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The aim of this study is to discus different numerically models for the simulation of moving contact lines in
the context of a Volume of Fluid–Continuum Surface Force (VoF–CSF) method. We focus on the particular
situation of spreading drops. We first present the numerical methods used for the simulation of moving
contact line i.e. static contact angle versus dynamic contact angle, no slip condition versus slip condition.
A grid and time convergence is performed for the different models. We show that the integration of the
Continuum Surface Force using the finite volume method results in a grid dependence at the onset of
the spreading. The static and dynamic models are compared to experiments. It is shown that the dynamic
models based on the Cox’s relation for the dynamic contact angle are able to reproduce experiments while
static models overestimate the spreading time and are not able to reproduce the Tanner regime. The
difference between static and dynamic models is shown to increase with the Ohnesorge number.
1. Introduction

The numerical methods developed for the simulation of moving
contact line differ by: (i) the type of the numerical methods used to
describe and transport the interface, (ii) the wall boundary
condition imposed for the description of the contact line. For the
transport of the interface, we give here some examples showing
that almost all the classical methods are concerned: Boundary
Integral methods [1–3], adaptive grid methods [4,5], Level-Set
methods [6,7], Volume of Fluid methods [8–10], Front Tracking
Methods [11,12] and coupled Level set and Volume-of-Fluid
(CLSVOF) methods [13]. Different methods have also been
developed for the modeling of moving contact lines. Most of the
methods are able to impose a given contact angle hW made by
the interface at the contact line. The condition is applied to the
normal made by the interface at the wall. The simplest situation
is then to impose a constant angle corresponding to the static
angle, i.e. hW ¼ hS [8,11,7,6,9]. When a no-slip condition is imposed
on the wall, the stress generated by a contact line moving at
velocity Ucl, can be estimated as

sxy � lUcl

D
ð1Þ
where D is the grid spacing and l is the fluid viscosity. The stress at
the contact line is clearly diverging when refining the grid size (see
for example [14] where the evolution of the viscous stress at the
wall is reported). Several authors [8,6,14] have dealt with the
‘‘stress singularity’’ paradox by introducing the Navier slip condi-
tion that gives a relation between the fluid velocity at the wall
UW and a Navier slip length kN:

UW ¼ kN
@U
@nW

ð2Þ

where nW is the normal to the wall. The grid convergence is then
obtained by solving the full hydrodynamic problem inside the
hydrodynamics slip region. Unfortunately, due to the grid refine-
ment limitation, most of these simulations use unrealistically large
slip length values and therefore the Navier slip length kN becomes in
practice an adjustable parameter for the simulation (see Bonn et al.
[15]). The grid convergence of the simulations is then reached but
an unphysical slip condition is necessary. In recent developments,
the dynamic or apparent contact angle is connected to the velocity
of the contact line. The Cox [16] relation is directly applied [10,17]
or adapted using an adjustable parameter that needs to be empiri-
cally determined from experiments [13,14].

As shown in this introduction, different strategies have been
developed for the simulation of moving contact line. We discuss
and compare different possible modelings in the first part of this
paper. Then the numerical models are compared with experiments
of spreading drop.
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2. Numerical method

2.1. VoF solver

The numerical simulations reported in this work are performed
with the Volume of Fluid (VoF) solver developed in the JADIM code
[18,10]. The one-fluid system of equation is obtained by introduc-
ing the one-fluid function C used to localize one of the two phases.
In this study, we define C as C ¼ 1 in the liquid, here the drop, and
C ¼ 0 in the external fluid. The one-fluid function C makes possible
the definition of the one fluid variables U ¼ CU1 þ ð1� CÞU2 for the
velocity, P ¼ CP1 þ ð1� CÞP2 for the pressure, q ¼ Cq1 þ ð1� CÞq2

for the density and l ¼ Cl1 þ ð1� CÞl2 for the viscosity. The posi-
tion of the interface is then given by the transport equation:

@C
@t
þ U � rC ¼ 0 ð3Þ

The two fluids are assumed to be Newtonian and incompressible
with no phase change. Under isothermal condition and in the
absence of any surfactant the surface tension is constant and uni-
form at the interface between the two fluids. In such condition,
the velocity field U and the pressure P satisfy the classical one-fluid
formulation of the Navier–Stokes equations:

r � U ¼ 0 ð4Þ

q
@U
@t
þ U � rU

� �
¼ �rP þr � Rþ qg þ Fr ð5Þ

where R is the viscous stress tensor, g is the gravity and Fr is the
capillary contribution:

Fr ¼ rr � nndI ð6Þ

where r is the surface tension, n denotes by arbitrary choice the
unit normal of the interface going out from the drop and dI is the
Dirac distribution associated to the interface.

The system of Eqs. (3)–(6) is discretized using the finite volume
method. Time advancement is achieved through a third-order Run-
ge–Kutta method for the viscous stress. Incompressibility is satis-
fied at the end of each time step though a projection method.
The overall algorithm is second-order accurate in both time and
space. The volume fraction C and the pressure P are volume-
centred and the velocity components are face-centred. Due to the
discretization of C, it results a numerical thickness of the interface,
cells cut by the interface corresponding to 0 < C < 1. The interface
location and stiffness are both controlled by an accurate transport
algorithm based on FCT (Flux-Corrected-Transport) schemes [19].
This method leads to an interface thickness of about three grid cells
by the implementation of a specific procedure for the velocity used
to transport C in flow region of strong strain and shear [18]. The
interfacial force is solved using the classical CSF (Continuum
Surface Force) model [20]:

Fr ¼ rr � rC
rCj j

� �
rC ð7Þ

The induced spurious currents have been characterized [10] and
their maximum magnitude evolve as 0:004r=l, in agreement with
other codes using the Brackbill’s formulation.

2.2. Numerical modeling of the contact angle

The numerical method for the simulation of static and dynamic
contact angles has been developed by Dupont and Legendre [10]
for 2D and axisymmetric geometries, and recently extended to
3D geometries [21]. The calculation of the capillary term requires
the knowledge of the value of the contact angle made by the
interface at the wall. Indeed, the capillary contribution in the
momentum Eq. (6) requires the knowledge of rC. Furthermore,
rC= rCj j being the normal of the interface, the boundary condition
forrC is thus directly given by the value of the contact angle hW by
the following relation:

rC
rCj j ¼ n ¼ sin hW nk þ cos hW n? ð8Þ

where the unit vectors nk and n? are the components of the normal
vector n, parallel and normal to the wall, respectively. The general
method is decomposed into two steps. We first determine the value
of the contact angle to apply at the wall. This value is then imposed
as a boundary condition using relation (8) for the calculation of the
capillary contribution (7) in the momentum balance (5). One objec-
tive of this work is to compare different possible modeling to the
dynamic modeling introduced in our code JADIM (model Dyn2 in
the following). The tested models are reported in Table 1. The two
main parameters that characterize these models are the description
of the contact angle hWðtÞ and the description of the fluid boundary
condition. The Navier slip condition (1) can be imposed in order to
remove the stress singularity at the contact line with the
introduction of the Navier slip length kN . If kN ¼ 0 a classical no-slip
condition is imposed. When considering ordinary fluids and wall
properties, a relevant value for the slip length is kN ¼ Oð10�9Þm
[22]. Note that imposing such slip lengths for solving millimeter size
drop with 100 regular cells per radius (D � R=100 � 10�5 m) which
is a very accurate description of the macroscopic flow field is equiv-
alent to impose a no-slip condition. In the following we consider two
sorts of model: ‘‘static’’ models (Stat1, Stat2 and Stat3) and
‘‘dynamic’’ models (Dyn1, Dyn2, Dyn3 and Dyn4). The simplest
model, called ‘‘Stat1’’, consists in imposing the contact angle con-
stant as the Young value hS with no slip condition kN ¼ 0. When
imposing a constant contact angle hWðtÞ ¼ hS, the effect of the sliding
condition (1) has been examined by imposing a slip length linked to
the grid size kN ¼ D=2 (model ‘‘Stat2’’) as suggested by Afkhami et al.
[14] or a fixed value for the slip length kN ¼ D32=2 (model ‘‘Stat3’’)
where D32 is the grid spacing corresponding to 32 regular cells per
radius which is the coarser grid used in this study (see next section
for the description of the numerical parameters). The dynamic mod-
els are expressed as a function of the contact line Capillary number
Ca defined as

Ca ¼ l1Ucl

r
ð9Þ

where Ucl is the contact line velocity. In our VoF formulation, Ucl is
the interface velocity interpolated at C ¼ 0:5. Due to the staggered
grid structure, Ucl is located at the distance D=2 from the wall where
the node of the tangential component of the velocity that transports
the interface is located. We have first tested the model (called
‘‘Dyn4’’) proposed by Afkhami et al. [14]. Based on 2D simulations
and the expression developed by Cox [16], they proposed the fol-
lowing expression for the dynamic contact angle

cos hd ¼ cos hS þ 5:63Ca log
K

D=2

� �
ð10Þ

The simulations reported by Afkhami et al. [14] show that it ensures
grid convergence in VoF simulations when coupled with a slip
length based on the grid spacing kN ¼ D=2. The authors suggest that
‘‘the true value of K could be determined by fitting numerical data
to data obtained experimentally’’. In their simulations, a constant
value K ¼ 0:2L is proposed for a plate withdrawing from a square
fluid pool of length L while the authors use K ¼ 0:04R for their sim-
ulations of the spreading of droplet of initial radius R. This smaller
value of K was chosen because their model is only valid for
cos hdj j < 0:6. The model ‘‘Dyn1’’ corresponds to the original model

implemented in JADIM by Dupont and Legendre [10]. The dynamic



Table 1
Numerical model considered for the dynamic contact line. hW is the contact angle imposed on the wall and kN is the slip length.

Name Contact angle Navier condition Reference

Stat1 hW ¼ hS kN = 0
Stat2 hW ¼ hS kN ¼ D=2
Stat3 hW ¼ hS kN ¼ D32=2
Dyn1 hW ¼ hd (Eq. (11)) with L ¼ 10�6; k ¼ 10�9 m kN ¼ 0 [10]

Dyn2 hW ¼ hd (Eq. (11)) with L ¼ D=2; k ¼ 10�9 m kN ¼ 0 [23,21,17]

Dyn3 hW ¼ hd (Eq. (11)) with L ¼ D=2; k ¼ 10�9 m kN ¼ D=2

Dyn4 hW ¼ hd (Eq. (10)) kN ¼ D=2 [14]
contact angle is given by the hydrodynamic model derived by Cox
[16]:

g hdð Þ ¼ g hSð Þ þ Ca log
L
k

� �
ð11Þ

where g hð Þ is a function that simplifies to:

g hð Þ ¼
Z h

0

x� sin x cos x
2 sin x

dx ð12Þ

when the surrounding fluid is of much smaller viscosity (for exam-
ple air). In practice the function g and g�1 can be approximated with
a good accuracy with fitting polynomial [10]. Note that, when the
condition hd < 3p=4 is satisfied, a simplified form of Eq. (11) is
the well known relation h3

d ¼ h3
S þ Ca logðL=kÞ. In the model

‘‘Dyn1’’ [10] the apparent length L is imposed to be L ¼ 10 lm
and the slip length is k ¼ 10�9 m. The grid spacing D is then chosen
of the same order as the apparent length D � L. In the model ‘‘Dyn2’’
used in [23,21,17], we impose the apparent length L as the location
of the first node of the VoF function: L ¼ D=2. The model ‘‘Dyn3’’ is
the model ‘‘Dyn2’’ combined with the slip condition (1) using a
numerical slip length kN ¼ D=2.

3. Time and grid convergences

3.1. Test case presentation

For the time and grid convergence discussion as well as for the
comparison between the models, we first consider the test case
reported by Afkhami et al. [14]. Note that the simulations reported
by Afkhami et al. [14] are performed for a semicircular droplet
(2D simulation) while we consider here a 3D drop thanks to an
axisymmetric simulation. The tests reported here have also been
performed for a 2D drop and lead to the same conclusion. We con-
sider a spherical cap droplet of radius R0 at equilibrium on an hor-
izontal wall so that the contact angle made by the initial shape is
hi ¼ 90� (Fig. 1a). No gravity effect is considered so that we impose
Fig. 1. Initial drop shape (dashed line) and final drop shape (base radius rf ) for the
two cases considered. (a) For the comparison between the models (test case
proposed by Afkhami et al. [14]). (b) For the comparison with the experiments
where r0 and h are the initial base radius and the initial distance between the drop
centre and the wall, respectively.
g = 0 m/s�2. The computational domain is a square domain of equal
radial and vertical extension Lr ¼ Lz ¼ 2R0. The axis of symmetry
corresponds to the west boundary, the wetting conditions given
by Table 1 (slip and contact angle) are imposed on the south
boundary and classical wall conditions (no slip) are imposed on
the two other boundaries (east and north). The value of the contact
angle made by the contact line is initially hi ¼ 90� and the drop
spreads until the drop stabilizes with a spherical cap shape satisfy-
ing the Young contact angle hS. The value of the parameters used
for the simulation are q1 ¼ q2 ¼ 1; l1 ¼ l2 ¼ 0:25; r ¼ 7:5 and
hS ¼ 60� [14]. The reported results are shown using normalized
quantities. The radial position of the interface is normalized by
R0 and the normalized time is s ¼ tl=qR2

0.

3.2. Numerical parameters

The time steps used for the time convergence are listed in
Table 2. The grids used for the grid convergence are presented in
Table 3. The numbers of node in each direction are noted Nr and
Nz respectively. Four grids, M32; M64; M128 and M256, are consid-
ered corresponding to 32, 64, 128 and 256 nodes in each direction,
respectively.

3.3. Time and grid convergence

We have first considered the time convergence for both the sta-
tic and dynamic models. The time evolution of the base radius rðtÞ
and the Capillary number Ca ¼ lUcl=r as well as the velocity gra-
dient dU=dy on the wall have been inspected. For all the grids
and models considered a time convergence of the simulation can
be reached. We have observed that the corresponding value of
the time step ensuring time convergence significantly decreases
with the grid refinement. As a consequence, the time steps
Dt5 ¼ 5� 10�5; Dt7 ¼ 10�5; Dt8 ¼ 5� 10�6 and Dt9 ¼ 2� 10�6

are respectively chosen for the grids M32 (32� 32), M64
Table 2
Time step values used in the simulations. Depending on the case under consideration
the value are non-dimensional or dimensional (expressed in second).

Name Dt1 Dt2 Dt3 Dt4 Dt5 Dt6

Value 10�3 5� 10�4 2� 10�4 10�4 5� 10�5 2� 10�5

Dt7 Dt8 Dt9 Dt10 Dt11 Dt12 Dt13

10�5 5� 10�6 2� 10�6 10�6 5� 10�7 2� 10�7 10�7

Table 3
Grid used in the simulations reported in this section.

Name D Lr Lz Nr � Nz

M32 1/32 1 1 32� 32
M64 1/64 1 1 64� 64
M128 1/128 1 1 128� 128
M256 1/256 1 1 256� 256



(64� 64), M128 (128� 128), M256 (256� 256) in the simulations
reported for the grid convergence.

Considering now the grid convergence, we first focus on the
‘‘static’’ models (see Table 1). The contact angle is set fixed to the
Young angle hS and the models differ by the slip length condition
used in the Navier condition. The slip conditions are
kN ¼ 0; kN ¼ D=2 and kN ¼ D32 ¼ 2R0=32 for the models Stat1,
Stat2 and Stat3, respectively. The grid convergence is shown in
Fig. 2 for the radius of the wetted surface and in Fig. 3 for the
Capillary number and the velocity gradient at the wall.

The use of a Navier slip length clearly changes the drop spread-
ing. The only way to observe a convergence with the grid (i.e. a
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Fig. 2. Grid convergence for the 3 models using a static contact angle. From top to botto
M M256 (256� 256).
result that tends to be independent on the grid spacing when refin-
ing the grid) is to introduce a slip length larger than the grid size in
order to solve the slip region. For all the models, the initial stage of
the spreading is found to be very dependent on the grid as revealed
by the evolution of the Capillary number. This point is discussed in
detail in the next section. For this purpose a log–log representation
is used in order to show the evolution of the contact line velocity
from the beginning of the spreading, since one has Ca ¼ 0 at t ¼ 0.

The models based on a dynamic contact angle are now consid-
ered. We first consider the model Dyn4 proposed by [14] in order
to make their contact line simulations grid independent. The effect
of the grid spacing shown in Fig. 4 reveals that this model is not
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m: Stat1, Stat2 and Stat3. � M32 (32� 32), � M64 (64� 64), } M128 (128� 128), and



Fig. 3. Grid convergence for the 3 models using a static contact angle. The Capillary number Ca is shown as function of the normalized time s and the velocity gradient dU=dy
is shown for r ¼ 0:6. From top to bottom: Stat1, Stat2 and Stat3. � M32 (32� 32), � M64 (64� 64), } M128 (128� 128), and M M256 (256� 256).
grid independent when introduced in our code. The evolution of
the contact angle have some unexpected evolutions very depen-
dent on the grid spacing.

We finally consider the dynamic models Dyn1, Dyn2 and Dyn3
based on the dynamic angle expression (11). They differ by the
apparent length L: it is an imposed value based on physical obser-
vations L ¼ 10 lm for Dyn1 while it is the grid spacing L ¼ D=2
for Dyn2 and Dyn3. The effect of the grid spacing on these model
is shown in Fig. 5 for the base radius rðtÞ and in Fig. 6 for the Cap-
illary number and the velocity gradient at the wall. Strictly speak-
ing, grid convergence is not reached (this point will be discussed
in more details the last section) but it is clearly improved
compared to the static models. We observe that the introduction
of a slip length on the wall based on the grid spacing (model
Dyn3) do not improve significantly the grid convergence and
the two models Dyn2 and Dyn3 give a very similar behavior. Note
that we have also tested a slip condition just located on the sur-
face in contact with the interface (0:05 6 C � 0:95). The results
obtained with this model are very similar to the results obtained
with the model Dyn3.

For all the models considered, the evolution of the Capillary
number reveals an important effect of the grid spacing at the
beginning of the spreading, typically for s < 10�2. This particular
behavior is inspected in the next section.



Fig. 4. Grid convergence for the model Dyn4 proposed by [14]. Top: base radius evolution, bottom: Capillary number Ca evolution versus the normalized time s and the
velocity gradient dU=dy reported at r ¼ 0:6. � M32 (32� 32), � M64 (64� 64), } M128 (128� 128), and M M256 (256� 256).
4. Comparison between models

In this section we compare the different models. We first focus
on the contact line radial evolution and then a special attention is
made on the initial acceleration of the contact line.

The time evolution of the radial position rðtÞ of the contact line
is reported in Fig. 7 for the grid M64 (64� 64) and Dt7 ¼ 10�5. This
figure clearly shows a significant difference between the models.
The spreading times differ by almost one order of magnitude
between static and dynamic models. The ‘‘static’’ models show a
faster drop spreading. The model proposed by [14] is found to give
similar evolution as that given by the ‘‘static’’ models.

As commented before, the initial contact line velocity appears
to be very sensible to the grid spacing. The comparison between
3 different models (Stat1, Stat3 and Dyn2) in reported in Fig. 8
for the four grids M32; M64; M128 and M256. It is shown that the ini-
tial velocity is independent on the contact angle model but it is
clearly imposed by the grid spacing. The evolution is linear indicat-
ing an initial constant acceleration which is found to increase when
refining the grid.

At equilibrium, the Laplace pressure jump controls the shape of
the drop:

�rP0 þ Fr0 ¼ 0 ð13Þ

where the surface tension contribution is

Fr0 ¼ rdiv nIð ÞnIdI ð14Þ
Following the CSF formulation for Fr, the normal of the interface is
calculated as nI ¼ rC

krCk and the Dirac term is nIdI ¼ rC. Thus consid-

ering the finite volume method used for the discretization of the
equations, the surface tension contribution integrated in a control
volume V is expressed as

Fr0V ¼ r
Z

V
div rC
krCk dVrC ð15Þ

where the divergence term corresponding to the curvature is con-
verted to a surface integral. This term is then evaluated as fluxes
of the interface normal nI ¼ rC

krCk at the surface R of each control
volume:

Fr0V ¼ r
Z

R
nI:nRdRrC ð16Þ

Considering the control volume containing the contact line, the
south contribution of the normal is given by the contact angle hW :

nS
I ¼ � cos hW ð17Þ

When changing the contact angle from h0
W to hW at t ¼ 0, the

momentum equation becomes

q
du
dt

� �
t¼0þ
¼ �rP0 þ Fr ð18Þ

Considering relations (13), (16) and (17), the integration of Eq. (18)
on a control volume V gives the initial acceleration a0:
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Fig. 5. Grid convergence for the dynamic models. Evolution of the radial evolution of the wetted area. From top to bottom: Dyn1, Dyn2, Dyn3. � M32 (32� 32), � M64

(64� 64), } M128 (128� 128), and M M256 (256� 256).
a0 ¼ du
dt

� �
t¼0þ
¼ r

q
cos hW � cos h0

W

� �RS

V
rC ð19Þ

where RS is the south surface of the control volume. For the axisym-
metric problem under consideration, the control volume containing
the interface located at r ¼ Rc is characterized by V ¼ 2pRcD

2 and
R ¼ 2pRcD while the Dirac term projected on the radial direction
is calculated as

rC:er ¼
Rc � D=2

Rc

1� 0
D
� 1

D

Finally the radial acceleration of the contact line resulting from the
finite volume discretization of the momentum equation is
a0
r �

r
q

cos hW � cos h0
W

� � 1
D2 ð20Þ

showing a grid dependence of order �2. Fig. 9 reports the initial
acceleration calculated for the four grids and for different contact
angles hW , surface tensions r and densities q. The log–log represen-
tation confirms that the initial acceleration of the contact line
evolves as r cos hW=qD2 since h0

W ¼ 90�.
5. Spreading drop

The objective is now to compare the models with experiments
of spreading drop. In the experiments, a drop of volume



Fig. 6. Grid convergence for the dynamic models. The Capillary number Ca evolution versus the normalized time s and the velocity gradient dU=dy reported at r ¼ 0:6. From
top to bottom: Dyn1, Dyn2, Dyn3. � M32 (32� 32), � M64 (64� 64), } M128 (128� 128), and M M256 (256� 256).
V ¼ 4pR3
0=3 is deposited on a wall with no initial velocity (see

Fig. 1b). Squalane and water drops are considered for comparison
with the experiments of Lavi and Marmur [24], Winkels et al.
[25], respectively. The corresponding Ohnesorge numbers
Oh ¼ l=

ffiffiffiffiffiffiffiffiffiffiffiffi
qrR0

p
are Oh ¼ 0:21 and Oh ¼ 0:0053, respectively.

As shown in Fig. 1b, the drop centre is initially located at the
distance h 6 R0 from the wall. The effect of this initial condition
has been analyzed by considering different initial locations (see
Table 4).
The characteristics of the grids used for the simulations are
given in Table 5. Axisymmetric simulations have been performed
in a grid of radial extension Lr ¼ 3R0 and vertical dimension
Lz ¼ 3R0. The numbers of nodes in each direction are noted Nr

and Nz respectively. Different grids are considered corresponding
to 32, 64, 128 and 167 nodes per radius, respectively.

We have first performed some simulations corresponding to the
experiments of Lavi and Marmur [24] for millimeter squalane
drops, a fluid 30 times more viscous than water. The physical
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Table 4
Initial distance between the drop centre and the wall.

Name h1 h2 h3 h4 h5

Value 0.95 R0 0.98 R0 0.99 R0 0.995 R0 0.998 R0

Table 5
Grid used in the simulations reported in Section 5.

Name D=R0 Lr=R0 Lz=R0 Nr � Nz

M96 1/32 3 3 96� 96
M192 1/64 3 3 192� 192
M384 1/128 3 3 384� 284
M500 3/500 3 3 500� 500
properties of of the squalane used in the experiments are
q ¼ 809 kg=m3; l ¼ 0:034 Pa s, r ¼ 0:032 N=m, R0 ¼ 1 mm and
the value of the static contact angle is hS ¼ 41:5�. The grid and time
convergences have been reported in Dupont and Legendre [10] for
both the models Stat1 and Dyn1. The effect of the time step and
grid spacing are shown for the model Dyn2 in Fig. 10a and b,
respectively. Both figures show that the difference is not percepti-
ble when changing the time step and the grid spacing so that the
time step Dt8 and the grid M192 are used in the following.

The effect of the initial position is shown in Fig. 11 by
comparing three initial positions: h1 ¼ 0:95R0; h2 ¼ 0:98R0 and
h3 ¼ 0:99R0. A significant difference is observed at the beginning
of the spreading for the evolution of the base radius r (see
Fig. 12a) but after the time t � 1 ms, the same evolution is
observed. Considering the initial radius r0 and the final radius rf

of the contact line, the normalized radius r	 ¼ ðr � r0Þ=ðrf � r0Þ is
shown in Fig. 11b. Interestingly, all the evolutions are now very
close, showing that the effect of the initial wetted area has not a
significant impact on the drop spreading.

The simulations using the different models are now compared
with the experimental data in Fig. 12. The normalized radius
r	 ¼ ðr � r0Þ=ðrf � r0Þ is reported versus the time normalized using
the viscous-capillary time tl ¼ r=lV1=3. The three dynamic model
Dyn1, Dyn2 and Dyn3 give very similar evolutions in agreement
with the experiments while a significant difference is observed
when using static contact angle models. As clearly shown, the
choice of the contact angle model has a significant effect on the
drop spreading.

We now consider the spreading of a water drop. We compare
our simulations using the different models with the experiments
performed by Winkels et al. [25]. Using high-speed imaging of
experiments on millimeter-sized water drop in air, they have
shown that the spreading regime is characterized by the power
law r � t1=2 consistent with a balance between the capillary pres-
sure � rR0=r2 and the inertial pressure � qðdr=dtÞ2 at the contact
line. The physical properties are q ¼ 1000 kg=m3; l ¼ 0:001 Pa s,
r ¼ 0:0072 N=m, R0 ¼ 0:5 mm and hS ¼ 115�. The effect of the time
step and the grid spacing as well as the initial position of the drop
have also been checked. Based on these tests, the simulations have
been performed with the time step Dt13 ¼ 10�7 s, the grid M384 and
the initial position h5 ¼ 0:998R0.

The comparison with the experiments performed by Winkels
et al. [25] is shown in Fig. 13. The agreement is found to be very
satisfactory and the power law t1=2 seems to be reproduced by
the simulations. All the models, both static and dynamic, give a
very close evolution for the contact line position. The main differ-
ence with experiments is due to the oscillations observed at the
end of the drop spreading. Such oscillations are induced by the
propagation of capillary wave resulting in some cases of a droplet
ejection [26,23]. In the simulations, the top of the drop is free to



Fig. 11. Effect of the initial position of the drop for the case squalane drop simulated using the model Dyn2, the grid M192 and the time step Dt8 ¼ 5� 10�6. Left: radius r
versus time t. Right: normalized radius r	 ¼ ðr � r0Þ=ðrf � r0Þ versus time t.

Fig. 12. Comparison with the experiments for the squalane drop. The normalized
radius r	 is reported versus the normalized time t=tl . � experiments from Lavi and
Marmur [24].

Fig. 13. Contact line radial position r=R0 versus the time normalized by the

capillary-inertia characteristic time tq ¼ qR3
0=r

� �1=2
. Comparison between the

models for hS ¼ 115� . � experiments from [25].

Fig. 10. Time step and grid spacing effects for the squalane drop with model Dyn2. (left) Time step for the grid M192. (right) Grid spacing for the time step Dt8 ¼ 5� 10�6s.



Fig. 15. Effect of the contact angles model on the time evolution of the drop base
radius r for hS ¼ 10� and Oh ¼ 0:053 ðl ¼ 0:01 Pa s; r ¼ 0:072 N=m; q ¼ 103 kg=m3

and R0 ¼ 0:5 mm). Drop radial sections are reported for time t ¼ 4� 10�4 s (a and d)
corresponding to the middle of the t1=2 evolution, for time t ¼ 2:8� 10�3 s (b and e)
corresponding to the transition between the t1=2 and the t1=10 evolutions, and time
t ¼ 10�2 s (c and f) corresponding to the Tanner law evolution. In (f) the drop has a
toroidal shape and the axis of symmetry is shown.
move and oscillate due to the capillary waves while in the experi-
ments the drop remains pinned to the needle used for the deposit.

Compared to the viscous spreading, the evolutions obtained
using the different models are now very similar. In order to discuss
the effect of the drop viscosity on the difference observed between
the models, additional simulations have been performed. The vis-
cosity, surface tension and the value of the static contact angle
have been independently changed. The dynamic model Dyn2 is
compared to the static model Stat3 since it corresponds to the
fasted spreading evolution (see Fig. 12).

The difference between the two models is measured by compar-
ing the time t05 necessary to reach one half of the final radius rf , i.e.

rðt05Þ ¼ rf =2. The relative difference Dt05 ¼ ðtDyn2
05 � tStat3

05 Þ=tDyn2
05

between the times tDyn2
05 and tStat3

05 obtained by using the two models
Dyn2 and Stat3, respectively, is reported in Fig. 14 as a function of
the Ohnesorge number Oh ¼ l=

ffiffiffiffiffiffiffiffiffiffiffiffi
qrR0

p
for different values of the

contact angle. The value of Dt05 deduced from the simulations
shown in Figs. 12 and 13 are also reported. The figure clearly indi-
cates that Dt05, i.e. the difference between the two models,
increases significantly with the Ohnesorge number. For large
Ohnesorge numbers, the use of a dynamic model is necessary to
capture the correct spreading of a drop while static and dynamic
models give similar evolutions for low Ohnesorge numbers.

As an illustration, we reports in Fig. 15 the evolution of a drop
spreading for Oh ¼ 0:053 (l ¼ 0:01 Pa s; r ¼ 0:072 N=m, q ¼ 103

kg=m3 and R0 ¼ 0:5 mm). The static model Stat3 and the dynamic
model Dyn2 are compared. This case corresponding to a fluid ten
times more viscous than water has been chosen because the
spreading is characterized by two very different evolutions for
hS ¼ 5� [23]. The capillary-inertial evolution r � t1=2 is observed
at the beginning of the spreading while the end of the spreading
is characterized by the famous Tanner law r � t1=10. The simula-
tions have been performed here for a larger contact angle,
hS ¼ 10�. The two regimes r � t1=2 and r � t1=10 are reproduced
when using the dynamic model. For the static model, the capil-
lary-inertial evolution r � t1=2 is observed before the oscillation
of the contact line. The Tanner regime is not reproduced. In fact,
the Tanner regime is observed when the following two point are
combined: (i) the shape of the drop is a very thin spherical cap
so that the contact angle hW , the drop volume V and the contact
line radius r are linked by the geometrical relation hW � 4V=pr3;
(ii) in the limit of a small dynamic contact angle with hS � 0, the
Fig. 14. Evolution of Dt05 as a function of the Ohnesorge number. � hS ¼ 115�; �
hS ¼ 65� , j and 
: values deduced from the simulations shown in Figs. 12 and 13,
respectively.
Cox relation (7) can be expressed as h3
W ¼ 9 l

r
dr
dt lnðL=kÞ. Combining

these two relations and integrating in time, the radius of the con-
tact line is found to follow the Tanner law r � t1=10. The drop shape
at different characteristic times of the evolution is reported in
Fig. 15. At the beginning of the spreading, the shapes obtained
using the two models are very similar. The difference is due to a
faster spreading for the static model clearly visible at the drop
base. The difference is more significant at the transition between
the capillary-inertial regime and the Tanner regime. When using
the static model, the drop center dewet resulting in the formation
of a toroidal drop that spreads and then retracts. The center is then
wet again and finally the drop stabilizes. This explains the large
scale oscillation of the contact line. The use of the dynamic model
reproduce the Tanner regime characterized by a spherical cap.
6. Discussion

One important challenge for the simulation of moving contact
lines is the development of predictive numerical models, i.e. mod-
els with no adjustable parameter. A full direct numerical simula-
tion would consist in simulating all the scales involved in the
problem, i.e. from the slip length at the wall up to the droplet size.
For example, let us consider a millimeter-size droplet R � 1mm as
considered in the experiments used in this study for the validation
of the simulations. Nanoscale slip lengths k being usually reported,
a full resolution of all the hydrodynamic scales present in this
problem requires N2D � ðR=kÞ2 � 10þ12 nodes for a 2D axisymmet-
ric simulation and N3D � ðR=kÞ3 � 10þ18 nodes for a full 3D simula-
tion. Such simulations are obviously not accessible with the actual
computers. Molecular Dynamics (MD) is an approach that permits
to explore the molecular details of wetting. The practical applica-
tion of MD is limited to very small systems of few tens of nanome-
ters and few nanoseconds [25]. Consequently, it is clear that
simulations of contact lines hydrodynamic for millimeter size
interfaces can not be performed by solving all the length scales
and a cut-off length is imposed by the grid size. However, wetting
phenomena are governed by interactions up to the nano-scale. As a
consequence, a sub-grid model as described in Dupont and
Legendre [10] has to be introduced in order to make possible
macroscopic simulations. Based on this approach, the modeling
developed in recent works [23,21,17] appears to be the more



consistent approach for the simulation of moving contact line at
the macroscopic scale:

– the wall condition seen by the fluid is a non slip condition,
– the interface shape is connected by a dynamic relation to the
characteristics of the contact line at the nanoscale.

Thanks to the hydrodynamic theories [16], the macroscale
apparent angle can be directly linked to the static angle and the
slip length k, making the corresponding expression (see Eq. (11))
very useful for such approach. In this relation, L is the macroscopic
cut-off length scale imposed by the grid resolution. The first node
being located at D=2 from the wall, it follows that L ¼ D=2. Consid-
ering the value of observed slip lengths, we have used in this paper
a fixed value k ¼ 10�9 m and the simulations seem to correctly
reproduce the experiments for both small and large Ohnesorge
numbers. The value chosen for k can obviously be adapted to any
surface of known slip length. However, as commented in [21]
where numerical simulations of 3D sliding drops are compared
with experiments, it is not clear if such modeling is able to cor-
rectly describe the dissipation induced by moving contact lines.
Additional investigations are still necessary to clarify this point.

7. Conclusion

Different models (static and dynamic) for the description of
moving contact lines have been introduced in a CSF–VoF method.
The results obtained for spreading drop are found to be very sensi-
ble to the choice of the model. The difference can be significant
between dynamic and static models as well as between no-slip
and numerical slip conditions. A time convergence can be reached
for all the models considered. We have observed that the time step
required for the time convergence depends on the grid spacing. It is
also clear that a grid convergence can only be perfectly obtained
when the imposed numerical slip is solved by an adapted grid.
Interestingly, the use of the Cox-Voinov dynamic model improves
the grid convergence compared to a static description of the con-
tact angle. A perfect grid convergence can not be reached with such
modeling since the viscous stress at the contact line is still diverg-
ing with the grid refinement. The model proposed by Afkhami et al.
[14] does not provide the grid convergence expected considering
the simulations shown by the authors. We have also tested this
model for the 2D situation since it has been adjusted for 2D spread-
ing but the grid convergence is not improved. Since the model is
adjusted using simulations, it may be dependent on the method
used to solve the system of Eqs. (3)–(6). This can be a possible
explanation since our study reveals that the initial acceleration of
the contact line is strongly grid dependent during the first times
of the simulation. We have shown that it results from the finite
volume integration of the CSF formulation. The static and dynamic
models have been compared to experiment for the spreading of
both water and squalane drops. The difference between static
and dynamic models is increased when increasing the Ohnesorge
number. Static models are able to reproduce the inertial-capillary
spreading r � t1=2 but are not able to capture the Tanner evolution
r � t1=10 because this regime directly results from the evolution of
the dynamic angle with the contact line velocity.
Acknowledgement

This research project has been financed by a Marie Curie Early
Stage Research Training Fellowship of the European Community
sixth Framework Program under the Contract Number
MEST-CT-2005-020426.

References

[1] Schleizer A, Bonnecaze R. Displacement of a two-dimensional immiscible
droplet adhering to a wall in shear and pressure driven flow. J Fluid Mech
1999;383:29–54.

[2] Dimitrakopoulos P, Higdon J. On the gravitational displacement of three
dimensional fluid droplets from inclined solid surfaces. J Fluid Mech
1999;295:181–209.

[3] Glasner K. A boundary integral formulation of quasi-steady fluid wetting. J
Comput Phys 2005;207:529–41.

[4] Finlow DE, Kota PR, Bose A. Investigation of wetting hydrodynamics using
numerical simulations. Phys Fluids 1996;8:302.

[5] Shen C, Ruth D. Experimental and numerical investigations of the interface
profile close to a moving contact line. Phys Fluids 1998;10:789.

[6] Spelt PDM. A level-set approach for simulations of flows with
multiple moving contact lines with hysteresis. J Comput Phys 2005;207:
389–404.

[7] Liu H, Krishnan S, Marella S, Udaykumar H. Sharp interface cartesian grid
method II: A technique for simulating droplets interactions with surfaces of
arbitrary shape. J Comput Phys 2005;210:32–54.

[8] Renardy M, Renardy Y, Li J. Numerical simulation of moving contact line
problems using a volume-of-fluid method. J Comput Phys 2001;94.

[9] Afkhami S, Bussmann M. Heigh functions for applying contact angles to 2D
VOF simulations. Int J Numer Metods Fluids 2008;57:453–72.

[10] Dupont J, Legendre D. Numerical simulations of static and sliding drop with
contact angle hysteresis. J Comput Phys 2010;229:2453–78.

[11] Khenner M. Computation of the material indicator function near the contact
line (in Tryggvason’s method). J Comput Phys 2004;200:1–7.

[12] Yamamoto Y, Uemura T. Dynamic contact angle of a spreading drop
represented by front-tracking simulation. In: 7th International conference on
multiphase flow 2010.

[13] Yokoi K, Vadillo D, Hinch J, Hutchings I. Numerical studies of the influence of
the dynamic contact angle on a droplet impacting on a dry surface. Phys Fluids
2009;21.

[14] Afkhami S, Zaleski S, Bussmann M. A mesh-dependent model for applying
dynamic contact angles to VOF simulations. J Comput Phys 2009;228:
5370–89.

[15] Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E. Wetting and spreading. Rev
Modern Phys 2009;81.

[16] Cox R. The dynamics of the spreading of liquids on a solid surfaces. Part 1:
Viscous flow. J Fluid Mech 1986;168.

[17] Sui Y, Spelt P. An efficient computational model for macroscale simulations of
moving contact lines. J Comput Phys 2013;242:37–52.

[18] Bonometti T, Magnaudet J. An interface capturing method for incompressible
two-phase flows. Validation and application to bubble dynamics. Int J
Multiphase Flow 2007;33:109–33.

[19] Zalesak S. Fully multidimensional flux-corrected transport algorithms for
fluids. J Comput Phys 1979;31:335–62.

[20] Brackbill J, Kothe D, Zemach C. A continuum method for modeling surface
tension. J Comput Phys 1992;100:335–54.

[21] Maglio M, Legendre D. Numerical simulation of sliding drops on an inclined
solid surface. In: Sigalotti Leonardo, Klapp Jaime, Sira Eloy, editors.
International Publishing AG; 2013. p. 1–14.

[22] Lauga E, Brenner M, Stone H. Microfluidics: the no-slip boundary condition. In:
Handbook of experimental fluid dynamics. New York: Springer; 2007.

[23] Legendre D, Maglio M. Numerical simulation of spreading drops. Colloids Surf
A: Physicochem Eng Aspects 2013;432:29–37.

[24] Lavi B, Marmur A. The exponential power law: partial wetting kinetics and
dynamic contact angles. Colloids Surf 2004;250.

[25] Winkels K, Weijs J, Eddi A, Snoeijer J. Initial spreading of low-viscosity drops
on partially wetting surfaces. Phys Rev E 2012;85:055301 (R).

[26] Ding H, Li E, Zhang F, Sui Y, Spelt P, Thoroddsen S. Propagation of capillary
waves and ejection of small droplets in rapid droplet spreading. J Fluid Dyn
2012;697:92–114.

http://refhub.elsevier.com/S0045-7930(14)00355-7/h0005
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0005
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0005
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0010
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0010
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0010
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0015
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0015
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0020
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0020
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0025
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0025
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0030
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0030
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0030
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0035
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0035
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0035
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0040
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0040
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0045
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0045
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0050
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0050
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0055
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0055
http://refhub.elsevier.com/S0045-7930(14)00355-7/h9010
http://refhub.elsevier.com/S0045-7930(14)00355-7/h9010
http://refhub.elsevier.com/S0045-7930(14)00355-7/h9010
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0065
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0065
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0065
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0070
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0070
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0070
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0075
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0075
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0080
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0080
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0085
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0085
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0090
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0090
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0090
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0095
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0095
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0100
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0100
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0105
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0105
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0105
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0110
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0110
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0115
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0115
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0120
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0120
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0125
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0125
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0130
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0130
http://refhub.elsevier.com/S0045-7930(14)00355-7/h0130

	garde_21_297.pdf
	legendre_15876_auteur
	Comparison between numerical models for the simulation of moving contact lines
	1 Introduction
	2 Numerical method
	2.1 VoF solver
	2.2 Numerical modeling of the contact angle

	3 Time and grid convergences
	3.1 Test case presentation
	3.2 Numerical parameters
	3.3 Time and grid convergence

	4 Comparison between models
	5 Spreading drop
	6 Discussion
	7 Conclusion
	Acknowledgement
	References



