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A New Approach for the Relative Surface Free Energy of
Cubic Material with Terrace, Step, and Kink Structures

J. C. Canullo.t H. L. Tignanelli,* 1 2A. Plastino,8 and A. J. Arvia*

Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de
Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo 16, Sucursal 4,

1900 La Plata, Argentina

A new relationship between the relative surface free energy and the surface structure of a cubic material
with terrace, step, and kink structures based upon the application of the information theory is presented.
Any surface of a face centered cubic crystal exists as combinations of (111), (100), and (110) microfacets
with a certain concentration of kinks, corners, and border of terraces. By use of the most dense atomic
array, the entire crystallographic surface can be described, including the corresponding relative surface
free energy of each kind of site. The results can be correlated with existing experimental data.

Introduction
The question of chemical activity and atomic surface

structure of metals is of great importance in heterogeneous
catalysis and, in general, in the formation of surface
chemical bonds. The chemical activity is directly related
to the surface energy distribution which in turn depends
on the distribution of the various pieces of surface, that
is, on the terrace-step-kink structure. These structures
are characterized via the Miller indices. The description
and notation of the crystal surfaces have been the matter
of a series of publications,1"3 the most recent one referring
to high-Miller index surfaces of cubic materials.3 On the
other hand, a considerable number of publications have
dealt with the evaluation of the surface free energy of
metals, either theoretically4"6 or experimentally.7

The present paper brings forth a new relationship
between the relative surface free energy and the surface
structure of a cubic metal with terrace, step, and kink
structures by recourse to the information theory formal-
ism.8 For this purpose the notation recently proposed by
Van Hove and Somorjai3 for the surface structures of cubic
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materials has been considered. The results are in a good
agreement with those reported in earlier theoretical and
experimental works7"9 and become useful to extend
previous conclusions derived on the matter.4-5

As the subject of this paper covers two very specific
aspects, namely, the crystallography of metal surfaces and
the information theory (statistical inference), it is con-
venient to present a concise introductory survey of those
aspects independently, to make the specific question
described in the paper more easily understandable for the
nonspecialist.

Crystallography and Crystal Surface Area
When a hanging liquid metal bead produced by melting

one extreme of a metal wire is cooled down, it tends to
produce a spherical single crystal with flat surfaces and,
from a macroscopic point of view, to attain the minimum
surface energy condition.9 The surface of an ideal spherical
single crystal offers all possible crystalline orientations
which are characterized in each direction (pole) by definite
Miller indices (hkl). In the absence of contaminants the
minimum surface free energy condition extends flatness
to the true atomic level10 where, on account of the material
discretness (atoms) and emergent crystalline (hkl) plane,
the surface breaks into microfacets, that is, terraces, steps,
and kinks, following on the long range the surface curvature
(parts b and c of Figure 1). Each microfacet is made up
of only one of the fundamental atomic arrangements,
namely the (111), the (100), an probably the (110). Due
to the microfaceted breakage, the real surface area may
differ from the calculated geometric area for a unit cell of
the emergent (hkl) plane, and this difference depends on
the distance between the fundamental crystallographic
poles. In this way, one denotes plane, surface, or pole
(hkl) to an ideal geometric plane tangent to the spherical
surface in the intersection of the [hkl] pole direction with
a spherical single crystal surface. The (hkl) plane emerging
from the bulk crystalline structure, will be called the
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Figure 1. (a) Bidimensional scheme of an ideal crystalline plane (hkl) emerging from the bulk and tangent to the spherical surface
in the intersection with the [Zt*Z] direction, (b) Geometric unit cell and its corresponding microfacets, (c) Microfaceted curvature.

geometric area of the crystallographic surface area unit
cell defined by Nicholas1 and calculated by Somorjai’s3
formulas (Figure 1).

The geometric surface area of the unit cell of a simple
cubic crystal, Aucec> of a (hkl) pole is given by the equation

Aucsc = [h2 + k2 + Z2]1/2 (1)

and for the face centered cubic (fee) crystalline structure

Aucfcc = (l/2)[h2 + k2 + Z2]1/2 (2a)

for h, k, and l not all odd numbers, and

Aac{cc=(l/m2 + k2 + l2]1/2 (2b)

for h, k, and Z all odd numbers. Equations 1, 2a, and 2b
are expressed according to Somorjai’s notation.3

Let us denote by Ag(hkl) the geometric area of the (hkl)
pole. Then

Ag(hkl) =
AUCK

= [h2 + k2 + l2] V2 (3)

and let us further consider that At(hkl), i.e. the real area
of the (hkl) pole is the sum of the real areas of the
fundamental atomic arrangements (111), (100), and (110)
from which the real area is constructed. Under these
conditions, ExcA (hkl), the excess of geometric area at the
(hkl), pole can be expressed by the ratio

ExcA (hkl) = Ar(hkl)/Ag(hkl) (4)

In order to make the problem easier to solve, a simple
cubic crystallographic structure will be considered. Not-
withstanding, eq 4 remains the same for the fee system
provided that the fundamental poles are properly cor-
rected.

The definition of Ar for each fundamental pole is based
upon the fact that for fee crystals the most compact atomic
arrangement, that is, (111), corresponds to that of the
lowest surface free energy. Correspondingly, one should
expect, that in the absence of constrains, any fee surface
should tend to approach the (111) arrangement. This
means that in this case, one can write

is the ratio between Agucfcc(100), the geometric area of the
fee (100) unit cell, and Agucfcc(lll), the geometric area of
the fee (111) unit cell. Thus

AgUCfCc(100) _
0.5a2

Agucfcc(lll)
"

0.433a2
1.1547 (8)

where a is the constant translation distance of the unit
cell. The correction factor   plays a significant role in the
definition of ExcA

A.(100)

El‘cAll00,-5¡m
= i (9)

because it is directly related to the relative surface free
energy value, which is considered further on. It should be
noted that several noble metals (100) surfaces exhibit the
trend to reconstruct,11 yielding a superlattice that corre-
sponds to the following combination

[5*20] (100) = (111) (10)

that is, the reconstructed surface tends to reach the
minimum surface free energy of the (111) arrangement.

The foregoing analysis of (111), (100), and (110) fee
surfaces can be presented in terms of a generalized equation
for the real area of the pole (hkl) as follows

At(hkl) = HjAjílll) + n2A,(110) + n3Ar(100)

=n1Ar(Hl) + n2Ar(lll) + (2/3)re3Ar(lll)
= (ri! + n2 + (2/3)n3)Ar(lll) (11)

where n\-l,m-k-l, and nz = h-k denote the number
of microfacets of poles (111), (110), and (100), respectively,
and h> k > l. Hence, one can write3

(hkl) = Z(lll) + (k- Z)(110) + (h- Ze)(100) (12)
and

f(N) = nl + n2 + (2/3 )n3 (13)

so that

Ar(lll) = Ag(lll) (5)

Let us consider now the unreconstructed (110) fee
surface. The latter can be expressed as the following
combination of (111) surfaces

ExcA(hkl) =
f(N)A'K( 111)

AgK(hkl)
> 1 (14)

for any set of (hkl) values. Obviously, ExcA = 1 for (hkl)
= (111).

(110) = (1/2)(111) + (1/2)(111) (6)

then, Ar(110) is given by

Ar(110) = (l/2)Ar(lll) + (1/2)  (11 ) = Ar(lll) (7)

On the other hand, for the unreconstructed (100) fee
surface, as it also involves a compact arrangement, Ar-
(100) can be expressed in terms of Ar(lll) times the
geometric factor   = (2/3)(3)1/2 = 1.1547. The value of  

An Outline of Information Theory
The term information implies a quantitative as well as

a qualitative concept which reflects the quantity of
information carried by a message and its quality. Then,

(11) (a) Marks, L. D.; Smith, D. J. Surf. Sci. 1985, 157, L367. (b)
Helms, C. R.; Bonzel,  . P.; Kelemen, S. J. Chem. Phys. 1976,65,1773.
(c) Terakura, I.; Terakura, K.; Hamada, N. Surf. Sci. 1981, 111, 479. (d)
Kolb, D. M. J. Vac. Sci. Technol., A 1986, 4, 1294.
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both concepts are to some extent interrelated. The
information contained in the message constitutes the basis
for developing a model that allows description of the
phenomenology of the message’s origin. Therefore, the
model becomes an intellectual invention interposed be-
tween the message and that phenomenon which has
produced it.

The information theory attempts to analyze the infor-
mation contained in a message independent of any
conceptual framework. This theory has been formally
described by Shannon in 1948.®® According to this author,
the symbols used in the message must obey certain laws
in order to be able to transmit a given quantity of specific
information.

The information generator can be mathematically
described as a source S emitting a sequence of symbols
related to a certain fixed alphabet or code, s¡, obeying a
fixed probabilistic law

111

Figure 2. Fundamental fee crystallographic triangle. The
locations of representative poles are included. Adopted from ref
16.

S |s1( S2, ...» Sq, ...} (15)

where q can be finite or infinite. In the simplest case the
symbols of the message become statistically independent.
Such an information source is denoted as a null memory
source, and it can be described by using the alphabet of
the source S, and P(s{), Pfo).....P(s,).....where P(s¡)
denotes the appearance probability of each symbol.

The quantity of information /(s¡), associated with the
symbol s;, is defined as

Ksí) = log [Pis,)]"1 (16)

and by a judicious choice of the logarithm base, different
units for the quantity of information can be established.
Thus, for a logarithm of base 2, for P(s¡) = V2. 7(s,·) = 1
bit. One bit is the quantity of information resulting from
two possible alternatives which are equally probable.
Otherwise, for P(s¿) = e_1,7(s,·) = 1 nat, and for P(s¡) = 0.1,
7(s¡) = 1 hartley, using natural or decimal logarithm,
respectively. The latter is used in the following section.

The information theory, which has been traditionally
applied to communication networks, electronics, and
structural aspects of computational languages, has also
been found to constitute an important tool to deal with
problems of astronomy, taxonomy, X-ray diffraction,
statistical mechanics, and physical chemistry, including
crystallography.12·13

The information theory provides a definite criterion for
building up a unique solution for a probabilistic problem
by recourse to the maximum entropy principle which
asserts that out of the all available solutions there is only
one which maximizes the function S, denoted as the
“entropy”, which is the sum over all distinguishable em-
sembles of the integral involving the corresponding
distribution functions.14

Results and Interpretation
Let us consider a null memory information source

situated in the fundamental crystallographic triangle
comprised between the [111], [110], and [100] direction
poles (Figure 2). The fundamental crystallographic tri-

(12) Hartley, R. Y. L. Bell Syst. Tech. J. 1928, 7, 535.
(13) Wilkins, Stephen W.; Varghese, J. N.; Lehman, M. S. Acta Crys-

tallogr., Sect. A 1983, A39, 47. (b) Piro, O. E. Acta Crystallogr., Sect.
A 1983, A39, 61. (c) King, R. B. Theor. Chim. Acta 1985, 68,143. (d)
Barysz, M.; Trinajstic, N.; Knop, J. V. Int. J. Quantum Chem. 1983,17,
441. (e) Raychaudhury, C.; et al. J. Computational Chem. 1984, 5(6),
581. (f) Jaynes, E. T. Phys. Rev. 1957,106,620; Statistical Phys. 1963,
181.

(14) Katz, A. Principles of Statistical Mechanics; Freeman: NewYork,
1967.

angle contains all the information about the surface
structure and associate properties. It should be noted
that the 48 fundamental crystallographic triangles are
required to cover completely the surface of a fee single
crystal sphere. In this case the symbols of the message
emitted from the source are the (hk l) Miller indices. Then,
for this system, according to the precedent definitions,
one can write

S(hkl) = \(hkl) 1, (hkl)2,...) (17)

In the case, one can define I(hkl), the quantity of
information, as the excess of area with respect to the
geometric area. This definition is justified from the fact
that LEED surface crystallography data have shown that
under vacuum virtually all clean metal surfaces relax
inward. The more open or rough the structure of the
surface is, the larger the inward relaxation. The latter is
a function of the surface roughness, which is the inverse
of the packing density.15 Therefore, from eq 4 for any
(hkl) pole, the result is

A.(hkl)
I(hkl) = log ExcA (hkl) = log -L—— (18)

Ag(hkl)
where I(hkl) is given in Hartley units. According to eq 18,
ExcA (hkl) appears as the unnormalized reciprocal prob-
ability of the (hkl) pole. The values of ExcA for the mi-
crofacets related to the different (hkl) poles of the fee
system are assembled in Table I.

Following the same procedure, energetic information
from the fundamental crystallographic triangle can also
be derived. Thus, let 7 (hk l) denote the surface free energy
of the (hk l) pole, and let us also define Eie\(hk l), the relative
surface energy of the (hkl) pole with respect to the (111)
pole, as follows

Eni(hkl) = y(hkl)/7(111) (19)

where Ew\(hkl) > 1 for any (hkl) pole and En\(hkl) = 1 for
(hkl) = (111). Hence, I'(hkl), the quantity of information
related to the relative surface free energy of the (hkl) pole,
is given by

F(hkl) = log
y(hkl)
7(1U)

(20)

Let us now consider the ExcA values given in Table I,
and the relative surface free energy of the different poles

(15) Joña, F.; Marcus, P. M. The Structure of Surfaces II; Springer-
Verlag: Berlin, 1980; p 90.



1272 Langmuir, Vol. 7, No. 6, 1991 Canullo et al.

Figure 3. Relative surface free energy of gold and its dependence on crystallographic orientation, according to Hamelin et al.*b The
y axis displays the y(hkl)/y(lll), ExcA(hkl), and I (hkl) scales. denotes the potential of zero charge in 0.1 M NaF at 298 K.

Table I. Values of ExcA(hkl) and I(hkl) for Different fee
(hkl) Surfaces
distance from

poles
(hkl)

microfacets poles, deg ExcA-
(hkl) I(hkl)100 110 111 100 110 111

(111) 0 0 1 54.7 35.2 0 1 0
(988) 1 0 8 51.4 33.7 3.23 1.03833 1.63395E-02
(988) 0 1 8 51.4 33.7 3.23 1.07827 3.27297E-02
(988) 0 0 9 51.4 33.7 3.23 1.07827 3.27298E-02
(433) 1 0 3 46.6 31.9 8.04 1.08916 3.70924E-02
(322) 1 0 2 43.3 30.9 11.4 1.12022 4.93049E-02
(211) 1 0 1 35.2 30 19.4 1.17851 7.13335E-02
(733) 4 0 3 31.2 30.2 23.5 1.19908 7.88507E-02
(311) 2 0 1 25.2 31.4 29.4 1.21854 8.58408E-02
(411) 3 0 1 19.4 33.5 35.2 1.22474 8.80454E-02
(611) 5 0 1 13.2 36.5 41.4 1.21756 8.54906E-02
(911) 8 0 1 8,93 39.0 45.8 1.20407 8.06536E-02
(100) 1 0 0 0 45 54.7 1.15469 6.24691E-02
(910) 8 1 0 6.34 38.6 50.3 1.21139 8.32854E-02
(610) 5 1 0 9.46 35.5 48.3 1.2339 9.12812E-02
(410) 3 1 0 14.0 30.9 45.5 1.26025 0.100457
(310) 2 1 0 18.4 26.5 43.0 1.27801 0.106536
(210) 1 1 0 26.5 18.4 39.2 1.29099 0.110923
(320) 1 2 0 33.6 11.3 36.8 1.28102 0.107556
(430) 1 3 0 36.8 8.13 36.0 1.27016 0.10386
(540) 1 4 0 38.6 6.34 35.7 1.26233 0.101173
(110) 0 1 0 45 0 35.2 1.22474 8.80438E-02
(991) 0 8 1 45.1 4.49 30.7 1.22097 8.67077E-02
(441) 0 3 1 45.8 10.0 25.2 1.20604 8.13623E-02
(331) 0 2 1 46.5 13.2 22.0 1.19207 7.63038E-02
(773) 0 4 3 47.4 16.8 18.4 1.1721 6.89658E-02
(221) 0 1 1 48.1 19.4 15.7 1.15469 6.24685E-02
(332) 0 1 2 50.2 25.2 10.0 1.10782 4.44698E-02
(443) 0 1 3 51.3 27.9 7.32 1.082 3.42282E-02
(998) 0 1 8 53.2 32.1 3.11 1.03692 1.57486E-02
(111) 0 0 1 54.7 35.2 0 1 0
(321) 1 1 1 36.6 19.1 22.2 1.23442 9.14645E-02
(432) 1 1 2 42.0 23.1 15.2 1.17932 7.16324E-02
(532) 2 1 2 35.7 23.4 20.5 1.21756 8.54903E-02
(421) 2 1 1 29.2 22.2 28.1 1.25987 0.100329
(531) 2 2 1 32.3 17.0 28.5 1.26866 0.103347
(431) 1 2 1 38.3 13.8 25.0 1.2455 9.53443E-02

of a fee metal such as gold.9 The comparison of these data
(see Figures 3 and 4) show that En\(hkl) and ExcA(hkl)
exhibit the same dependence with respect to the pole’s
indices. Therefore, for any (hkl) pole

I(hkl) - I'(hkl) = AI(hkl) = 0 (21)
This means that the difference in terms of information
between the relative surface free energy and the geomet-
rical structure of the surface is zero for any crystalline
pole.

It should be noted that for the (hkl) pole, according to
eq 16 and the maximum entropy principle,13·14 I(hkl)
provides information about the most probable relative

  /degree*

Figure 4. Dependences of ExcA(hkl) and I (hkl) on crystallo-
graphic orientation. Data corresponds to zones between [110]—
[100], [100]-[111], and [111]-[110] directions. The (988) =

8*(111) + 1*(111) face (open circle, O) displays an excess of
geometric area and relative surface free energy larger than the
(988) = 8*(111) + 1*(100) microfacets configuration.

Table II. Values of 7(988) for Different Microfacet
Composition

pole microfacets 7(988)

(988) = 8*(111) + 1*(100) 0.0163395
(988) = 8*(111) + 1*(110) 0.0327297
(988) = 8*(111) + 1*(111) 0.0327298

geometric composition of fundamental microfacets, i.e.
that involving the smallest excess in geometry. This fact
is illustrated for the (988) pole in Table II and in Figure
4. In this case, the first geometric composition corresponds
to the minimum of either ExcA(988) or £rei(988) value.

On the other hand, from eq 18 we obtain

I(hkl) = log At(hkl) - log Ag(hkl) = It(hkl) -

Ig(hkl) (22)

wher elt(hkl) = log At(hkl), and Ig(hkl) = log Ag(hkl). Then
from eq 21 one obtains

It(hkl) - Ig(hkl) - F(hkl) = 0 (23)

Similarly, one can write

F(hkl) = log y(hkl) - log -y(lll) = F'(hkl) - /"(111) (24)
where F'(hkl) = log7(/tfeZ),and/"(lll) = log7(lll).Thus,
from eqs 21, 22, and 24, one obtains

IT(hkl) - Ig(hkl) - F'(hkl) + /"(111) = 0 (25)
Let us consider now that

(16) Steigerwald, D. A.; Miller, S. J.; Wynblatt, P. Surf. Sci. 1985,155,
79.
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log A,(111) =KX

log 7(111) = /"(111) = K2 (26)

so that

I'ihkl) = log f(N) Ar(lll)
= log f(N) + log Ar(lll) = It(N) + K, (27)

where

It(N) = log f(N) (28)

Then, from eqs 25, 26, and 28, we obtain

I"(hkl) = It(N) -

Ig(hkl) + Kl + K2 (29)

where the terms It(N), Ig(hkl), and K\ in eq 29 are all
known. According to eq 29 the information associated
with the surface free energy of the (hkl) pole is directly
related to the geometry of the surface (the constant K2
value poses no problem here). Then, the ratio between
the geometric area of the (hkl) pole and Ar(lll) furnishes
the number of (111) unit cells involved in that surface.
The term f(N) corresponds to a correction factor indicating
how far the surface structure of the (hkl) pole is from that
of an ideal geometric surface with a (111) atomic arrange-
ment. Therefore, from information theory it is possible
to conclude that the relative surface free energy at each
crystallographic pole is directly related to the real surface
structure extracted from an ideal geometric area with (111)
atomic array.

Finally, the present approach allows for the possibility
of predicting the surface free energy of any (hkl) pole
located in the fundamental crystallographic triangle if one
knows just the value of a single pole. The corresponding

equations are

y(hkl\Ag(hkl)x
mi

= y(hkl) Ag(hkl)2
2 m* (30)

and, by taking the (111) pole as reference, the result is

y(hkl) =
f(N) Ar(111)

Ag(hkl)
7(1H) (31)

Summing up one can assert that from the physical and
chemical standpoihts, any surface of a fee crystal exists as
a combination of only (111), (100), and (110) microfacets,
and depending on the combinations of these microfacets,
a certain concentration of kinks, corners, and border of
terraces is accomplished. Then, by selection of the most
dense atomic array the entire crystallographic surface can
be described including the corresponding relative surface
energy of each kind of surface site. The same approach
is applicable for other crystalline structures such as simple
cubic, bcc, and tetragonal structures.17

The present results can be satisfactorily compared to
the scarce experimental data existing for metals such as
gold, nickel, and lead7b’7*’9b’9*·17 and are applicable at any
temperature compatible with the corresponding crystalline
state, provided that the thermal expansion of the lattice
be considered.
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