decomposition
of H by splitting indices A = (a, α), and an h×H decomposition of H by splitting indices
A = (a, α). Then rewrite the components of the fluxes in the extended space F (2.9),
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in terms of the fluxes in the double space F (2.37) and the internal components of the
extended generalized frame. The exact expressions for these can be found in (A.1)–(A.12)
in the appendix. The outcome of such a procedure is a lengthy action, and so Cadabra
software has been of great help [50].

We found the following action

S =
∫

dX e−2d
(
R(−1) +R(0) +R(1) +R(2)

)
, (3.26)

where
R(−1) = R0 + k

6
(
g2

2 − g2
1

)
, (3.27)

is an arbitrary constant because R0 is not fixed by duality, so we choose it to vanish. The
two-derivative part is obviously the standard DFT generalized Ricci scalar

R(0) = 2DaFa − F aFa + 1
2Fabc F

abc + 1
6Fabc F

abc −
(
{a, b, c, . . .} ↔ {a, b, c, . . .}

)
. (3.28)

The first order decomposes as

R(1) = a R(0,1) + b R(1,0) = a R(0,1) +

 a↔ b

{a, b, c, . . .} ↔ {a, b, c, . . .}

 , (3.29)

with

R(0,1) = −FaFbF
aabF bab + 2DaFbF

aabF bab + 2DaFa
abFbF

b
ab + 2DaF

babFbF
a
ab

−1/2DaDbF
aabF bab − 3/2DaDbF

babFaab −DaFa
abDbFbab + 1/2DaF acbDaFacb

−1/2DaF babDaFbab − 3/2DaF acbF bcbFaba − 4DaF bacFaa
bFbcb

+1/2DaF cabF babFacb + 4/3FaacFcabFbcbF
acb − F aacFaadF bcbFbdb

+F aacF badFbc
bFadb + F aacF cacFa

bbFcbb . (3.30)

It obviously coincides with the four-derivative action found in [32], and later rewritten
in [33] in terms of generalized fluxes and flat derivatives.

The previous actions were known, and now we present a new result: the six-derivative
action. It decomposes as follows

R(2) = a2R(0,2) + abR(1,1) + b2R(2,0) (3.31)

= a2R(0,2) + abR̃(1,1) −

 a↔ b

{a, b, c, . . .} ↔ {a, b, c, . . .}

 .

In the last identity we cast the Lagrangian in a form that exhibits the symmetry with
respect to the exchange of a and b. It is convenient to split the contributions between
those coming from R1 and R2, namely those with dilaton dependence and without. We
then write R(0,2) = R(0,2)

Φ +R(0,2)
6Φ , where

R(0,2)
Φ = −2DbF defDcDbFcefFd−2DbF aefDaDbF

d
efFd−2DbF aefDbF

d
efDaFd (3.32)

−4DcDeFc
ceF dFdc

fFeef +2DbDbF
eceF dFdc

fFeef +2DbDfFb
deF cF edeFcef
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−4DdF cDeFc
ceFdc

fFeef −4DdF cDeFd
ceFcc

fFeef +2DbF cDbF
eceFcc

fFeef

+2DdF bDbF
eceFdc

fFeef +DbF cefDbF
d
efFcFd+2DfF adeDaF

cF edeFcef

+2DfF adeDaF
e
deF

dFdef −4DeDfF dceFdFec
fFfef +2DeDdF fceFdFec

fFfef

+2DeDfF cdeFcF
f
deFeff −2DfF cdeF bFcF

e
deFbef +4DcFc

ceDfF ec
fFeFfef

−2DcFc
ceDeF f c

fFeFfef +8DdF eceDfFdc
fFeFfef −2DeF dceDfFdc

fFeFfef

−2DbF eceDbF
f
c
fFeFfef −2DcF eceFcF

dFdc
fFeef +4DeF cceFcF

dFdc
fFeef

+2DfF cdeDeFcF
f
deFeff +2DdF eefDcFc

f
dFeFfef +2DdF aefDaF

ef
dFeFfef

+2DfF ddeDeF f deFdFeff −2DcF bFc
ceF f c

fF gefFbfg−2DfF bF ecdF gcdFfgfFbe
f

+4DcF bFcc
gF ee

hFeghFb
ce−4DeF bF dc

gFde
hFeghFb

ce+DdF bF ecdFd
ghFeghFb

cd

−2DeF bF f c
fF gefFb

ceFefg−2DbFb
fgF eFe

ceFfc
fFgef −2DbFb

efF dFe
deF gdeFdgf

+4DeF fceF cFcc
fF gefFefg−8DdF eceF cFcc

gFde
hFegh+4DeF dceF cFcc

gFde
hFegh

+4DbFb
ceF cFcc

gF ee
hFegh+DdF ecdF cFccdFd

ghFegh+4DdF eegF cFc
fhFdefFegh

−4DbFb
egF cFc

fhF eefFegh+DdF eefF cFc
ghFdefFegh+DbFb

efF cFc
ghF eefFegh

−2DfF gcdF cF ecdFce
fFfgf −2DfF ecdF cF gcdFce

fFfgf +4DdF fceF cFdc
fF gefFcfg

−2DbFb
ceF cF f c

fF gefFcfg+2F aF bFaceF ecfF f efFbef −2F aF bFaceF dehFdghFbc
g

+2F aF bFaegF defFdghFb
fh−1/2F aF bFaefF defFdghFb

gh+F aF bF ecdF f cdFae
fFbff

−2DfF eghFeFf
ceFgc

fFhef −2DgF defFdFe
deFhdeFghf −2DfF cceFcF

g
c
fFhefFfgh

+4DdF cceFcFdc
gF f e

hFfgh−4DfF cceFcF
e
c
gFee

hFfgh+DeF ccdFcF
f
cdFe

ghFfgh ,

and the contribution of the three-form fluxes is given by

R(0,2)
6Φ = −1

2DcDdF bghDcDdF
bgh

+DcDbFc
ef DdDbF

def
+ 1

2DbDbF def D
b
DbF

def
(3.33)

+1
2DbF bef DdD

b
DbF

def
+ 3

2DbF aef DaDdDbF
def
− 1

2DcDeDf Fc
deF f

deF
eff

−3
2DeDcDf Fc

deF f
deF

eff
− 1

2DcDeDcF fceFec
f F

fef
+DdDeDf F

d
ceFec

f F
fef

+3DeDdDf F
d

ceFec
f F

fef
− 3

2DeDcDcF fceFec
f F

fef
+DcDf F bghDcF

b
d

f F
dgh

+DcDhF cfgDcF d
fgF

cdh
+ 3

2DhDcF cfgDcF d
fgF

cdh
−2DcDdFc

ef DdF
d

f
dF

fef

−DbDdF def D
b
F

d
f

dF
fef
−2DcDf Fc

deDeF f
deF

eff
−DbDf F edeD

b
F f

deF
eff

+3
2DcDf F eceDcFec

f F
fef
−DcDeF fceDcFec

f F
fef

+ 3
2DcDdF

d
ceDcF f

c
f F

fef

+4DdDf F
d

ceDeFec
f F

fef
−5DdDeF

d
ceDf Fec

f F
fef

+ 1
2DdDcF

d
ceDcF f

c
f F

fef

−3DeDdF
d

ceDf Fec
f F

fef
+DeDf F cceDcFec

f F
fef
−Df DeF cceDcFec

f F
fef

+1
2Df DcF eceDcFec

f F
fef
−2DbD

b
F fceDeFec

f F
fef

+2DbD
b
F eceDf Fec

f F
fef

+DbDcF degDbFce
hF

dgh
−2DbDdF cegDbFce

hF
dgh
− 1

2DdF bef DdD
b
F

d
f

dF
fef

−3
2DdF aef DaDdF

d
f

dF
fef
− 1

2Df F bdeDeD
b
F f

deF
eff
− 3

2Df F adeDaDeF f
deF

eff

−2Df F bdeDeF f
deD

b
F

eff
+2Df F adeDaF e

deDf F
eff
−3DbF cceDcF

fef
D

b
F f

c
f

−1
2DbF def DeDbF f

ef F
def

+2DgF cef DdDhFcef F
dgh
−2DgF aef DaDhF d

ef F
dgh

+4DbF cegDdDbFce
hF

dgh
−4DbF aegDaDbF d

e
hF

dgh
+2DgF aef DhF d

ef DaF
dgh
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+7DbF aegDbF d
e

hDaF
dgh

+ 3
2DgDhF cef F e

ef Fc
f

gF
efh

+ 1
2DcDf Fc

ghF
f

ceFgc
f F

hef

+3
2Df DcFc

ghF
f

ceFgc
f F

hef
+ 1

2DcDgFc
ef Fe

deF h
deF

ghf
+ 3

2DgDcFc
ef Fe

deF h
deF

ghf

+1
2DeDgF fcdF h

cdF
ef

f F
ghf

+ 3
2DeDgF hcdF f

cdF
ef

f F
ghf

+ 1
2DcDf Fc

ceF g
c

f F h
ef F

fgh

−3DdDf F gceF
dc

f F h
ef F

fgh
− 1

2Df DgF dceF
dc

f F h
ef F

fgh
+ 3

2Df DcFc
ceF g

c
f F h

ef F
fgh

+DcDf Fc
ceF e

c
gFee

hF
fgh
−DcDdFc

ceF
dc

gF f
e

hF
fgh
−3DdDcFc

ceF
dc

gF f
e

hF
fgh

+3Df DcFc
ceF e

c
gFee

hF
fgh
− 3

16DcDeFc
cdF f

cdFe
ghF

fgh
− 7

16DdDeF fcdF
dcd

Fe
ghF

fgh

− 9
16DeDdF fcdF

dcd
Fe

ghF
fgh
− 13

16DeDcFc
cdF f

cdFe
ghF

fgh
−3DhDcF edf Fcd

gF f
fgF

efh

+3
2DhDeF cdf Fcd

gF f
fgF

efh
− 1

2Df Df F gdeF d
deF

d
h

f F
fgh

+2DcDdF efgFcd
hF f

fgF
efh

−2DeDdF cfgFcd
hF f

fgF
efh
−4DcDhF edf Fcd

gF f
fgF

efh
+4DeDhF cdf Fcd

gF f
fgF

efh

−1
2DbF cedDbFc

f
dFe

ghF
fgh
−DbF begDbF

b
ef Fee

hF
fgh
− 3

2DeF efgDhF df
eF

dfg
F

efh

−DbF efgDbF dfhF
dfg

F
efh
− 3

2DgF eef DhF c
ef Fc

f
gF

efh
− 3

2DbF cef DbF e
ef Fc

fhF
efh

−2DgF def DhF e
ef F f

ghF
def
−6DbF degDbF e

e
hF f

ghF
def

+DgF cef DiF d
ef Fcg

jF
dij

−2DgF def DiF c
ef Fcg

jF
dij

+DgF bef DiF
bef

F d
g

jF
dij

+4DgF ceiDhF d
e

jFcghF
dij

−4DgF beiDhF
be

jF d
ghF

dij
+ 3

16DbF cef DbF d
ef Fc

ijF
dij

+DbF cegDbF d
e

iFcg
jF

dij

−6DbF degDbF c
e

iFcg
jF

dij
+5DbF begDbF

be
iF d

g
jF

dij
+ 5

16DbF bghDbF
b

ijF d
ghF

dij

+5DbF cgiDbF dhjFcghF
dij
−5DbF bgiDbF

b
hjF d

ghF
dij

+DcFc
gbDeFe

h
bFg

ef F
hef

+1
2DbF egbD

b
Fe

h
bFg

ef F
hef

+2DcFc
ceDdF

d
ghFgc

f F
hef
−4DdF eceDgF

de
hFgc

f F
hef

+4DgF dceDeF
de

hFgc
f F

hef
+DbF dceD

b
F

d
ghFgc

f F
hef

+2DdF edeDgF
de

f F h
deF

ghf

−2DgF ddeDeF
de

f F h
deF

ghf
+2DgF hdeDdF

d
ff F

fde
F

ghf
+DbF gdeD

b
F fhf F

fde
F

ghf

+DeF fcdDgF h
cdF

ef
f F

ghf
+ 1

2DbF ecdD
b
F g

cdFe
hf F

ghf
+4DcFc

ceDf F g
c

f F h
ef F

fgh

−DdF fceDgF
dc

f F h
ef F

fgh
−5DeF fceDgF h

c
f Feef F

fgh
+ 1

2Df F dceDgF
dc

f F h
ef F

fgh

+1
2Df F eceDgF h

c
f Feef F

fgh
+2DbF fceD

b
F g

c
f F h

ef F
fgh

+8DcFc
ceDf F e

c
gFee

hF
fgh

−4DcFc
ceDeF f

c
gFee

hF
fgh
−2DcFc

ceDdF
dc

gF f
e

hF
fgh

+8DdF eceDf F
dc

gFee
hF

fgh

−8DeF dceDf F
dc

gFee
hF

fgh
−DbF dceD

b
F

dc
gF f

e
hF

fgh
−3DbF eceD

b
F f

c
gFee

hF
fgh

+2DbF fceD
b
F e

c
gFee

hF
fgh
−DcFc

cdDeF f
cdFe

ghF
fgh
− 1

2DeF dcdDf F
dcd

Fe
ghF

fgh

− 5
16DbF ecdD

b
F f

cdFe
ghF

fgh
−4DcFc

egDeF ffhFeef F
fgh

+2DcFc
egDdF

d
fhF f

ef F
fgh

−8DdF eegDf F
d

fhFeef F
fgh

+8DeF degDf F
d

fhFeef F
fgh

+DbF degD
b
F

d
fhF f

ef F
fgh

+DbF eegD
b
F ffhFeef F

fgh
−DcFc

ef Df F eghFeef F
fgh
− 1

2DcFc
ef DdF

d
ghF f

ef F
fgh

−DdF fef DeF
d

ghFeef F
fgh
− 1

2DeF def Df F
d

ghFeef F
fgh
− 3

16DbF def D
b
F

d
ghF f

ef F
fgh

−1
2DdF fef DgF eh

dFeef F
fgh

+4DdF cegDeFc
f

dFee
hF

fgh
−4DdF aegDaF ef

dFee
hF

fgh

−2DeF cghDeFc
ff Feef F

fgh
+2DeF aghDaF eff Feef F

fgh
− 1

2Df F fdeDgF d
deF

d
h

f F
fgh

+2DdF cfgDeFcd
hF f

fgF
efh
−2DdF afgDaF e

d
hF f

fgF
efh
−2Df F edeDdF f

deF
df

hF
efh

−2Df F adeDaF e
deF f

f
hF

efh
−7DhF edf DdF f

d
gF

dfg
F

efh
− 11

2 DhF cdf DeFcd
gF f

fgF
efh

+3
2DhF edf Df F d

d
gF

dfg
F

efh
+3DhF adf DaF e

d
gF f

fgF
efh

+ 3
2DhF degF

d
df Fed

gF h
fgF

ghh

+3
2DgF cehFc

ef F g
ef Fe

h
gF

ghh
−4DdF dfgF f

fgF
dh

jF e
d

hF
efj

+2DdF efgF f
fgF

dh
jF d

d
hF

efj
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−2DdF bfgF e
fgF f

h
jF

bd
hF

efj
+4DdF cfhFcf

iF f
hiF

e
d

jF
efj
−8DdF efhFcf

iF f
hiF

c
d

jF
efj

+4DdF bfhF e
f

iF f
hiFbd

jF
efj

+ 7
16DjF cdeFc

hiF f
hiF

e
deF

efj
− 13

16DjF edeFc
hiF f

hiF
c

deF
efj

−11DjF edf F f
f

iF
dhi

F d
d

hF
efj

+11DjF edf Fcf
iF f

hiF
c

d
hF

efj
−8DjF bdf F e

f
iF f

hiFbd
hF

efj

+4DdF ffgF d
fgF g

d
hF

d
h

hF
fgh

+ 3
2DhF ddf F g

fgF f
d

gF
d

h
hF

fgh
+11DhF fdf F g

fgF d
d

gF
d

h
hF

fgh

+3
2Df F edeF g

deF fh
f F

ef
hF

ghh
−2Df F edeF c

deFc
g

f Fe
hhF

ghh
− 1

2DhF efiFe
ceF

fc
f F j

ef F
hij

−1
2DhF dif F

d
deF f

deF
f

j
f F

hij
+4DdF eghF

d
df Fed

gF h
fgF

ghh
+4DgF dehF

d
df Fed

gF h
fgF

ghh

+2DdF egbF
db

hFe
fgF h

fgF
ghh

+2DgF debF
db

hFe
fgF h

fgF
ghh
− 1

2DhF dcdF f
cdF

d
if F

f
j

f F
hij

−DeF hceF f
c

f F i
ef F

ef
jF

hij
− 1

2DeF fceF h
c

f F i
ef F

ef
jF

hij
+8DcF eceFcc

f F g
ef Fe

hhF
ghh

−2DeF cceFcc
f F g

ef Fe
hhF

ghh
−2DdF ecdF g

cdF
d

ghFe
h

gF
ghh

+2DeF gcdF f
cdF hghF

efg
F

ghh

+2DeF gghF fef F h
ef F

efg
F

ghh
+16DcF fceFcc

gF g
e

hF h
ghF

fgh
−Df F gceF d

c
gF

de
hF h

ghF
fgh

+Df F gceF e
c

gF h
e

hFeghF
fgh
−8Df F cceFcc

gF g
e

hF h
ghF

fgh
+DdF fcdF g

cdF
d

ghF h
ghF

fgh

+ 3
16Df F gcdF d

cdF
d

ghF h
ghF

fgh
− 9

16Df F dcdF g
cdF

d
ghF h

ghF
fgh
−2DcF eceFcc

f F f
ef Fe

ijF
fij

+2DeF cceFcc
f F f

ef Fe
ijF

fij
+16DcF fceFcc

gF e
e

iFeg
jF

fij
−8DcF eceFcc

gF f
e

iFeg
jF

fij

−12DcF dceFcc
gF

de
iF f

g
jF

fij
+8DeF dceF f

c
gF

de
iFeg

jF
fij

+4DeF cceFcc
gF f

e
iFeg

jF
fij

−2DdF ecdF f
cdF

d
giFeg

jF
fij
− 2

3F dceF f
ef F

d
ikFei

lF
fkl

F e
c

f −8F dceF f
e

iF
dg

kFei
lF

fkl
F e

c
g

−4F bceF d
e

iF
dg

kF f
i
lF

fkl
F

bc
g−4F bceF e

e
iF f

g
kFei

lF
fkl

F
bc

g +16F bceF f
e

iF e
g

kFei
lF

fkl
F

bc
g

+F ccdFc
giF e

g
kFei

lF
fkl

F f
cd−F ccdFc

giF
dg

kF f
i
lF

fkl
F d

cd +8F dceF g
e

iF
dg

jF h
ijF f

c
gF

fgh

+8F bceF f
e

iF g
g

jF h
ijF

bc
gF

fgh
+2F ccdFc

giF g
g

jF h
ijF f

cdF
fgh
−4F eceF h

e
hF i

ghF f
c

gF
ef

jF
hij

−1
4F ecdF fghF i

ghF h
cdF

ef
jF

hij
−4F dceF g

ef F
d

ijF e
c

f Fe
h

iFghj
−4F eceF g

ef F hijF f
c

f F
efi

F
ghj

−6F dceF g
e

hF
dgh

F e
c

gFe
hjF

ghj
−4F eceF g

e
hF h

ghF f
c

gF
ef

jF
ghj

+6F bceF e
e

hF g
ghF

bc
gFe

hjF
ghj

+1
2F ccdFc

ghF g
ghF e

cdFe
hjF

ghj
+ 1

4F ecdF fghF h
ghF g

cdF
ef

jF
ghj

+F ecdF dgiF
dg

jF g
cdFe

h
iFghj

+F ecdF fgiF h
g

jF g
cdF

efi
F

ghj
−2F ecdF hgiF f

g
jF g

cdF
efi

F
ghj
−4F dceF h

ef F f
c

f F
d

ihF
f

j
hF

hij

+2F dceF i
ef F h

c
f F

d
fhF

f
j

hF
hij
−2F dcdF hghF f

cdF
d

i
gF

f
j

hF
hij
−F ccdF e

cdFc
gf Fe

i
f Fg

jhFijh .

On the other hand we also split the mixed ab terms in those with dilaton dependence and
without R̃(1,1) = R(1,1)

Φ +R(1,1)
6Φ , finding on the one hand

R(1,1)
Φ = −DbDbF

cfgF eF dfgFcde−D
dDeF fdeF cFddeFefc−D

dF aDeF fdeFddeFefa (3.34)

−DbF cDbF
cfgF dfgFcdc−D

gF bDbF
cefF defFcdg−D

cFc
cdDeF f cdF

eFefe

−DhDeF cfgFeF
d
fgFcdh−D

fF bghDeFb
d
eFfFdgh−D

bF bghDbFb
dfFfFdgh

−DgF cefDhF defFgFcdh−D
dF eefDfFde

dFdFfef −
1
2D

bF aF f deFb
deF ghaFfgh

−1
2D

eF fghF aFe
deFfdeFgha−

1
2D

cF fdeF cFcdeF
gh
cFfgh−

1
2D

bFb
deF cF f deF

gh
cFfgh

−1
2D

dF fgbFbFd
efFhefFfgh+DbF aF ed

gF f fgFb
dfFefa−2DcF edfF cFcd

gF f fgFefc

+DbFb
dfF cF ed

gF f fgFefc+DdF efbFbFd
egFee

hFfgh+DdDdF efeF cFddeFefc

+DdF efeDdF cFddeFefc+DcF efdDdFdcdF
eFefe+DeF defDfFde

dFdFfef

+1
2D

bF aF efgFbefF
ef
aFefg+ 1

2D
dF efcF bFc

fgFdfgFefb+ 1
2D

bFb
deF cFde

gF ef cFefg
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+1
2D

bF efgF dFbefF
ef
dFefg+ 1

2D
dF efbFbF

fghFdfgFefh+2DgF bF cefF eefFc
f
bFefg

−2DbF cebF
cFc

fgF f fgFefc+2DgF cefF dF eefFc
f
dFefg+2DgF eefF dF cefFc

f
dFefg

−2DhF cecFcFc
fgF f fgFefh−D

bF aFb
deF egaFe

h
dFghe+2DdF egcF bFdc

eFe
h
bFghe

−DbFb
deF cF egcFe

h
dFghe−D

dF egbFbFd
efFe

h
eFghf +DdF cfgFdF

eF dfgFcde

−F aF bF cefF eefFcf aFefb+DdF edeF cF cFcdeFdec+ 1
2F

aF aFa
deF edeF

fg
aFefg

−F aF aFadfF efgF ddgFdea ,

and on the other

R(1,1)
6Φ = 4

3DeF cceDcF
fef

Df Fec
f −4DbF cceDcF

fef
D

b
F f

c
f −4DdF fceDgF

dc
f F h

ef F
fgh

(3.35)

+2Df F dceDgF
dc

f F h
ef F

fgh
+2DbF fceD

b
F g

c
f F h

ef F
fgh
−4DeF hceF f

c
f F i

ef F
ef

jF
hij

+2
3F dceF j

ef F g
c

f F
d

hkF
gh

lF
jkl

+4DdF eceDf F
dc

gFee
hF

fgh
−4DdF fceDeF

dc
gFee

hF
fgh

−2DeF dceDf F
dc

gFee
hF

fgh
+2Df F dceDeF

dc
gFee

hF
fgh
−2DbF eceD

b
F f

c
gFee

hF
fgh

+2DbF fceD
b
F e

c
gFee

hF
fgh

+4DcF fceFcc
gF g

e
hF h

ghF
fgh
−4Df F cceFcc

gF g
e

hF h
ghF

fgh

−2F eceF h
e

hF i
ghF f

c
gF

ef
jF

hij
+4DcF fceFcc

gF e
e

iFeg
jF

fij
−4DcF dceFcc

gF
de

iF f
g

jF
fij

−4DeF fceF d
c

gF
de

iFeg
jF

fij
+4DeF dceF f

c
gF

de
iFeg

jF
fij

+2F dceF g
e

iF
dg

jF h
ijF f

c
gF

fgh

+2F bceF f
e

iF g
g

jF h
ijF

bc
gF

fgh
−2F dceF f

e
iF

dg
kFei

lF
fkl

F e
c

g + 2
3F fceF d

e
iF

dg
kFei

lF
fkl

F e
c

g

−2
3F bceF e

e
iF f

g
kFei

lF
fkl

F
bc

g +2F bceF f
e

iF e
g

kFei
lF

fkl
F

bc
g + 1

4DcDhDcF cfgF d
fgF

cdh

+3
4DhDcDcF cfgF d

fgF
cdh

+ 1
2Df DdDeF fdeF

dde
F

eff
+ 1

2DdDf DeF fdeF
dde

F
eff

+3
4DcDdF cd

dDcFc
ghF

dgh
+ 1

4DdDcF cd
dDcFc

ghF
dgh

+ 1
2DcDf F bghDcF

b
d

f F
dgh

+DbDbF bghDf F
b

d
f F

dgh
− 1

4DcDhF cfgDcF d
fgF

cdh
+ 1

4DhDcF cfgDcF d
fgF

cdh

+DbDbF cfgDhF d
fgF

cdh
+Df DbF be

bD
b
Fe

ef F
fef

+ 1
2DdDdF eef Df F

ded
F

fef

+Df DcFc
deDeF f

deF
eff

+Df DeF fdeDdF
dde

F
eff
− 1

2DbDdF def D
b
F

d
f

dF
fef

−1
2DcF cfgDhF d

fgDcF
cdh

+DbF be
bDf D

b
Fe

ef F
fef

+DbF ae
bDaFe

ef Df F
fef

+1
2Df F adeDaDeF f

deF
eff

+Df F bdeDeF f
deD

b
F

eff
− 1

2Df F edeDbF f
deD

b
F

eff

−1
4DeDf F chiFef

jF d
hiFcdj

+ 1
4Df DeF fghFe

deF
fde

F
ghf

+ 1
4DeDf F fghFe

deF
fde

F
ghf

+1
2DdDbF fg

bF
d

ef F h
ef F

fgh
+ 1

4Df DcF fdeFcdeF gh
f F

fgh
+ 1

2Df DbF
b

deF f
deF gh

f F
fgh

+1
4DcDf F fdeFcdeF gh

f F
fgh
− 1

4Df F bijDgF
b

dhFfghF
dij

+ 1
4DgF cef DhF d

ef Fgh
jF

cdj

+1
4DbF efgDhF

efb
Fg

ef F
hef

+ 1
2Df F fghDeFe

deF
fde

F
ghf

+ 1
2Df F eghDf Fe

deF
fde

F
ghf

+1
2DbF de

bDgF
de

hFg
ef F

hef
+ 1

2DbF fg
bDdF

d
ef F h

ef F
fgh

+ 1
2DbF fg

bDeF hef Feef F
fgh

+1
2Df F cdeDf Fc

ghF
fde

F
ghf

+ 1
4Df F adeDaF fghF

fde
F

ghf
+ 1

4DdF fef DeF gh
dFeef F

fgh

+1
2DdF aef DaF fg

dF h
ef F

fgh
+ 1

2Df F fdeDcFcdeF gh
f F

fgh
+ 1

4Df F adeDaF f
deF gh

f F
fgh

−DdDbF ef
bF

d
egFee

hF
fgh

+DhDcF edf Fcd
gF f

fgF
efh
−DhDbF

b
df F e

d
gF f

fgF
efh

+3
4DcDdF efgFcd

hF f
fgF

efh
+DcDhF edf Fcd

gF f
fgF

efh
−DbF ef

bDdF
d

egFee
hF

fgh

−2DbF de
bDf F

d
egFee

hF
fgh

+DdF cegDeFc
f

dFee
hF

fgh
−DdF aegDaF ef

dFee
hF

fgh

−3
4DeF cghDeFc

ff Feef F
fgh

+ 3
4Df F edeDdF f

deF
df

hF
efh
−Df F ddeDeF f

deF
df

hF
efh
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+2DhF edf DcFcd
gF f

fgF
efh
−2DhF edf DdF f

d
gF

dfg
F

efh
−4DhF ddf DeF f

d
gF

dfg
F

efh

−DhF adf DaF e
d

gF f
fgF

efh
− 1

2DdF bfgF f
fgF

bd
hF gh

hF
fgh
−2DhF bdf F f

fgF
bd

gF gh
hF

fgh

+DdF efgF f
fgF

dh
jF d

d
hF

efj
+DdF bfhF e

f
iF f

hiFbd
jF

efj
+4DjF bdf F e

f
iF f

hiFbd
hF

efj

+DgF dehF
d

df Fed
gF h

fgF
ghh

+2DdF ghbF
db

dF f
d

f F
ff

hF
ghh
−2DeF ghbF f

b
dFed

f F
ff

hF
ghh

+3
2DdF egbF

db
hFe

fgF h
fgF

ghh
−DeF ghbF f

b
hFe

fgF
ffg

F
ghh
−2DcF dcgFcc

eF
de

hF gh
gF

ghh

+2DdF ccgFcc
eF

de
hF gh

gF
ghh

+4DcF eceFcc
f F g

ef Fe
hhF

ghh
−8DeF gceF f

c
f F h

ef F
ef

hF
ghh

+4DeF fceF g
c

f F h
ef F

ef
hF

ghh
−4DeF cceFcc

f F g
ef Fe

hhF
ghh

+2DcF dceFcc
gF

de
hF gh

gF
ghh

+DeF fcdF g
cdF hghF

efg
F

ghh
+4F dceF h

ef F f
c

f F
d

ihF
f

j
hF

hij
−2F dceF h

ef F e
c

f F
de

hF ij
hF

hij

+4F dceF i
ef F h

c
f F

d
fhF

f
j

hF
hij
−2F hceF j

e
hF i

c
gF fg

gF
fgh

F
hij
− 1

2F dcdF eghF h
cdF

deg
F ij

hF
hij

−F eceF g
ef F hijF f

c
f F

efi
F

ghj
−2F dceF g

e
hF

dgh
F e

c
gFe

hjF
ghj

+2F eceF g
e

hF h
ghF f

c
gF

ef
jF

ghj

+2F bceF e
e

hF g
ghF

bc
gFe

hjF
ghj

+F cceFce
iF

dg
jF d

c
gF gh

iFghj
−2F dceFce

iF
dg

jF c
c

gF gh
iFghj

+F bceF d
e

iF
dg

jF
bc

gF gh
iFghj

+ 1
2F ccdFc

giF
dg

jF d
cdF gh

iFghj
+F ecdF dgiF

dg
jF g

cdFe
h

iFghj

−F dgkFd
ilF b

g
jF

bij
F ef

kF
efl

+F gikF hjlF b
ghF

bij
F ef

kF
efl

+2DcF eff Fc
hjF d

f
iF

dhi
F

efj

−1
2DcF cedFcd

jFc
hiF f

hiFefj
−4Df F efhF gijF d

fgF
dhi

F
efj
−2Df F efcFc

hjF d
f

iF
dhi

F
efj

−2DdF cghFd
ijF e

ghFc
f

iFefj
+ 1

2DgF bdeFde
iF

bg
jF ef

iFefj
+ 1

2DcDhF ce
cFc

fgF f
fgF

efh

+3
2DhDcF ce

cFc
fgF f

fgF
efh
−2DgDhF eef F c

ef Fc
f

gF
efh
−DcF ce

cDdFc
f

dFe
ghF

fgh

+2DdF cdeDgF
cdd

F f
e

hF
fgh
−DeF cddDgF

cdd
F f

e
hF

fgh
−2DeF cdgDhF

cd
f F f

ef F
fgh

+2DeF cdgDf F
cd

hF f
ef F

fgh
− 1

2DbF cedDbFc
f

dFe
ghF

fgh
−DbF cdeDbF

cd
gF f

e
hF

fgh

−2DeF efgDhF df
eF

dfg
F

efh
+Df F dbeDbF ef

eF
df

hF
efh
−2DhF efgDeF df

eF
dfg

F
efh

+2DhF bfgDeF
b

e
eF f

fgF
efh

+ 1
2DbF def DbF ef

eF
df

hF
efh

+ 1
2DbF efgDbF dfhF

dfg
F

efh

+3
2DbF bfgDbF

b
ehF f

fgF
efh
− 1

2DbF dfhDbF efgF
dfg

F
efh
−2DgF cef DhF e

ef Fc
f

gF
efh

−1
2DgF bef DhF

bef
F ef

gF
efh
− 1

2DbF begDbF
be

hF ef
gF

efh
. (3.36)

Every term in the action is separately invariant under generalized diffeomorphisms
and rigid O(D,D) transformations. What fixes the couplings is the double Lorentz sym-
metry. Since this symmetry mixes different orders through the generalized Green-Schwarz
transformation, invariance is achieved as follows

δΛR =
∞∑
i=0

i∑
k=0

δ
(i−k)
Λ R(k) = 0 . (3.37)

Here we know the Lorentz transformation and the action to second order, and then invari-
ance holds here to order O(α′2) only. Higher corrections require pursuing the perturbative
expansion further.

4 Supergravity, gauge fixing and field redefinitions

It is well known how to reduce the two-derivative DFT action to that of supergravity. This
requires a GL(D) decomposition of O(D,D), a parameterization of the generalized fields,
a gauge fixing of the double Lorentz transformations to its diagonal subgroup, and picking
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up a certain solution to the strong constraint. When higher derivatives are considered,
these steps must be complemented with field redefintions. The reason is that the compo-
nents of the generalized fields inherit the non-standard Lorentz symmetry coming from the
generalized Green-Schwarz transformation. In particular, one should seek a redefinition
that renders the metric and dilaton Lorentz invariant. The two-form is different as it is
expected to carry a Green-Schwarz transformation. When the two-parameters a and b

are turned on, the minimal field redefinitions that meet these requirements are those that
connect the DFT components (noted here with an overline) to those of supergravity in the
so-called generalized Bergshoeff-de Roo scheme. In such a scheme, the dilaton, vielbein
and two-form transform as [32]

δφ = Lξφ ,

δeµ
a = Lξeµ

a + eµ
bΛba , (4.1)

δbµν = Lξbµν + 2∂[µλν] + a

2∂[µΛabω̂(−)
ν]ab −

b

2∂[µΛabω̂(+)
ν]ab .

Let us now introduce the protagonists in the Green-Schwarz transformation of the two-
form. First we define the spin connection

ωµa
b = ∂µeν

beνa − Γρµνeρbeνa , Γρµν = 1
2g

ρσ (∂µgνσ + ∂νgµσ − ∂σgµν) , (4.2)

that transforms as

δωµa
b = Lξωµa

b + ∂µΛab + ωµa
cΛcb − Λacωµcb . (4.3)

We then add torsion to it in two different ways

ω̂
(±)
µbc = ωµbc ±

1
2 Ĥµνρe

ν
be
ρ
c , (4.4)

with the torsion given by

Ĥµνρ = Hµνρ −
3
2aΩ̂(−)

µνρ + 3
2bΩ̂

(+)
µνρ , Hµνρ = 3∂[µbνρ] , (4.5)

where the Chern-Simons three-forms are defined as

Ω̂(±)
µνρ = ω̂

(±)
[µa

b∂ν ω̂
(±)
ρ]b

a + 2
3 ω̂

(±)
[µa

bω̂
(±)
νb

cω̂
(±)
ρ]c

a . (4.6)

Under diffeomorphisms and Lorentz the Chern-Simons transform as

δΩ̂(±)
µνρ = LξΩ̂(±)

µνρ − ∂[µ
(
∂νΛabω̂(±)

ρ]b
a
)
, (4.7)

which, combined with the Green-Schwarz transformation of the two-form (4.1) renders
Ĥµνρ Lorentz invariant. This is then the right three-form curvature tensor to appear in
the action. It hiddenly contains an infinite tower of higher derivatives, because it depends
on the Chern-Simons terms, which in turn depend on it. So this establishes an infinite
recursive relation that allows to expand the corrections order by order.
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We discussed above the minimal and natural all-order completion of what was found
in [32] to first order in α′, which reproduces exactly the heterotic Green-Schwarz [39, 40]
extending it to the bi-parametric case. Interestingly, because this fits into a duality covari-
ant picture, T-duality enforces the generalized Green-Schwarz transformation to generate
not only the Chern-Simons terms, but also notably the quadratic Riemann interactions
present both in bosonic and heterotic supergravity corrections. We will now show in this
section that this structure (4.1) is preserved by the α′2 corrections discussed in this paper,
with no further deformations arising.

The starting point is to perform a GL(D) decomposition of O(D,D), by parameterizing
all the duality covariant tensors in terms of fields that will later be linked to supergravity.
At the moment it is not necessary to impose the strong constraint. The flat and curved
O(D,D) invariant metrics are decomposed as follows

ηAB =

−gab
gab

 , ηMN =

 δµν

δνµ

 , (4.8)

where g are Minkowski metrics, that carry different indices because they are acted on
separately by the different factors of the double Lorentz group. The generalized fields are
parameterized as

e−2d =
√
|g|e−2φ , EM

A = 1√
2

 ēµc g
ca ēµc g

ca

(b̄µρ − ḡµρ) ēρc gca (b̄µρ + ḡµρ) ēρc gca

 , (4.9)

where it is necessary to include a pair of vielbeins, each satisfying

ēµ
a = ḡµν ē

ν
b g

ba , ēµ
a = ḡµν ē

ν
b g

ba , ḡµν = ēµ
a gab ēν

b = ēµ
a gab ēν

b . (4.10)

If desired, one can then define the generalized metric by curving its flat version

HAB =

gab
gab

 , HMN =

 ḡµν −ḡµρb̄ρν
b̄µρḡ

ρν ḡµν − b̄µρḡρσ b̄σν

 . (4.11)

We have included an overline on the dynamical fields because they will ultimately be
affected by the generalized Green-Schwarz transformations. These non-standard Lorentz
transformations can be removed for the vielbein and the dilaton via field redefinitions, as
we will show soon, and then we reserve the notation without an overline for the set of fields
that transform as usual with respect to Lorentz symmetries. An equivalent decomposition
must apply to generalized coordinates and parameters

∂M =
(
∂̃µ , ∂µ

)
, ξM =

(
ξ̄µ , ξ

µ
)
. (4.12)

Note that the one-form component of the parameter of generalized diffeomorphisms also
carries an overline, this is because it will have to be redefined to second order, as we will
show here.
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We recall the way in which the generalized frame transforms to different orders in α′

(or equivalently in powers of a and b). We separate the orders from (3.18) and (3.20)

δEM
a = L̂ξEMa + EM

bΛba + ∆(1)EM
a + ∆(2)EM

a + . . . , (4.13)

δEM
a = L̂ξEMa + EM

bΛb
a + ∆(1)EM

a + ∆(2)EM
a + . . . , (4.14)

where to first order we have

∆(1)EM
a = a

2EM
bFbcdD

aΛcd + b

2EM
bDbΛ

cd F acd , (4.15)

∆(1)EM
a = −a2EM

bDbΛcdF acd −
b

2 EM
bFbcdD

aΛcd , (4.16)

and to second

∆(2)EM
a = − a

2

2 EM
b
[
DaDcΛef

(
FcdbF

d
ef+DcFbef

)
−FbefFcd

f
(
F chdDaΛhe−F cheDaΛhd

)
+ F cefD

aΛeg
(
FbcdF

dgf−DbFc
gf+2DcFb

gf
)

+FbefD
a
(
DcΛedFcdf

)]
−ab4 EM

b
[
DaΛef

(
FbehF

hcdFfcd−DbFe
cdFfcd

)
+FbefD

a
(
DeΛcdF f cd

)
−DbΛ

ef
(
F aehF

hcdFfcd−D
aFe

cdFfcd

)
−F aefDb

(
DeΛcdF f cd

)]
+b2

2 EM
b
[
DbD

cΛef
(
Fcd

aF def+DcF
a
ef

)
−F aefFcd

f
(
F chdDbΛh

e−F cheDbΛh
d
)

+F cefDbΛ
e
g

(
F acdF

dgf−DaFc
gf+2DcF

agf
)

+F aefDb

(
DcΛedFcd

f
)]
,

∆(2)EM
a = − b

2

2 EM
b
[
DaDcΛef

(
FcdbF

d
ef+DcFbef

)
−FbefFcd

f
(
F chdDaΛh

e−F cheDaΛh
d
)

+ F cefD
aΛeg

(
FbcdF

dgf−DbFc
gf+2DcFb

gf
)

+FbefD
a
(
DcΛedFcd

f
)]

−ab4 EM
b
[
DaΛef

(
FbehF

hcdFfcd−DbFe
cdFfcd

)
+FbefD

a
(
DeΛcdF f cd

)
−DbΛef

(
F aehF

hcdFfcd−D
aFe

cdFfcd

)
−F aefDb

(
DeΛcdF f cd

)]
+a2

2 EM
b
[
DbD

cΛef
(
Fcd

aF def+DcF
a
ef

)
−F aefFcdf

(
F chdDbΛhe−F cheDbΛhd

)
+ F cefDbΛeg

(
F acdF

dgf−DaFc
gf+2DcF

agf
)

+F aefDb

(
DcΛedFcdf

)]
.

Note that the transformations of the two components of the generalized frame look sym-
metric with respect to the exchange of the projections and the parameters a and b. In fact
we can make this symmetry manifest

δEM
a = L̂ξEMa +

(
EM

bΛbc + EM
b∆bc

)
ηca , (4.17)

δEM
a = L̂ξEMa +

(
EM

bΛbc + EM
b∆bc

)
ηca , (4.18)

by introducing the following quantity

∆bc = −∆cb = EMb

(
∆(1)EM

a + ∆(2)EM
a + . . .

)
ηac . (4.19)

The idea is to see how the above transformations impact on the components of the
generalized fields (4.9). There, in order to preserve duality and double Lorentz covariance,
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the generalized frame had to be parameterized in terms of two vielbeins (both related by
a Lorentz transformation). Because we want to establish a connection with supergravity,
we must break this symmetry to a single Lorentz transformation and gauge fix the two
vielbeins to a single one

ēµ
a = ēµ

a δa
a = ēµ

a δa
a , (4.20)

To this end we have introduced Kronecker deltas to enforce the two Lorentz groups to carry
the same set of indices a, b, c, . . . , which will be the Lorentz indices in supergravity. The
connection to supergravity also requires a specific solution to the strong constraint ∂̃µ = 0,
as is well known.

The generalized Green-Schwarz transformation depends on generalized fluxes and flat
derivatives. We must then specify how these depend on the supergravity variables

FABC = 3D[AE
P
BE

Q
C] ηPQ , FA = 2DAd− ∂MEMA , DA = EMA∂M . (4.21)

We must then specify how these depend on the supergravity fields. The three-form fluxes
take the form

Fabc = − 3√
2
δaaδ

b
bδ
c
c

(
ω[abc] −

1
6Habc

)
= − 1√

2
δaaδ

b
bδ
c
c

(
2ω(−)

[abc] + ω
(+)
[abc]

)
, (4.22)

Fabc = 1√
2
δaaδ

b
bδ
c
c

(
ωabc −

1
2Habc

)
= 1√

2
δaaδ

b
bδ
c
c ω

(−)
abc , (4.23)

Fabc = 1√
2
δaaδ

b
b
δcc

(
ωabc + 1

2Habc

)
= 1√

2
δaaδ

b
b
δcc ω

(+)
abc , (4.24)

Fabc = − 3√
2
δaaδ

b
b
δcc

(
ω[abc] + 1

6Habc

)
= − 1√

2
δaaδ

b
b
δcc

(
2ω(+)

[abc] + ω
(−)
[abc]

)
, (4.25)

while the vectorial fluxes read

Fa =
√

2δaa
(
ω[ad]

d −Daφ
)

= 1√
2
δaa

(
ω

(+)
[ad]

d + ω
(−)
[ad]

d − 2Daφ
)
, (4.26)

Fa = −
√

2δaa
(
ω[ad]

d −Daφ
)

= − 1√
2
δaa

(
ω

(+)
[ad]

d + ω
(−)
[ad]

d − 2Daφ
)
. (4.27)

Flat derivatives are given by

Da = − 1√
2
δaa Da , Da = 1√

2
δaa Da , Da = ēµa∂µ , (4.28)

and we see the appearance of the leading order of the spin connections with torsion

ω
(±)
abc = ωabc ±

1
2Habc , (4.29)

where curved indices are obviously flattened with the vielbein ē. It is important to em-
phasize that all these quantities are defined in terms of the over lined component fields ē,
b̄ and φ̄.

Because we have gauged fixed the vielbein, the double Lorentz symmetry is now broken
to its diagonal subgroup, and then the two Lorentz parameters are no longer independent.
We must then explore how they are related, and what is the most convenient way to express
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them in terms of the Lorentz parameter in supergravity. To this end we first write the two
Lorentz invariant metrics in terms of a single one

gab = δaaδ
b
bg
ab , gab = δaaδ

b
bg
ab , (4.30)

and also express all the Lorentz parameters (including the generalized Green-Schwarz de-
formation ∆) in terms of the same set of indices

Λab = δaaδ
b
b
Λab , Λab = δaaδ

b
bΛab , ∆ab = δaaδ

b
b∆ab . (4.31)

We then get two different transformations for the vielbein from the transformations of the
two projections on the generalized frame

δEµa → δēµa = L̂ξ ēµa − ēµb (Λba + ∆ba) , (4.32)

δEµa → δēµa = L̂ξ ēµa + ēµb
(
Λba −∆ab

)
. (4.33)

They must obviously coincide

δēµ
a = L̂ξ ēµa + ēµb

(
Λab + ∆ab

)
= L̂ξ ēµa + ēµb

(
Λba + ∆ba

)
, (4.34)

and this imposes the required relation between the double Lorentz parameters

Λab = −Λab − 2∆[ab] . (4.35)

From the transformation of the vielbein we can read that of the metric, and from the
generalized frame one can extract in addition the transformation of the two-form

δḡµν = L̂ξ ḡµν + 2ēµaēνb∆(ab) , (4.36)
δb̄µν = L̂ξ b̄µν − 2ēµaēνb∆[ab] . (4.37)

Finally, regarding generalized diffeomorphisms we find

L̂ξ ēµa = Lξeµ
a , L̂ξ b̄µν = Lξ b̄µν + 2∂[µξ̄ν] . (4.38)

We now have the transformations of the over-lined vielbein and two-form
in (4.34), (4.37), (4.38). The plan is to find field and parameter redefinitions that triv-
ialize the anomalous Lorentz transformation of the vielbein, and take that of the two-form
to its expected bi-parametric Lorentz Green-Schwarz form. We will name the resulting
fields without over-lines eµa and bµν , and demand that they transform as in (4.1).

The only explicit derivative expansion in terms of the over-lined fields enters through ∆

∆ab = ∆(1)
ab + ∆(2)

ab + . . . , (4.39)

where the supra-label (n) means that it explicitly contains 2n derivatives. The first order is

∆(1)
ab = −a4 DbΛcd ω

(−)
acd + b

4 DaΛ
cd
ω

(+)
bcd , (4.40)
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and the second

∆(2)
ab = a2

[1
8 DcΛdeDbω

(−)
cd

f ω
(−)
aef −

1
8DbD

cΛde
(
Dcω

(−)
ade +ω(+)

ca
fω

(−)
fde+ω

(−)
ad

fω
(−)
cef

)
−DbΛcd

(1
8 Daω

(−)e
c
f ω

(−)
edf −

1
4D

eω(−)
ac

f ω
(−)
edf −

1
12 ω

(+)
a

efω(−)
ec

gω
(−)
fdg

+1
6 ω

(+)e
a
fω(−)

ec
gω

(−)
fdg+ 1

8 ω
(−)
ac

eω(−)f
d
gω

(−)
feg−

1
24 ω

(−)
a

efω(−)
ec

gω
(−)
fdg

− 1
8 ω

(−)
a

efω(−)g
ceω

(−)
gdf + 1

12 ω
(−)e

a
fω(−)

ec
gω

(−)
fdg

)]
+ab

16

[
Da

(
DcΛde ω(−)

fde

)
ω

(+)
bc

f −DbΛcd
(
Daω

(+)
c

ef ω
(+)
def +ω(−)

ac
eω

(+)
d

fgω
(+)
efg

)]
−
{
a↔ b , Λ→Λ , (+)↔ (−)

}
. (4.41)

So we now propose an expansion for the fields and parameters as follows

Λab = Λab + Λ(1)
ab + Λ(2)

ab + · · · −∆(1,1)
[ab] −∆(1,2)

[ab] −∆(2,2)
[ab] − . . . ,

Λab = −Λab − Λ(1)
ab − Λ(2)

ab − · · · −∆(1,1)
[ab] −∆(1,2)

[ab] −∆(2,2)
[ab] − . . . ,

ēµa = eµb(gba + e(1)ba + e(2)ba + . . . ) , (4.42)
ēµ
a = eµb(gab − eab(1) − e

ab
(2) + eac(1)e(1)c

b + . . . ) ,

b̄µν = eµ
aeν

b(bab + b
(1)
ab + b

(2)
ab + . . . ) , bµν ≡ eµaeνbbab ,

ξ̄µ = eµ
a(λa + λ(1)

a + λ(2)
a + . . . ) , λµ ≡ eµaλa .

The fields eµa and bµν are the supergravity fields, expected to transform as in (4.1). The
vielbein defines the metric gµν = eµ

agabeν
b and the flat derivatives ∂a = eµa∂µ in super-

gravity. The expansions of the Lorentz parameters obey the gauge fixing condition (4.31).
Let us briefly explain the notation. The power in ∆(n) signals its dependence on apbq with
p+ q = n when written in terms of Λ, Λ and ē. Instead, the power in Λ(n) and e(n) signals
its dependence on apbq with p+ q = n when written in terms of Λ and e. The n-th power
of ∆(k) when written in terms of Λ and e will be noted ∆(k,n).

It is useful to define an operator that measures the Lorentz non-covariance of the fields

δ 6cV a ≡ (δ − L̂ξ)V a − V b Λba . (4.43)

Then, for instance we read from (4.1) that

δ 6ceµ
a = δ 6ceµa = 0 , (4.44)

δ 6cbµν = a

2∂[µΛabω̂(−)
ν]ab −

b

2∂[µΛabω̂(+)
ν]ab .

We can now insert the expansions (4.42) into the transformation of the over-lined viel-
bein (4.33), impose (4.44) and decompose order by order:

O(1) →
[
δ 6ce(1)ab

](1)
− Λ(1)

ab = −∆(1,1)
(ab) , (4.45)

O(2) →
[
δ 6ce(2)ab

](2)
− Λ(2)

ab = −∆(1,2)
(ab) −∆(2,2)

(ab) − e(1)a
cΛ(1)

bc − e(1)a
c∆(1,1)

(bc) −
[
δ 6ce(1)ab

](2)
,

...
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The l.h.s. of these equations contain the unknowns. Once a given order is solved, then
the r.h.s. of the following equation is known, so this must be solved iteratively. Similar
expressions are obtained from the transformation of the two-form (4.37)

O(1) →
[
δ 6cb

(1)
ab

](1)
= 2D[aλ

(1)
b] −2∆(1,1)

[ab] −
a

2∂[aΛcdω
(−)
b]cd+ b

2∂[aΛcdω
(+)
b]cd , (4.46)

O(2) →
[
δ 6cb

(2)
ab

](2)
= 2D[aλ

(2)
b] −2∆(1,2)

[ab] −2∆(2,2)
[ab] −2ec(1)a∆

(1,1)
[bc] +2ec(1)b∆

(1,1)
[ac] −

[
δ 6cb

(1)
ab

](2)

... − 3
8 a

2∂[aΛcdΩ
(−)
b]cd+ 3

8 ab∂[aΛcd
(
Ω(+)
b]cd−Ω(−)

b]cd

)
+ 3

8 b
2∂[aΛcdΩ

(+)
b]cd .

The corrections to the Lorentz parameter Λ(n)
ab are always chosen so as to cancel the

antisymmetric part of the r.h.s. in (4.45), namely

Λ(1)
ab = 0 , (4.47)

Λ(2)
ab = 1

2e(1)[a
c∆(1,1)

b]c + 1
2∆(1,1)

c[b e(1)a]
c ,

...

One these are fixed, we can proceed order by order to find the corrections to the fields. To
O(1) in (4.45) and (4.46) we find the following redefinitions up to covariant contributions

e(1)ab = −a8ω
(−)
acdω

(−)cd
b − b

8ω
(+)
acdω

(+)cd
b (4.48)

b
(1)
ab = 0 , λ(1)

a = 0 . (4.49)

They correspond to the minimal redefinitions required to connect with supergravity, some-
times dubbed the Bergshoeff-de Roo scheme. Notice that to this order the two-form re-
mains uncorrected and inherits its anomalous Lorentz Green-Schwarz transformation di-
rectly from that in the generalized picture. Also, there is no need to redefine the one-form
parameter to this order. These expression reproduce exactly the results found in [32].

The solution to O(2) in (4.45) and (4.46), up to covariant contributions, is quite
involved but still accessible to an educated guess

e(2)ab = −a2 3
32 ω

(−)
bcd Ω(−)

a
cd+ab

3
32 ω

(−)
bcd Ω(+)

a
cd+ab

3
32 ω

(+)
bcdΩ(−)

a
cd−b2 3

32 ω
(+)
bcdΩ(+)

a
cd+(a↔ b)

+a2
[
− 1

32 ∂cω(−)
a

de ∂cω
(−)
bde −

1
32 ∂aω

(−)cdeω
(−)
bc

fω
(−)
fde+ 1

16 ∂aω
(−)cdeω

(−)
bd

fω
(−)
cef

−1
8 ∂

cω(−)
a

deω
(−)
bd

fω
(−)
cef −

1
16 ∂

cω(−)
a

deω
(−)
cb

fω
(−)
fde+ 1

16 ∂
cω(−)
a

deω
(+)
bcf ω

(−)f
de

− 1
16 ω

(−)
a

cdω
(−)
bc

eω(−)f
d
gω

(−)
feg + 3

256 ω
(−)
a

cdω
(−)
b

efω(−)g
cdω

(−)
gef

+ 1
16 ω

(−)
a

cdω
(−)
b

efω(−)g
ceω

(−)
gdf −

1
8 ω

(−)
a

cdω(−)e
b
fω(−)

ec
gω

(−)
fdg

− 1
32 ω

(−)c
a
dω

(−)
cb

eω
(−)
d

fgω
(−)
efg + 1

8 ω
(+)
bcd ω

(−)
a

efω(−)c
e
gω(−)d

fg

+ 1
16 ω

(+)
bcd ω

(−)c
a
eω(−)
e

fgω(−)d
fg−

1
32 ω

(+)
ac

dω
(+)
bedω

(−)cfgω(−)e
fg+(a↔ b)

]
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+ab
[

1
32 ∂cHdefHadeωbcf + 1

16 ∂
cωdef ωacdωbef + 3

256Ha
cdHcd

eωb
fgωefg (4.50)

− 1
32Ha

cdHcd
eωb

fgωfeg+ 1
16Ha

cdHc
efωbe

gωgdf −
3

512Ha
cdHb

efωg cdωgef

− 3
256Ha

cdHefgωbefωgcd−
3

512H
cdeHc

fgωadeωbfg−
1
64H

cdeHc
fgωadfωbeg

+ 1
16 ωa

cdωb
efωcd

gωgef −
1
16 ωa

cdωb
efωce

gωdfg

+ 3
128 ωa

cdωb
efωg cdωgef +(a↔ b)

]
+b2

[
− 1

32 ∂cω(+)
a

de ∂cω
(+)
bde −

1
32 ∂aω

(+)cdeω
(+)
bc

fω
(+)
fde+ 1

16 ∂aω
(+)cdeω

(+)
bd

fω
(+)
cef

−1
8 ∂

cω(+)
a

deω
(+)
bd

fω
(+)
cef −

1
16 ∂

cω(+)
a

deω
(+)
cb

fω
(+)
fde+ 1

16 ∂
cω(+)
a

deω
(−)
bcf ω

(+)f
de

− 1
16 ω

(+)
a

cdω
(+)
bc

eω(+)f
d
gω

(+)
feg+ 3

256 ω
(+)
a

cdω
(+)
b

efω(+)g
cdω

(+)
gef

+ 1
16 ω

(+)
a

cdω
(+)
b

efω(+)g
ceω

(+)
gdf −

1
8 ω

(+)
a

cdω(+)e
b
fω(+)

ec
gω

(+)
fdg

− 1
32 ω

(+)c
a
dω

(+)
cb

eω
(+)
d

fgω
(+)
efg+ 1

8 ω
(−)
bcd ω

(+)
a

efω(+)c
e
gω(+)d

fg

+ 1
16 ω

(−)
bcd ω

(+)c
a
eω(+)
e

fgω(+)d
fg−

1
32 ω

(−)
ac

dω
(−)
bed ω

(+)cfgω(+)e
fg+(a↔ b)

]
,

b
(2)
ab = a2

[
1
4 ∂aω

(−)cde ∂cω
(−)
bde −

1
4 ∂aω

(−)cdeω(−)f
deω

(+)
bcf + 1

8 ∂aω
(−)cdeω

(−)
bc

fω
(−)
fde

+1
4 ∂aω

(−)cdeω
(−)
cb

fω
(−)
fde+ 1

4 ∂aω
(−)cdeω

(−)
bd

fω
(−)
cef

]
+ab

[
−1

8 ∂cHdef ωacdωbef + 1
4 ∂

cωdefHaefωbcd−
1
16Ha

cdHc
efHde

gωbfg

−1
8H

cdeωacdωb
fgωfeg−

1
4H

cdeωac
fωbd

gωfeg (4.51)

+1
4Ha

cdωb
efωg cdωefg−

1
4Ha

cdωb
efωec

gωfdg

]
−b2

[
1
4 ∂aω

(+)cde ∂cω
(+)
bde −

1
4 ∂aω

(+)cdeω(+)f
deω

(−)
bcf + 1

8 ∂aω
(+)cdeω

(+)
bc

fω
(+)
fde

+1
4 ∂aω

(+)cdeω
(+)
cb

fω
(+)
fde+ 1

4 ∂aω
(+)cdeω

(+)
bd

fω
(+)
cef

]
,

λ(2)
a = −a

2

8 ∂
bΛcd∂aω(−)

bcd + b2

8 ∂
bΛcd∂aω(+)

bcd . (4.52)

We see to this order that the structure of the expected transformations (4.1) can be main-
tained, but now at the expense of redefining the one-form parameter.

Let us finally comment on the dilaton field. It can be read from this expression

d = φ̄− 1
4 log |ḡ| = φ− 1

4 log |g| . (4.53)

The field d transforms as usual, so φ̄ receives corrections in the Lorentz transformations
but transforms as usual under Buscher rules (together with the T-duality covariant fields
ḡ and b̄). On the other hand, φ is Lorentz invariant, but its Buscher rules receive higher
derivative corrections.
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5 Summary and outlook

We extended the results in [36] to the bi-parametric family of T-duality deformations of
DFT introduced in [32]. The strategy relies on an duality covariant generalization of the
Bergshoeff-de Roo (BdR) identification between gauge (independent) and gravity (com-
posite) dof, originally designed to implement higher order supersymmetry in heterotic
supergravity [39, 40]. On the one hand this identification relates interactions with different
amount of derivatives, and on the other, due to its duality covariance it also relates same or-
der interactions beyond those obtained from the original identification [39, 40]. As an exam-
ple, it not only enforces the expected Lorentz Chern-Simons terms, but also the quadratic
Riemann interactions [32], and presumably the full tower of higher derivatives implicitly
contained in them. From the Point of view of DFT, the identification deforms the double
Lorentz symmetry. This deformation was dubbed the generalized Green-Schwarz trans-
formation, computed in [32] to first order, in [36] to second order in the mono-parametric
case, and here to second order in the bi-parametric case. We also introduced the second
order invariant bi-parametric action.

Let us briefly provide a guide to the main original results in the paper:

• The bi-parametric identification was established in (3.4)–(3.7). It is exact, and gen-
erates the generalized Green-Schwarz transformation (3.15) in DFT.

• We develop the perturbative expansion in powers of α′ to second order. That of
the generalized Green-Schwarz transformation can be found in (3.18)–(3.20) and the
invariant action in section 3.2.

• We show in section 4 that this deformation reproduces the Green-Schwarz transforma-
tion of the two-form (4.1) in the so-called Bergshoeff-de Roo scheme of supergravity.
For this it is necessary to realize the non-covariant field redefintions (4.50)–(4.51).

There are a number of questions that arise, and many open problems that remain:

• The generalized Green-Schwarz transformation is infinitesimal, as it depends linearly
on the Lorentz parameters. From the point of view of the identification, it arises
from infinitesimal generalized diffeomorphisms in the extended space. It is then
natural to ask what the finite version of these transformations is. For generalized
diffeomorphisms, these issues were extensively discussed in [51–56]. To first order
in α′ the finite form of the generalized Green-Schwarz transformation was originally
derived in [57]. The computation strongly relies on the imposition of the strong
constraint. The same result was reproduced in a double language and very nicely
related to Born geometry in [58].

• Recently, the first order generalized Green-Schwarz transformation of [32] was ex-
ploited in [58–60] to study how higher derivatives deform the action of generalized
T-dualities. These include the standard Abelian ones, and also non-Abelian and
Poisson-Lie, possibly among further generalizations. The idea is that within DFT
there are two important Lorentz gauges, one that allows an immediate contact with
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supergravity, and another one in which generalized dualities act linearly on the back-
grounds. Studying the effect of generalized dualities on supergravity backgrounds
then requires the composition of Lorentz and O(D,D) transformations. In this pa-
per we provide all the necessary tools to pursue this line of research to second order.
For this to be possible, the first step should be to find the corresponding finite form
of the Green-Schwarz transformation presented here. It should be noted that the ac-
tion and the equations of motion can be written only in terms of flat derivatives and
generalized fluxes, a fact that is important to guarantee that the action of generalized
dualities works like a solution generating technique.

• The first order corrections that emerge from the bi-parametric deformation were
shown in [32] to contain Lorentz Chern-Simons corrections to the three-form curva-
ture [41] and quadratic Riemann interactions [61]. We expect that the results here
yield cubic Riemann plus Gauss-Bonnet terms both for the bosonic [62] and HSZ
cases [26–30], but no cubic Riemann interaction for the heterotic string [39, 40]. To
higher orders, we expect that the quartic Riemann interactions fall in two categories.
Those that are captured by this setup (the ones present in [39, 40]) and those pro-
portional to ζ(3) [63], which presumably require new deformations or the existence
of a new invariant in DFT with eight derivatives. All these speculations remain to
be confirmed.

• Our results can presumably be used to extract non-perturbative aspects for this
tower of corrections. At the moment how to do this, and what sort of information
one should aim at, remains unclear to us. An interesting aspect of this construction
is that it allows a systematic procedure to extract order by order corrections in a
perturbative expansion. The counterpoint is that the expressions that emerge from
such an expansion get harder to deal with as the orders increase. An example of this
is the second order action, which we showed here as a existence proof, but whose
length makes it hard to work with. A smarter embedding of the double space into
the extended space could simplify the outcome. It is known for instance that the first
order action found in [32] and later rewritten in terms of generalized fluxes in [33]
can be drastically simplified using Bianchi Identities, as shown in [64]. Another
source of simplification is to truncate the theory before implementing the iterative
approach, e.g. we could directly use this method with a time-dependent cosmological
background as the starting point, in the line of [65, 66].

• Regarding the identification, we insist that at the moment it lacks a precise mathe-
matical structure. The rules that make it work are clear to us, but the underlying
infinite dimensional group structure calls for a better understanding.

• Our results can contribute to many recent works that study the role of T-duality
for higher derivatives in the context of black-holes [67–71] and other solutions of
cosmological relevance [65, 66, 72–78].
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A O(D, D) decomposition of the extended generalized fluxes

We display here the exact decomposition of the extended generalized fluxes in terms of
those in the double setup
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µ

˜
σ(Π 1

2 )˜ν
˜
τ (Π 1

2 )˜
ρ

˜
λ

+Eµ̃aDaΩν̃
˜
τΩµ̃

˜
σΩν̃

˜
λ−E

˜
µ
aDaΩν̃

˜
τ (Π 1

2 )˜
µ

˜
σΩν̃

˜
λ+Eµ̃aDa(Π 1

2 )
˜
ν
˜
τΩµ̃

˜
σ(Π 1

2 )˜ν
˜
λ

−E
˜
µ
aDa(Π 1

2 )
˜
ν
˜
τ (Π 1

2 )˜
µ

˜
σ(Π 1

2 )˜ν
˜
λ−

1
3g2fσ̃τ̃

λ̃(� 1
2 )σ̃ µ̃(� 1

2 )τ̃ ν̃(� 1
2 )λ̃ρ̃Ωµ̃

˜
σΩν̃

˜
τΩρ̃

˜
λ

+1
3g1f

˜
κ
˜
ι˜
ω(� 1

2 )˜
κ

˜
µ(� 1

2 )̃ι
˜
ν(� 1

2 )
˜
ω

˜
ρ(Π

1
2 )˜
µ

˜
σ(Π 1

2 )˜ν
˜
τ (Π 1

2 )˜
ρ

˜
λ

]
e˜
σ

[αe˜
τ
βe˜
λ
γ] ,

Fa = (A.11)

= (χ 1
2 )ab

(
Fb+Eµ̃cDcE µ̃b+(χ 1

2 )cdDd(χ
1
2 )cb

)
+E µ̃a

(
(χ 1

2 )cdDdEµ̃c−Eν̃ bDb(�
1
2 )µ̃ν̃

)
,

Fα = (A.12)

=−e˜
µ
α(Π 1

2 )˜ν
˜
µ

(
E

˜
ν
bFb−DaE

˜
ν
a+E

˜
ρ
a(Π 1

2 )˜
ρ

˜
σDa(Π 1

2 )
˜
ν˜
σ−Eρ̃aΩρ̃

˜
σDa(Π 1

2 )
˜
ν˜
σ

+E
˜
ρ
aΩσ̃˜

ρDaΩσ̃
˜
ν +Eρ̃a(Π 1

2 )ρ̃σ̃DaΩσ̃
˜
ν

)
+e˜

µ
αΩν̃

˜
µ

(
Eν̃ bFb−DaEν̃ a

+Eρ̃a(Π 1
2 )ρ̃σ̃Da(Π 1

2 )ν̃ σ̃+E
˜
ρ
aΩσ̃˜

ρDa(Π 1
2 )ν̃ σ̃+Eρ̃aΩρ̃

˜
σDaΩν̃˜

σ−E
˜
ρ
a(Π 1

2 )˜
ρ

˜
σDaΩν̃˜

σ

)
.

The remaining projections are simply obtained by switching everywhere

(a, b, c, . . . ;
˜
µ,

˜
ν,

˜
ρ, . . . ; g1)←→ (a, b, c, . . . ; µ̃, ν̃, ρ̃, . . . ; g2) .

where Ω
˜
µν̃ := −Ων̃

˜
µ .

B The identification in the scalar sector

A naive counting of dof in the heterotic case seems to be in agreement with the expecta-
tions. The generalized frame in the extended space has D(D + k) independent dof and
the generalized BdR identification (2.31) consist of Dk relations, whose effect is to leave
as unique physical D2 dof those of the double generalized vielbein. Although this simple
counting works, one has to bear in mind that the identifications are far from linear in the
sense that we are not directly linking gauge with gravity dof (by this we mean the full NSNS
sector). Instead, we are identifying gauge with gravity + gauge dof, and it is only after
working out explicitly the derivative expansion through the iterative process described in
previous sections, that the iteration converges in such a way that the gauge dof are finally
replaced by the gravitational ones in the double space. The explicit computation at O(α′2)
confirms an agreement with the naive counting analysis.

The situation is more involved in the bi-parametric case. The generalized frame in the
extended space starts now with (D+k)2 independent dof, which means that the generalized
BdR identification needs to fix 2Dk (vectorial) + k2 (scalar) dof this time, in order to leave
only the D2 dof captured by the double generalized frame. An apparent inconsistency
emerges after counting the 2Dk (from Eµ̃a, E

˜
µ
a) + 2k2 (from Eµ̃α, E

˜
µ
α) generalized BdR

identifications (3.7). A potential conflict then arises in the scalar sector, which is absent
in the mono-parametric generalized BdR identification.

We now show how this tension is resolved to second order in α′, but first let us show ex-
plicitly where the apparent over-constraints appear. We have parameterized the scalar sec-
tor in (3.8) and (3.11) in such a way that Eµ̃α = −(�

1
2 )µ̃ρ̃Ωρ̃˜

ν e
˜
ν
α and E

˜
µ
α = (�

1
2 )

˜
µ˜
ρΩν̃

˜
ρ eν̃

α.
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There are then two possible ways to read Ω

Ωµ̃

˜
ν = − (�−

1
2 )µ̃ρ̃ E ρ̃α e

˜
ν
α , (B.1)

Ωµ̃

˜
ν = (�−

1
2 )

˜
ν˜
σ E

˜
σ
α eµ̃α . (B.2)

This rises no conflict from the point of view of the extended space because the extended
generalized frame is a constrained field, so its component are related. It is precisely the
fact that it is G-valued that relates its components in this form. What turns on the
alarms is the generalized BdR identification (3.7), as it identifies the two scalar directions
in different ways Eµ̃α ↔ FαBC and E

˜
µ
α ↔ FαBC . Implementing the identification (3.7)

into (B.1)–(B.2), leads on the one hand to

Ωµ̃

˜
ν = 1

g2XR2

(
δABCD −

1
g2

2 XR2

FeAB FeCD
)− 1

2
FαCD e

˜
ν
α (tµ̃)AB , (B.3)

and on the other to

Ωµ̃

˜
ν = 1

g1XR1

(
δ
CD
AB + 1

g2
1 XR1

FeAB FeCD
)− 1

2
FαCD eµ̃α (t

˜
ν)AB . (B.4)

The first identity depends on FABC while the second on FABC , and there is no evident
reason why these two expressions should agree.

Let us now explain how this is resolved. The generalized BdR identification truncates
the extended setup, rising new relations on the extended fluxes. As an example, in the ex-
tended setup the vectorial components of the generalized frame Eµ̃a and E

˜
µ
a are generic, but

after the identification they become related with generalized fluxes, which satisfy Bianchi
Identities. Hence, the question is whether the truncated (B.3) coincides with the trun-
cated (B.4). This is very ambitious, as it requires an explicit realization of the generators
(tµ̂)AB, which is beyond the scope of this paper. Instead, we will only explore this at lead-
ing order in a derivative expansion, which turns out to be enough to compute second order
corrections to the action. The reason is that neither the generalized Green Schwarz trans-
formation nor the DFT deformed action contain free internal (gauge) indices. This means
that scalars are always contracted with vectors (∼ g−1) or with other scalars (∼ g−2),
which implies on the one hand that the leading contribution of terms with Ω is O(α′2) and
on the other hand that only the leading (i.e. O(α′)) part of Ω contributes at this order.

Let us multiply both expressions (B.1) and (B.2) with the generators (tµ̃)AB and (t˜ν)CD,
and name them X and Y respectively

XABCD := − (�−
1
2 )µ̃ρ̃ E ρ̃α e

˜
ν
α (tµ̃)AB (t˜ν)CD , (B.5)

Y ABCD := (�−
1
2 )

˜
ν˜
σ E

˜
σ
α eµ̃α (tµ̃)AB (t˜ν)CD . (B.6)

The plan is to explore the equality of these after the generalized BdR identification is
imposed, to leading order. A rapid treatment first leads to

XABCD = − 1
g2
FαAB e˜να (t

˜
ν)CD +O(α′2) , Y ABCD = 1

g1
FαCD eµ̃α (tµ̃)AB +O(α′2) .

(B.7)
Let us analyze each component individually
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• XABcδ − Y ABcδ and Xaβ
CD − Y aβ

CD vanish at O(g−2).

That is automatically satisfied as pairs of indices with mixed h and H components are
always of higher order: Xab

cδ, X
aβ
cd, Y

ab
cδ, Y

aβ
cd ∼ O(g−3) andXaβ

cδ, X
aβ
cδ, Y

aβ
cδ,

Y aβ
cδ ∼ O(g−4).

• Xab
cd − Y ab

cd = O(g−4) holds due to Bianchi Identities.

Indeed, after (A.4) and the generalized BdR identification one readily finds

Y ab
cd = 1

g1 g2

(
F eabFecd − 2Fce[a Fdeb] − 2D[cFd]

ab
)

+O(g−4) . (B.8)

Repeating the same for Xab
cd, one easily verifies that

Xabcd − Yabcd = 4
g1 g2

(
D[aFbcd] −

3
4F[ab

eFcd]e −
3
4F[ab

eFcd]e

)
+O(g−4) , (B.9)

vanishes at leading order because of the Bianchi identities for generalized fluxes in
the double space.

• Xαβ
γδ − Y αβ

γδ = 0 does not impose a condition on Ω, but a condition on the
generators.

Indeed, from the flux decomposition in appendix A, one obtains

Xαβ
δγ = Ωµ̃

˜
ν(tµ̃)αβ(τ

˜
ν)δγ +O(g−4) ,

Y αβ
δγ = Ωµ̃

˜
ν(τµ̃)αβ(t

˜
ν)δγ +O(g−4) , (B.10)

where τ denote the generators in the Adjoint representation

(τ
˜
µ)αβ = − f

˜
µ
˜
ν˜
ρ e˜

ν
α e

˜
ρ
β , (τµ̃)αβ = − fµ̃ν̃ ρ̃ eν̃α eρ̃β . (B.11)

Hence, the validity of Xαβ
γδ − Y αβ

γδ = O(g−4) is simply a consequence of requiring
that the internal components of the generators (upon contraction) agree at lead-
ing order with the adjoint representation. This can be alternatively verified from
comparison of the generalized BdR decomposition and the leading terms of the flux
decomposition (A.3), (A.6)

FAβ
γ = g1 f

˜
µ
˜
ν˜
ρ e˜

ν
α e

˜
ρ
β E˜

µ
A + . . . , (B.12)

and the analogous expression for FAβ
γ .

• Xαβ
cd − Y αβ

cd = 0 is a true constraint that implicitly fixes some Ω dof

Xαβ
cd = Ωµ̃

˜
ν (τµ̃)αβ (t˜ν)cd +O(g−4) , (B.13)

while

Y αβ
cd = 1

g1 g2

(
FeαβFecd − 2Fcγ[αFdγβ] − 2D[cFd]

αβ
)

+O(g−4) . (B.14)
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• Xab
γδ − Y ab

γδ = 0 also fixes some Ω dof through

Y ab
γδ = Ωµ̃

˜
ν (tµ̃)ab (τ˜

ν)γδ +O(g−4) , (B.15)

while

Xab
γδ = − 1

g1 g2

(
FeγδF eab − 2Faβ[γ F bβδ] − 2D[aF b]γδ

)
+O(g−4) . (B.16)

So we find once again two different relations for Ω. Since we do not have an explicit
realization of the generators, at this stage it is unclear if these are equivalent up to
generalized Bianchi Identities or if they are constraints on different components of Ω.

Let us emphasize that the issues raised above are a consequence of trying to analyze
Ω uncontracted. As mentioned, the scalar matrix always appears with its indices totally
contracted, some examples being: Ωµ̃

˜
ν Ωρ̃

˜
σ Ωτ̃

˜
λ g1 fµ̃ρ̃τ̃ g2 f

˜
ν
˜
σ

˜
λ , E µ̃a Ων̃

˜
σ
(
DaΩρ̃

˜
σ
)
g2 fµ̃ν̃ρ̃

, E˜
µa E˜

ν
a Ωτ̃

˜
ρ Ωτ̃˜

σ g2
1 f

˜
µ
˜
ρ
˜
λ f

˜
ν
˜
σ˜
λ , Ωµ̃

˜
ν E˜

νa E ρ̃b E σ̃c g2 fµ̃ρ̃σ̃ , E˜
µc Eν̃ d Ων̃

˜
µ. The process to

replace scalar dof in term of the 2D dof of DFT follows similar steps like those we already
took for the vector dof at the end of section 2.3. It requires the use of cyclic relations whose
effect is a renormalization of the coefficients leading to a and b parameters.

Two remarks are in order:

• The first is that, even if we do not have an all-order proof of the validity for the
mechanism responsible for the elimination of the gauge dof and the subsequent for-
mation of a and b parameters, this mechanism empirically works for hundred of terms
independently, strongly suggesting that it plausibly holds at higher orders.

• Despite the success in to getting rid of the vector and scalar dof, there is a subtle
point in the latter because in principle there are two way to do this depending on
the choice (B.1) or (B.2). All the terms containing scalar fields were shown to be
equivalent independently of that choice.

It is worth illustrating how conclusive identities can be obtained when Ω appears
contracted. For concreteness we consider the contraction E˜

µc Eν̃ d Ων̃

˜
µ

E˜
µc Eν̃ d Ων̃

˜
µ =

( 1
XR1g1

) ( 1
XR2g

2
2

)
FcEF (t˜

µ)EF Fdgh Fα
gh e

˜
µ
α

+
( 1
XR1g1

) ( 1
XR2g

2
2

)
FcEF (t˜

µ)EF Fdβγ Fα
βγ e

˜
µ
α + O(α′3)

=
( 1
g2

1(XR1 − 1)

) ( 1
XR2g

2
2

)
F dgh

(
− F aef F cef Fagh

+ 2 Fgea Fha
f F cef + 2

(
DgF hef

)
F cef

)
+ 1
XR2
E˜
µc Eν̃ d Ων̃

˜
µ + O(α′3) . (B.17)

Then we conclude

E˜
µc Eν̃ d Ων̃

˜
µ = a b

4 F dgh F
c
ef

(
− F aef Fagh + 2 F gea F hf a + 2DgF hef

)
+ O(α′3) .

(B.18)
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In the first line of (B.17) we used the ansatz (3.4), (3.7) and (B.1). In the third line we
used the parameterization of the appendix A. On the other hand one can repeat the same
procedure but using (B.2) instead. One arrives at

E˜
µc Eν̃ d Ων̃

˜
µ = a b

4 F dgh F
c
ef

(
F aef Fa

gh − 2 F ega F fha − 2DeF fgh
)

+ O(α′3) ,
(B.19)

and we conclude that both alternative expressions agree up to Bianchi Identities. Notice
that this term depends on both parameters a and b. This is a general property of all terms
whose origin can be traced back to the scalar dof. The reason is obvious, all these terms
should disappear if we turn off one of the parameters as in the mono-parametric case there
are no scalars dof.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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